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ABSTRACT

The security and robustness of AI systems are critical in real-world deployments.
While prior works have developed methods to train robust networks, these works
implicitly assume that sufficient labeled data for robust training is present. However,
in deployment scenarios with insufficient training data, robust networks cannot be
trained using existing techniques. In such low-data regimes, non-robust training
methods traditionally rely on transfer learning. First, a network is pre-trained
on a large, possibly labeled dataset and then fine-tuned for a new task using the
smaller set of training samples. The effectiveness of transfer learning with respect
to adversarial robustness, though, is not well-studied. It is unclear if transfer
learning can improve adversarial performance in low-data scenarios. In this paper,
we perform a broad analysis of the effects of pre-training with respect to empirical
and certified adversarial robustness. Using both supervised and self-supervised pre-
training methods across a range of downstream tasks, we identify the circumstances
necessary to train robust models on small-scale datasets. Our work also represents
the first successful demonstration of training networks with high certified robustness
for small-scale datasets.

1 INTRODUCTION

Figure 1: Through transfer learning, one can obtain
high-performance networks in settings where it would
otherwise be infeasible, i.e., low-data regimes. First,
the user trains a classifier on a source task with a large
dataset to learn generalizable features. Next, the classi-
fier is fine-tuned on a target task with a small dataset.

Transfer learning has been extensively stud-
ied for improving standard generalization
in machine learning systems across vari-
ous data availability scenarios (Yosinski
et al., 2014; Kornblith et al., 2019; He et al.,
2019). In the context of adversarial robust-
ness, however, there are only limited works
that studied the benefits of transfer learn-
ing (Hendrycks et al., 2019; Chen et al.,
2020a). These works generally limit them-
selves to empirical robustness by solely us-
ing adversarial training (Madry et al., 2018)
in their experiments. Furthermore, they
only study the scenario where abundant
data is available for the downstream tasks,
i.e., well-represented tasks (e.g., CIFAR-
10, CIFAR-100). The exact effect of trans-
fer learning on empirical robustness when
there is a lack of abundant data for the
downstream tasks, i.e., under-represented
tasks, is therefore unknown.

It is also unclear whether the findings in context of empirical robustness would apply to certified
robustness training methods, specifically randomized smoothing based methods (Cohen et al., 2019;
Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021) which provide state-
of-the-art certified robustness in the `2-space. This is because both these class of methods rely on
fundamentally different ways of measuring and encoding adversarial robustness, and so classifiers
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Table 1: Summarizing the findings of prior works regarding the usefulness of transfer learning
towards standard generalization and adversarial robustness.

Is Transfer Learning Useful?

Supervised Self-Supervised

Low-Data High-Data Low-Data High-Data

Standard 4 8 4 4
Generalization (Kornblith et al., 2019) (He et al., 2019) (Chen et al., 2020b) (Chen et al., 2020b)

Adversarial
Empirical ?

4
?

4

(Hendrycks et al., 2019) (Chen et al., 2020a)
Robustness

Certified ? ? ? ?

trained using them inherit different properties. Case in point, Kireev et al. (2022) demonstrated
that empirical and certified training methods exhibit dissimilar levels of robustness against common
image corruptions. Finally, there is little work that studies effect of self-supervised pre-training on
adversarial robustness, with existing works limiting themselves to well-represented tasks.

Table 1 summarizes the findings of prior works in regards to improving performance/robustness in a
range of data availability scenarios. The effects of transfer learning on adversarial robustness is largely
unexplored (limited to empirical robustness and well-represented tasks). Furthermore, we note that
self-supervised pre-training has become an important component of the transfer learning framework
of late as it alleviates the need for labeled data for pre-training. The models fine-tuned using pre-
trained weights generated via self-supervised learning have exhibited unprecedented generalization
ability, unlocking large-scale commercial applications that were infeasible only a few years back.
However, using self-supervision to train highly secure ML models is a topic that has largely been
overlooked. Therefore, in this paper, we make adversarial robustness our primary focus and broadly
study the effects of transfer learning on it. Our findings serve as a useful tool for ML practitioners
wanting to deploy highly robustness models in a range of data availability scenarios.

Our contributions can be summarized as follows:

• We perform a comprehensive study on the utility of transfer learning towards certified and
empirical robustness across a range of downstream tasks. First, a model is robustly pre-
trained on a large-scale dataset (i.e., ImageNet) using supervised or self-supervised methods
and then robustly fine-tuned on the downstream task. Our experimental results show that
such pre-training is beneficial toward improving adversarial performance on downstream
tasks compared to training on the downstream task directly.

• We further show that during transfer learning, only the fine-tuning portion of the pipeline
needs to rely on robust training methods. This finding eases the overhead of training robust
models. Also, regardless of the amount of labeled data available for either pre-training or
fine-tuning, models with high adversarial robustness can be trained on downstream tasks.

• Finally, our work demonstrates the first successful demonstration of training models with
high certified robustness on downstream tasks irrespective of the amount of labeled data
available, either during pre-training or fine-tuning.

2 BACKGROUND

In this paper, we focus on transfer learning for image classification tasks. More specifically, we
explore whether transfer learning can be used to train deep neural network-based image classifiers with
high (empirical and certified) adversarial robustness in a range of data availability scenarios. In this
section, we provide readers with the necessary background regarding transfer learning (Section 2.1)
and adversarial robustness of deep neural networks (Section 2.2).
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2.1 TRANSFER LEARNING

In transfer learning (Caruana, 1994; Pan & Yang, 2009; Bengio et al., 2011; Bengio, 2012; Yosinski
et al., 2014; Huh et al., 2016), a network is pre-trained on a source task and then fine-tuned on a
target task. Through pre-training, the network learns features that enable it to generalize better when
fine-tuned on the target task (Yosinski et al., 2014). This is true even when the source and target tasks
are dissimilar. For example, prior works (Sermanet et al., 2013; Girshick et al., 2014) re-purposed
networks trained for ImageNet (Deng et al., 2009) classification task to achieve breakthroughs on
object detection tasks. Pre-training has also been shown to be an effective solution for training
high-performance networks when available training data is insufficient for standard training (Pan &
Yang, 2009). However, He et al. (He et al., 2019) showed that, in the presence of abundant training
data, similar levels of generalization can be achieved whether pre-training is performed or not. In
such cases, the only benefit of transfer learning then is faster convergence and, therefore, savings in
training time. Other studies found that transfer learning effectively transfers other desirable properties
like shape bias (Utrera et al., 2020), robustness to common image corruptions (Yamada & Otani,
2022) and adversarial perturbations (Hendrycks et al., 2019).

2.1.1 SELF-SUPERVISED PRE-TRAINING

Traditionally, pre-training was performed in a supervised fashion on large-scale labeled datasets,
which can be challenging to acquire in many domains. However, unlabeled data tends to be widely
available. To leverage these unlabeled datasets, self-supervised pre-training was proposed to enable
models to learn generalizable features by optimizing a custom training objective. Contrastive
learning (Chen et al., 2020b; Grill et al., 2020; He et al., 2020; Caron et al., 2020; Goyal et al., 2022) is
one such approach. Models are trained to maximize the similarity between positive pairs (semantically
similar data samples) while minimizing the similarity between negative pairs (semantically dissimilar
data samples) in the feature space. SimCLR (Chen et al., 2020b), one of the most popular contrastive
learning method, generates the positive pairs by applying two different sets of input transformations
(like cropping, color distortion, and blurring) to the same image. Negative pairs are generated using
transformed versions of different images. Self-supervised methods often achieve state-of-the-art
results in a range of applications such as image classification, object detection, and sentiment analysis
after fine-tuning on relatively small amounts of labeled data.

2.2 ADVERSARIAL ROBUSTNESS

Neural networks are known to be susceptible to adversarial evasion attacks, which attempt to modify
a given input imperceptibly with the goal of triggering misclassification. Since the discovery of this
vulnerability, several methods have been proposed to train neural networks that are robust against
such attacks. These methods can be broadly classified as empirical and certified methods based on
the nature of the robustness guarantees they provide.

2.2.1 EMPIRICAL ADVERSARIAL ROBUSTNESS

Empirical adversarial robustness is traditionally measured using the strongest possible attack within a
pre-determined threat model. Robustness training methods that rely on this strategy train the neural
network to be robust against this strongest attack and, in turn, gain robustness against all possible
attacks within the same threat model. However, such robustness is not provable in nature and can be
challenged by an adaptive adversary (Carlini & Wagner, 2017; Athalye et al., 2018; Tramer et al.,
2020). Adversarial training (Madry et al., 2018), is one of the most promising empirical robustness
methods, as is evident from the fact that the current state-of-the-art methods (Zhang et al., 2019; Wu
et al., 2020) are derived from the basic framework proposed by Madry et al. (Madry et al., 2018). This
framework involves generating adversarial inputs on the fly during training and updating the neural
network’s weights using them. Furthermore, several works (Tsipras et al., 2019; Ilyas et al., 2019;
Augustin et al., 2020) still study the models trained by Madry et al. to learn more about adversarial
robustness in general. Due to its prominence and in an attempt to fall in line with prior works, we use
adversarial training as a representative of empirical robustness training methods.
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2.2.2 CERTIFIED ADVERSARIAL ROBUSTNESS

Despite the progress made towards developing empirical robustness methods with strong robustness
guarantees, the lack of provability remains an issue. Provably/certifiably robust training methods
remedy this concern by maximizing the lower bound of a neural network’s output corresponding to
the correct class within a certain range of input perturbations. If, for a given input, the lower bound of
the correct class output is higher than the upper bound of all other class outputs, the neural network is
provably robust for that input. Computing and maximizing this lower bound for a multi-layer neural
network is an NP-hard problem (Katz et al., 2017). In recent literature, several methods have been
proposed to approximately compute this lower bound and incorporate it in the training process of
the neural network in a scalable manner. Of these, randomized smoothing based methods (Cohen
et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021) yield
state-of-the-art robustness in the `2-space for modern neural networks. Therefore, in this paper, we
focus on these methods.

First formalized by Cohen et al. (Cohen et al., 2019), randomized smoothing defines the concept of a
smooth classifier. Given a base classifier f✓, the smooth classifier g✓, is defined as follows:

g✓(x) = argmax
c2Y

P⌘⇠N (0,�2I)(f✓(x+ ⌘) = c) (1)

Simply put, the smooth classifier returns the class c, which has the highest probability mass under the
Gaussian distribution N (x,�2I). If, for a given input x, the smooth classifier’s output c is equal to
the ground truth label y, it is said to be certifiably robust (with high probability) at x. The certified

radius, i.e., the input radius in which x’s prediction is consistent, is given by:

CR(g✓;x, y) =
�

2
[��1(P⌘(f✓(x+ ⌘) = y))�

��1(max
y0 6=y

P⌘(f✓(x+ ⌘) = y0))]
(2)

Randomized smoothing-based robustness training methods focus on maximizing the average certified
radius for a given dataset (Cohen et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong et al.,
2021). Cohen et al. (Cohen et al., 2019), simply augmented the training data with Gaussian noise
when training the base classifier. Salman et al. (Salman et al., 2019) modified the adversarial training
objective to work in this new framework. Zhai et al. (Zhai et al., 2020) derived a differentiable
approximation of the certified radius and directly maximized it during training. Jeong et al. (Jeong
& Shin, 2020) find that the certified robustness of a smooth classifier can be greatly improved by
enforcing the base classifier’s outputs over several noisy copies of a given input to be consistent.
They achieve this consistency by using a regularization loss that forces the output for a noisy copy of
the input to be closer to the expected output over several noisy copies. Finally, Jeong et al. (Jeong
et al., 2021) identified that the certified radius of the smooth classifier is aligned with its prediction
confidence and used a combination of adversarial training and mixup (Zhang et al., 2018) to favorably
calibrate the prediction confidence.

3 TRANSFER LEARNING FOR ADVERSARIALLY ROBUST ML

Commercial systems are becoming increasingly reliant on AI. However, adversarial attacks remain an
ever-present issue when considering the trustworthiness of these systems. Training models with high
adversarial robustness using current methods, however, requires access to large amounts of labeled
data (Schmidt et al., 2018), which is hard to achieve in many deployment scenarios, even in the image
domain. Except for public datasets such as ImageNet, most vision tasks may only have a handful of
labeled data samples for training.

In non-robust scenarios, transfer learning is one solution to alleviate the need for abundant training
data for a given task. It involves pre-training on a data-rich (source) task followed by fine-tuning on
the low-data downstream task to achieve state-of-the-art performance. Unfortunately, the relationship
between transfer learning and adversarial robustness has only been studied in one specific scenario,
when the downstream task has abundant labeled training samples and empirical adversarial robustness
is the property of interest. To our knowledge, there are no works that explore using transfer learning
to enable the deployment of empirically robust models on small-scale datasets. Furthermore, there
are no works that study the relationship between transfer learning and certified adversarial robustness.
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We present the first comprehensive study on the utility of transfer learning towards adversarial
robustness. In Section 3.1, we describe our experiment setup. In Sections 3.2 and 3.3, we examine
the benefits of transfer learning in the context of empirical and certified robustness in a range of
data availability scenarios. Here, we use different pre-training methods (robust and non-robust), and
perform fine-tuning robustly. In Section 4, we will examine the need for robustness training during
the different phases of transfer learning, i.e., pre-training and fine-tuning.

3.1 SETUP

In this section, we describe our experimental setup. Additional implementation details are available
in Appendix A.

Dataset and Model. For pre-training (supervised and self-supervised), we use the standard ImageNet
dataset. For fine-tuning, we use a suite of 12 downstream datasets (Kornblith et al., 2019) often used
in transfer learning literature. Training is done using a ResNet-50 classifier. All images are scaled to
224⇥ 224 in order to be compatible with ImageNet pre-trained weights.

Threat Model. We measure the adversarial robustness with respect to a white-box `2 adversarial
attack. Our choice of adversary is motivated by the fact that randomized smoothing (Cohen et al.,
2019), our choice of certified robustness method, defines robustness in the `2 space. This enables us
to easily compare both adversarial metrics during evaluation.

Supervised Training. As a baseline for comparison, for every downstream task, we train a randomly
initialized model using only the downstream task’s labeled data. When studying the effects of transfer
learning on empirical robustness, we use Adversarial Training (AT) (Madry et al., 2018) for baseline
training, pre-training, and fine-tuning. AT uses a PGD attack with ✏ = 0.5, step size = 2✏/3, and
3 steps. We note that higher values of ✏ will only result in reducing the overall performance of the
models. When studying the effects of transfer learning on certified robustness, we use Consistency
Regularization (CR) (Jeong & Shin, 2020) for baseline training, pre-training, and fine-tuning. For
CR, we use � = 0.5, number of Gaussian noise samples m = 2, � = 5, and ⌘ = 0.5.

Self-supervised Training. Due to its popularity in current literature, we study the benefits of self-
supervised pre-training on adversarial robustness. Unfortunately, most existing adversarially robust
self-supervised methods (Jiang et al., 2020; Fan et al., 2021; Luo et al., 2022) have not been evaluated
on ImageNet, but on smaller datasets instead. The one method we found that uses ImageNet (Gowal
et al., 2020) does not have code publicly available. Thus, we use the SimCLR (Chen et al., 2020b)
training method, a contrastive learning approach.

Evaluation. For measuring the robustness of empirically robust models during evaluation, we measure
accuracy against the autoPGD attack (Croce & Hein, 2020) with ✏ = 0.5, i.e., robust accuracy (RA).
Prior work (Croce & Hein, 2020) has demonstrated that AutoAttack, a more comprehensive attack for
evaluating, only slightly reduces the robust accuracy (only a difference of 0.71% in RA computed
using AutoAttack and AutoPGD) and we found AutoAttack is significantly slower.

For measuring the robustness of certifiably robust models, we use the certification process proposed
by Cohen et al. (2019) and report the fraction of inputs with certified radius (Equation 2) greater than
✏ = 0.5, called certified robust accuracy. Additionally, we report the average radius around an input
within which the model’s prediction remains consistent, denoted Average Certified Radius (ACR).
For both evaluations, we also report the accuracy on the clean test set, i.e., standard accuracy (SA).

3.2 EMPIRICAL ADVERSARIAL ROBUSTNESS

Prior work (Hendrycks et al., 2019; Chen et al., 2020a) have demonstrated that, unlike with standard
generalization, empirical robustness benefits from transfer learning for well-represented downstream
tasks. We begin our study by validating their findings and then extending them to a wider range
of data availability scenarios. On a suite of 12 target tasks, we train three versions of a ResNet-50
classifier: (i) using randomly initialized weights, (ii) using pre-trained weights obtained by performing
Adversarial Training (AT) (Madry et al., 2018) on ImageNet, and (iii) using pre-trained weights
obtained by performing SimCLR (Chen et al., 2020b) on ImageNet. The standard accuracy (SA) and
robust accuracy (RA) of the resultant classifiers are reported in Table 2.
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Table 2: Evaluating the benefits of pre-training for empirical adversarial robustness. Given a
target task, we train three ResNet-50 classifiers: one using random weight initialization and two
using weights pre-trained on a source task (ImageNet). Pre-training is performed using supervised
(adversarial training) and self-supervised (SimCLR) objectives. During fine-tuning, the full network
is trained using AT. Pre-training improves empirical adversarial robustness across all target tasks.

Target Task

Random Init. Sup. Pre-Training Self-Sup. Pre-Training

SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)

Food 74.5 62.3 81.6 69.2 82.2 68.6
CIFAR-100 71.8 62.5 80.1 70.6 80.9 70.3
CIFAR-10 93.3 88.8 95.8 91.7 95.9 91.2
Birdsnap 65.2 50.8 61.8 48.3 60.4 44.4
SUN397 51.0 41.7 55.5 44.4 59.0 44.3
Caltech-256 61.4 54.4 70.6 62.5 76.8 65.4
Cars 88.3 83.0 87.9 82.2 85.8 76.1
Aircraft 76.4 68.6 77.9 69.6 76.3 64.6
DTD 54.3 48.1 65.8 59.7 72.6 58.9
Pets 73.2 63.3 86.9 78.4 88.6 74.5
Caltech-101 66.7 61.5 88.5 83.1 91.9 83.6
Flowers 78.0 72.6 93.7 90.1 93.7 86.1

First, we see that, as prior work also demonstrated (Hendrycks et al., 2019; Chen et al., 2020a),
transfer learning using a model pre-trained using AT improves performance (SA) and robustness
(RA) on well-represented downstream tasks (i.e., CIFAR-10, CIFAR-100, and Food). However, our
experiments also show that pre-training with AT improves SA and RA even on under-represented
downstream tasks (e.g., Flowers, Pets, and Caltech-101). On average, across all tasks, pre-training
with AT improves SA and RA relative to random initialization by 11.4% and 12.6%, respectively.
We also note that SimCLR pre-training yields consistent improvements in SA and RA, averaging to
14.1% and 9.9%, respectively. While improvements in SA were expected, the improvements in RA
are surprising given that SimCLR, unlike other self-supervised methods we surveyed (Jiang et al.,
2020; Fan et al., 2021; Luo et al., 2022), does not specifically design its objective function with
adversarial robustness in mind.

We suspect that improvements in RA due to transfer learning are largely due to the overall improve-
ment in SA rather than the robustness being “transferred” from the source task (ImageNet) to the
target tasks. On Birdsnap, for example, both pre-training methods result in lower SA, which is
mirrored by lower RA compared to random initialization. In Figure 2, we plot the relative increase
in RA vs. the relative increase in SA due to pre-training. We observe a strong linear correlation
between the two quantities for both the pre-training methods, with R2 value of 0.98 for AT and 0.94
for SimCLR.

3.3 CERTIFIED ADVERSARIAL ROBUSTNESS

To the best of our knowledge, there exist no works that explicitly study the utility of transfer learning
in the context of certified adversarial robustness for either supervised or self-supervised pre-training.
As before, we train three versions of a ResNet-50 classifier on each target task: (i) using randomly
initialized weights, (ii) using pre-trained weights obtained by performing Consistency Regularization
(CR) (Jeong & Shin, 2020) on ImageNet, and (iii) using pre-trained weights obtained by performing
SimCLR on ImageNet. In order to achieve certified robustness during inference, we convert the
ResNet-50 classifiers into smooth classifiers following Equation 1. The standard accuracy (SA),
certified robust accuracy (RA), and Average Certified Radius (ACR) of the smooth classifiers are
reported in Table 3. We compute these quantities using the prediction and certification process
described by Cohen et al. (2019).
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Figure 2: Plotting the improvement (%) introduced by pre-training relative to random initialization
across all 12 target tasks. Improvement in RA is linearly correlated with improvement in SA for both
pre-training methods, with R2 value of 0.98 for AT and 0.94.

Table 3: Evaluating the benefits of pre-training on certified adversarial robustness. Given a target task,
we train three ResNet-50 classifiers: one using random weight initialization and two using weights
pre-trained on a source task (ImageNet). Pre-training is performed using supervised (consistency
regularization) and self-supervised (SimCLR) objectives. During fine-tuning, the full network
is trained using CR. In all three cases, training on target tasks is performed using consistency
regularization. Similar to empirical adversarial robustness, pre-training improves certified adversarial
robustness across all target tasks.

Target Task

Random Init. Sup. Pre-Training Self-Sup. Pre-Training

SA (%) RA (%) ACR (`2) SA (%) RA (%) ACR (`2) SA (%) RA (%) ACR (`2)

Food 63.0 53.9 0.891 63.2 53.5 0.874 64.4 57.6 0.923
CIFAR-100 70.0 62.8 1.075 70.8 65.2 1.101 72.8 65.0 1.089
CIFAR-10 89.6 86.0 1.508 93.4 89.2 1.601 93.2 90.4 1.619
Birdsnap 42.0 34.7 0.538 41.6 32.4 0.504 41.0 35.3 0.541
SUN397 37.0 32.5 0.519 42.3 37.4 0.586 44.1 36.2 0.585
Caltech-256 54.0 47.4 0.835 60.9 57.3 1.001 65.4 58.5 1.000
Cars 81.9 77.5 1.358 79.1 73.9 1.285 77.7 70.1 1.158
Aircraft 70.1 63.4 1.065 68.1 60.9 1.022 69.0 61.4 0.991
DTD 44.9 39.4 0.699 50.2 45.3 0.790 55.5 49.8 0.849
Pets 66.7 61.8 1.068 70.8 64.5 1.088 75.2 67.2 1.089
Caltech-101 62.8 58.3 1.019 78.6 76.0 1.339 80.3 73.7 1.300
Flowers 75.2 72.7 1.306 87.5 82.0 1.538 84.6 78.7 1.407
* The above results are generated by evaluating a smooth classifier. This entails performing the computationally expensive process
of certification, which scales poorly with input dimension. Since all our datasets are ImageNet size (i.e., 224⇥ 224), we follow
the standard practice (Cohen et al., 2019) and perform certification using only 500 evenly spaced images in the test set.

We observe that supervised and self-supervised pre-training improves performance (SA) and certified
robustness (RA and ACR) on downstream tasks. Pre-training with CR results in an average relative
improvement of 7.1%, 7.5%, and 7.3% compared to no pre-training on SA, RA, and ACR, respectively.
Similarly, Pre-training with SimCLR results in an average relative improvement of 9.9%, 9.1%, and
6.9% compared to no pre-training on SA, RA, and ACR, respectively. As before, we note that the
improvements in RA and ACR are not necessarily due to the “transfer” of robustness of the pre-trained
model. Rather, the improvement in SA seems to result in an overall increase in RA and ACR. In
Figure 3, we plot both the relative improvement in SA vs. RA and SA vs. ACR from pre-training and
see a strong linear correlation between these quantities. For CR pre-training, the R2 value for linear
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correlation between SA and RA is 0.92, and between SA and ACR is 0.94. For SimCLR pre-training,
the R2 value for linear correlation between SA and RA is 0.89, and between SA and ACR is 0.86.

Figure 3: Plotting the improvement (%) introduced by pre-training relative to random initialization
across all 12 target tasks. Improvements in both RA (left) and ACR (right) are linearly correlated with
improvement in SA for both pre-training methods. For the left plot, R2 values for CR and SimCLR
are 0.92 and 0.89. For the right plot, R2 values are 0.94 and 0.86.

4 DISCUSSION

In Section 3, we demonstrated that a robust transfer learning pipeline is an effective method to
train robust models, especially on downstream tasks with small amounts of labeled data. In fact,
our self-supervised pre-training results highlight that a large labeled pre-training dataset is also
unnecessary. However, there remains a question as to which parts of the robust transfer learning
pipeline need to use robust training methods. As robust training methods impose a higher training
overhead compared to non-robust training methods (Shafahi et al., 2019a; Vaishnavi et al., 2022), we
perform two additional experiments to understand which parts of the transfer learning pipeline must
use robust training methods.

4.1 IS ROBUST PRE-TRAINING NECESSARY?

Transfer learning is designed to improve standard performance on downstream tasks. In Section 3, we
observed a strong linear correlation between improvements in SA and RA. This observation suggests
that the robustness of the pre-trained model may be irrelevant. The SimCLR results provide further
evidence as this training method does not optimize for robustness, and the models trained with it
are not empirically or certifiably robust. Using the same experimental setup as in Section 3, we
pre-train a ResNet-50 model using standard training (ST), i.e., minimizing the cross entropy loss,
which is also a non-robust pre-training method like SimCLR. We still use robust fine-tuning of the
full network. In Table 4, we measure the empirical and certified robustness of models pre-trained
with ST on two downstream datasets and compare it to pre-training with SimCLR and the respective
robust pre-training method. We only see minor performance differences when using ST and SimCLR
compared to a robust pre-training method, suggesting that robust pre-training is unnecessary for
improving robustness on the downstream task.

4.2 IS ROBUST FINE-TUNING NECESSARY?

In our initial experiments with a robust pre-trained model, we found that we could not use standard
training and fine-tune the entire model. The resulting model exhibited neither empirical nor certified
robustness as it was biased towards maximizing standard performance. However, Shafahi et al.
(2019b) showed that it was possible to train an empirically robust network if standard fine-tuning was
only done on the last model layer, thus freezing the rest of the model which was pre-trained using AT.
The intuition is that the frozen layer of model pre-trained with AT act a robust feature extractor that
can be fine-tuned non-robustly while preserving robustness. Their method results in a less robust
model compared to robust fine-tuning, but is computationally more efficient. Thus, we replicate their
experiments for certified robustness by first pre-training a ResNet-50 network on ImageNet using
Consistency Regularization (CR) with � = 0.5 and then fine-tuning the final layer only on CIFAR-10
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Table 4: Effect of the pre-training method on empirical and certified robustness. The full network
is fine-tuned using AT and CR, respectively. Robustness is not a requirement during pre-training in
order to observe improvement in robustness on downstream tasks.

Task
Empirical Robustness Certified Robustness

Pre-Training SA (%) RA (%) Pre-Training SA (%) RA (%) ACR (`2)

CIFAR-10
ST 95.4 91.2 ST 93.0 88.6 1.584

SimCLR 95.9 91.2 SimCLR 93.2 90.4 1.619

AT 95.8 91.7 CR 93.4 89.2 1.601

CIFAR-100
ST 78.5 68.1 ST 70.2 60.6 1.050

SimCLR 80.9 70.3 SimCLR 72.8 65.0 1.089

AT 80.1 70.6 CR 70.8 65.2 1.101

Table 5: Studying whether certified robustness is preserved on fine-tuning the final layer of a pre-
trained model non-robustly using standard training (i.e., � = 0). Using different values of � during
training and inference causes the smooth classifier to exhibit poor SA, RA, and ACR.

Task

� = 0.5 � = 0.0

SA (%) RA (%) ACR (`2) SA (%) RA (%) ACR (`2)

CIFAR-10 8.4 5.4 0.073 91.0 0.0 0.000
CIFAR-100 0.4 0.4 0.008 75.6 0.0 0.000

and CIFAR-100 using Standard Training. During inference, we convert the ResNet-50 classifier into
a smooth classifier (with � = 0.5) following Equation 1 to measure certified robustness.

In Table 5, we report the performance and robustness of our ResNet-50 classifiers when converted in
a smooth classifier with � = 0.5. We observe that on both datasets, non-robust fine-tuning of the last
layer results in a classifier with trivial standard accuracy (SA), robust accuracy (RA), and average
certified radius (ACR). Recall from Equation 1 that a smooth classifier g✓ performs prediction by
taking majority voting over several copies of a given input x sampled from the distribution N (x,�2I).
Thus, the base classifier should be trained using a noisy distribution (i.e., � = 0.5). Standard fine-
tuning is equivalent to training with � = 0. Thus, the smooth classifier’s performance suffers. We
see that if we instead use � = 0, the SA of the smooth classifier is restored, though it has zero RA
and ACR (follows directly from Equation 2). From these results, we conclude that robust fine-tuning
is a necessary step for robust transfer learning to avoid catastrophic forgetting of robustness on the
downstream task. Although Shafahi et al. (2019b) demonstrate a potential alternative for this finding
in context of empirical robustness, it significantly lowers the performance and robustness of the
fine-tuned model, and as we demonstrated, it doesn’t extend to certified robustness.

5 CONCLUSION

Transfer learning is traditionally used to train models with high standard generalization on tasks with
insufficient labeled training data. In this paper, we showed that transfer learning can also be used
to improve the adversarial robustness on downstream tasks. Although training adversarially robust
models has even higher data requirements than training non-robust models, our study reveals that
transfer learning can alleviate this issue. We propose a robust transfer learning pipeline composed
of non-robust pre-training followed by robust fine-tuning on the downstream task. Furthermore, the
pre-training step can be performed on large amounts of unlabeled data by leveraging self-supervised
training methods. Across 12 downstream tasks, our robust self-supervised transfer learning pipeline
improved the average empirical and certified robustness compared to no pre-training by 9.9% and
6.9% respectively. Our work also represents the first method to trained certifiably robust models on
datasets with small amounts of labeled training data.
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