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VOCOS: CLOSING THE GAP BETWEEN TIME-DOMAIN
AND FOURIER-BASED NEURAL VOCODERS FOR HIGH-
QUALITY AUDIO SYNTHESIS

Hubert Siuzdak∗

ABSTRACT

Recent advancements in neural vocoding are predominantly driven by Generative
Adversarial Networks (GANs) operating in the time-domain. While effective, this
approach neglects the inductive bias offered by time-frequency representations,
resulting in reduntant and computionally-intensive upsampling operations. Fourier-
based time-frequency representation is an appealing alternative, aligning more
accurately with human auditory perception, and benefitting from well-established
fast algorithms for its computation. Nevertheless, direct reconstruction of complex-
valued spectrograms has been historically problematic, primarily due to phase
recovery issues. This study seeks to close this gap by presenting Vocos, a new
model that directly generates Fourier spectral coefficients. Vocos not only matches
the state-of-the-art in audio quality, as demonstrated in our evaluations, but it
also substantially improves computational efficiency, achieving an order of mag-
nitude increase in speed compared to prevailing time-domain neural vocoding
approaches. The source code and model weights have been open-sourced at
https://github.com/gemelo-ai/vocos.

1 INTRODUCTION

Sound synthesis, the process of generating audio signals through electronic and computational means,
has a long and rich history of innovation . Within the scope of text-to-speech (TTS), concatenative
synthesis (Moulines & Charpentier, 1990; Hunt & Black, 1996) and statistical parametric synthesis
(Yoshimura et al., 1999) were the prevailing approaches. The latter strategy relied on a source-filter
theory of speech production, where the speech signal was seen as being produced by a source (the
vocal cords) and then shaped by a filter (the vocal tract). In this framework, various parameters such as
pitch, vocal tract shape, and voicing were estimated and then used to control a vocoder (Dudley, 1939)
which would reconstruct the final audio signal. While vocoders evolved significantly (Kawahara et al.,
1999; Morise et al., 2016), they tended to oversimplify speech production, generating a distinctive
”buzzy” sound and thus compromising the naturalness of the speech.

A significant breakthrough in speech synthesis was achieved with the introduction of WaveNet
(Oord et al., 2016), a deep generative model for raw audio waveforms. WaveNet proposed a novel
approach to handle audio signals by modeling them autoregressively in the time-domain, using dilated
convolutions to broaden receptive fields and consequently capture long-range temporal dependencies.
In contrast to the traditional parametric vocoders which incorporate prior knowledge about audio
signals, WaveNet solely depends on end-to-end learning.

Since the advent of WaveNet, modeling distribution of audio samples in the time-domain has become
the most popular approach in the field of audio synthesis. The primary methods have fallen into two
major categories: autoregressive models and non-autoregressive models. Autoregressive models,
like WaveNet, generate audio samples sequentially, conditioning each new sample on all previously
generated ones (Mehri et al., 2016; Kalchbrenner et al., 2018; Valin & Skoglund, 2019). On the other
hand, nonautoregressive models generate all samples independently, parallelizing the process and
making it more computationally efficient (Oord et al., 2018; Prenger et al., 2019; Donahue et al.,
2018).

∗Work conducted while at Gemelo AI
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Figure 1: This illustrates the phase wrapping using an example sinusoidal signal (b) generated
with a time-varying frequency (a). The instantaneous phase, φ(t), is shown in (c). The apparent
discontinuities observed around −π and π are the result of phase wrapping. Nevertheless, when
viewed on the complex plane, these discontinuities represent continuous rotations. The instantaneous
phase is computed as φ(t) = arg {ŝ(t)}, where ŝ(t) denotes the Hilbert transform of s(t) = sin(ωt).

1.1 CHALLENGES OF MODELING PHASE SPECTRUM

Despite considerable advancements in time-domain audio synthesis, efforts to generate spectral
representations of signals have been relatively limited. While it’s possible to perfectly reconstruct
the original signal from its Short-Time Fourier Transform (STFT), in many applications, only
the magnitude of the STFT is utilized, leading to inherent information loss. The magnitude of
the STFT provides a clear understanding of the signal by indicating the amplitude of different
frequency components throughout its duration. In contrast, phase information is less intuitive and its
manipulation can often yield unpredictable results.

Modeling the phase distribution presents challenges due to its intricate nature in the time-frequency
domain. Phase spectrum exhibits a periodic structure causing wrapping around the principal values
within the range of (−π, π] (Figure 1). Furthermore, the literature does not provide a definitive answer
regarding the perceptual importance of phase-related information in speech (Wang & Lim, 1982;
Paliwal et al., 2011). However, improved phase spectrum estimates have been found to minimize
perceptual impairments (Saratxaga et al., 2012). Researchers have explored the use of deep learning
for directly modeling the phase spectrum, but this remains a challenging area (Williamson et al.,
2015).

1.2 CONTRIBUTION

Attempts to model Fourier-related coefficients with generative models have not achieved the same
level of success as has been seen with modeling audio in the time-domain. This study focuses on
bridging that gap with the following contributions:

• We propose Vocos – a GAN-based vocoder, trained to produce complex STFT coefficients
of an audio clip. Unlike conventional neural vocoder architectures that rely on transposed
convolutions for upsampling, this work proposes maintaining the same feature temporal
resolution across all layers. The upsampling to waveform is realized through the Inverse
Fast Fourier Transform.

• To estimate phase angles, we propose a simple activation function defined in terms of a unit
circle. This approach naturally incorporates implicit phase wrapping, ensuring meaningful
values across all phase angles.

• As Vocos maintains a low temporal resolution throughout the network, we revisited the
need to use dilated convolutions, typical to time-domain vocoders. Our results indicate that
integrating ConvNeXt (Liu et al., 2022) blocks contributes to better performance.

• Our extensive evaluation shows that Vocos matches the state-of-the-art in audio quality
while demonstrating over an order of magnitude increase in speed compared to time-domain
counterparts. The source code and model weights have been made open-source, enabling
further exploration and potential advancements in the field of neural vocoding.
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2 RELATED WORK

GAN-based vocoders Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), have
achieved significant success in image generation, sparking interest from audio researchers due to their
ability for fast and parallel waveform generation (Donahue et al., 2018; Engel et al., 2018). Progress
was made with the introduction of advanced critics, such as the multi-scale discriminator (MSD)
(Kumar et al., 2019) and the multi-period discriminator (MPD) (Kong et al., 2020). These works also
adopted a feature-matching loss to minimize the distance between the discriminator feature maps of
real and synthetic audio. To discriminate between real and generated samples, also multi-resolution
spectrograms (MRD) were employed (Jang et al., 2021).

At this point the standard practice involves using a stack of dilated convolutions to increase the
receptive field, and transposed convolutions to sequentially upsample the feature sequence to the
waveform. However, this design is known to be susceptible to aliasing artifacts, and there are works
suggesting more specialized modules for both the discriminator (Bak et al., 2022) and generator (Lee
et al., 2022). The historical jump in quality is largely attributed to discriminators that are able to
capture implicit structures by examining input audio signal at various periods or scales. It has been
argued (You et al., 2021) that the architectural details of the generators do not significantly affect
the vocoded outcome, given a well-established multi-resolution discriminating framework. Contrary
to these methods, Vocos presents a carefully designed, frequency-aware generator that models the
distribution of Fourier spectral coefficients, rather than modeling waveforms in the time domain.

Phase and magnitude estimation Historically, the phase estimation problem has been at the core
of audio signal reconstruction. Traditional methods usually rely on the Griffin-Lim algorithm (Griffin
& Lim, 1984), which iteratively estimate the phase by enforcing spectrogram consistency. However,
the Griffin-Lim method introduces unnatural artifacts into synthesized speech. Several methods
have been proposed for reconstructing phase using deep neural networks, including likelihood-based
approaches (Takamichi et al., 2018) and GANs (Oyamada et al., 2018). Another line of work suggests
perceptual phase quantization (Kim, 2003), which has proven promising in deep learning by treating
the phase estimation problem as a classification problem (Takahashi et al., 2018).

Despite their effectiveness, these models assume the availability of a full-scale magnitude spectrogram,
while modern audio synthesis pipelines often employ more compact representations, such as mel-
spectrograms (Shen et al., 2018). Furthermore, recent research is focusing on leveraging latent
features extracted by pretrained deep learning models (Polyak et al., 2021; Siuzdak et al., 2022).

Closer to this paper are studies that estimate both the magnitude and phase spectrum. This can
be done either implicitly, by predicting the real and imaginary parts of the STFT, or explicitly, by
parameterizing the model to generate the phase and magnitude components. In the former category,
Gritsenko et al. (2020) presents a variant of a model trained to produce STFT coefficients. They
recognized the significance of adversarial objective in preventing robotic sound quality, however
they were unable to train it successfully due to its inherent instability. On the other hand, iSTFTNet
(Kaneko et al., 2022) proposes modifications to HiFi-GAN, enabling it to return magnitude and
phase spectrum. However, their optimal model only replaces the last two upsample blocks with
inverse STFT, leaving the majority of the upsampling to be realized with transposed convolutions.
They find that replacing more upsampling layers drastically degrades the quality. Pasini & Schlüter
(2022) were able to successfully model the magnitude and phase spectrum of audio with higher
frequency resolution, although it required multi-step training (Caillon & Esling, 2021), because
of the adversarial objective instability. Also, the initial studies using GANs to generate invertible
spectrograms involved estimating instantaneous frequency (Engel et al., 2018). However, these were
limited to a single dataset containing only individual musical instrument notes, with the assumption
of a constant instantaneous frequency.

3 VOCOS

3.1 OVERVIEW

At its core, the proposed GAN model uses Fourier-based time-frequency representation as the target
data distribution for the generator. Vocos is constructed without any transposed convolutions; instead,
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Figure 2: Comparison of a typical time-domain GAN vocoder (a), with the proposed Vocos architec-
ture (b) that maintains the same temporal resolution across all layers. Time-domain vocoders use
transposed convolutions to sequentially upsample the signal to the desired sample rate. In contrast,
Vocos achieves this by using a computationally efficient inverse Fourier transform.

the upsample operation is realized solely through the fast inverse STFT. This approach permits
a unique model design compared to time-domain vocoders, which typically employ a series of
upsampling layers to inflate input features to the target waveform’s resolution, often necessitating
upscaling by several hundred times. In contrast, Vocos maintains the same temporal resolution
throughout the network (Figure 2). This design, known as an isotropic architecture, has been found to
work well in various settings, including Transformer (Vaswani et al., 2017). This approach can also
be particularly beneficial for audio synthesis. Traditional methods often use transposed convolutions
that can introduce aliasing artifacts, necessitating additional measures to mitigate the issue (Karras
et al., 2021; Lee et al., 2022). Vocos eliminates learnable upsampling layers, and instead employs the
well-establish inverse Fourier transform to reconstruct the original-scale waveform. In the context of
converting mel-spectrograms into audio signal, the temporal resolution is dictated by the hop size of
the STFT.

Vocos uses the Short-Time Fourier Transform (STFT) to represent audio signals in the time-frequency
domain:

STFTx[m, k] =

N−1∑
n=0

x[n]w[n−m]e−j2πkn/N (1)

The STFT applies the Fourier transform to successive windowed sections of the signal. In practice,
the STFT is computed by taking a sequence of Fast Fourier Transforms (FFTs) on overlapping,
windowed frames of data, which are created as the window function advances or “hops” through
time.

3.2 MODEL

Backbone Vocos adapts ConvNeXt (Liu et al., 2022) as the foundational backbone for the generator.
It first embeds the input features into a hidden dimensionality and then applies a stack of 1D
convolutional blocks. Each block consists of a depthwise convolution, followed by an inverted
bottleneck that projects features into a higher dimensionality using pointwise convolution. GELU
(Gaussian Error Linear Unit) activations are used within the bottleneck, and Layer Normalization is
employed between the blocks.
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Head Fourier transform of real-valued signals is conjugate symmetric, so we use only a single
side band spectrum, resulting in nfft/2 + 1 coefficients per frame. As we parameterize the model
to output phase and magnitude values, hidden-dim activations are projected into a tensor h with
nfft + 2 channels and splitted into:

m,p = h[1 : (nfft/2 + 1)],h[(nfft/2 + 2) : n]

To represent the magnitude, we apply the exponential function to m: M = exp(m).

We map p onto the unit circle by calculating the cosine and sine of p to obtain x and y, respectively:

x = cos(p)

y = sin(p)

Finally, we represent complex-valued coefficients as: STFT = M · (x+ jy).

Importantly, this simple formulation allows to express phase angle φ = atan2(y,x) for any real
argument p, and it ensures that φ is correctly wrapped into the desired range (−π, π].

Discriminator We employ the multi-period discriminator (MPD) as defined by Kong et al. (2020),
and multi-resolution discriminator (MRD) (Jang et al., 2021).

3.3 LOSS

Following the approach proposed by Kong et al. (2020), the training objective of Vocos consists
of reconstruction loss, adversarial loss and feature matching loss. However, we adopt a hinge loss
formulation instead of the least squares GAN objective, as suggested by Zeghidour et al. (2021):

ℓG(x̂) =
1

K

∑
k

max (0, 1−Dk(x̂))

ℓD(x, x̂) =
1

K

∑
k

max (0, 1−Dk(x)) + max (0, 1 +Dk(x̂))

where Dk is the kth subdiscriminator. The reconstruction loss, denoted as Lmel, is defined as the
L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample x and the
synthesized sample: x̂: Lmel = ∥M(x)−M(x̂)∥1. The feature matching loss, denoted as Lfeat

is calculated as the mean of the distances between the lth feature maps of the kth subdistriminator:
Lfeat =

1
KL

∑
k

∑
l

∥∥Dl
k(x)−Dl

k(x̂)
∥∥
1
.

4 RESULTS

4.1 MEL-SPECTROGRAMS

Reconstructing audio waveforms from mel-spectrograms has become a fundamental task for vocoders
in contemporary speech synthesis pipelines. In this section, we assess the performance of Vocos
relative to established baseline methods.

Data The models are trained on the LibriTTS dataset (Zen et al., 2019), from which we use the entire
training subset (both train-clean and train-other). We maintain the original sampling rate
of 24 kHz for the audio files. For each audio sample, we compute mel-scaled spectrograms using
parameters: nfft = 1024, hopn = 256, and the number of Mel bins is set to 100. A random gain is
applied to the audio samples, resulting in a maximum level between -1 and -6 dBFS.

Training Details We train our models up to 2 million iterations, with 1 million iterations per
generator and discriminator. During training, we randomly crop the audio samples to 16384 samples
and use a batch size of 16. The model is optimized using the AdamW optimizer with an initial
learning rate of 2e-4 and betas set to (0.9, 0.999). The learning rate is decayed following a cosine
schedule.
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Table 1: Objective evaluation metrics for various models, including baseline models (HiFi-GAN,
iSTFTNet, BigVGAN) and Vocos.

UTMOS (↑) VISQOL (↑) PESQ (↑) V/UV F1 (↑) Periodicity (↓)
Ground truth 4.058 – – – –

HiFi-GAN 3.669 4.57 3.093 0.9457 0.129
iSTFTNet 3.564 4.56 2.942 0.9372 0.141
BigVGAN 3.749 4.65 3.693 0.9557 0.108

Vocos 3.734 4.66 3.70 0.9582 0.101
w/ absolute phase 3.590 4.65 3.565 0.9556 0.108
w/ Snake 3.699 4.66 3.629 0.9579 0.102
w/o ConvNeXt 3.658 4.65 3.528 0.9534 0.109

Baseline Methods Our proposed model, Vocos, is compared to: iSTFTNet (Kaneko et al., 2022),
BigVGAN (Lee et al., 2022), and HiFi-GAN (Kong et al., 2020). These models are retrained
on the same LibriTTS subset for up to 2 million iterations, following the original training details
recommended by the authors. We use the official implementations of BigVGAN1 and HiFi-GAN2,
and a community open-sourced version of iSTFTNet3.

4.1.1 EVALUATION

Objective Evaluation For objective evaluation of our models, we employ the UTMOS (Saeki et al.,
2022) automatic Mean Opinion Score (MOS) prediction system. Although UTMOS can yield scores
highly correlated with human evaluations, it is restricted to 16 kHz sample rate. To assess perceptual
quality, we also utilize ViSQOL (Chinen et al., 2020) in audio-mode, which operates in the full band.
Our evaluation process also encompasses several other metrics, including the Perceptual Evaluation
of Speech Quality (PESQ) (Rix et al., 2001), periodicity error, and the F1 score for voiced/unvoiced
classification (V/UV F1), following the methodology proposed by Morrison et al. (2021). The results
are presented in Table 1. Vocos achieves superior performance in most of the metrics compared to
the other models. It obtains the highest scores in VISQOL and PESQ. Importantly, it also effectively
mitigates the periodicity issues frequently associated with time-domain GANs. BigVGAN stands out
as the closest competitor, especially in the UTMOS metric, where it slightly outperforms Vocos.

In our ablation study, we examined the impact of specific design decisions on Vocos’s performance:

• Vocos with absolute phase: In this variant, we predict phase angles using a tanh nonlin-
earity, scaled to fit within the range of [−π, π]. This formulation does not give the model
an inductive bias regarding the periodic nature of phase, and the results show it leads to
degraded quality. This finding emphasizes the importance of implicit phase wrapping in the
effectiveness of Vocos.

• Vocos with Snake activation: Although Snake (Ziyin et al., 2020) has been shown to en-
hance time-domain vocoders such as BigVGAN, in our case, it did not result in performance
gains; in fact, it showed a slight decline. The primary purpose of the Snake function is
to induce periodicity, addressing the limitations of time-domain vocoders. Vocos, on the
other hand, explicitly incorporates periodicity through the use of Fourier basis functions,
eliminating the need for specialized modules like Snake.

• Vocos without ConvNeXt: Replacing ConvNeXt blocks with traditional ResBlocks with
dilated convolutions, slightly lowers scores across all evaluated metrics. This finding
highlights the integral role of ConvNeXt blocks in Vocos, contributing significantly to its
overall success.

1https://github.com/NVIDIA/BigVGAN
2https://github.com/jik876/hifi-gan
3https://github.com/rishikksh20/iSTFTNet-pytorch
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Table 2: Subjective evaluation metrics – 5-scale Mean Opinion Score (MOS) and Similarity Mean
Opinion Score (SMOS) with 95% confidence interval.

MOS (↑) SMOS (↑)
Ground truth 3.81±0.16 4.70±0.11
HiFi-GAN 3.54±0.16 4.49±0.14
iSTFTNet 3.57±0.16 4.42±0.16
BigVGAN 3.64±0.15 4.54±0.14
Vocos 3.62±0.15 4.55±0.15

Subjective Evaluation We conducted crowd-sourced subjective assessments, using a 5-point Mean
Opinion Score (MOS) to evaluate the naturalness of the presented recordings. Participants rated
speech samples on a scale from 1 (’poor - completely unnatural speech’) to 5 (’excellent - completely
natural speech’). Following (Lee et al., 2022), we also conducted a 5-point Similarity Mean Opinion
Score (SMOS) between the reproduced and ground-truth recordings. Participants were asked to
assign a similarity score to pairs of audio files, with a rating of 5 indicating ’Extremely similar’ and a
rating of 1 representing ’Not at all similar’.

To ensure the quality of responses, we carefully selected participants through a third-party crowd-
sourcing platform. Our criteria included the use of headphones, fluent English proficiency, and
a declared interest in music listening as a hobby. A total of 1560 ratings were collected from 39
participants.

The results are detailed in Table 2. Vocos performs on par with the state-of-the-art in both perceived
quality and similarity. Statistical tests show no significant differences between Vocos and BigVGAN
in MOS and SMOS scores, with p-values greater than 0.05 from the Wilcoxon signed-rank test.

Table 3: VISQOL scores of various models tested on the MUSDB18 dataset. A higher VISQOL
score indicates better perceptual audio quality.

Mixture Drums Bass Other Vocals Average

HiFi-GAN 4.46 4.40 4.12 4.44 4.54 4.39
iSTFTNet 4.47 4.48 3.80 4.40 4.53 4.34
BigVGAN 4.60 4.60 4.29 4.58 4.64 4.54

Vocos 4.61 4.61 4.31 4.58 4.66 4.55

Out-of-distribution data A crucial aspect of a vocoder is its ability to generalize to unseen acoustic
conditions. In this context, we evaluate the performance of Vocos with out-of-distribution audio using
the MUSDB18 dataset (Rafii et al., 2017), which includes a variety of multi-track music audio like
vocals, drums, bass, and other instruments, along with the original mixture. The VISQOL scores for
this evaluation are provided in Table 3. From the table, Vocos consistently outperforms the other
models, achieving the highest scores across all categories.

Figure 3 presents spectrogram visualization of an out-of-distribution singing voice sample, as repro-
duced by different models. Periodicity artifacts are commonly observed when employing time-domain
GANs. BigVGAN, with its anti-aliasing filters, is able to recover some of the harmonics in the upper
frequency ranges, marking an improvement over HiFi-GAN. Nonetheless, Vocos appears to provide
a more accurate reconstruction of these harmonics, without the need for additional modules.

4.2 NEURAL AUDIO CODEC

While traditionally, neural vocoders reconstruct the audio waveform from a mel-scaled spectrogram
– an approach widely adopted in many speech synthesis pipelines – recent research has started to
utilize learnt features (Siuzdak et al., 2022), often in a quantized form (Borsos et al., 2022).
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In this section, we draw a comparison with EnCodec (Défossez et al., 2022), an open-source neural
audio codec, which follows a typical time-domain GAN vocoder architecture and uses Residual
Vector Quantization (RVQ) (Zeghidour et al., 2021) to compress the latent space. RVQ cascades
multiple layers of Vector Quantization, iteratively quantizing the residuals from the previous stage to
form a multi-stage structure, thereby enabling support for multiple bandwidth targets. In EnCodec,
dedicated discriminators are trained for each bandwidth. In contrast, we have adapted Vocos to be a
conditional GAN with a projection discriminator (Miyato & Koyama, 2018), and have incorporated
adaptive layer normalization (Huang & Belongie, 2017) into the generator.

Audio reconstruction We utilize the open-source model checkpoint of EnCodec operating at 24
kHz. To align with EnCodec, we scale down Vocos to match its parameter count (7.9M) and train it
on clean speech segments sourced from the DNS Challenge (Dubey et al., 2022). Our evaluation,
conducted on the DAPS dataset (Mysore, 2014) and detailed in Table 4, reveals that despite EnCodec’s
reconstruction artifacts not significantly impacting PESQ and Periodicity scores, they are considerably
reflected in the perceptual score, as denoted by UTMOS. In this regard, Vocos notably outperforms
EnCodec. We also performed a crowd-sourced subjective assessment to evaluate the naturalness
of these samples. The results, as shown in Table 5, indicate that Vocos consistently achieves better
performance across a range of bandwidths, based on evaluations by human listeners.

Table 4: Objective evaluation metric calculated for various bandwidths.

Bandwidth UTMOS (↑) VISQOL (↑) PESQ (↑) V/UV F1 (↑) Periodicity (↓)

EnCodec

1.5 kbps 1.527 3.74 1.508 0.8826 0.215
3.0 kbps 2.522 3.93 2.006 0.9347 0.141
6.0 kbps 3.262 4.13 2.665 0.9625 0.090
12.0 kbps 3.765 4.25 3.283 0.9766 0.062

Vocos

1.5 kbps 3.210 3.88 1.845 0.9238 0.160
3.0 kbps 3.688 4.06 2.317 0.9380 0.135
6.0 kbps 3.822 4.22 2.650 0.9439 0.124
12.0 kbps 3.882 4.34 2.874 0.9482 0.116

Table 5: Subjective evaluation metrics – 5-scale Mean Opinion Score (MOS) with 95% confidence
interval for various bandwidths.

Bandwidth Vocos EnCodec
1.5 kbps 2.73±0.20 1.09±0.05
3 kbps 3.50±0.18 1.71±0.21
6 kbps 3.84±0.16 2.41±0.15
12 kbps 4.00±0.16 3.08±0.19
Ground truth 4.09±0.16

End-to-end text-to-speech Recent progress in text-to-speech (TTS) has been notably driven by
language modeling architectures employing discrete audio tokens. Bark (Suno AI, 2023), a widely
recognized open-source model, leverages a GPT-style, decoder-only architecture, with EnCodec’s
6kbps audio tokens serving as its vocabulary. Vocos trained to reconstruct EnCodec tokens can
effectively serve as a drop-in replacement vocoder for Bark. We have provided text-to-speech samples
from Bark and Vocos on our website and encourage readers to listen to them for a direct comparison.4.

4.3 INFERENCE SPEED

Our inference speed benchmarks were conducted using an Nvidia Tesla A100 GPU and an AMD
EPYC 7542 CPU. The code was implemented in Pytorch, with no hardware-specific optimizations.

4Listen to audio samples at https://gemelo-ai.github.io/vocos/
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a) Ground truth b) iSTFTNet c) HiFi-GAN d) BigVGAN e) Vocos

Figure 3: Spectrogram visualization of an out-of-distribution singing voice sample reproduced by
different models. The bottom row presents a zoomed-in view of the upper midrange frequency range.

The forward pass was computed using a batch of 16 samples, each one second long. Table 6 presents
the synthesis speed and model footprint of Vocos in comparison to other models.

Vocos showcases notable speed advantages compared to other models, operating approximately 13
times faster than HiFi-GAN and nearly 70 times faster than BigVGAN. This speed advantage is
particularly pronounced when running without GPU acceleration. This is primarily due to the use of
the Inverse Short-Time Fourier Transform (ISTFT) algorithm instead of transposed convolutions. We
also evaluate a variant of Vocos that utilizes ResBlock’s dilated convolutions instead of ConvNeXt
blocks. Depthwise separable convolutions offer an additional speedup when executed on a GPU.

Table 6: Model footprint and synthesis speed. xRT denotes the speed factor relative to real-time. A
higher xRT value means the model can generate speech faster than real-time, with a value of 1.0
denoting real-time speed.

Model xRT (↑) Parameters
GPU CPU

HiFi-GAN 495.54 5.84 14.0 M
BigVGAN 98.61 0.40 14.0 M
ISTFTNet 1045.94 14.44 13.3 M

Vocos 6696.52 169.63 13.5 M
w/o ConvNeXt 4565.71 193.56 14.9 M

5 CONCLUSIONS

This paper introduces Vocos, a novel neural vocoder that bridges the gap between time-domain and
Fourier-based approaches. Vocos tackles the challenges associated with direct reconstruction of
complex-valued spectrograms, with careful design of generator that correctly handle phase wrapping.
It achieves accurate reconstruction of the coefficients in Fourier-based time-frequency representations.

The results demonstrate that the proposed vocoder matches state-of-the-art audio quality while
effectively mitigating periodicity issues commonly observed in time-domain GANs. Importantly,
Vocos provides a significant computational efficiency advantage over traditional time-domain methods
by utilizing inverse fast Fourier transform for upsampling.

Overall, the findings of this study contribute to the advancement of neural vocoding techniques by
incorporating the benefits of Fourier-based time-frequency representations. The open-sourcing of
the source code and model weights allows for further exploration and application of the proposed
vocoder in various audio processing tasks.
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A MODIFIED DISCRETE COSINE TRANSFORM (MDCT)

While STFT is widely used in audio processing, there are other time-frequency representations with
different properties. In audio coding applications, it is desirable to design the analysis/synthesis
system in such a way that the overall rate at the output of the analysis stage equals the rate of the
input signal. Such systems are described as being critically sampled. When we transform the signal
via the DFT, even a slight overlap between adjacent blocks increases the data rate of the spectral
representation of the signal. With 50% overlap between adjoining blocks, we end up doubling our
data rate.

The Modified Discrete Cosine Transform (MDCT) with its corresponding Inverse Transform (IMDCT)
have become a crucial tool in high-quality audio coding as they enable the implementation of a
critically sampled analysis/synthesis filter bank. A key feature of these transforms is the Time-Domain
Aliasing Cancellation (TDAC) property, which allows for the perfect reconstruction of overlapping
segments from a source signal.

The MDCT is defined as follows:

X[k] =

2N−1∑
n=0

x[n] cos

[
π

N

(
n+

1

2
+

N

2

)(
k +

1

2

)]
(2)

for k = 0, 1, . . . , N − 1 and N is the length of the window.

The MDCT is a lapped transform and thus produces N output coefficients from 2N input samples,
allowing for a 50% overlap between blocks without increasing the data rate.

There is a relationship between the MDCT and the DFT through the Shifted Discrete Fourier
Transform (SDFT) (Wang & Vilermo, 2003). It can be leveraged to implement a fast version of the
MDCT using FFT (Bosi & Goldberg, 2002). See Appendix A.3.

A.1 VOCOS AND MDCT

MDCT is attractive in audio coding because of its its efficiency and compact representation of audio
signals. In the context of deep learning, this might be seen as reduced dimensionality, potentially
advantageous as it requires fewer data points during generation.

While STFT coefficients can be conveniently expressed in polar form, providing a clear interpretation
of both magnitude and phase, MDCT represents the signal only in a real subspace of the complex
space needed to accurately convey spectral magnitude and phase. Naive approach would be to
treat raw unnormalized hidden outputs of the network as MDCT coefficients and convert it back to
time-domain with IMDCT. In our preliminary experiments we found that it led to slower convergence.
However we can easily observe that the MDCT spectrum, similarly to the STFT, can be more
perceptually meaningful on the logarithmic scale, which reflects the logarithmic nature of human
auditory perception of sound intensity. But as the MDCT can take also negative values, they cannot
be represented using the conventional logarithmic transformation.

One solution is to utilize a symmetric logarithmic function. In the context of deep learning, Hafner
et al. (2023) introduces such function and its inverse, referred to as symlog and symexp respectively:

symlog(x) = sign(x) ln(|x|+ 1) symexp(x) = sign(x)(exp(|x|)− 1) (3)

The symlog function compresses the magnitudes of large values, irrespective of their sign. Unlike the
conventional logarithm, it is symmetric around the origin and retains the input sign. We note the cor-
respondence with the µ-law companding algorithm, a well-established method in telecommunication
and signal processing.

An alternative approach involves parametrizing the model to output the absolute value of the MDCT
coefficients and its corresponding sign. While the MDCT does not directly convey information about
phase relationships, this strategy may offer advantages as the sign of the MDCT can potentially
provide additional insights indirectly. For example, an opposite sign could imply a phase difference
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Table 7: Objective evaluation metrics for MDCT variant of Vocos compared to the ISTFT baseline.

UTMOS (↑) PESQ (↑) V/UV F1 (↑) Periodicity (↓)
Ground truth 4.058 – – –

Baseline (ISTFT) 3.734 3.70 0.9582 0.101
IMDCT (symexp) 3.498 3.648 0.9569 0.106
IMDCT (sign) 3.536 3.565 0.9547 0.109

of 180 degrees. In practice, we compute a ”soft” sign using the cosine activation function, which sup-
posedly provides a periodic inductive bias. Hence, similar to the ISTFT head, this approach projects
the hidden activations into two values for each frequency bin, representing the final coefficients as
MDCT = exp(m) · cos(p).

A.2 RESULTS

Table 7 presents objective evaluation metrics for a variant of Vocos that represents audio samples
with MDCT coefficients. Both ’symexp’ and ’sign’ demonstrate significantly weaker performance
compared to their STFT-based counterpart. This suggests that while MDCT may be attractive
in audio coding applications, its properties may not be as favorable in the context of generative
modeling with GANs. The redundancy inherent in the STFT representation appears to be beneficial
for generative tasks. This finding aligns with the work of Gritsenko et al. (2020), who discovered
that an overcomplete Fourier basis contributed to improved training stability. Furthermore, it is
worth noting that the MDCT, being a lapped transform, incorporates information from surrounding
windows, which effectively act as aliases of the signal. To ensure Time Domain Alias Cancellation
(TDAC), the prediction of the coefficients has to be accurate and consistent over the frames.

A.3 FORWARD MDCT ALGORITHM

Algorithm 1 Fast MDCT Algorithm realized with FFT

1: Input: Audio signal x with frame length N
2: Output: MDCT coefficients X
3: procedure MDCT(x)
4: for each frame f in x with overlap of N/2 do
5: f ← f × window function
6: f ← f × e−j 2πn

2N ▷ Pre-twiddle
7: f ← FFT(f) ▷ N-point FFT
8: f ← f × e−j 2π

N n0(k+ 1
2 ) ▷ Post-twiddle

9: f ← f ×
√

1
N

10: Xk ← ℜ(f)×
√
2

11: end for
12: return X
13: end procedure
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