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ABSTRACT

A growing area of research is exploiting pre-trained generative models as a data
source for contrastive representation learning, generating anchors and the associated
positive views through perturbations of the latent codes. In this study, we make
significant advances in this field by formalizing the properties of a specific category
of generative models, which we term Hierarchical-Latent. We show how the
intrinsic properties of these models can successfully be used to create robust views
for contrastive learning, outperforming not only previous methods’ performance
but also surpassing classic approaches trained with genuine real data. The proposed
framework is evaluated on different generators and contrastive learning techniques,
also investigating the effects of employing a discriminator to filter out low-quality
images. Eventually, we test continuous sampling in our experiments, where the
generator dynamically samples new synthetic data during contrastive training of
the encoder, showing competitive or faster training time with respect to a real-data
approach, while allowing a virtually unlimited training set.

1 INTRODUCTION

Self-supervised learning techniques (SSL) allow the extraction of meaningful information from
vast amounts of unlabeled data, drastically reducing or even eliminating the need for costly manual
annotations. Depending on the purpose of the trained networks, these approaches can be broadly
classified into two main categories: generative and contrastive (Liu et al., 2021).

The former methods include various approaches, like Variational Autoencoders (VAE) Kingma &
Welling (2014), Generative Adversarial Networks (GAN) Goodfellow et al. (2014), or Normalizing
Flows Rezende & Mohamed (2015) (NF), and have received growing interest due to their ability in
approximating real data distributions (Rombach et al., 2022; Yu et al., 2022). Under this perspective,
generators can be seen as compact representations of such distributions, and can thus be used as a
data source for training discriminative networks (Besnier et al., 2020; Sariyildiz et al., 2023).

On the other hand, contrastive techniques like Chen et al. (2020b); Caron et al. (2020) aim to learn
an embedding function f mapping similar images x1,x2 (referred to as positives) to nearby latent
representations e1, e2, ensuring that dissimilar samples (negatives) are pushed apart in the latent
space. While approaches like Grill et al. (2020); He et al. (2020) obtained good results even without
the use of negatives, designing strong positives remains a significant challenge (Figure 1, Left).

In this paper, we first give a formal definition for a specific category of image generation models,
termed Hierarchical-Latent (HL), and observe how the multiple latent spaces of these networks
influence the final image at different levels, exhibiting a general global-to-local pattern. Then,
inspired by Jahanian et al. (2021); Li et al. (2022b), we unify the two self-supervised categories
discussed above by employing these generative models both as a data source and to obtain positive
views for contrastive representation learning (Figure 1, Right).

Specifically, the generative process of HL models is influenced by multiple random latent vectors,
that enter the network progressively, at different blocks (hierarchy levels). Moreover, global aspects
of the image are addressed in early blocks and finer details are only subsequently refined, implying
that there exists a direct relationship between a network block and the perturbation that can be
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Figure 1: Contrastive learning aims at optimizing an embedding function f(x;ϕϕϕ) = e with parameters
ϕϕϕ. Left: in the “Learning from Data” paradigm, positive views are usually obtained through manually
designed pixel-space augmentations Tx, applied on a finite set of images x = {xi}Ni=1 approximating
the real data distribution. Right: in the “Learning from Models” paradigm, a generator with
parameters θθθ: g(z;θθθ) = x provides a compact approximation of the real data distribution. Positive
views can be obtained with small perturbations of the anchors Tz(z) in the generator’s latent space.

applied to its corresponding latent vector without affecting the final image semantics. In Section 3
we extensively discuss this phenomenon: we propose to learn (for each latent space - indexed by
p), an appropriate non-linear function T p

z providing the maximum distance δp that can be taken
from a point zp while maintaining semantic consistency of the generated image. These so-called
walkers are used for a Monte Carlo estimation on the δ values, which are shown to increase for higher
hierarchies. In the context of positive view generation, we take advantage of these findings and apply
different perturbations to each hierarchical latent vector to change only the semantically non-relevant
characteristics of the initial anchors.

In the experimental part, we train contrastive encoders utilizing well-known frameworks (SimCLR
Chen et al. (2020b) and SimSiam Chen & He (2021)) and consider two HL model scenarios: a
BigBiGan (Donahue & Simonyan, 2019) pre-trained on the general and diverse ImageNet-1K (Deng
et al., 2009) dataset, and a StyleGan2 (Karras et al., 2020) pre-trained on the fine-grained LSUN Cars
(Yu et al., 2015). The encoders’ generalization capabilities are evaluated through linear classification
on multiple downstream datasets and on Pascal VOC Everingham et al. (2010) for the detection task.
Our results surpass both state-of-the-art methods and training with real data.

Additionally, to further enhance diversity in the generations and reduce the accuracy gap that typically
appears between classifiers trained with synthetic vs. real data Ravuri & Vinyals (2019), we propose
continuous sampling to increase the total number of training images. Differently from previous
methods (Besnier et al., 2020; Sariyildiz et al., 2023; Lampis et al., 2023), that sample additional data
“offline”, we propose an “online” approach to generate a continuous stream of new images directly
during training. We also show that a fast sampling generator (e.g. a GAN) achieves competitive or
faster training time duration when compared to standard data loading techniques.

To sum up, our contributions are the following: 1) We give a definition for the Hierarchical-Latent
(HL) category of image generation models, formalizing their properties. 2) We show how such models
can be applied to generate anchors and positives for contrastive representation learning, surpassing
state-of-the-art methods and the real training data case. 3) We further show how employing continuous
sampling can increase the total number of seen images while maintaining a comparable or faster
overall training time with respect to standard data loading techniques.

2 BACKGROUND AND PROBLEM FORMULATION

Self-Supervised representation learning (SSRL). The focus of the proposed methodology is on
positive view sampling, and it can thus be integrated into any SSRL framework. In the experiments,
we validate the efficacy of our approach through two different pipelines, SimCLR Chen et al. (2020b)
and SimSiam Chen & He (2021), as they are widely adopted techniques in the literature.

The former method obtains positives through a diverse range of manually designed pixel-space
augmentation Tx, which can be applied (after image sampling) on top of any generators’ latent space
perturbation Tz, as in Jahanian et al. (2021); Li et al. (2022b). The final anchor and positive pair x,x+

are used to minimize the following InfoNCE loss Oord et al. (2018) and thus learn the embedding
function f (parameters ϕϕϕ omitted in the formula):
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LNCE = Ex,x+

[
− log

(
esim(f(x),f(x+))/τ

esim(f(x),f(x+))/τ +
∑K

k=1 e
sim(f(x),f(xk))/τ

)]
(1)

where sim denotes the cosine similarity operator, τ is a temperature parameter and K the number of
negative samples in a minibatch.

The latter approach, SimSiam, introduces a stop-gradient operator to prevent the degeneration to
trivial solutions, where all images share the same representation. This allows SimSiam to avoid the
use of negative samples, making it more suitable to investigate the effects of positive view generation
methods. More in detail, two views x1,x2 are processed by a learnable encoder f and an additional
Multi-Layer Perceptron h (with parameters ϕϕϕ and θθθ, respectively). The obtained representations are
defined as zi := f(xi,ϕϕϕ) and pi := h(zi, θθθ), while the final loss function is given by the symmetric
comparison:

L =
1

2
sim(p1, stopgrad(z2)) +

1

2
sim(stopgrad(z1),p2) (2)

where sim is the negative cosine similarity and stopgrad the stop-gradient operator.

Robust views for contrastive learning. When defining a set of augmentations for contrastive
learning (both manually in the pixel space or through a generative model) it is fundamental to consider
which transformations the trained encoder should be invariant to (Xiao et al., 2020). As outlined in the
following “Infomin” principle, this means that optimal views can be achieved only if the downstream
task is known in advance, since each transformation is suited only for some specific problems.
Proposition 2.1. (Optimal Views for Contrastive Learning - Tian et al. (2020))
Given a downstream task T with label y ∈ Y , the optimal views created from data x are

(v∗
1;v

∗
2) = argmin

v1;v2

I(v1;v2) subject to I(v1;y) = I(v2;y) = I(x;y)

In other terms, the mutual information between optimal views is minimized to contain only the
task-relevant information I(v∗

1;v
∗
2) = I(x;y), removing all nuisance information, I(v∗

1;v
∗
2|y) = 0.

The aforementioned concept of optimal views is extended in Li et al. (2022b), specifically in terms of
distances between generators’ latent vectors. In the following, we give a reformulation that is better
suited for the understanding of our work.
Proposition 2.2. (Semantic Consistency in the Latent Space - Li et al. (2022b) (reformulation))
Let g(z, θθθ) = x be a generative model with parameters θθθ that maps from latents z ∈ Rn to images
x ∈ Rd. Consider a downstream task T with label y ∈ Y , and some distance metric dist defined
in the generator’s latent space. Then, for any random latent vector zi, the term δi indicates the
maximum distance in the latent space of g to ensure semantic consistency for task T :

δi = max
z′

dist(zi, z
′) s.t. FT (g(zi, θθθ)) = FT (g(z

′, θθθ)) = y

where z′ ∈ Rn is a generic vector in the generator’s latent space and FT is an oracle classification
function for task T , which assigns the true semantic label y to any image.

Note that the term δi is associated with a corresponding latent zi ∈ Rn and thus an infinite number
of δ terms exist for a specific generator’s latent space and task T . In the rest of this paper, we define
as ∆T the distribution over all δ terms for task T .

From Propositions 2.1 and 2.2 follow that the generated optimal views g(z1, θθθ), g(z2, θθθ) for task T
can be derived from z1, z2 only if dist(z1, z2) = δ1. In our study, we assume T to be unknown in
advance. As a consequence, differently from Li et al. (2022b), we refer to our views as robust rather
than optimal, meaning that the trained encoders achieve good results on different downstream tasks,
rather than optimal scores on a single problem.

View generation with latent perturbations. In the existing literature, two prominent approaches
address the task of defining perturbations in a pre-trained generator’s latent space to obtain useful
views for contrastive learning. In this study, we consider them as baselines in the experimental phase,
while extending their definition for HL generators.
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More in detail, Jahanian et al. (2021) were the first to address this challenge and explored various
solutions. Among these, the most favorable result was obtained by simply adding Gaussian noise
to the sampled anchor. Mathematically, considering an anchor z in the generator’s latent space, the
transformation responsible for generating the positive samples is expressed as Tz(z) = z+wrand,
where wrand ∼ N t(µ, σ, t) denotes a truncated Gaussian distribution with truncation t. Throughout
the rest of this paper, we refer to this technique as random sampling of the positives.

On the other hand, Li et al. (2022b) introduced an adversarial strategy to learn the optimal perturbation
Tz for each instance. Semantic consistency is ensured by the minimization of InfoNCE loss between
the generated views, which corresponds to maximizing a lower bound on mutual information (Oord
et al., 2018). The final positive sample is still computed as the sum with respect to the anchor:
Tz(z) = z+wlearn, but wlearn is a non-linear learnable function (walker) optimized through a small
contrastive encoder f∗(x,ϕϕϕ) (parameters ϕϕϕ omitted in the formula):

max
Tz

min
f∗

LNCE
(
f∗(g(z)), f∗(g(Tz(z)))

)
, s.t. dist(z, Tz(z)) ≤ δ (3)

In other terms, the training aims at learning the perturbation Tz(z) for each z such that
dist(z, Tz(z)) ≈ δ, where δ is defined for each instance i as in Proposition 2.2. After this pro-
cess, the encoder f∗ is discarded, and the learned Tz can be used to generate views from the sampled
anchors. In the rest of this paper, we refer to this method as the learned sampling of positives.

3 POSITIVE SAMPLING VIA HIERARCHICAL-LATENT GENERATIVE MODELS

3.1 DEFINITIONS AND ASSUMPTIONS

In this Section, we provide a formal definition for a specific category of generative models, termed
Hierarchical-Latent (HL). This family extends any generator g(z, θθθ) = x mapping latent variables
z ∈ Rn to images x ∈ Rd, including models like Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs) or Normalizing Flows (NFs).
Definition 3.1. (Hierarchical-Latent Generative Models)
A Hierarchical-Latent (HL) generative model g(z0, z1, . . . , zn−1, θθθ) = x is a deep neural network
with parameters θθθ that samples new data x by incorporating multiple random latent variables
{z0, z1, . . . , zn−1} at different progressive blocks:

g : Rm0
0 × Rm1

1 × · · · × Rmn−1

n−1 → Rd

g := l[n−1](z
n−1, l[n−2](z

n−2, . . . l[0](z
0) . . . ))

where l[i] is the ith block of the generator and zi its corresponding latent vector.

In the rest of this study, we assume that latent hierarchies share the same dimensionality (meaning
that m0 = m1 = · · · = m), as this is the case in most practical applications.

Hierarchical latent variables play a crucial role in capturing diverse abstraction levels and controlling
the generative process. Specifically, given the initial input z0, it influences the output of all the
subsequent layers, and thereby is supposed to have a significant impact on the overall structure and
global properties of the generated image. On the other hand, zn−1 only enters at the last block, and
thus it typically models only some fine-grained details. In the following, we formulate such a general
intuition in terms of semantic consistency in the latent space (as defined in Proposition 2.2):
Assumption 3.1. (Semantic Consistency relation in HL Generative Models)
Consider T as the general task of finding robust views that preserve the relevant semantic content of
an image while altering all the remaining information. Let g : Rm

0 ×Rm
1 × · · · ×Rm

n−1 → Rd be an
HL generative model with n input variables. Then, for any generic instance {z0i , z1i , . . . , z

n−1
i } and

its associated semantic consistency terms {δ0i , δ1i , . . . , δ
n−1
i } for task T (see Proposition 2.2), the

following relation is assumed to hold:

δpi < δqi ∀p, q such that p < q

In other terms, Assumption 3.1 states that the perturbation that can be applied to the latent variable zpi
without altering the semantic content of the generated image is smaller than the one applicable to any
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zqi , when p < q and for any instance i. Nevertheless, it should be noted that the “relevant semantic
content” of an image always depends on the final downstream task (see Proposition 2.1), which we
consider to be unknown. Hence, given the general definition for T , the assumption’s validity and
its applications to view generation are further discussed in Section 3.2 for each scenario considered
within this study.

3.2 VIEW GENERATION

For the purpose of robust view generation, we study two different scenarios. The former considers
contrastive encoders trained on a large and diverse number of classes, specifically ImageNet-1K
Deng et al. (2009) for real data and BigBiGan Donahue & Simonyan (2019) as an HL generator
(trained on the same dataset). The latter is a fine-grained case, employing a StyleGan2 Karras et al.
(2020) generator trained on LSUN Cars Yu et al. (2015). Note that both these models have also been
employed in recent works (Jahanian et al., 2021; Li et al., 2022b), but without exploring the HL
structure and instead treating the latent vectors as a whole, i.e., non-hierarchically. In contrast, our
work applies both random and learned perturbations separately at different latent levels, enabling
a better utilization of the distinct hierarchies of HL models. We observe how (depending on the
scenario/generator) each of these transformations can be tuned to act on one or more aspects of the
output sample, influencing only the desired characteristics.

Figure 2: Examples of views generated by adding the same noise vector w to different hierarchical
levels. Left: two anchor images and possible views generated by the perturbations of BigBiGan’s 6
latent hierarchies {z0, z1, . . . , z5}, represented as the 6 elements’ vector at the bottom. The orange
element indicates the applied perturbation T p

z (z
p) = zp + w for each level p. Right: generated

anchors and views by StyleGan2, which has 16 hierarchal levels, grouped into 4 sets and represented
as the 4 elements’ vector at the bottom. The blue element indicates the perturbed group.

The BigBiGan model possesses 6 latent hierarchies, each of length 20: {z0, z1, . . . , z5}. Figure 2
(Left) shows how the same noise vector w influences the final image, if separately summed to
each zp. In particular, it clearly appears that the first latent z0 mainly models the semantic aspects,
while subsequent hierarchies modify more subtle details, like small shaping and colors. To better
determine how each of these “chunks”1 impacts the final generation, we propose to estimate the
corresponding semantic consistency distributions {∆0

T ,∆
1
T , . . . ,∆

5
T } employing a Monte Carlo

simulation. Specifically, we first train 6 different non-linear walkers T p
z optimized for Equation (3),

each acting on a single zp and aiming to identify for each instance i and hierarchy p the maximum
value of δpi = dist(zpi , T

p
z (z

p
i )) that still allows minimizing the InfoNCE loss (Equation 1) on the

encodings derived from the generated output views. After training, we perform Monte Carlo sampling
of 1M anchors and use the pre-trained walkers to compute each δpi = dist(zpi , T

p
z (z

p
i )), where dist is

the Euclidean distance.

Table 1 (Left) reports the computed mean and standard deviation values of each estimated ∆p
T , as well

as the final InfoNCE loss value and total number of training samples for the corresponding walker
T p
z . We notice that the average perturbation (estimated mean) needed to achieve the same semantic

shift (InfoNCE loss value) in each zp increases across hierarchies, supporting Assumption 3.1. This
trend degenerates for z5, where even with extensive training (2260K samples), the walker fails to
learn meaningful perturbations, maintaining very low loss values. In this latter case, visualizations
show that some perturbed images remain identical to the anchor while others are completely black.

Moreover, the low mean value estimated for chunk 0 confirms that this hierarchy predominantly
models the semantics of generated images, setting a strong upper bound when applying perturba-

1In the following, we informally refer to each latent hierarchy zp also as a “chunk”.
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Table 1: Left: estimated mean (µ) and standard deviation (σ) of ∆p
T for each hierarchy p. In each

row, we also report for the corresponding walker the final loss value and the number of seen training
samples. Right: the same computations obtained through a Monte Carlo estimation using two
different pre-trained walkers, one acting on all hierarchies at once, the other ignoring the first chunk.

chunk
single chunk

Loss train samples mean std
(InfoNCE) (K) µ σ

0 1.09 30.0 0.67 0.21
1 1.04 96.0 3.63 1.18
2 1.05 180.0 6.97 1.85
3 1.02 214.0 13.00 7.08
4 1.05 276.0 21.22 13.68
5 0.14 2260.0 594.71 616.80

chunk
all chunks > 0 chunks

mean std mean std
µ σ µ σ

0 0.43 0.07 - -
1 0.27 0.04 1.85 0.42
2 0.60 0.09 2.44 0.56
3 0.36 0.05 1.52 0.34
4 0.36 0.05 1.05 0.23
5 0.33 0.05 0.70 0.15

tions. In the experiments, we thus decide to leave this first latent unchanged and apply stronger
transformations to the other hierarchies. Specifically, in the random case we increase the truncated
Gaussian’s standard deviation parameter (check Section 4 for precise values). In the learned scenario,
we train two different walkers: the baseline acting on all chunks simultaneously (as proposed in Li
et al. (2022b)) and one forced to preserve the first chunk. Table 1 (Right) reports the Monte Carlo
estimation on the single hierarchies comparing these cases. Results confirm that keeping chunk 0
fixed enables the walker to learn stronger perturbations on the other chunks.

Regarding the fine-grained scenario, generating solely images of cars poses a huge challenge in
defining what the “relevant semantic content” of an image is, since even minor shape variations can
lead to a different downstream label. Moreover, StyleGan2 possesses a larger number of hierarchies,
with latent vectors defined in a non-Gaussian space, known as W and derived from an appropriately
trained Multi-Layer Perceptron network (Karras et al., 2019).

Our aim for this challenging fine-grained setup is to showcase how HL generators can still provide
useful views and improve baseline augmentation methods. For this purpose, we divide StyleGan2’s
16 chunks into 4 groups and observe how they influence the final output content (Figure 2 (Right)).
We note in particular how the first group mainly impacts rotations, zoom, and minor shape aspects;
the second one focuses on subject and background alterations, while the latter two mainly define
colors. In the experiments, we tune both the random and learned methods to separately perturb each
group, limiting the applied transformations for the first two sets of chunks and amplifying the others.

4 EXPERIMENTS

4.1 GENERAL SETTING AND PRELIMINARY STUDIES

For each generator, we train multiple ResNet-50 encoders using the SimSiam (Chen & He, 2021)
framework. Additionally, for BigBiGan, we extend the code of Li et al. (2022b)2 to test the proposed
HL perturbations also using SimCLR (Chen et al., 2020b). The representation capabilities of the
obtained HL encoders are compared against several methods: training on synthetic data without latent
perturbations Tz, the random and learned baselines not leveraging the HL structure, and the upper
bound of using real data (1.28M images for ImageNet-1K Deng et al. (2009) and 893K images for
LSUN Cars Yu et al. (2015), depending on the generator). Pixel space augmentations Tx are tested in
various combinations: cropping and horizontal flipping, grayscale and color jittering, none of the
previous or all of them (detailed ablation studies in Appendix C). In contrast to prior studies, we find
that the Tz perturbations introduced by HL models can replace the color pixel space augmentations by
producing more realistic modifications, and thus we do not apply these particular Tx transformations
in the HL runs.

Following prior studies (Jahanian et al., 2021; Li et al., 2022b), the SimSiam experiments use
128× 128 input image size, matching the output resolution of the BigBiGan generator. All encoders
(regardless of the scenario) are trained for 100 epochs using SGD optimizer with momentum 0.9

2Code: https://github.com/LiYinqi/COP-Gen
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Figure 3: Total time (GPU seconds), CO2 emissions rate (grams per second) and total CO2 emissions
(grams) for three different data loading procedures (offline PyTorch, offline FFCV and online with
BigBiGan generator) and different batch sizes.

and weight decay 1× 10−4. The learning rate is set as 0.05× BatchSize/256, with a cosine decay
scheduler and an additional linear warmup for the first 10 epochs if BatchSize ≥ 1024. Moreover,
SimSiam experiments with synthetic data employ continuous sampling, where the generator outputs
new batches directly on each GPU device. The number of training steps per epoch remains the same
as in the real data case, but the total number of seen samples is greatly increased.

The use of continuous sampling is possible due to GANs’ constant inference time. But how is overall
training time affected? To answer this question, we trained a ResNet-18 model using SimCLR
for 20 epochs on ImageNet-100 (a subset of ImageNet-1K), using 4 NVIDIA A100-SXM4-40GB
GPUs and different batch sizes (32 × 4, 64 × 4, 128 × 4, 256 × 4). The experiment has been run
three times, specifically using the standard PyTorch Paszke et al. (2019) loader, the efficient FFCV
Leclerc et al. (2023) loader (both with 8 workers), and the BigBiGan generator. Figure 3 displays
our findings, reporting the mean GPU seconds per epoch, the CO2 emissions rate, and the total
CO2 emissions estimated using the CodeCarbon library Schmidt et al. (2021) with default settings.
Interestingly, continuous sampling proved significantly faster than the standard torch loader and
only marginally slower than FFCV. In terms of CO2 emissions rate, the use of BigBiGan led to higher
energy consumption, due to intensive GPU usage. Nevertheless, in terms of total CO2 the values
remain comparable with the standard torch approach, suggesting that continuous sampling is not
only feasible but may also be an interesting alternative to conventional techniques.

4.2 EXPERIMENTAL RESULTS

BigBiGan and ImageNet-1K. We first extend prior experiments with HL random and learned
perturbations by following the SimCLR framework, code, data loading procedures, hyperparameters,
and evaluation protocols outlined in Li et al. (2022b). Then, all results are computed also using
SimSiam with a batch size of 1024. Anchors are sampled from N t(0., 1., 2.), while the random runs
use N t(0., 0.05, 2.) in the baseline case and N t(0., 1., 2.) in the HL scenario, keeping z0 fixed as
indicated in Section 3.2. The standard deviation values are selected according to the best results
over multiple attempts (detailed ablation studies in Appendix C). In the learned case, we maintain
the same Tz used in Table 1 (Right), where the baseline and HL walkers have seen 60K and 120K
samples, respectively. Additionally, we explore for HL runs how the quality of the generator affects
overall performance, using a discriminator to screen out unrealistic samples from the training batches.

To assess the encoders’ representation quality, we train linear classifiers on top of the pre-trained
models and evaluate them on various classification datasets: ImageNet-1K, Birdsnap Berg et al.
(2014), Caltech101 Fei-Fei et al. (2004), Cifar100 Krizhevsky et al. (2009), DTD Cimpoi et al.
(2014), Flowers102 Nilsback & Zisserman (2008), Food101 Bossard et al. (2014), and Pets Parkhi
et al. (2012). Classifiers are trained for 60 epochs with a batch size of 256, SGD optimizer, and a
learning rate of 30.0 with cosine decay. We also evaluate on Pascal VOC Everingham et al. (2010)
object detection using detectron 2 Wu et al. (2019) to train a Faster-RCNN with the R50-C4
backbone. All layers are fine-tuned for 24000 iterations on trainval07+12 split and evaluated
on test07. Table 2 shows the results for ImageNet-1K and Pascal VOC evaluations, while Table 3
(Left) indicates the mean Top-1 accuracy for the SimSiam encoders, computed over the 7 transfer
datasets (Appendix D reports the single runs, each of which has been replicated 5 times).
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Table 2: Comparison of baselines and proposed HL perturbations on two contrastive frameworks
(SimCLR and SimSiam). Metrics are Top-1 and Top-5 accuracy for linear classification on ImageNet-
1K and average precision for detection on Pascal VOC. Bold indicates the best results for each group,
underline the absolute best, and ∗ indicates the baseline reported from Li et al. (2022b).

Data Tz Tx

SimCLR SimSiam

ImageNet-1K Pascal VOC ImageNet-1K Pascal VOC

Top-1 Top-5 AP AP50 AP75 Top-1 Top-5 AP AP50 AP75

real - all 49.4∗ 75.6∗ 52.9∗ 78.7∗ 58.5∗ 49.1 74.2 54.4 80.0 60.0
synth - all 41.6∗ 66.6∗ 51.0∗ 77.2∗ 55.8∗ 32.2 56.5 51.6 78.2 57.0

synth random all 48.7∗ 73.1∗ 50.2∗ 77.0∗ 54.4∗ 33.4 57.7 51.7 78.4 56.3
synth HL rand. no col. 53.7 77.2 53.3 79.5 58.5 42.5 67.7 54.3 79.9 59.6
synth (D) HL rand. no col. - - - - - 43.6 68.6 54.1 79.8 60.0

synth learned all 53.2∗ 77.2∗ 53.1∗ 78.9∗ 58.0∗ 33.0 58.2 51.8 78.0 56.7
synth HL learn. no col. 54.4 77.9 53.4 79.5 58.9 39.5 64.8 52.5 78.9 57.5
synth (D) HL learn. no col. - - - - - 40.6 65.7 52.9 79.3 58.4

Table 3: Classification results obtained on top of the SimSiam pre-trained encoders. Bold indicates
the best results for each group while underline the absolute best. Left: mean Top-1 accuracy for the
BigBiGan encoders, averaged over the seven target datasets. Right: Top-1 and Top-5 accuracies for
the StyleGan2 encoders on the two target datasets.

Encoder Mean Top-1

Baseline real 58.2
Baseline synth 47.2

random 47.0
HL random 59.6
HL random (D) 60.5

learned 46.2
HL learned 54.9
HL learned (D) 56.4

Encoder
Target Dataset

Stanford Cars FGVC Aircraft

Top-1 Top-5 Top-1 Top-5

real 33.4± 0.8 64.3± 0.4 20.7± 0.4 48.8± 1.1
synth 27.0± 0.2 54.6± 0.2 21.3± 0.7 50.5± 0.8

random 29.2± 0.4 58.1± 0.2 22.5± 0.6 51.7± 0.7
HL rand. 47.0± 0.3 76.1± 0.3 22.9± 0.8 53.5± 0.8

learned 28.6± 0.5 56.7± 0.2 22.0± 1.1 51.9± 0.5
HL learn. 35.2± 0.4 64.8± 0.5 23.0± 1.1 53.0± 0.9

In all experiments, HL perturbations outperform the baselines, proving the effectiveness of the
proposed method. Where applied, discriminator filtering shows consistent improvements, suggesting
that image quality plays a role but may not be a critical factor in achieving better representations.
Interestingly, we observe that the HL random experiments often close the gap with the learned
counterparts. Thus, applying hierarchical random perturbations can be a valid choice for training
contrastive methods, without requiring any additional issue related to walker training. In comparison
with real data, HL perturbations generally yield better or similar results. An exception occurs in the
case of SimSiam encoders evaluated on ImageNet-1K, but we note that this gap narrows or disappears
in other downstream tasks and datasets. We thus hypothesize that an encoder trained and evaluated on
ImageNet-1K may exhibit a bias towards the limited training set, which does not affect the synthetic
runs and disappears on other datasets.

StyleGan2 and LSUN Cars. In this setup, we train the encoders with a batch size of 512, due to
StyleGan’s larger number of parameters. All anchors are sampled from N t(0., 1., 0.9), baseline posi-
tives from N t(0., 0.15, 0.9) in random case, and use the 32K samples checkpoint in the learned case.
For HL perturbations, we group the 16 chunks into 4 sets as discussed in Section 3.2. Specifically, we
fix the second group and apply only small perturbations to the first one, giving more importance to the
latter two. For random, we modify each group as {N t(0., 0.3, 1.),−,N t(0., 0.8, 1.),N t(0., 0.8, 1.)},
while the three trained walkers have seen 12K, 18K and 65K samples in the learned case.

Evaluations are performed on Stanford Cars Krause et al. (2013) and FGCV Aircraft 2013b Maji
et al. (2013), running each experiment 5 times for 100 epochs, with a batch size of 256, SGD
optimizer, learning rate of 30.0 and cosine decay. Average results are in Table 3 (Right), and show
the superiority of HL perturbations over all baselines (including real data), confirming the findings
observed before for BigBiGan, also in this fine-grained scenario. In particular, carefully designed
hierarchical perturbations can lead to a great performance boost (+13.6% over the real baseline for
HL random case on Stanford Cars). However, we note that learned perturbations struggle to follow
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this trend, still surpassing the real case, probably due to the difficult optimization of Equation (3) in a
fine-grained scenario.

5 RELATED WORK

Positive views for contrastive learning. Due to the absence of annotated data, a key element of
contrastive learning (Hadsell et al., 2006) lies in designing informative positive views Tian et al.
(2020); Xiao et al. (2020). While methods like Bachman et al. (2019); Misra & Maaten (2020); Caron
et al. (2020) used pretext tasks as matching global and local parts of an image, Chen et al. (2020b)
introduced a set of effective manually designed data augmentations. Recently, efforts by Tamkin et al.
(2020); Shi et al. (2022) improved upon these hand-crafted methods by learning good perturbations
adversarially, while a growing number of approaches leveraged generators’ latent spaces to sample
positives (Yang et al., 2022b; Astolfi et al., 2023; Kim et al., 2023; Wu et al., 2023; Han et al., 2023)
starting from real anchors. In contrast, the present work does not use real data, drawing both anchors
and positives from the generator’s latent space.

Learning from generative models. Due to the growing performances of modern generative models
like Rombach et al. (2022); Yu et al. (2022), several applications stand out. Examples include creating
semantic-annotated datasets with minimal effort (Zhang et al., 2021; Melas-Kyriazi et al., 2021; Li
et al., 2022a), or training supervised classifiers; both with synthetic data alone (Besnier et al., 2020;
Sariyildiz et al., 2023; Lampis et al., 2023) or with a combination of real and synthetic data together
(He et al., 2022; Bansal & Grover, 2023; Azizi et al., 2023). In representation learning, meaningful
embeddings can be obtained through knowledge distillation (Yang et al., 2022a; Li et al., 2023b;a), or
by sampling good anchors and positives in an unconditioned generator’s latent space, as in Jahanian
et al. (2021); Li et al. (2022b) or the present study. Recent works like Tian et al. (2023) consider
instead a text-to-image setup, yielding promising results.

Hierarchical-Latent models. The idea of introducing multiple hierarchical random vectors finds
many implementations in the generative models’ literature. Examples for Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) include LapGan Denton et al. (2015), BigGans Brock
et al. (2018); Donahue & Simonyan (2019) and the StyleGan family (Karras et al., 2019; 2020; 2021;
Sauer et al., 2022) which employs a non-Gaussian latent space W . Another notable work is Kang et al.
(2023), which obtains state-of-the-art results in text-to-image synthesis. Variational Autoencoders
(VAEs) Kingma & Welling (2014); Rezende et al. (2014) typically adopt HL structures to enhance the
expressivity of the approximate distributions, as seen in NVAE Vahdat & Kautz (2020) and Ladder
VAE Sønderby et al. (2016); Child (2020). Another notable work is Li et al. (2019), which extends
the model of Zhao et al. (2017) to better capture the various disentanglement factors incorporated in
the single hierarchies. Recently, promising advances have been made also in the field of Normalizing
Flows Dinh et al. (2015); Rezende & Mohamed (2015), where Hu et al. (2022) draws inspiration
from renormalization groups in physics to propose an HL architecture.

6 CONCLUSIONS

In this paper, we defined HL generative models, investigating how the multiple latent spaces can
influence the image generation process. We also proposed a possible application of such models in
the task of view generation for contrastive representation learning, showing better results with respect
to state-of-the-art methods and real data baseline. Despite the existence of different implementations
and numerous possible applications, to the best of our knowledge, the literature currently lacks a
comprehensive theoretical framework for this family of generators, which we expect to become
relevant in future research. Regarding the use of generators as a data source, we proposed continuous
sampling as a way to increase the total training set size without requiring large storage capacities,
reporting a comparable or shorter training time with respect to standard data loading techniques, at
the price of a slightly higher CO2 emissions. As generative models become an appealing alternative
to standard datasets, we hope that future research will address these limitations, proposing not only
faster but also less energy-demanding models.
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7 ETHICS STATEMENT

The use of generative models as a data source may help in addressing several issues associated
with real datasets. Specifically, it can prevent privacy and usage rights concerns related to genuine
data (Kaissis et al., 2020; DuMont Schütte et al., 2021) or be used to censor sensitive attributes
(Abbasi et al., 2021). On the other hand, it should be noted that these properties are not guaranteed,
and generative models can be attacked Zhou et al. (2022) to leak information on the real data they
were trained on Chen et al. (2020a); Nikolenko (2021). Moreover, since the biases of the original
distribution can be inherited Asim et al. (2020), appropriate techniques to reduce these biases Tan
et al. (2020); Teo et al. (2023) should be considered.

8 REPRODUCIBILITY

The authors plan to release an open-source version of the training code, as well as pre-trained models
upon paper acceptance. For all the experiments, details about relevant hyperparameters, like Gaussian
distributions used for anchor and positive sampling or the specific checkpoints used for training
the walkers are discussed in Section 4. Further implementation details, like the used pre-trained
generators, code libraries, or data processing pipelines are reported in Appendix B.
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Figure 4: Schematic structure of a generic HL generative model with n blocks {l[0], l[1], . . . , l[n−1]}
and input latent variables {z0, z1, . . . , zn−1}, each sampled from a known distribution Q.

A HIERARCHICAL-LATENT GENERATOR STRUCTURE

In Figure 4 we present a schematic illustration of a HL generative model, using n multiple latent
variables {z0, z1, . . . , zn−1} to sample new data x ∈ Rd. As explained is Section 3, each latent
variable enters the network at a different progressive layer {l[0], l[1], . . . , l[n−1]}, thus providing a
different level of contribution to the final sample.

B TRAINING DETAILS

All the code for this paper has been developed using pytorch Paszke et al. (2019)
and pytorch lightning Falcon & The PyTorch Lightning team (2019). BigBiGan
generator code and weights have been obtained at https://github.com/lukemelas/pytorch-
pretrained-gans. For StyleGan2, the official github repositories are available, specif-
ically for code at https://github.com/NVlabs/stylegan2-ada-pytorch and the weights at
https://github.com/NVlabs/stylegan2. In the following, we report the training-specific details that
have been used in the implementation.

Data and preprocessing. All our experiments use FFCV Leclerc et al. (2023) for data storage and
loading. For ImageNet-1K, images are stored at 256× 256, and resized to 128× 128 during loading,
to match the output resolution of BigBiGan. Regarding LSUN Cars/StyleGan2, instructions on how to
download and obtain the 893K training images can be found at https://github.com/NVlabs/stylegan2-
ada-pytorch/tree/main. These are 512× 384 images, which are stored at 512× 512 with padding, to
match the StyleGan2 outputs. During loading, images are first center cropped at 384× 384, removing
padding, and then resized at 128× 128. The same process is repeated for the generated images.

For data augmentation/preprocessing we use the kornia library Riba et al. (2020). SimCLR trans-
formations Tx are applied to the encoders as described in Section 4. In particular, we remove color
jittering and grayscale from all our HL runs. During transfer classification learning, we apply random
resize crop and random horizontal flip during training, and center crop during validation/testing. In
all experiments, images are normalized with ImageNet mean and standard deviation values, and the
final size (after cropping) is 112× 112.

Hardware resources and reproducibility. Most experiments have been run using 4 NVIDIA
A100-SXM4-40GB GPUs, with an exception for the StyleGan trained encoders (which required 8)
and some minor experiments like the walkers training, which used only 1. To ensure reproducibility,
random seeds have always been fixed, and in particular during continuous sampling generations. This
also allows for consistency throughout the synthetic runs, ensuring that each encoder sees the same
images.

Perturbations in Z and W space. In BigBiGan experiments, perturbations in the latent space are
applied by summing the noise vector to the selected chunks, as described in Section 2. For StyleGan2,
the final latent space is W , and a mapping network is used to perform the operation f(z) = w. Here,
f is the mapping network, w the random latent vector in the W space, and z the initial random
vector sampled from a truncated Gaussian distribution (Z space). The positive views in this case
are obtained as f(Tz(z)) = w, where Tz is a random or learned perturbation that affects only the
selected chunks.
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Figure 5: Ablation study for deciding Tx augmentations and standard deviation parameters for the
random BigBiGan case. Left: for the random baseline, best results are obtained by sampling positives
from N t(0.0, 0.05, 2.0). Removing cropping or color augmentations causes a Top-1 accuracy
drop of nearly 20% Right: for HL random, best results are obtained by sampling positives from
N t(0.0, 1.0, 2.0), with an exception when no Tx are applied, where a standard deviation of 0.8
achieves the best performances. Removing color augmentations allows the generation of more
realistic views, boosting Top-1 accuracy by 15% with respect to the “SimCLR augs” case.

Navigator training For the training of the non-linear walkers, we use the procedure introduced in
Li et al. (2022b), where the specific checkpoint for each network is determined by monitoring the loss
function, with some minor modifications. The code is available at https://github.com/LiYinqi/COP-
Gen/tree/master. First, we initialize the weights using a Gaussian distribution N (0., 0.01) and the
biases following a Uniform distribution U(−0.001, 0.001). This allows the training to start with an
Identity mapping for Tz. Second, we do not apply any pixel space transformation Tx during training,
as expressed in Equation (3). This is to ensure a correct estimation for the δ values, which should be
defined only with transformations in the latent space. Note that since Tz is initialized as the identity,
the InfoNCE loss first reaches a minimum point, and then starts to increase. Therefore, we save the
model weights when the loss reaches approximately the same value in all runs, identified as the point
after which the generated views quickly change the image semantics.

All the walkers are trained with a batch size of 64, Adam Kingma & Ba (2015) optimizer with
β1 = 0.5, β2 = 0.999 and a temperature τ = 0.1 in the InfoNCE loss (Equation (1)). For single
chunks or groups perturbations, the learning rate is 8 × 10−5 for the walker and 5 × 10−5 for the
embedding function, while when training the learned baselines and the BigBiGan final walker we
used a learning rate of 1× 10−5 for the walker and 3× 10−5 for the embedding function.

C Tx AUGMENTATIONS AND ABLATION STUDIES

To check which combinations of pixel space augmentations Tx to use, as well as to decide standard
deviation hyperparameters and StyleGan2’s baseline walker checkpoint, we perform several ablation
studies with BigBiGan generator testing on ImageNet-100 and with StyleGan2 generator testing on
StanfordCars (always using the SimSiam framework). The encoders use the same training procedures
as detailed in Section 4, but with 1

10 of the training steps. In general, we observe that all SimCLR
augmentations are necessary to maintain good performances in the baselines, while color jittering
and grayscale transformations can be removed in the HL counterparts. Detailed results are showed in
Figures 5 to 7.

D TRANSFER LEARNING

We report in Table 4 the results for each transfer classification learning experiment performed on top
of the SimSiam pre-trained encoders using BigBiGan / ImageNet-1K. Each experiment has been run
with 5 different seeds, and the mean Top-1 accuracy is taken.

Regarding datasets, results are computed on the test set where available, otherwise on the validation
set, maintaining the original splits. For DTD Cimpoi et al. (2014) the first proposed split has been
used, while for Caltech101 Fei-Fei et al. (2004) we selected a random split of 30 train images per
class, using the remaining for testing. All background images / distractors have been removed.
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Figure 6: Tx augmentations on the selected walker checkpoints for baseline and HL BigBiGan
experiments. Left: the checkpoint has seen 60K samples during training. All Tx augmentations
are needed to obtain good results, with consistent drops in Top-1 accuracy if any augmentation is
removed. Right: The selected checkpoint (120K training samples) achieves better results when color
augmentations are removed. Interestingly, we note that applying all “SimCLR augs” is worse than
applying no augmentations at all.

Figure 7: Ablation study for the random and learned baselines on the fine-grained StyleGan2 genera-
tor. Left: in the random case, best results are obtained by sampling positives from N t(0.0, 0.15, 0.9)
and applying all Tx augmentations. In general, we observe a great drop in performances when any of
these transformations is missing. Right: Different checkpoints and Tx augmentations tested on the
fine-grained StyleGan2’s learned unitary baseline. The final selected checkpoint (32K seen samples)
is the one achieving best Top-1 accuracy score in combination with all Tx transformations.
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Table 4: Transfer classification Top-1 accuracy results for each pre-trained encoder using SimSiam
framework and BigBiGan/ImageNet-1K as a data source. The first row presents a comparison with
the supervised baseline. Experiments are obtained on 7 different target datasets.

Encoder Top-1 Accuracy on Target Dataset

Birdsnap Caltech101 Cifar100 DTD Flowers102 Food101 Pets

Supervised Real 93.6± 0.5 86.6± 0.6 48.1± 0.7 54.5± 0.9 79.1± 0.7 53.7± 0.3 84.9± 0.5

Baseline real 63.1± 0.3 83.1± 1.0 26.2± 0.7 56.4± 0.3 59.8± 2.6 51.5± 0.2 67.6± 0.4
Baseline synth 46.3± 0.4 67.9± 1.6 33.4± 0.4 47.7± 0.5 46.7± 0.9 41.6± 0.2 47.1± 1.2

random 45.4± 0.3 68.9± 0.9 31.7± 0.7 47.9± 0.6 46.4± 0.8 42.3± 0.3 46.5± 1.3
HL random 64.3± 0.6 84.4± 0.3 41.1± 0.8 54.9± 1.0 63.2± 0.6 50.1± 0.3 59.5± 0.3
HL random (D) 65.2± 0.2 85.1± 0.3 40.4± 0.2 54.5± 0.4 66.8± 0.6 52.0± 0.3 59.5± 1.0

learned 42.0± 0.3 72.9± 0.8 31.7± 0.8 48.8± 0.5 45.2± 0.7 38.6± 0.4 44.0± 0.8
HL learned 57.7± 0.5 77.5± 0.5 36.7± 0.4 53.1± 0.4 60.3± 0.6 47.6± 0.5 51.8± 0.2
HL learned (D) 60.6± 0.2 79.5± 0.4 36.7± 0.3 54.4± 0.8 62.6± 0.8 50.2± 0.5 51.0± 0.6

For completeness, in the first row of Table 4 we also report Top-1 accuracy obtained from the
supervised baseline. In this case, the ResNet-50 encoder has been trained on ImageNet-1K for 100
epochs, achieving a Top-1 accuracy of 60.1% on the test set. Transfer learning results are obtained
using the same linear classification protocol denoted in Section 4.2.

E DETAILS FOR DISCRIMINATOR FILTERING

Some of our experiments aim to explore how the quality of generated images affects overall perfor-
mance. While prior work (Li et al., 2022b) proposed a comparison with a more powerful generator
(Casanova et al., 2021), we instead maintain the same model (BigBiGan) and enhance data quality
through discriminator filtering. Specifically, we first train a small discriminator network for one
epoch to distinguish real (ImageNet-1K) from fake (BigBiGan) images, assigning a score ranging
from 0 (fake) to 1 (real). During experiments conducted with SimSiam, each batch is sampled twice,
and the discriminator assigns scores to each image. Only the top half (those with higher scores) are
retained and used as the final input batch. Each discriminator input is pre-processed with a small
Gaussian Blur (kernel size 5, σ = 1.5 using kornia) and normalized with ImageNet mean and
standard deviation values.

F EXAMPLES OF GENERATED VIEWS

Figures 8 and 9 report some examples of generated views with our method and the corresponding
random and learned baselines. All views are obtained with the same hyperparameters reported in
Section 4 and used for training the contrastive encoders.
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Figure 8: Example of generated views from BigBiGan anchors. From left to right: anchor, random
and learned baseline views, random and learned HL views.
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Figure 9: Example of generated views from StyleGan2 anchors. From left to right: anchor, random
and learned baseline views, random and learned HL views.
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