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Abstract

Matrix completion is a classical problem that has received recurring interest from a wide
range of fields. In this paper, we revisit this problem in an ultra-sparse sampling regime,
where each entry of an unknown, n× d matrix M (with n ≥ d) is observed independently
with probability p = C/d, for a fixed integer C ≥ 2. This setting is motivated by applications
involving large, sparse panel datasets, where the number of rows (users) far exceeds the
number of columns (items). When each row contains only C—fewer than the rank of
M—accurate imputation of M is impossible. Instead, we focus on estimating the row span
of M , or equivalently, the averaged second-moment matrix T = M⊤M/n.
The empirical second-moment matrix computed from observational data exhibits non-random
and sparse missingness. We propose an unbiased estimator that normalizes each nonzero
entry of the second moment by its observed frequency, followed by gradient descent to impute
the missing entries of T . This normalization divides a weighted sum of n binomial random
variables by their total number of ones—a nonlinear operation. We show that the estimator
is unbiased for any value of p and enjoys low variance. When the row vectors of M are
drawn uniformly from a rank-r factor model satisfying an incoherence condition, we prove
that if n ≥ O(dr5ϵ−2C−2 log d), any local minimum of the gradient-descent objective is
approximately global and recovers T with error at most ϵ2.
Experiments on both synthetic and real-world data validate our approach. On three Movie-
Lens datasets, our algorithm reduces bias by 88% relative to several baseline estimators. We
also empirically evaluate the linear sampling complexity of n relative to d using synthetic
data. Finally, on the Amazon reviews dataset with sparsity 10−7, our method reduces the
recovery error of T by 59% and M by 38% compared to existing matrix completion methods.

1 Introduction

Matrix completion is a classical problem that has received sustained attention across several disciplines,
including compressive sensing (Candes & Plan, 2010), machine learning (Srebro et al., 2004), and signal
processing (Chi et al., 2019). A seminal result in the literature states that when the unknown matrix M is low
rank and satisfies an incoherence assumption (i.e., the row norms of the low-rank factors are approximately
balanced), exact recovery from a uniformly random subset of entries is achievable (Candes & Recht, 2012).

In this paper, we study matrix completion in an ultra-sparse sampling regime, where the sampling probability
p = C/d, for some constant C ≥ 2, resulting in roughly Cn observed entries in total. This is less than
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nr log d, the number of bits required to store the rank-r factors of an n by d matrix. Although recovering M
itself is information-theoretically impossible (Chen, 2015), we show that it is possible to recover one side of
M—specifically, the second-moment matrix T = M⊤M/n—in this regime. In other words, when M is a tall
matrix, our goal is to recover the subspace spanned by the row vectors of M .

There are several motivations for revisiting matrix completion in the ultra-sparse sampling regime. First,
many large-scale panel datasets are extremely sparse in practice. For example, consider the Amazon reviews
dataset (Hou et al., 2024), which contains roughly 54 million users and 48 million items, with about 571
million observed reviews in total. The resulting sparsity level is as low as 10−7. Therefore, we need matrix
completion methods that can remain effective under this level of ultra-sparsity. Second, many recommendation
systems must preserve data privacy. In such settings, each user may contribute only a small portion of data
to a central server, often after adding white noise for differential privacy (Liu et al., 2015). The central server
then aggregates these contributions by computing summary statistic such as the low-rank subspace spanned
by the row vectors. This summary statistic can then be shared publicly, allowing each user to project their
data locally onto the learned subspace (Wang et al., 2023). In these scenarios, the number of users can be
orders of magnitude larger than the number of items (see Table 2 for concrete examples), which motivates
studying recovery of the row space of M when n≫ d.

Recent work by Cao et al. (2023) initiates the study of one-sided matrix completion, whose goal is to estimate
the averaged second-moment matrix of the row vectors of M , denoted by

T = 1
n

M⊤M,

under the setting where two entries per row are observed. In other words, the matrix T captures the row-space
structure of M . Their analysis leaves open the general case where more than two entries are observed per
row. To illustrate the challenge, let M̂ denote the observed data matrix and I the corresponding binary mask
indicating observed entries. Because M̂ is highly sparse, the information it contains is insufficient to recover
M directly—rendering standard matrix completion guarantees inapplicable to this regime. Let Ω denote the
set of nonzero entries of the empirical second-moment matrix M̂⊤M̂ , which has the same dimension as T .
We make two key observations about M̂⊤M̂ that together highlight the technical challenges in recovering T
under ultra-sparse sampling:

1. The missing patterns in Ω is highly non-random: diagonal entries are almost always observed, while
off-diagonal entries are extremely sparse. For a detailed calculation, see Claim 2.1. Moreover, the
observation frequencies in the off-diagonal entries of I⊤I are sparse and unevenly distributed.

2. Although stochastic gradient algorithms are widely used in practice (Lan, 2020), providing theoretical
guarantees for matrix completion is technically challenging (Sun & Luo, 2016) and has not been done
under non-random missingness, to the best of our knowledge.

To address the first issue, we analyze a weighted estimator that normalizes each nonzero entry of M̂⊤M̂ by
the corresponding entry at I⊤I. This approach corresponds to the Hájek estimator (Hájek, 1971; Särndal
et al., 2003), which divides two random quantities—making its analysis more subtle due to nonlinearity.
Our key observation is that the Hájek estimator is exactly unbiased on the observed subset Ω, unlike prior
results that show only asymptotical unbiasedness as n→∞. This finite-sample unbiasedness arises from the
symmetry of pairwise products in computing the second-moment matrix.

Furthermore, a first-order approximation analysis on the variance of the Hájek estimator reveals that this
estimator achieves lower variance than the classical Horvitz-Thompson estimator (Horvitz & Thompson,
1952), leading to more stable and less biased empirical estimates, a result corroborated by our experiments.

To tackle the second issue, we establish recovery guarantees for any local minimizer of a loss function defined
between the normalized empirical second-moment matrix and its low-rank factorization used to impute missing
entries of T that lie outside Ω. Under a rank-r factor model for the rows of M , we show that if

n ≥ O
(
dr5C−2ϵ−2 log d

)
,
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Table 1: Comparison between this work and several closely related results on matrix completion under
an ultra-sparse sampling regime. Here, M ∈ Rn× d with n ≥ d, and T = 1

n M⊤M denotes the averaged
second-moment matrix of the rows of M . We focus on the one-sided or ultra-sparse settings where exact
recovery of M itself is infeasible.

Estimand Sampling Regime Main Approach (Reference)
M p = O( 1

n ) Thresholded Alternating Minimization (Gamarnik et al., 2017)
T Two entries per row Nuclear-Norm Regularization (Cao et al., 2023)
T p = C

n , ∀C ≥ 2 Hájek-GD with Incoherence Regularization (This paper)

then any local minimizer of the loss objective is within ϵ2 Frobenius norm distance to T . The big-O notation
above ignores dependencies of the bound on the condition number of M as well as the incoherence condition
number (See Assumption 3.3 for the definition). This bound assumes standard incoherence conditions—
without which recovery is information-theoretically impossible (Candes & Recht, 2012)—and is optimal
in scaling relative to d. Importantly, the result holds for any constant C, thus generalizing prior results
and closing an open question left by Cao et al. (2023). A key technical step is establishing a concentration
inequality to tackle the non-random missingness of Ω, by leveraging a conditional independence property at
each row of M̂⊤M̂ . This conditional independence property enables us to analyze and bound the bias of the
Hájek estimator row by row, ensuring consistency even under heterogeneous observation patterns.

Numerical results. We extensively validate our approach on both synthetic and real-world datasets. We
find that the Hájek estimator is particularly effective under extreme sparsity. For instance, when each row has
only two observed entries, our method outperforms a prior nuclear-norm regularization baseline by 70% in
recovering T . We also explore using one-sided matrix completion as a subroutine for imputing missing entries
of M . On the Amazon reviews dataset, we extend our estimator to impute M via least-squares regression
after estimating T , achieving 21% and 38% lower root mean squared error (RMSE) than alternating gradient
descent and soft-impute with alternating least squares (Hastie et al., 2015; Chi et al., 2019; Li et al., 2020a),
respectively. Ablation studies further show that the Hájek estimator reduces bias on Ω by 99% relative to the
Horvitz-Thompson estimator on synthetic data, and by 88% on average across three MovieLens datasets.
Incorporating an incoherence regularization term (Ge et al., 2016) into the loss further decreases recovery
error of T by 22% on synthetic data and by 52% on the Amazon review dataset.

Summary of contributions. This paper revisits the matrix completion problem under an ultra-sparse
sampling regime, where only Cn entries are observed from an unknown n× d matrix for a constant C ≥ 2.
Our contributions are threefold:

1. We design a new algorithm for one-sided matrix completion based on the Hájek estimator, accompanied
by a detailed theoretical analysis. We prove that the Hájek estimator is an unbiased estimator of
the second-moment matrix for any sampling probability p and achieves lower variance than the
Horvitz-Thompson estimator.

2. We establish near-optimal sample complexity bounds for one-sided matrix completion under a low-
rank, incoherent factor model. Our results apply to gradient-based optimization and extend to
general sampling patterns beyond those considered in prior work. See Table 1 for a comparison of
sample complexity and main approach.

3. We perform extensive experiments on synthetic and real-world datasets, demonstrating the practical
effectiveness of our approach and showing that one-sided matrix completion can be used as a robust
subroutine for full matrix recovery. The implementation and reproducible code are available at:
https://github.com/VirtuosoResearch/Matrix-completion-ultrasparse-implementation.

One limitation of our sample complexity result lies in the common-means assumption in the rank-r factor
model. We believe this condition can be relaxed if each factor is perturbed by random noise (see Remark
3.5). Another limitation concerns the existence of exact low-rank factor models for recovering T and the need

3

https://github.com/VirtuosoResearch/Matrix-completion-ultrasparse-implementation


Published in Transactions on Machine Learning Research (01/2026)

to specify the true rank in the gradient-descent procedure (see Remark 4.3). We discuss possible extensions
to address these issues in Section 7.

Organizations. The remainder of this paper is organized as follows. Section 2 describes the problem setup
and notations. Section 3 presents the estimator and the main theoretical results. Section 4 outlines the proof
sketch and two extensions. Section 5 and 6 provide empirical results and related work, respectively. Section 7
concludes the paper and discusses several open directions. Complete proofs appear in Appendix A-B, and
additional experiments are discussed in Appendix C.

2 Preliminaries and Notations

Let M denote an n by d, unknown matrix. Assume the rank of M is equal to r. Without loss of generality,
suppose that n ≥ d. For example, each row of M may include the ratings of a user, while each column may
correspond to the ratings of an item. We observe a partial matrix, denoted by M̂ . Let I ∈ {0, 1}n×d denote
the indicator matrix on the observed entries of M̂ . Our goal is to recover the averaged second-moment matrix
T := M⊤M/n, given M̂ .

We assume that each entry of M̂ is observed independently with probability p ∈ (0, 1), following prior
literature (e.g., Candes & Recht (2012); Sun & Luo (2016); Ge et al. (2016)). We focus on a constant sampling
regime, where p = C/d, for some fixed integer C ≥ 2. In such a regime, m is roughly Cn, less than the
number of bits to represent an n by r matrix.

An important quantity for working with one-sided estimation is I⊤I, which is a symmetric matrix in dimension
d. This matrix provides the empirical frequency counts for the empirical second moment matrix M̂⊤M̂ . For
example, consider an off-diagonal entry (i, j), where i ̸= j and both i, j are in {1, 2, . . . , d}. The (i, j)-th
entry of I⊤I, denoted as (I⊤I)i,j , is equal to the number of overlapping, nonzero entries between the i-th
and j-th column of M̂ . That is,

(
I⊤I

)
i,j

=
n∑

k=1
Ik,iIk,j . (1)

Let Ω denote the indices of the nonzero entries of I⊤I. We now make the following observation regarding
the observed entries within Ω. In particular, we find that the sampling patterns of Ω are non-random in the
following sense.

Claim 2.1. For every i = 1, 2, . . . , d, the diagonal entries satisfy that

Pr[(i, i) ∈ Ω] = 1− (1− p)n.

The off-diagonal entries satisfy that for every i = 1, . . . , d, and j = 1, . . . , d such that j ̸= i,

Pr[(i, j) ∈ Ω] = 1− (1− p2)n.

To illustrate, recall that p = C/d. Suppose n is at the order of O(d log d). The probability that (i, i) ∈ Ω is
roughly 1− e−pn ≈ 1− d−O(C). Then by a union bound, with probability at least 1−O(d−1), it must be the
case that (i, i) ∈ Ω, for every i = 1, 2, . . . , d.

For each off-diagonal entry, it is observed in Ω with probability equal to 1 − (1 − p2)n. For simplicity of
notation, let us denote this as q in the rest of the paper. Note that q = np2 is roughly equal to O(C2d−1 log d).

To account for the difference in sampling probabilities between diagonal and off-diagonal entries of Ω, let
PΩ : Rd×d → Rd×d be a weighted projection operator defined as follows:

(PΩ(Z))i,j =


qZi,i, if (i, i) ∈ Ω,

Zi,j , if (i, j) ∈ Ω and j ̸= i,

0, if (i, j) /∈ Ω.
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Estimators. Having introduced the co-occurrence matrix I⊤I and its nonzero index set Ω, next, we discuss
the normalization of the empirical second moment of the observed matrix, given by M̂⊤M̂ . One way to
normalize M̂⊤M̂ for one-sided matrix completion is via the Horvitz-Thompson (HT) estimator (Horvitz &
Thompson, 1952), which inversely reweights each entry with the true sampling probability (i.e., p on the
diagonal entries and p2 on the off-diagonal entries):

T i,j =


∑n

k=1
M2

k,iIk,i

np , if i = j,∑n

k=1
Mk,iMk,jIk,iIk,j

np2 , if i ̸= j.

One can verify that E[T i,j ] = Ti,j . Notice that np2 is the expectation of (I⊤I)i,j (cf. equation (1)), while np
is the expectation when i = j. When p is too small, np2 becomes small, resulting in high fluctuation in the
off-diagonal entries. Another approach, known as the Hájek estimator (Hájek, 1971), is to normalize each
entry in Ω by the estimated sampling probability, which is canceled out since the probability value is the
same across different k, leading to the following expression, for any (i, j) ∈ Ω:

T̂i,j =


∑n

k=1
M2

k,iIk,i∑n

k=1
Ik,i

, if i = j,∑n

k=1
Mk,iMk,jIk,iIk,j∑n

k=1
Ik,iIk,j

, if i ̸= j.

The theoretical analysis of the Hájek estimator is challenging due to its nonlinear form, which involves
dividing one random variable by another. It is known that the Hájek estimator is asymptotically unbiased
(Hájek, 1971) in the large n limit, incurring an error of O(n−1/2). In addition, the Hájek estimator provides
a variance reduction effect compared to the Horvitz-Thompson estimator in causal inference (Hirano et al.,
2003). Little is known in the matrix completion problem, and several natural questions arise. First, how
does this estimator work for one-sided matrix completion? What is the bias of T̂ , and how does the Hájek
estimator compare to the Horvitz-Thompson estimator? Second, how can we use T̂ to impute the missing
entries outside Ω? The rest of this paper is dedicated to answering these questions.

Notations. Before continuing, we provide a list of notations for describing the results. Following the
convention of big-O notations, given two functions f(n) and g(n), let f(n) ≤ O(g(n)) indicate that there
exists a constant c independent of n such that when n ≥ n0 for some large enough n0, then f(n) ≤ c · g(n).
We use the notation f(n) ≲ g(n) as a shorthand for indicating that f(n) = O(g(n)). Let Õ(g(n)) denote that
O(logc(n)g(n)) for some constant c independent of n. We also use the little-o notation f(n) ≤ o(g(n)), which
means that f(n)/g(n) goes to zero as n goes to infinity.

Let [d] = {1, 2, . . . , d} denote a shorthand notation for the set from 1 up to d. We use N (a, b) to denote a
Gaussian distribution with mean set at a and variance equal to b. We use the notation (x)+ = max(x, 0) to
denote a truncation operation set above zero.

Let ∥·∥F denote the Frobenius norm of an input matrix. Let ∥·∥2 denote the spectral norm of the input
matrix and let ∥·∥ denote the Euclidean norm of a vector. Let ⟨X, Y ⟩ = Tr[X⊤Y ] denote the inner product
between two matrices that have the same dimensions. Let ∥·∥∞ denote the infinity norm of a matrix, which
corresponds to its largest entry in absolute value.

3 Estimation and Recovery Guarantees

In this section, we present a thorough analysis of the Hájek estimator in the one-sided matrix completion
problem. We begin by analyzing the bias of T̂ compared to T on the observed entries Ω. A key observation is
that T̂ provides an unbiased estimate of T , as stated formally below.
Lemma 3.1. Suppose the entries of M̂ are sampled from M independently with a fixed probability p ∈ (0, 1).
Let Ω denote the index set corresponding to the non-zero entries of M̂⊤M̂ . Then, the following must be true:

E
[
T̂i,j

∣∣∣(i, j) ∈ Ω
]

= Ti,j , (2)
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for any 1 ≤ i, j ≤ d. As a corollary of equation (2), we have that

E
[
T̂i,j

]
= Pr

[
(i, j) ∈ Ω] · Ti,j .

Unlike conventional results showing that the Hájek estimator is asymptotically consistent (Särndal et al.,
2003), in the one-sided matrix completion setting, we find that the Hájek estimator is unbiased in the presence
of finitely many samples. As a remark, the same unbiased estimation result can also be stated in the setting
where every row has k uniformly random entries from M , for arbitrary integers k ≥ 2. The proof is similar to
that of Lemma 3.1 and is omitted.

We now describe the main ideas for proving Lemma 3.1. First, we note that for any k > 1, conditioned on
(I⊤I)i,j = k, M̂⊤M̂ must be equal to the sum of k pairs chosen from M1,iM1,j , M2,iM2,j , . . . , Mn,iMn,j .
Furthermore, the choice of k such pairs out of n is uniformly at random among all possible

(
n
k

)
combinations,

because the choices are symmetric. Thus, the average of k randomly chosen pairs must be equal to the
average of all n pairs in expectation. This is stated precisely in the following equation:

E

[
1
k

(
M̂⊤M̂

)
i,j

∣∣∣∣∣(I⊤I
)

i,j
= k

]
= 1

n

n∑
a=1

Ma,iMa,j = Ti,j , (3)

which leads to the conclusion of equation (2). See the full proof in Appendix A.

3.1 Variance Reduction

Having established that T̂ provides an unbiased estimator on the entries of T , we turn to studying the
variance of T̂ . We show that the Hájek estimator incurs lower variance relative to the Horvitz-Thompson
estimator. We first derive an approximation of V ar(T̂ ) to tackle the nonlinearity of the Hájek estimator.

Theorem 3.2. Suppose p = C
d for some fixed integer C ≥ 2. Suppose n ≥ O(d log d). Then, with probability

at least 1−O(d−1), (i) all of the diagonal entries of T̂ are in Ω, and (ii) for any diagonal entries of T̂ , the
variance of T̂i,i, for any i = 1, 2, . . . , d, is approximated by

V ar
(

T̂i,i

)
= 1− p

np

(
1
n

n∑
k=1

M4
k,i

)
− 1− p

np
T 2

i,i + O

(
1

np

)
. (4)

For any nonzero, off-diagonal entries in Ω, the variance of T̂i,j, for any 1 ≤ i ̸= j ≤ d, is approximated by

V ar
(

T̂i,j

∣∣∣(i, j) ∈ Ω
)

= 1
n

(
n∑

k=1
M2

k,iM
2
k,j

)
− T 2

i,j + O

(
(log d)2

d

)
. (5)

We now compare the variance of the Hájek estimator, V ar(T̂ ), with the variance of the Horvitz-Thompson
estimator, V ar(T ), since both estimators are unbiased. We first derive the variance of T to make the
comparison. For diagonal entries, we have that T i,i = (np)−1(M̂⊤M̂)i,i, for i = 1, . . . , d. For off-diagonal
entries, we have T i,j = (np2)−1(M̂⊤M̂)i,j , for i ̸= j. Then, we calculate the variance of T as:

V ar
(

T i,i

)
= 1− p

n2p

n∑
k=1

M4
k,i, ∀ i = 1, . . . , d, (6)

V ar
(

T i,j

)
= 1− p2

n2p2

n∑
k=1

M2
k,iM

2
k,j , ∀ j = 1, . . . , d and j ̸= i, (7)

which can be verified based on the definition of T in Section 2. Now we can compare equations (6) and (7)
with equations (4) and (5), respectively.
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Figure 1: An illustration of the variance reduction using the Hájek estimator vs. the Horvitz-Thompson
(HT) estimator, measured on synthetic data with n = 104 and d = 103, by repeating the data sampling
procedure 100 times and calculating the variance across either uniform sampling with probability p, or
sampling C entries per row. In particular, V ar(T̂ ) is generally 10−3 lower than V ar(T ). For details regarding
the simulation setup, see Section 5.

• Notice that the diagonal entries are nonzero with high probability over all the diagonal entries.
By comparing equation (4) to equation (6), we see a reduction in the second term of equation (4),
−(1− p)T 2

i,i/(np), which is at the same order as the first term.

• The off-diagonal entries are nonzero with probability equal to q ≈ np2 = Õ(d−1). By comparing
equation (5) to (7), we see that equation (7) is larger than the first term of equation (5) by a factor of
np2/(1− p2). In addition, the second term of equation (5), which is always negative, further reduces
to the variance of T̂i,j compared with T i,j .

Algorithmic implications. One consequence of variance reduction is that the empirical performance of the
Hájek estimator tends to be much more stable than the Horvitz-Thompson estimator in the ultra-sparse
setting. This is illustrated in Figure 1, measured on synthetic datasets with n = 104 and d = 10d, for various
values of p (uniform sampling) and C (i.e., sampling C entries per row without repetition).

3.2 Sample Complexity

Next, we consider the entries outside Ω. We minimize a reconstruction error objective between T̂ and XX⊤,
for some X ∈ Rd×r, plus a regularization penalty of R(X), as follows:

ℓ(X) := 1
2

∥∥∥PΩ(XX⊤ − T̂ )
∥∥∥2

F
+ λR(X), (8)

where λ > 0 is a regularization parameter. R(X) is defined as
∑d

i=1(∥Xi∥ − α)4
+, where Xi ∈ Rr is the i-th

row vector of X, for i = 1, . . . , d, and α is a scalar that roughly corresponds to the row vector norms of X.
This penalty regularizes the maximum ℓ2-row-norm of X, and is shown to provide theoretical properties in
the optimization landscape of matrix completion (Ge et al., 2016; 2017). We summarize our procedure in
Algorithm 1, which uses gradient descent to minimize ℓ(X). As a remark, in the loss objective ℓ(X), we
recover the diagonal and off-diagonal entries of T̂ together via XX⊤, while reweighting the diagonal entries
of XX⊤, based on the calculation in Lemma 3.1.1

We analyze this algorithm in a common means model, where each row of M follows a mixture of r vectors
u1, u2, . . . , ur ∈ Rd. Let Mi denote the i-th row vector of M . For every i = 1, 2, . . . , n, assume that Mi

is drawn uniformly at random from u1, u2, . . . , ur. Let U = [u1, u2, . . . , ur]/
√

r denote a d by r matrix
corresponding to the combined rank-r factors. Let κ = σmax(U)/σmin(U) denote the condition number of U .
A critical condition to ensure guaranteed recovery in matrix completion is the following assumption regarding
the row norms of U .

1We remark that there are other algorithms besides gradient descent for the imputation step, such as subspace recovery on
the Grassmann manifold (Boumal & Absil, 2011). Zilber & Nadler (2022) design an iterative Gaussian-Newton algorithm for
matrix recovery based on a linearization of the recovery objective. A natural extension of Hájek-GD involves using the Hájek
estimator in the first step, and then applying these methods (instead of stochastic gradients) in the second step.
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Algorithm 1 Hájek estimation with gradient descent (Hájek-GD) for one-sided matrix completion
Input: A partially-observed data matrix M̂ ∈ Rn×d

Require: Rank of the second-moment matrix r, number of iterations t, and learning rate η
Output: A d by d matrix

1: I ∈ Rn×d ← The 0-1 indicator mask corresponding to the nonzero entries of M̂
2: Ω ⊆ [d]× [d]← The set of indices corresponding to the nonzero entries of I⊤I

3: T̂ ∈ Rd×d ← The element-wise division between M̂⊤M̂ and I⊤I on Ω
4: X0 ∈ Rd×r ← A random Gaussian matrix whose entries are sampled independently from N (0, d−1)
5: for i = 1, . . . , t do
6: Xi ← Xi−1 − η∇ℓ(Xi−1), where ℓ(·) is defined in equation (8)
7: end for
8: return T̂ plus the entries of XtX

⊤
t outside Ω

Assumption 3.3 (See also Definition 1.1 in Recht (2011) and Assumption 1 in Ge et al. (2016)). Let Uei

denote the i-th row vector of a d by r matrix U , where ei ∈ Rd is the i-th basis vector, for any i = 1, 2, . . . , d.
The coherence of U is given by

µ := d

r
max

1≤i≤d

∥Uei∥2

∥U∥2
F

. (9)

Assuming that µ(U) is a fixed value that does not grow with d; That is, µ(U) does not increase with the
dimensionality of the problem. We show the following performance guarantee of gradient descent for recovering
T , measured in terms of the Frobenius norm distance between a local minimizer and T . In particular, recall
that λ refers to the strength of the regularization penalty, while α refers to the magnitude of the norm of the
row vectors. See also the description of the incoherence penalty term below equation (8).

Theorem 3.4. Suppose the rows of M follow a mixture of r common factors given by U ∈ Rd×r. Additionally,
the coherence of U is at most µ for some fixed µ ≥ 1 that does not grow with d. Suppose each entry of M is
observed with probability p = C

d for some fixed integer C ≥ 2, and let q = 1− (1− p2)n. Let α = 4κ2r
√

µ
d

and λ = (r+1)dq
16r2µ3 . When n ≥ cdr5κ6µ2 log(d)

C2ϵ2 for some fixed constant c and ϵ ∈ (0, 1), with probability at least
1−O(d−1) over the randomness of Ω, when d is large enough, any local minimizer X of ℓ(·) satisfies∥∥XX⊤ − T

∥∥2
F
≤ ϵ2. (10)

This result implies that any local minimum solution of the loss objective is also approximately a global
minimum solution. We defer a proof sketch of this result to Section 4. We remark that prior results have
established one-sided matrix completion guarantees when each row has two observed entries (Cao et al., 2023).
By contrast, Theorem 3.4 applies to arbitrary values of C ≥ 2 in each row.

Notice that Theorem 3.4 crucially relies on the assumption that n is much larger than d. To provide several
concrete examples, Table 2 in Section 5 presents the values of n and d for several real-world datasets, including
MovieLens and Amazon reviews. In these examples, the average n/d is roughly 10, which justifies the
assumption that n can be much larger d in practice. Our experiments, presented later in Section 5.2, further
validate the sample complexity result using synthetic data.

Algorithmic implications. A crucial step in the proof is to leverage the incoherence assumption, which
reduces local optimality conditions from finite samples to the entire population. Later in Section 5.3, we also
empirically demonstrate that the use of the incoherence regularization penalty helps improve performance on
real-world datasets.

Remark 3.5. The common means model is often used to study learning from heterogeneous datasets such
as multitask learning and distributed learning. See, e.g., Kolar et al. (2011); Dobriban & Sheng (2020). In
particular, Kolar et al. (2011) study union support recovery under the common means model, further assuming
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that every mean vector is perturbed by another noise addition of ϵi (added to Mi). Despite the simplicity
of this model, several learning problems can be reduced to the Normal means model (Brown & Low, 1996).
Dobriban & Sheng (2020) study a distributed ridge regression problem, where each every individual performs a
ridge regression on a local machine, and then, the ridge estimators are aggregated together on a central server.
In particular, the samples of each individual are assumed to follow a linear model with the same β, plus
independent random noise ϵ with mean zero and variance σ2. One way to extend the common means model is
by positing a noise addition, such as a noise vector ϵi added to Mi, whose entries are drawn independently
from a Gaussian distribution N (0, σ2/d). Our proof can be naturally applied to this extension. In particular,
there are three places that need to be modified to account for the noise addition, including: 1) The proof of
Lemma B.1, in particular equations (27), (28), and (29). 2) The proof of Corollary B.2, in particular, adding
the dependence of σ2 to the numerator in equations (31) and (32). 3) The proof of Corollary B.3, which
inherits the dependence on σ2 from Corollary B.2. These extensions will rely on concentration bounds on
Gaussian random variables. Finally, we would also need to incorporate the noise variance in the diagonal
entries of T̂ . We can de-bias this by subtracting a suitably scaled diagonal matrix in the objective ℓ(X).

Another plausible extension is to instead assume that each Mi is a linear combination of the r low-rank factors.
This setting appears to be significantly more challenging and would likely go beyond the techniques developed
in this paper, as one would first need to disentangle the linear dependence and design a new estimator capable
of learning the low-rank subspace spanned by the latent factors. One promising direction for tackling this
problem is to use the spectral estimator developed in the work of Chen et al. (2021). This is left as an open
question for future work.

Discussions. In the proof of Theorem 3.4, we tackle the error terms arising from the diagonal and off-diagonal
entries separately. This is because the diagonal entries are fully observed with high probability. By contrast,
the off-diagonal entries are only sparsely observed. At a high level, as n increases, the concentration errors
in the diagonal entries will decrease (at a rate of n−1/2). Meanwhile, q will also increase, leading to more
observed samples in the off-diagonal entries. Thus, we can set n carefully to ensure that the error between T̂
and T , when restricted to Ω, is sufficiently small. The details can be found in Appendix B.1-B.2.

We now discuss our work from the perspective of prior work by Fan et al. (2013). Their work examines a
low-rank plus noise common factor model. Their estimators involve a low-rank estimator, plus a diagonal
matrix. In particular, this diagonal matrix is designed to offset the bias contributed by the noise term. As an
extension, if we incorporate the noise term into the latent factor model of Mi, we would similarly need to
de-bias the diagonal entries to account for the norms of the noise. The proof can be extended to handle this
setting by estimating the magnitude of the noise variance, and then adding this bias to the objective ℓ(X).

4 Proof Techniques and Extensions

Next, we present a sketch of our proof. There are two major challenges in analyzing the Hájek estimator
in the ultra-sparse sampling regime: First, the estimator involves dividing one random variable by another
random variable, resulting in a nonlinear estimator. Further, the missing patterns in Ω are non-random,
depending on the diagonal and off-diagonal entries, respectively. Our approach to tackle this non-linearity is
via a first-order approximation technique for analyzing the Hájek estimator on the diagonal entries. Further,
we carefully analyze the bias in the off-diagonal entries.

Second, the sampling patterns of Ω are not fully independent. To this end, we establish a concentration
inequality that handles the concentration error row by row in Ω. This is based on the observation that,
conditioned on one row, expect the diagonal entries, the randomness of each entry in that row would be
independent across different entries. This row-by-row concentration argument also allows us to analyze the
spectral norm of the bias matrix. As a remark, this type of argument has been used in matrix completion
with non-random missing data (Athey et al., 2021). However, prior work focuses on analyzing nuclear norm
regularization methods, while our result now applies to gradient-based optimization. Next, we outline the
main results in addressing the above two challenges.
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4.1 Main Proof Ideas

Bias and variance of the Hájek estimator. Recall that T̂ is unbiased by Lemma 3.1. Thus, the variance of T̂
is the same as the expected squared error between T̂ and T . A key result for deriving the variance of the
Hájek estimator is as follows.

Lemma 4.1. In the setting of Theorem 3.4, suppose p = C/n for some fixed integer C ≥ 2 and n ≥ d(log d)/ϵ2.
Let Si = {j : (i, j) ∈ Ω, j ̸= i} denote the set of indices corresponding to the nonzero entries in the i-th row
of T̂ . With probability at least 1−O(d−1), the following must be true, for every i = 1, 2, . . . , d,

V ar
(

T̂i,i

)
≤ µ2r

d2np

(
1 + ϵ

√
6C−1

d

)(
1 + r

√
3 log(d/2)

2n

)
, (11)

∑
j∈Si

V ar
(

T̂i,j

)
≤ µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ

(
d−3) . (12)

Proof sketch. The proof regarding the diagonal entries in equation (11) is based on a first-order approximation
of V ar(T̂i,i). For every i = 1, 2, . . . , d, let

Ai,i :=
n∑

k=1
M2

k,iIk,i and Bi,i :=
n∑

k=1
Ik,i. (13)

We perform Taylor’s expansion of T̂i,i around (E [Ai,i] ,E [Bi,i]) as follows (See also Chapter 5.5, Särndal et al.
(2003)):

T̂i,i = E [Ai,i]
E [Bi,i]

+ 1
E [Bi,i]

(Ai,i − E [Ai,i])−
E [Ai,i]

(E [Bi,i])2 (Bi,i − E [Bi,i]) + ϵi,i. (14)

Above, the first term to the right of equation (14) stems from the zeroth-order expansion. The second and
third terms arise from taking the partial derivatives over Ai,i, Bi,i, respectively. ϵi,i is an error term that is at
the order of the variance of Ai,i, Bi,i, which can be calculated in close form based on equation (13).

Given that T̂ is unbiased, V ar(T̂i,i) is equal to the expectation after squaring both sides of equation (14). As
a result, we derive the variance approximation of T̂i,i by carefully analyzing each term, which will lead to
equation (4).

• Figure 2 provides an illustration of equation (14) (except the ϵi,i error term) and the corresponding
variance estimate from equation (4). We find that both approximations hold with negligible errors
for various sampling probabilities p (uniform sampling with probability p) and C (fixed number of
entries per row).

• This simulation uses n = 104 and d = 103 and follows the setup stated in the synthetic data generation
process, which can be found in Section 5.

As for the off-diagonal entries of T̂ , note that when (i, j) ∈ Ω, with high probability the (i, j)-th entry of I⊤I

must be one. Thus, V ar(T̂i,j) is equal to the variance of n values M1,iM1,j , . . . , Mn,iMn,j (plus some small
errors). This leads to the variance approximation of equation (5). See Appendix B.1 for the full proof.

A concentration inequality for operator PΩ. In order to analyze the optimization landscape of the loss objective
ℓ(·), we will first derive the first-order and second-order optimality conditions. However, these are stated on
the observed set Ω, and we need to turn them into the full set on T . To this end, we develop the following
concentration inequality, which helps reduce finite-sample local optimality conditions to the full matrix.
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Figure 2: We illustrate the results from applying a first-order approximation to the variance of the diagonal
entries of Hájek-GD, run on synthetic data with n = 104 and d = 103. Figures 2a and 2c: Sample each
entry with probability p. Figures 2b and 2d: Sample C entries per row without repetition. In particular, the
approximation errors incurred by both first-order Taylor’s expansion and the variance approximation are
generally less than 10−6.

Lemma 4.2. Let W ∈ Rd×d be a d by d symmetric matrix such that ∥W∥∞ ≤
ν
d , for some fixed positive

value of ν. Then, with probability at least 1−O(d−1), the following statement must be true:

∥PΩ(W )− qW∥2 ≤ qν

√
16 log(2d)

dq
. (15)

The proof of this concentration result can be found in Appendix B.2.

The last ingredient involves analyzing the population loss of one-sided matrix completion, building on the
machinery of Ge et al. (2016). These are discussed in detail in Appendix B.3 and B.4, which involve analyzing
the population landscape and then reducing empirical case to the population case, respectively.

• In particular, we extend their analysis to account for the bias of T̂ and the non-random missingness
of Ω due to the diagonal and off-diagonal entries.

• The treatment of the bias of T̂ relative to T is especially tedious and requires careful calculation. We
build on Lemma 4.1 and 4.2 to give the bias of each diagonal entry, and the bias of each row — See
Corollary B.2.

• The final proof of Theorem 3.4 can be found in Appendix B.5. We also discuss our work from the
perspective of the work of Ge et al. (2016) in Remark B.12.

Remark 4.3. The above sample complexity result assumes the existence of a low-rank factor model, and the
gradient descent algorithm requires knowing the exact rank of the factor model. In practice, one can adjust
the rank parameter in the gradient descent algorithm via cross-validation. See a detailed ablation analysis in
Appendix C.3. It is an interesting question to examine adaptive optimization methods that can automatically
learn or estimate the true rank without knowing it. One natural extension of our technique is by running
SVD on T̂ and from the decomposition infer the rank of T . For example, this can be achieved by analyzing
the spectrum induced by the noise added to T̂ . See Corollary B.2 in Appendix B.1 for the analysis of the bias
(i.e., T̂ − T ) on Ω.

4.2 Extensions

We now describe two extensions of our approach. In the first extension, we use Hájek-GD to recover the
unobserved entries of M . To accomplish this, we solve a least-squares regression problem that projects the
observed entries of M onto the span of the recovered second-moment matrix. An illustration of this overall
procedure is provided in Figure 3, and the complete algorithm is detailed in Algorithm 2. In particular, when
C ≥ O(r log d), one can show that this least-squares procedure can accurately recover every row of M .
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Algorithm 2 Missing data imputation using one-sided matrix completion
Input: A partially observed M̂ ∈ Rn×d

Require: Rank r, number of iterations t, learning rate η
Output: An k by d matrix corresponding to the imputed rows of S

1: Z ← Hájek-GD(M̂ ; r, t, η) // May add Gaussian noise to the non-zero entries of M̂
2: UrDrU⊤

r ← rank-r SVD of Z

3: Ω← set of indices corresponding to the nonzero entries of M̂⊤M̂

4: Q← arg minQ∈Rn×r
1
2
∑

i∈S,(i,j)∈Ω

((
QU⊤

r

)
i,j
− M̂i,j

)2

5: return QX⊤

As discussed in the introduction, recovery guarantees are generally impossible when the number of samples is
extremely limited. However, one practical way to view this algorithm is as a user-level recovery procedure:
when a user performs the local least-squares regression, it is likely that they will have access to additional
local data beyond the ultra-sparse global observations. In such cases, the least-squares step can accurately
reconstruct the entire row based on the recovered row space.

In the second extension, we further generalize our recovery guarantees to account for differential privacy (DP)
using the Gaussian mechanism. We begin by recalling the notion of differential privacy in the context of
matrix completion. Given an input M̂ , an algorithm A is said to satisfy (ε, δ)-joint differential privacy if,
for any i ∈ {1, 2, . . . , n}, replacing the i-th row of M (and the corresponding row of M̂) by another vector
x ∈ X ⊆ Rd yields matrices M̂ and M̂ ′ that differ in only one row. Then, for any set of measurable events S,

Pr
[
A(M̂) ∈ S

]
≤ exp(ε) Pr

[
A(M̂ ′) ∈ S

]
+ δ, (16)

This definition follows prior work on user-level DP for matrix completion (Liu et al., 2015; Wang et al., 2023).
To satisfy (ε, δ)-DP, we perturb the nonzero entries of M̂ with Gaussian noise drawn from N (0, σ2). To
determine the appropriate noise level σ, we measure the ℓ2-sensitivity of the algorithm A : Rn×d → Rd×d as:

∆2(A) = max
M∼M ′

∥A(M)−A(M ′)∥F , (17)

where M ∼M ′ denotes that the two matrices differ in at most one row.

By standard results in the DP literature, when

σ = 2
√

ln (1.25δ−1)∆2(A)
ε

,

the algorithm Hájek-GD combined with the Gaussian mechanism satisfies the (ε, δ)-joint differential privacy
with high probability. See Theorem A.1 in Dwork & Roth (2014) for the full statement. In Appendix C.3, we
empirically estimate the sensitivity of Hájek-GD and find that ∆2(A) remains small—typically between 11
and 19 across several datasets.

Together, these two extensions show that our approach can (i) leverage the recovered row space to im-
pute missing entries of M , and (ii) ensure privacy-preserving estimation under standard Gaussian noise
perturbation.

5 Experiments

In this section, we evaluate our proposed approach through extensive experiments on both synthetic data
and real-world datasets.

Synthetic data generation. We generate synthetic data by sampling each entry of M ∈ Rn×d independently
from a Gaussian distribution N (1/

√
d, 1/d), where d denotes the number of columns. Unless otherwise stated,

we fix n = 104 and d = 103. To construct a low-rank ground-truth matrix, we perform an SVD of M and
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Figure 3: Illustration of the proposed one-sided matrix completion pipeline. Input: A partially observed
matrix M̂ ∈ Rn×d. Each row represents a user’s data (e.g., movie ratings), and each column represents an
item. Thus, M is a tall-and-skinny matrix, with n being larger than d. Step 1: Apply the Hájek estimator
to correct for non-random missingness in the empirical second-moment matrix M̂⊤M̂ over the observed index
set Ω. Step 2: Impute the remaining unobserved entries of T by running gradient descent on a low-rank
reconstruction loss between the estimated and true second-moment matrices. The final T combines the
observed entries from T̂ with the missing entries from XtX

⊤
t , where Xt denotes the t-th gradient descent

iterate. Extension: Perform full matrix imputation by projecting onto the recovered low-rank subspace Ur

(obtained via rank-r SVD of the estimated T ) and solving a least-squares regression problem to estimate the
missing entries of M .

retain the top-10 singular values and corresponding singular vectors, truncating the lower tail. The observed
matrix M̂ is then obtained by sampling each entry independently with probability p = C/d. We also consider
an alternative sampling scheme that selects exactly C entries per row without replacement, and find that the
results are qualitatively similar under both schemes.

Real-world datasets. We further evaluate our algorithm on several large, sparse matrix datasets: (i) three
MovieLens datasets with 20 million and 32 million nonzero entries; (ii) an Amazon Reviews dataset (Hou
et al., 2024); and (iii) a Genomics dataset from the 1, 000 Genomes Project (Cao et al., 2023). These datasets
are standard testbeds for sparse matrix completion and cover a wide range of sparsity leves and scales
representative of real-world recommendation and biological data. Their detailed statistics are summarized in
Table 2. We formulate the prediction task on each dataset as a regression problem.

Baselines. We compare our method against three strong baselines widely used in the matrix-completion
literature:

1. Nuclear-norm regularization (Cao et al., 2023), which coincides with the same weighted estimator as
Hájek-GD when each row contains exactly two entries. One difference between our implementation
and theirs is that we also add the incoherence regularization term to the loss function.

2. Alternating Gradient Descent (alternating-GD).

3. Soft-Impute with Alternating Least Squares (softImpute-ALS) (Hastie et al., 2015).

To adapt the latter two methods for one-sided matrix completion, we first apply each baseline to recover
the full matrix M and then compute the corresponding second-moment matrix T as M⊤M/n. Additional
dataset descriptions and implementation details are provided in Appendix C.

Evaluation metrics. For one-sided matrix completion, we measure compare the recovery error as the
Frobenius norm between the estimated and true T matrices. For full matrix imputation, we compare
Algorithm 2 to alternating-GD and softImpute-ALS, reporting the root mean squared error (RMSE) between
the imputed and ground-truth values. All experiments are implemented in PyTorch and executed on an
Ubuntu server with 16 Intel Xeon CPUs and one Nvidia Quadro 6000 GPU.
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Table 2: The detailed statistics of five real-world matrix datasets used in our experiments.

Dataset Genomes Amazon Reviews MovieLens-20M MovieLens-25M MovieLens-32M
# Rows 100, 000 100, 000 138, 000 162, 000 200, 948
# Columns 2, 504 50, 000 27, 000 62, 000 87, 585
# Nonzero 2.5× 108 1.3× 106 2× 107 2.5× 107 3.2× 107

Summary of numerical results. For one-sided matrix completion in the sparsest regime—where each
row has only two observed entries—we find that Hájek-GD reduces recovery error by 70% compared to
nuclear-norm regularization on synthetic data. Across all three real-world datasets (each with sparsity below
1%), Hájek-GD reduces the recovery error of T by at least 42% relative to alternating-GD and by 59%
relative to softImpute-ALS.

When using Hájek-GD to impute the missing entries of M as part of Algorithm 2, the overall approach
achieves an 85% reduction in RMSE compared to alternating-GD and softImpute-ALS on synthetic data
where each row has only two entries. On real-world datasets, Hájek-GD further reduces RMSE by at least
21% relative to alternating-GD and by 38% relative to softImpute-ALS.

Finally, we conduct ablation studies to validate our algorithmic design choices. In particular, we highlight
the benefits of incorporating the incoherence regularization R(X) in the loss and demonstrate that Hájek-
GD remains robust under random noise perturbations in the input. Together, these findings indicate that
our approach is particularly effective and stable in ultra-sparse matrix regimes.

5.1 Measuring Bias on Observed Entries

We begin by comparing the bias between T̂ and T , measured by the sum of squared errors between T̂ (and
T ) with T on Ω. Our finding is illustrated in Figure 4. First, we find that the bias of T̂ compared to T , is at
the order of 10−4 to 10−2 for various p. In Figure 4a, we find that on synthetic datasets, the bias of T̂ is
9× 10−4 and the bias of T is 0.3 averaged over various sampling probabilities, resulting in a reduction of
99%. In Figure 4b, we observe that for three MovieLens datasets, the bias of T̂ is 6× 10−4 and the bias of T
is 5× 10−3, resulting in a reduction of 88%.

Additionally, we test a biased sampling procedure, where users who watch more movies tend to rate more
movies as well (also known as “snowball effects” (Chen et al., 2020)). For each i = 1, . . . , n, we sample its
entries with probability pi equal to C/d times the number of non-zeros in row i. We find that under this
biased sampling procedure, the bias of T̂ is 3× 10−4 and the bias of T is 5× 10−3, resulting in a reduction of
93%. As explained earlier, these results stem from the variance reduction effect of T̂ .

5.2 Recovery Results for Synthetic Matrix Data

We now examine one-sided recovery error by keeping the number of samples m fixed while varying p and d
separately. Since the sample complexity on n grows linearly with d times log(d), the error should remain
roughly constant as we fix m/d while slowly increasing d. We report simulation results under three regimes.
For all three setting, we fix the number of rows n = 104.

First, we set the rank r = 10, noise injection variance σ2 = 1, and vary d from 103 to 5× 103 and p from
2/d to 10/d. As shown in Figure 5a, the estimation error remains flat for different values of p and m, which
suggests that sample complexity does not grow with d, after adjusting for m/d.

Second, we set the sampling probability p = 2/d, σ2 = 1, and vary d from 103 to 5× 103 and r from 5 to 25.
As shown in Figure 5b, the estimation error remains flat for a given rank r, as d grows.

Third, we set the dimension d = 103, p = 2/d, r = 10, while varying σ2 from 1 to 50. We find that as σ2

increases, the estimation error grows linearly, as shown in Figure 5c. This is consistent with our bounds in
Theorem 3.4, where n grows proportionally with σ2.
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Figure 4: Comparing the bias of the Hájek estimator vs. the Horvitz-Thompson estimator, measured as the
mean squared error between T̂ (or T ) and T on the index set Ω. Figure 4a: Reporting the bias on synthetic
matrix data with n = 104 and d = 103. Figure 4b: Reporting the bias on MovieLens datasets. We consider
both uniform sampling with probability p as well as sampling C entries from each row. In Figure 4b, we
further consider a non-uniform sampling setting, where the sampling probability at each row is proportional
to the number of nonzero entries in that row.
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Figure 5: Illustration of the recovery error of Algorithm 1. Figure 5a: We vary the sampling probability and
find that the error roughly stays constant after we also fix the number of samples. Figure 5b: We see similar
results as we fix the number of samples but vary the rank of the underlying matrix. Figure 5c: We gradually
increase the noise level and find that the estimation errors also increase. The reported results are aggregated
based on five independent runs.

Similar results on synthetic data are further illustrated in Figure 7 (See Appendix C.2). We see a consistent
trend in which our approach reduces the recovery error across different settings of C (expected number of
entries at each row) and n, compared to all three baseline methods, including alternating-GD, softImpute-ALS,
and nuclear norm regularization. In the setting with the fewest observed entries (C = 2 and n = 104),
Hájek-GD achieves the lowest error of 0.10, representing a 70% reduction compared to the closest baseline,
nuclear norm regularization, which yields an error of 0.48. In the setting with C = 10 observed entries per
row, Hájek-GD achieves an error of 0.06, outperforming alternative-GD and nuclear norm regularization,
whose error rates are 0.09 and 0.17, respectively.

5.3 Recovery Results for Real-World Matrix Data

Next, we report the results on three real-world datasets in Table 3. We find that our approach consistently
achieves the lowest error for recovering T and M , compared to two baseline methods. For one-sided matrix
completion, Hájek-GD improves upon alternating-GD by 42% and softImpute-ALS by 59% on average.
For recovering the entire matrix, our approach reduces recovery error by 21% relative to alternating-GD
and by 38% relative to softImpute-ALS, averaged over the three datasets. In particular, on the Amazon
reviews dataset, Hájek-GD reduces estimation of T by 59% and recovery of M by 21% relative to the best
performing baseline.

15



Published in Transactions on Machine Learning Research (01/2026)

Table 3: Results from applying our approach on three real-world datasets with up to 32 million entries,
as compared with two baseline methods, namely alternating-GD and softImpute-ALS. We report both the
recovery errors and the running time (measured in the number of seconds when evaluated on an Ubuntu
server). We run each experiment with five random seeds to calculate the mean and the standard deviation.

Dataset MovieLens-32M Amazon Reviews Genomes MovieLens-32M Amazon Reviews Genomes
T One-sided recovery error Running time
AlternatingGD 9.1±0.1 × 10−3 3.3±1.3 × 10−3 7.0±1.6 × 10−5 7.2±0.1 × 102 4.8±0.1 × 102 23.2±5.0
SoftImputeALS 9.1±0.1 × 10−3 3.2±0.3 × 10−3 1.9±0.5 × 10−4 6.3±4 × 104 5.1±0.3 × 103 959.8±40
Algorithm 1 4.7±0.1 × 10−3 1.3±0.2 × 10−3 5.8±0.1 × 10−5 1.5±0.1 × 102 2.8±0.2 × 102 1.3±0.1

M Root mean squared recovery error Running time
AlternatingGD 1.7±0.1 2.6±0.1 0.2±0.1 5.7±0.1 × 102 2.2±0.1 × 102 23.2±5.0
SoftImputeALS 1.4±0.1 3.3±0.1 0.4±0.1 6.3±4 × 104 4.8±0.3 × 103 959.9±40
Algorithm 2 1.1±0.1 1.9±0.1 0.2±0.1 5.6±0.1 × 102 2.8±0.2 × 102 14.7±0.2

An important design in Hájek-GD is the use of an incoherence regularization penalty of R(·) (see Section
3.2). We now describe the results from varying regularization parameter λ and the threshold α (used in
the truncation of R(·)), as part of R(·), on a synthetic dataset with p = 10/d and also the Amazon Review
dataset. We vary λ between 10−4, 10−3, 10−2, and we vary α between 10−5, 10−4, 10−3, 10−2, 10−1. We find
that on synthetic datasets, the lowest recovery error is achieved when λ = 10−4 and α = 10−3, leading to an
error of 2.8× 10−3, compared to the error rate of 3.6× 10−3 without using the regularization. In other words,
we can reduce the recovery error by 22%.

On the Amazon Reviews dataset, the lowest recovery error is achieved when λ = 10−2 and α = 10−1, at
1.3× 10−2, compared to 2.7× 10−2 without using the incoherence regularizer. As a result, incorporating the
incoherence regularization penalty of R(·) reduces the recovery error by 52%.

Runtime scaling as the dimensions grow. Below, we report experiment results to illustrate the runtime
scaling of Hájek-GD as a function of both d (number of columns) and |Ω| (number of nonzero entries in T̂ ).
In particular, we consider both synthetic data and real-world data. In Figure 6a, we illustrate the running
time (measured in seconds) as a function of the dimension d. We also vary C to ensure the robustness of
our findings. In Figure 6b, we illustrate the running time from Hájek-GD on the MovieLens datasets with
various sampling probabilities p. We find that the runtime of Hájek-GD scales near linearly with the number
of observed entries |Ω|. It is an interesting question to precisely analyze the runtime scaling of gradient
descent in low-rank matrix completion. See, e.g., several recent works for references (Li et al., 2020b; Ju
et al., 2022; 2023; Ma & Fattahi, 2024; Zhang et al., 2024).

6 Related Work

The problem of recovering a low-rank matrix from a few potentially noisy entries has a rich history of
studies in the literature, spanning a wide variety of areas, including collaborative filtering, machine learning,
and compressed sensing (Candes & Plan, 2010). One of the earliest results from the matrix completion
literature involves a maximum-margin matrix factorization approach (Srebro et al., 2004), which minimizes
the reconstruction error plus a trace norm penalty on the low-rank factors. Under an incoherent condition on
the low-rank factors plus a joint incoherence condition, Candes & Recht (2012) show that exact recovery of the
unknown matrix is possible by minimizing the nuclear norm of the reconstructed matrix, subject to equality
constraints on the observed entries. The joint incoherence condition on the factors is further shown to be
unnecessary (Chen, 2015). Ding & Chen (2020) sharpen the known bounds through a leave-one-out analysis,
which leads to a convergence guarantee for projected gradient descent on a rank-constrained formulation.
Complementary to these results, Zhang et al. (2019b) show error bounds on the nuclear norm regularized
objective, relative to the error of the best rank-r approximation of M . Further references about different
algorithmic approaches to matrix completion can be found in the survey by Sun (2015).
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Figure 6: Illustration of the runtime scaling of Hájek-GD as d and m increase. Figure 6a: We vary the
dimension d and find that the runtime of Hájek-GD increases roughly linearly in d as d increases. To ensure
the robustness of our findings, we report the results for three values of C (recall that the sampling probability
p = C/d). Figure 6b: We vary the number of entries m between three MovieLens datasets and find that the
runtime of Hájek-GD increases as m increases. The reported results are based on five independent runs.

Recent literature has studied the optimization geometry of the loss landscape of matrix completion using
rank-constrained first-order optimization methods (Sun & Luo, 2016; Ge et al., 2016). Provided with a
regularization on the incoherence (balance between the rows of low-rank factors), it is possible to prove
that all local minimum solutions of the matrix completion reconstruction error objective are also global
minimum (Ge et al., 2017). By carefully analyzing the local geometry of the matrix factorization objective,
it is possible to achieve exact recovery under the incoherence condition (Sun & Luo, 2016). Provided with
this characterization, one can obtain convergence rates through the literature on finding local minima in
nonconvex optimization problems (Nesterov & Polyak, 2006; Wang et al., 2019). In particular, it is known
that many optimization algorithms, including cubic regularization, trust-region methods, and stochastic
gradient descent, can efficiently find a local minimizer. See a recent textbook on first-order and stochastic
optimization methods for further references (Lan, 2020).

There is a closely related problem of low-rank matrix recovery, whose aim is to reconstruct a low-rank
matrix based on a linear system of measurement equations of the unknown matrix (Recht et al., 2010). The
optimization landscape of low-rank matrix recovery from random linear measurements in the presence of
arbitrary outliers is studied by Li et al. (2020a). Besides, there are studies on the dynamics of gradient
descent assuming the factorization is over-parameterized (Li et al., 2018; Ma & Fattahi, 2024). Additionally,
matrix factorization has connections to two-layer neural networks and random matrices, which have inspired
studies on the dynamics of deep linear networks (Li et al., 2018). Another related problem is nonnegative
matrix factorization, which has also been studied for “tall-and-skinny” matrices (Benson et al., 2014). There
is also a line of work on the recovery of a low-rank plus sparse matrix (Hsu et al., 2011). Another plausible
direction in the ultra-sparse sampling setting is to instead recover a low-rank approximation of the underlying
matrix from just O(n) samples. See Gamarnik et al. (2017) for further references of this setting.

The one-sided matrix completion problem has been recently formulated and studied in the special case where
each row contains only two randomly observed entries (Cao et al., 2023). This work complements their paper
in four aspects. First, their sample complexity bound focuses on the setting where every row has two observed
entries, while our result applies to more general settings that allow for any constant C. Second, their result
builds on proof techniques for matrix completion with nuclear norm regularization penalty. By contrast, our
result applies to gradient-based optimization algorithms, which are faster and easier to implement in practice.
Third, our result builds on the incoherence assumption from the MC literature. Finally, we explore the use of
one-sided matrix completion for full matrix completion and find that this can also lead to improved results
for imputing missing entries of the full matrix.

First-order stochastic gradient methods also have applications in large-scale matrix completion (Mackey et al.,
2011). In particular, one can apply stochastic gradient updates in an asynchronous protocol, making it suitable
for distributed platforms (Recht & Ré, 2013). Besides the nuclear norm minimization approach, alternating

17



Published in Transactions on Machine Learning Research (01/2026)

minimization such as alternating least squares and low-rank matrix factorization are also widely used in
practice (Hastie et al., 2015). More recently, Wang et al. (2023) consider a low-rank matrix factorization
approach to private matrix completion. Assuming the M matrix is indeed of low rank, their work shows a
sample complexity bound that scales linearly in dimension. The difference between our work and this work
is that we focus on an ultra-sparse sampling regime where there are only O(n) randomly sampled entries,
rendering the accurate recovery of the entire matrix information theoretically impossible. In light of our new
results, it may also be worth resisting the dynamics of zeroth-order and first-order methods for nonconvex
optimization (Ghadimi & Lan, 2013; Sun, 2020) when high rates of noise are added during each iteration.

The idea of using the estimated probability to reweight a population statistic is known as the Hájek estimator
(Hájek, 1971). It has often been used to tackle sparse and non-random sampling data (Särndal et al., 2003).
This estimator is particularly effective for tackling sparse observational data such as in experimental design
(Xiong et al., 2024). It is known from the causal inference literature (Hirano et al., 2003) that the Hájek
estimator incurs lower variance than the Horvitz-Thompson estimator, which weights each observation
inversely with the true probability. To our knowledge, the analysis of this estimator for one-sided matrix
completion appears to be new for the matrix completion literature. Unlike conventional results (Hájek, 1971)
where the Hájek estimator is shown to be asymptotically unbiased, for one-sided matrix completion, we find
that it is unbiased even in the finite sample regime. Recent work (Bai & Ng, 2021) develops the estimation of
counterfactual when potential outcomes follow a factor model of block-missing panel data. Xiong & Pelger
(2023) and Duan et al. (2023) develop the inferential theory for latent factor models in large-dimensional
panel data with general non-random missing patterns by proposing a PCA-based estimator on an adjusted
covariance matrix.

7 Conclusion

In this paper, we study the problem of matrix completion in an ultra-sparse sampling regime, where in each
row, only a constant number of entries are observed in each row. While recovering the entire matrix is not
possible, we focus on the one-sided matrix completion problem. We apply the Hájek estimator from the
econometrics literature to this problem, and present a thorough analysis of this estimator. We demonstrate
that this estimator is unbiased and achieves a lower variance compared to the Horvitz-Thompson estimator.
Then, we use gradient descent to impute the missing entries of the second-moment matrix and analyze
its sample complexity under a low-rank mixture model. The sample complexity bound is optimal in its
dependence on the dimension d. Our result applies to the case of observing C entries at each row, resolving
an open question from prior work.

Extensive experiments on both synthetic and real-world datasets demonstrate that our approach is more
efficient for sparse matrix datasets compared to several commonly used matrix completion methods. Ablation
studies validate the use of a low-rank matrix incoherence regularizer in the algorithm.

Our paper opens up several promising avenues for future work. First, it would be valuable to theoretically
analyze the sensitivity of the Hájek estimator to noise injection, which could inform the design of privacy-
preserving matrix completion algorithms in the ultra-sparse sampling regime. Second, our current sample-
complexity bound exhibits a high dependence on the rank of the latent factor model; improving this rank
dependence remains another interesting open question. It would also be interesting to understand to what
extent linear sample complexity of n relative to d can be achieved under ultra-sparse sampling, by further
relaxing the assumptions required in our analysis. Finally, extending our framework to other forms of panel
data such as low-rank tensors or low-rank mixture models, is another promising avenue left for future work.
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A Proof of Theorem 3.2

First, we present the proof of the unbiasedness of the Hájek estimator on the observed set Ω.

Proof of Lemma 3.1. Suppose that (I⊤I)i,j = k, for any k ≥ 1. Then, conditioned on (I⊤I)i,j = k, the
expectation of T̂i,j is equal to

E
[
T̂i,j

∣∣∣(I⊤I)i,j = k
]

= E

[
1
k

(M̂⊤M̂)i,j

∣∣∣∣∣(I⊤I)i,j = k

]

= E

[
1
k

n∑
a=1

Ma,iMa,jIa,iIq,j

∣∣∣∣∣(I⊤I)i,j = k

]

= 1
k

n∑
a=1

Pr
[
Ia,iIa,j = 1

∣∣∣(I⊤I)i,j = k
]
·Ma,iMa,j .

Notice that for a fixed a, the event that Ia,iIa,j = 1 are pairwise independent for all a = 1, 2, . . . , n. Given
that k out of the n pairs are chosen, the probability that q is chosen is equal to

(
n−1
k−1
)
/
(

n
k

)
= k/n. Thus, the

above is equal to
1
k

n∑
a=1

k

n
·Ma,iMa,j = Ti,j ,

which concludes the proof of equation (3). To finish the proof that T̂ is unbiased, notice that

E
[
T̂i,j

∣∣∣(I⊤I
)

i,j
̸= 0
]
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i,j
= k

∣∣∣(I⊤I
)

i,j
̸= 0
]
· E
[
T̂i,j

∣∣∣(I⊤I
)

i,j
= k

]
=

d∑
k=1

Pr
[(

I⊤I
)
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i,j
̸= 0
]
· Ti,j = Ti,j ,

which concludes the proof of equation 2.

Next, we present the proof of Theorem 3.2, which provides a first-order approximation to the variance of the
Hájek estimator on Ω.

Proof of Theorem 3.2. For equation (4), we use Taylor’s expansion on V ar[T̂i,i]. For ease of presentation, let
us denote Ai,i = (M̂⊤M̂)i,i, and let Bi,i = (I⊤I)i,i, for any 1 ≤ i ≤ d. Thus, conditioned on the event that
Bi,i ̸= 0, the (i, i)-th entry of T̂ , given by T̂i,i, is equal to Ai,i/Bi,i.

By Taylor’s expansion, we approximate the ratio statistic using the delta method as:
Ai,i

Bi,i
= E [Ai,i]

E [Bi,i]
+ 1

E [Bi,i]
(Ai,i − E [Ai,i])−

E [Ai,i]
(E [Bi,i])2 (Bi,i − E [Bi,i]) + ϵi,i, (18)

where ϵi,i is at the order of the variance of Ai,i and Bi,i, which is O(1/(np)). Thus, based on the first-order
expansion, the variance of Ai,i

Bi,i
is approximated by:

V ar

[
Ai,i

Bi,i

]
= V ar [Ai,i]

(E [Bi,i])2 + (E [Ai,i])2V ar [Bi,i]
(E [Bi,i])4 − 2E [Ai,i] · Cov(Ai,i, Bi,i)

(E [Bi,i])3 + O

(
1

np

)
, (19)

where the error term is based on the approximation error that stems from ϵi,i in equation (18).

Now we look into simplifying equation (19). Based on the definition of Ai,i, Bi,i, we get the following facts,
for any i = 1, . . . , d:

E [Bi,i] = np, V ar [Bi,i] = np(1− p), (20)
E [Ai,i] = p(M⊤M)i,i, Cov[Ai,i, Bi,i] = (p− p2)(M⊤M)i,i. (21)
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To verify the above results, let us introduce a Bernoulli random variable Xk, which is equal to 1 with
probability p, or 0 with probability 1− p, for k = 1, 2, . . . , n. Thus, we can write

Ai,i =
n∑

k=1
M2

k,iXk, and Bi,i =
n∑

k=1
Xk.

As a result,

Cov[Ai,i, Bi,i] = E [Ai,iBi,i]− E [Ai,i] · E [Bi,i]

= E
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M2
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)]
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)
+

 ∑
1≤k ̸=k′≤n

M2
k,iXkXk′

− np2(M⊤M)i,i (note that X2
k = Xk)

=
(

n∑
k=1

M2
k,i

)
(p + (n− 1)p2)− np2(M⊤M)i,i

= (p− p2)(M⊤M)i,i.

Therefore, by plugging in the results from equations (20) and (21) back into equation (19), we obtain an
approximate variance of the ratio statistic as:

V ar[Ai,i]
n2p2 +

p2(M⊤M)2
i,i · np(1− p)

n4p4 − 2p(M⊤M)i,i · (p− p2)(M⊤M)i,i

n3p3

=V ar[Ai,i]
n2p4 −

(1− p)(M⊤M)2
i,i

n3p
. (22)

This applies to any diagonal entries of T̂ . In particular, notice that the first term of equation (22) is precisely
the variance of T i,i, which reweights the observed entries based on the true probability. This leads to the
following variance estimate for the diagonal entries:

V ar[Ai,i]
n2p2 −

(1− p)(M⊤M)2
i,i

n3p
. (23)

Finally, we write down the variance of Ai,i as follows:

V ar
[
Ai,i

]
= p(1− p)

n∑
k=1

M4
k,i. (24)

Notice that the probability that Bi,i is equal to zero is at most O(d−C). We can add this error analysis into
the above proof, which does not affect the order of the error term. This concludes the proof of equation (4)
in Theorem 3.2 regarding the variance approximation of the diagonal entries.

Next, we consider the case of off-diagonal entries in equation (5). The probability that an off-diagonal entry
of T̂ is nonzero is

1− (1− p2)n,

which is approximately np2 = C2(log d)2/d. Thus, conditioned on the fact that (I⊤I)i,j ̸= 0, the dominating
event is when (I⊤I)i,j = 1. The error to this, which is when there are at least two nonzero entries in the sum,
is less than

Pr[(I⊤I)i,j ≥ 2]
Pr[(I⊤I)i,j ̸= 0] ≈ np2.

When the (i, j)-th entry of I⊤I is equal to one, then T̂i,j = (M̂⊤M̂)i,j . The variance of T̂i,j , conditioned on
(I⊤I)i,j = 1, is thus given by

1
n

n∑
k=1

(
Mk,iMk,j −

1
n

(
n∑

k′=1
Mk′,iMk′,j

))2

.
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After simplifying the above formula, we reach the conclusion as stated in equation (5). The proof is thus
completed.

Remark A.1 (Potential applications of the Hájek estimator). Beyond one-sided matrix completion, Hájek
estimators may serve as a useful tool in other high-dimensional estimation problems given few observational
samples. In tensor completion (Zhang et al., 2019a), naive inverse-propensity weighting estimators can exhibit
large variance due to rare observations, whereas self-normalization can stabilize the estimation of low-rank
factors given ultra-sparse samples.

Similarly, in off-policy reinforcement learning (Zhang et al., 2025), importance weighted estimators are widely
used to correct for distribution mismatch but are often unstable as in sparse-reward settings. Hájek-style
estimators provide a principled variance-reduction mechanism and may be useful for estimating value-function
matrices under partial trajectory observations.

B Proof of Theorem 3.4

We analyze the sample complexity of Algorithm 1. In particular, we will analyze the loss function ℓ(X),
including the incoherence regularization penalty R(X). See equation (8). Without loss of generality, let us
assume that ∥U∥2

F = r within this section. This also implies σmax(U) ≥ 1 ≥ σmin(U).

A key part of the proof is analyzing the bias of T̂ (relative to T ). Let N ∈ Rd×d denote the bias of the Hájek
estimator, where

Ni,j = T̂i,j − Ti,j , ∀(i, j) ∈ Ω,

Ni,j = 0, ∀(i, j) /∈ Ω.

Here is a road map of this section:

• First, in Appendix B.1, we derive upper bounds on the variance of the Hájek estimator, on the
observed set Ω.

• Second, in Appendix B.2, we derive a concentration bound that applies to the weighted projection
PΩ. By a similar argument, we also derive the spectral norm of the noise matrix N .

• Third, in Appendix B.3, we derived the local optimality conditions from analyzing the loss function
ℓ(·), and then we argue that any local minimum solution of ℓ(·) must satisfy the incoherence
assumption with a suitable condition number.

• Fourth, in Appendix B.4, we use the incoherence assumption to reduce the local optimality conditions
on the empirical loss to the population loss.

Finally, in Appendix B.5, we analyze the population loss and based on that, complete the proof of Theorem 3.4.
The key is to use the regularization penalty R(X) to control the norm of each factor, leading to concentration
estimates between the population loss and the empirical loss. We provide a detailed comparison between this
work and the work of Ge et al. (2016) in Remark B.12.

B.1 Proof of Lemma 4.1

In the following proof, we proceed to bound the variance of the diagonal entries of T̂ and also its off-diagonal
entries grouped by each row.

Proof. Based on Lemma 3.1, we already know that T̂ is unbiased on Ω. Next, we derive the variance of the
diagonal and off-diagonal entries of T̂ separately, since

E
[
(T̂i,j − Ti,j)2

]
= V ar[T̂i,j ], for any (i, j) ∈ Ω. (25)
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For the diagonal entries of T , with probability at least 1−O(d−1), all of them are observed in Ω. In particular,
when n ≥ d log d/ϵ2, by the Chernoff bound and union bound, with probability at least 1−O(d−1), for all
i = 1, 2, . . . , d, ∣∣(I⊤I)i,i − E

[
(I⊤I)i,i

]∣∣ ≤ ϵ

√
6C−1

d
np.

Thus, we can get that

V ar[T̂i,i] ≤
(

1 + 3ϵ

√
6C−1

d

)
V ar

[Ai,i

np

]
.

Next, notice that

Ai,i =
n∑

k=1
M2

k,iXk. (26)

Therefore, the variance of Ai,i

np is equal to

V ar
[Ai,i

np

]
= 1− p

n2p

n∑
k=1

M4
k,i

≤ 1− p

np

(
1
r

r∑
s=1

u4
i,s

)(
1 +

max1≤s≤r u4
i,s

r−1∑r
s=1 u4

i,s

√
3 log(d/2)

2n

)
(by Hoeffding’s inequality)

≤ 1− p

np

1
r

(
r∑

s=1
u2

i,s

)2
(1 + r

√
3 log(d/2)

2n

)
(27)

≤ 1− p

np

µ2r

d2

(
1 + r

√
3 log(d/2)

2n

)
,

which concludes the proof of equation (11). Similar to this calculation, by applying Hoeffding’s inequality, we
can also show that

Ai,i

np
≤ 1

r

r∑
s=1

µ2
i,s

(
1 + r

√
3 log(d/2)

2n

)

≤ µ

d

(
1 + r

√
3 log(d/2)

2n

)
. (28)

Next, we examine the off-diagonal entries of T̂ . From Theorem 3.2, the variance of the off-diagonal entries
is approximated by the variance of a single entry. Consider the case where we condition on taking two
overlapping entries from columns i and j. Denote the two entries as a1, a2. We have that

V ar
[a1 + a2

2

]
= V ar[a1] + V ar[a2]

4 + Cov[a1, a2]

≤ V ar[a1] + V ar[a2]
2 ,

by the Cauchy-Schwarz inequality on the covariance. The probability that we observe three overlapping
entries is less than Õ(d−3). Since the size of Ω is O(d2q) = Õ(d−1). The probability that such events can
happen is less than Õ(d−1). In summary, we have shown that for every (i, j) ∈ Ω where i ̸= j,

V ar[T̂i,j ] ≤
(

1
n

(
n∑

k=1
M2

k,iM
2
k,j

)
− T 2

i,j

)
+ Õ(d−3)

≤ 1
n

n∑
k=1

M2
k,iM

2
k,j + Õ(d−3).
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We now look at the sum of the variances of all the observed entries in the i-th row. Let the set be denoted by
Si = {j : (i, j) ∈ Ω, j ̸= i}, for all i = 1, 2, . . . , d. We have

1
n

∑
j∈Si

n∑
k=1

M2
k,iM

2
k,j (29)

≤
∑
j∈Si

(
1
r

r∑
s=1

u2
i,su2

j,s

)(
1 +

maxr
s=1 u2

i,su2
j,s

r−1∑r
s=1 u2

i,su2
j,s

√
3 log(d/2)

2n

)
(by Hoeffding’s inequality)

≤1
r

r∑
s=1

u2
i,s · q ∥us∥2

(
1 +

maxd
j=1 u2

j,s

r−1∑d
j=1 u2

j,s

√
3 log(d/2)

2d

)(
1 + r

√
3 log(d/2)

2n

)
(by Hoeffding’s inequality)

≤q

r
· max

1≤s′≤r
∥us′∥2 ·

r∑
s=1

u2
i,s ·

(
1 + r

√
3 log(d/2)

2d

)(
1 + r

√
3 log(d/2)

2n

)
(relax ∥us∥2 by its max over s)

≤µq

d
·

(
1 + 3r

√
3 log(d/2)

2d

)
(by the incoherence assumption on U)

The last line uses the premise that the maximum ℓ2 norm of a factor is at most 1, and also n ≥ d. In
particular, the above Hoeffding’s inequality applies uniformly to all i with probability at least 1−O(d−1). In
summary, we have shown that

∑
j∈Si

V ar[T̂i,j ] ≤ µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ

(nq

d3

)
,

where we use the fact that with probability at least 1− d−2, |Si| ≤ 2nq. Therefore, we conclude that equation
(12) is true.

As a remark, one corollary we can draw from the above calculation is that

V ar[T̂i,j ] ≤ µ2r2

d2

(
1 + r

√
3 log(d/2)

2n

)
+ Õ(d−3). (30)

This can be seen by following the steps from equation (29) for a fixed pair of (i, j) ∈ Ω.

Remark B.1. In the case that Mi is a noisy perturbation of one of the r factors, we can extend the proof
following equation (29). Another natural extension is to assume that every Mi is a linear combination of
the r factors, µ1, . . . , µr. This seems to be a much more challenging problem, as one would need to design
estimators to first disentangle the linear combination patterns. This is left for future work.

Next, we build on Lemma 3.1 to examine the bias of T̂ on the observed set Ω. Another corollary from the
above variance calculation is the following bound on the bias of T̂ . We consider the diagonal and off-diagonal
entries separately.

Corollary B.2. In the setting of Lemma 4.1, suppose n ≥ dr. Then, with probability at least 1−O(d−1),
for every i = 1, 2, . . . , d, the following must hold:

Ni,i ≤
√

32C−1µ2 log(d)
nd2 , (31)∑

j∈Si

|Ni,j | ≤ q ·
√

2µ + Õ(d−1/2). (32)
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Proof. First, we have that

|Ni,i| =
∣∣∣T̂i,i − Ti,i

∣∣∣ =
∣∣∣∣Ai,i

Bi,i
− Ti,i

∣∣∣∣ =
∣∣∣∣∣
(

1± ϵ

√
6C−1

d

)
Ai,i

np
− Ti,i

∣∣∣∣∣
≤
∣∣∣∣Ai,i

np
− Ti,i

∣∣∣∣+ ϵ

√
6C−1

d

Ai,i

np
.

By equation (28), the latter is at most

ϵ

√
6C−1

d

µ

d

(
1 + r

√
3 log(d/2)

2n

)
≤
√

8C−1µ2 log(d)
d2n

,

since ϵ ≤
√

d log d/n. As for the former, by equation (31), we have

V ar[Ni,i] ≤ (1 + ϵ
√

6C−1/d)V ar
[ Âi,i

np

]
.

Recall that Ai,i is the sum of n Bernoulli random variables (cf. equation (26)), by Bernstein’s inequality,
with probability at least 1−O(d−1), for all i = 1, 2, . . . , d,∣∣∣∣Ai,i

np
− Ti,i

∣∣∣∣ ≤
√

6V ar(Ni,i) · log(d/2)
n

+
3
(
maxr

s=1 u2
i,s

)
log(d/2)

3n

≤

√
7µ2r log(d/2)

d2n2p
+ µ2r2 log(d/2)

nd
,

for large enough values of d. Specifically, we have used the bound on the variance of T̂i,i in Lemma 4.1,
using equation (11). Notice that the second term is a lower-order term relative to the first. This shows that
equation (31) holds for large enough values of d.

For equation (32), based on the proof of Lemma 4.1,

∑
j∈Si

|Ni,j | ≤
√
|Si| ·

∑
j∈Si

N2
i,j (by the Cauchy-Schwarz inequality)

≤
√

2dq ·
∑
j∈Si

N2
i,j (since |Si| ≤ 2dq)

≤

√√√√2dq ·

(
µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ(d−3) + 2µ2r2

d2 ·
√

3 log(d/2)
2d

)
, (33)

where the last line is by applying Hoeffding’s inequality to the sequence
{

N2
i,j : j ∈ Si

}
(which are all

independent from each other), and holds with probability at least 1− d−1 over all possible i. In particular,
the expectation on this sequence is based on equation (12) and the maximum is based on equation (30).
From the last line above, we conclude that equation (32) is true.

B.2 Proof of Lemma 4.2

Proof. By the weighted operation in PΩ and the condition that all the diagonals have been observed, we
can cancel out the diagonal entries between PΩ(W ) and qW . In the rest of the following, we focus on the
off-diagonal entries. Let x ∈ Rd denote a unit vector. We have that

∥PΩ(W )− qW∥2 = max
x: ∥x∥=1

x⊤(PΩ(W )− qW )x.
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Next, we expand the right-hand side above as:

x⊤(PΩ(W )− qW )x =
d∑

i=1

 ∑
j∈Si:j ̸=i

Wi,jxixj − q
∑

1≤j≤d:j ̸=i

Wi,jxixj


≤

d∑
i=1

∣∣∣∣∣∣
∑

j∈Si:j ̸=i

Wi,jxixj − q
∑

1≤j≤d:j ̸=i

Wi,jxixj

∣∣∣∣∣∣︸ ︷︷ ︸
ei

.

We focus on a fixed i above. By Bernstein’s inequality, with probability at least 1−O(d−2), we have

ei ≤
√

4q(1− q)
∑

1≤j≤d:j ̸=i

(
W 2

i,jx2
i x2

j

)
log(2d) + ∥W∥∞ |xi| max

1≤j≤d
|xj |

≤ ∥W∥∞ |xi|
√

4q(1− q) log(2d) + ∥W∥∞ |xi| max
1≤j≤d

|xj | .

Above, we have plugged in the variance and the maximum values at the i-th row. As a result,
d∑

i=1
ei ≤

ν√
d

√
4q(1− q) log(2d) + ν

d

d∑
i=1
|xi| max

1≤j≤d
|xj | . (34)

In particular, we have used the bound on ∥W∥∞ ≤ ν/
√

d and the fact that
∑

i |xi| ≤
√

d via the Cauchy-
Schwarz inequality.

Next, we notice that
d∑

i=1
|xi| max

1≤j≤d
|xj | ≤ 1.

To see this, notice that if we look at a particular pair xi, xj . Conditioned on a fixed x2
i + x2

j and |xi| ≤ λ,
|xj | ≤ λ, |xi| + |xj | are maximized when xi = xj . This implies that when

∑d
i=1 |xi| is maximized, all the

non-zero xi’s must be equal to each other. Suppose there are k of them, and they are all equal to a. Then,
we must have ka2 ≤ 1, a ≤ λ. As a result,

d∑
i=1
|xi| ·max

j
|xj | = kaλ ≤ 1.

By rearranging equation (34), and using the fact that dq ≥ 4 log(2d) to relax the second term in equation
(34), we have concluded the proof of equation (15).

With a similar proof, we can derive a bound on the spectral norm of N , stated as follows.

Corollary B.3. In the setting of Lemma 4.1, as long as q ≥ 4 log(2d)
d , then with probability at least 1−O(d−1),

the spectral norm of PΩ(N) satisfies:

∥PΩ(N)∥2 ≤ q

√
32µ2r2 log(2d)

dq
+ O

(
q

√
log(d)
nd2

)
. (35)

Proof. Let x ∈ Rd be any unit vector. Note that N is a symmetric matrix. Therefore, we expand x⊤Nx as
follows:

x⊤Nx = q

d∑
i=1

Ni,ix
2
i︸ ︷︷ ︸

e1

+
∑

1≤i≤d

∑
j∈Si:j ̸=i

Ni,jxixj︸ ︷︷ ︸
e2

.
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By equation (31), Corollary B.2,

e1 ≤ q

√
32C−1µ2 log(d)

nd2

d∑
i=1

x2
i = q

√
32C−1µ2 log(d)

nd2 .

As for e2, notice that |Ni,j | =
∣∣∣T̂i,j − Ti,j

∣∣∣ ≤ 2µr/d. By following the proof of Lemma 4.2 above (cf. equation
(34)), we have that

e2 ≤
2µr√

d

√
4q(1− q) log(2d) + 2µr

d
.

Since dq ≥ 4 log(2d), the second term on the right is less than or equal to the first term on the right. Put
together, we can see that equation (35) is true.

Another implication is the inner product of two matrices under the projection operator.

Proposition B.4. Suppose ∥X∥∞ · ∥Y ∥∞ ≤
ν
d . With probability at least 1−O(d−1) over the randomness of

Ω, for any two matrices X, Y ∈ Rd×d, we have

|⟨PΩ(X), Y ⟩ − q⟨X, Y ⟩| ≤ qν

√
16 log(2d)

dq
. (36)

Proof. With probability at least 1−O(d−1), the diagonal entries of ⟨PΩ(X), Y ⟩ are canceled out with that of
q⟨X, Y ⟩. As for the off-diagonal entries, let

e2 =
∑

1≤i≤d

∑
j∈Si:j ̸=i

Xi,jYi,j − q
∑

1≤i≤d

∑
1≤j≤d:j ̸=i

Xi,jYi,j .

Notice that for a fixed i, whether j ∈ Si or another j′ ∈ Si are independent events. Thus, we apply Bernstein’s
inequality to each row, similar to the steps following equation (34), which leads to the bound on e2 stated in
equation (36).

B.3 Local Optimality and Incoherence

First, we derive the first-order and second-order optimality conditions of ℓ(X), accounting for the weighted
projection PΩ to offset the imbalance between diagonal and off-diagonal entries in Ω.

Proposition B.5 (See also Proposition 5.1, Ge et al. (2016)). Suppose X is a local optimum of ℓ(X) (See
equation (8)). Then, the first-order optimality condition is equivalent to

2PΩ(T̂ )X = 2PΩ(XX⊤)X + λ∇R(X). (37)

The second-order optimality condition is equivalent to:

∀V ∈ Rd, ⟨PΩ(V X⊤ + XV ⊤), XV ⊤ + V X⊤⟩+ λ⟨V,∇2R(X)V ⟩
≥ 2⟨PΩ(T̂ −XX⊤), V V ⊤⟩. (38)

Proof. The gradient formula of equation (37) can be seen by directly taking the gradient on ℓ(X), and
separating the gradient from the squared loss vs the regularizer. As for the Hessian formula of equation (38),
when V is sufficiently small, one has that ∇ℓ(X + V ) = [∇2ℓ(X)]V . Thus, we have that

∇ℓ(X + V )
=2PΩ(V X⊤ + XV ⊤ + V V ⊤ + XX⊤)(X + V )− 2PΩ(T̂ )(X + V ) + λ∇R(X + V ).
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By the second-order optimality condition, one has that V ⊤∇ℓ(X + V ) ≥ 0, when V tends to zero. Plugging
this into the above, we get

V ⊤∇ℓ(X + V )
=2⟨PΩ(V X⊤ + XV ⊤), XV ⟩+ 2⟨PΩ(XX⊤), V V ⊤⟩ − 2⟨PΩ(T̂ ), V V ⊤⟩+ λ∇R(X + V ) + e

=⟨PΩ(V X⊤ + XV ⊤), XV ⊤ + V X⊤⟩+ 2⟨PΩ(XX⊤ − T̂ ), V V ⊤⟩+ λ⟨V,∇2R(X)V ⟩+ e

=⟨PΩ(V X⊤ + XV ⊤), V X⊤ + XV ⊤⟩+ 2⟨PΩ(XX⊤ − T̂ ), V V ⊤⟩+ λ⟨V,∇2R(X)V ⟩+ e,

where e = O(∥V ∥2
F ) denotes an error term. When V tends to zero, we have that equation (38) must be true

for any V ∈ Rd based on the second-order optimality condition.

Next, we show that the regularizer of R(X) leads the row norms of X to be bounded by at most 2α, which
builds on the first-order optimality conditions above. As a result, we can use concentration tools to reduce
the first- and second-order optimality conditions for their population versions. Based on that, we show that
X must be bounded away from zero.

We begin by analyzing the effect of the regularizer. We show the following property, which results from
adding the incoherence regularizer and can be derived based on the gradient of the regularizer.
Proposition B.6. The gradient of R(X) satisfies that for any Y ∈ Rd×r,

⟨∇R(X), Y ⟩ = 4λ

d∑
i=1

(
∥Xi∥3 − α

)3

+

⟨Xi, Y ⊤ei⟩
∥Xi∥

.

where ei ∈ Rd is the i-th basis vector. As a consequence,

⟨(∇R(X))i, Xi⟩ ≥ 0, for every i = 1, 2, . . . , d.

We first notice that because of the regularizer, any matrix X that satisfies the first-order optimality condition
must also satisfy the incoherence condition.
Lemma B.7. Let Si denote the set of observed entries in Î at the i-th row, for i = 1, 2, . . . , d. Suppose
|Si| ≤ 2dq, for any i = 1, 2, . . . , d. In the setting of Theorem 3.4, for any X that satisfies the first-order
optimality of equation (37), we have

dmax
i=1
∥Xi∥ ≤ max

(
2α, 2

√
µ(r + 1)q/λ

)
. (39)

Proof. Let i⋆ = arg max1≤i≤d ∥Xi∥ be the index of the row that has the highest norm in X. Recall that
Xi ∈ Rr refers to the i-th row vector of X. Suppose the i-th row of Ω consists of entries with index [i]× Si,
where Si is the set of indices in the i-th row that are observed in Ω. If |Xi⋆ | ≤ 2α, then equation (39) is true.
Otherwise, let us assume that |Xi⋆ | ≥ 2α.

We will compare the i⋆-th row of the left and right-hand sides of equation (37). First, we have the following
identity based on the projection matrix PΩ:(

PΩ(T̂ )X
)

i⋆
=
(
PΩ(UU⊤ + N)X

)
i⋆ =

(
PΩ(UU⊤)

)
i⋆ X + Ni⋆X,

where the sub-index on i⋆ refers to the i⋆-th row of the enclosed matrix. Then, the ℓ1-norm of PΩ(UU⊤) is
at most ∥∥(PΩ(UU⊤)

)
i⋆

∥∥
1 =

∑
j∈Si⋆

|⟨Ui⋆ , Uj⟩| (40)

≤
∑

j∈Si⋆

∥Ui⋆∥ · ∥Uj∥ ≤
∑

j∈Si⋆

µr

d
(by the incoherence assumption on U)

≤ 2µrdq

d
= 2µrq. (by |Si⋆ | ≤ 2dq)
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Second, we look at the ℓ1-norm of the i⋆-th row of N . By using Corollary B.2, we can bound the ℓ2-norm of
the left of equation (37) by∥∥∥(PΩ(T̂ )X)i⋆

∥∥∥ ≤ (∥∥(PΩ(UU⊤))i⋆

∥∥
1 + ∥(PΩ(N))i⋆∥1

)
· dmax

i=1
∥Xi∥

≤
(

2µr +
√

2µ + Õ(d−1/2) + Õ(n−1)
)

q ∥Xi⋆∥ , (41)

where we use equations (40), (31), and (32) above, along with the fact that p = C
n .

Next, we lower bound the norm of the right-hand side of equation (37). We have that

(PΩ(XX⊤)X)i⋆ =
∑

j∈Si⋆

⟨Xi⋆ , Xj⟩Xj .

Thus, by taking an inner product with Xi⋆ , we get

⟨(PΩ(XX⊤)X)i⋆ , Xi⋆⟩ =
∑

j∈Si⋆

⟨Xi⋆ , Xj⟩2 ≥ 0.

Using Proposition B.6, we obtain that

⟨(PΩ(XX⊤)X)i⋆ , (∇R(X))i⋆⟩ = 4λ (|Xi⋆ | − α)3
+

∑
j∈Si⋆

⟨Xi⋆ , Xj⟩2

∥Xi⋆∥
≥ 0. (42)

It follows that∥∥(PΩ(XX⊤)X)i⋆ + (λ∇R(X))i⋆

∥∥ ≥ ∥(λ∇R(X))i⋆∥ (by equation (42))

=
4λ(∥Xi⋆∥ − α)3

+
∥Xi⋆∥

· ∥Xi⋆∥ (by Proposition B.6)

≥ λ

2 ∥Xi⋆∥3 (since ∥Xi⋆∥ ≥ 2α)

Therefore, plugging in the equation above and the equation (41) into the first-order optimality condition (37).
We obtain equation (39). Thus, the proof is completed.

The condition that |Si| ≤ 2dq for all i can be shown via Chernoff bounds (recall that q = 1− (1− p2)n). To
see this, notice that conditioned on row i, the event of whether j ∈ Si (for any j between 1 and d but not
equal to i) is independent from each other. In expectation, the size of |Si| should be equal to dq. In the
setting of Theorem 3.4, dq is at least 2 log(d). Therefore, with probability at least 1−O(d−2), |Si| ≤ 2dq, for
all i = 1, 2, . . . , d.

B.4 Reduction of Local Optimality Conditions

One consequence of the above result is the following population version of the first-order optimality condition.

Lemma B.8. Suppose α ≤
√

µ(r + 1)q/λ and λ ≥ dq/8. In the setting of Theorem 3.4, with high probability
over the randomness of Ω, for any X ∈ Rd×r that satisfies the first-order optimality condition (37), we have
that

∥X∥F ≤ σmax(U)
√

r +
√

δ, where δ = 3
√

32µ2r3 log(2d)/(dq), (43)∥∥UU⊤X −XX⊤X − γ∇R(X)
∥∥

F
≤ 42σmax(U)

√
µ2r4 log(2d)

dq
. (44)

Proof. By the incoherence assumption on U , we have that∥∥UU⊤∥∥
∞ ≤

µr

d
∥U∥2

F ≤
µr3/2

d

∥∥UU⊤∥∥
F

,
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by applying the Cauchy-Schwarz inequality. By setting ν = µr3/2
∥∥UU⊤

∥∥
F

in Lemma 4.2, from equation
(15) we get ∥∥PΩ(UU⊤)X − qUU⊤X

∥∥
F
≤
∥∥PΩ(UU⊤)X − qUU⊤∥∥

2 · ∥X∥F

≤ qδ1 ∥X∥F , (45)

for δ1 = 4
√

µ2r3 log(2d)/(dq).

Next, by the incoherence condition on X in equation (39), we have that

∥X∥∞ ≤
4µ(r + 1)q

λ
.

Using equation (15) from Lemma 4.2 with ν = 4µ(r + 1)dq/λ, we have∥∥PΩ(XX⊤)X − qXX⊤X
∥∥

F
≤
∥∥PΩ(XX⊤)− qXX⊤∥∥

2 ∥X∥F

≤ qδ2 ∥X∥F , (46)

where
δ2 = 4µ(r + 1)

√
dq log(2d)/λ ≤ 32µ(r + 1)

√
log(2d)/(dq),

for λ ≥ dq/8.

We also need to add the error induced by N , given by

∥PΩ(N)X∥F ≤ ∥PΩ(N)∥2 · ∥X∥F

≤ qδ3 ∥X∥F , (47)

where δ3 =
√

32µ2r2 log(2d)/(dq) + Õ(n−1d−2), and the bound on the spectral norm of PΩ(N) is shown in
Corollary B.3.

Now, by plugging equations (45), (46), and (47) into the first-order optimality condition (cf. equation (37)),
we have shown that ∥∥UU⊤X −XX⊤X − γ∇R(X)

∥∥
F
≤ δ ∥X∥F , (48)

where δ = δ1 + δ2 + δ3.

When ∥X∥F ≤ σmax(U)
√

r, both equations (43) and (44) are proved. Otherwise, by the triangle inequality

q
∥∥UU⊤X

∥∥
F
≥
∥∥PΩ(UU⊤)X

∥∥
F
− qδ1 ∥X∥F

=
∥∥PΩ(XX⊤)X + λR(X)

∥∥
F
− qδ1 ∥X∥F − ∥PΩ(N)∥2 ∥X∥F

≥
∥∥PΩ(XX⊤)X

∥∥
F
− q(δ1 + δ3) ∥X∥F

≥ q
∥∥XX⊤X

∥∥
F
− q(δ1 + δ2 + δ3) ∥X∥F , (49)

where the second step is by equation (42) and the spectral norm bound on N , and the last step is again by
the triangle inequality. Then, we have that∥∥UU⊤X

∥∥2
F
≤
∥∥UU⊤∥∥2

2 · ∥X∥
2
F ≤ (σmax(U))4 ∥X∥2

F .

On the other hand,
∥∥XX⊤X

∥∥2
F

=
∑d

i=1 σ6
i , where σi is the i-th singular value of X, for i = 1, 2, . . . , r. Notice

that
r∑

i=1
σ2

i ≤

(
r∑

i=1
σ6

i

) 1
3

r
2
3 ⇒

(
r∑

i=1
σ2

i

) 3
2

· r−1 ≤

(
r∑

i=1
σ6

i

) 1
2

by Hölder’s inequality. Thus, plugging in this fact into the above equation (49), we obtain that

∥X∥2
F =

r∑
i=1

σ2
i ≤ r · σmax(U))2 + (δ1 + δ2 + δ3)r ≤ r · (σmax(U))2 + δ,

which implies that ∥X∥F ≤ r1/2σmax(U) + δ1/2. This concludes the proof of equation (43), which implies
equation (44) based on equation (48).
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Second, we look at the second-order optimality condition and show that this condition implies that the
smallest singular value of X is lower bounded from below.

Lemma B.9. In the setting of Theorem 3.4, suppose X satisfies the second-order optimality condition (38)
and equation (39). Suppose α ≥ 4κr

√
µ/d and λ = µ(r + 1)q/α2.

When q ≥ cκ6µ2r3 log(d)
d for a fixed constant c > 0, and d is large enough, with probability at least 1−O(d−1)

over the randomness of Ω, we have that

(σmin(X))2 ≥ 1
8(σmin(U))2. (50)

Proof. Let A = {i : ∥Xi∥ ≤ α} be the index set of row vectors of X whose ℓ2 norm is at most α. Let UA be
the matrix that has the same i-th row as the i-th row of U for every i ∈ A, and 0 elsewhere. Let v ∈ Rr be a
unit vector such that ∥Xv∥ = σmin(X).

We show that
σmin(UA) ≥ (1− (32κ)−1)σmin(U).

Let B = {1, 2, . . . , d} \A. Since for any i ∈ B, ∥Xi∥ ≥ α, we have that |B|α2 ≤ ∥X∥2
F ≤ (σmax(U))2r + δ by

equation (43). It also follows that |B| ≤ (σmax(U)2r + δ)/α2.

Next, we have that

σmin(UA) = σmin(U − UB)
≥ σmin(U)− σmax(UB)
≥ σmin(U)− ∥UB∥F

≥ σmin(U)−
√
|B|rµ/d

≥ σmin(U)−
√

(σmax(U)2r + δ)rµ

dα2

≥ (1− 1
4)σmin(U), (51)

where the last line is because α ≥ 4κr
√

µ/d. It also follows that UA has a column rank equal to r.

Notice that there must exist a unit vector uA in the column span of UA such that ∥X⊤uA∥ ≤ σmin(X). To
see this, we can simply decompose the column span of UA into one in the column span of X and another
into the orthogonal subspace. Since uA is a unit vector, we can also write uA as uA = UAβ, for some β ∈ Rr

where ∥β∥ ≤ 1
σmin(UA) ≤

4
3σmin(U) . Further,

∥uA∥∞ ≤
(

dmax
i=1
∥UAei∥

)
· ∥β∥ ≤

4
√

µr/d

3σmin(U) .

Next, we plug in V = uAv⊤ in the second-order optimality condition of equation (38). Note that since
uA is in the column span of UA, it is supported on the subset of columns spanned by A, and therefore
[∇2R(X)]V = 0.2 Therefore, the term about the Hessian of the regularization term in equation (38) is equal
to zero. Thus, by taking V = uAv⊤ in equation (38), we get that

⟨PΩ(uA(Xv)⊤ + Xvu⊤
A), uA(Xv)⊤ + Xvu⊤

A⟩ ≥ 2u⊤
APΩ(UU⊤ −XX⊤)uA + 2u⊤

ANuA. (52)

Note that
∥Xv∥∞ ≤ ( dmax

i=1
∥Xi∥) ∥v∥ ≤ 2

√
µ(r + 1)q/λ = 2α,

2For details about the calculation regarding ∇2R(·), see Lemma 18, Ge et al. (2017).
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based on Lemma B.7 and the fact that v is a unit vector. As a result,

∥∥Xvu⊤
A

∥∥
∞ ≤

8α
√

µr/d

3σmin(U) := δ1

d
,

where δ1 = 8κ2r3/2µ
3σmin(U) . By applying Proposition B.4 to the left-hand side of equation (52), we have that

∣∣⟨PΩ(uA(Xv)⊤ + Xvu⊤
A), uA(Xv)⊤ + Xvu⊤

A⟩ − q
∥∥uA(Xv)⊤ + Xvu⊤

A

∥∥
F

∣∣ ≤ qδ1

√
16 log(2d)

dq
.

Next, by applying Lemma 4.2 to the first term in the right-hand side of equation (52), we get

∣∣u⊤
APΩ(UU⊤ −XX⊤)uA − qu⊤

A(UU⊤ −XX⊤)uA

∣∣ ≤ qδ2

√
16 log(2d)

dq
,

where
δ2 = d

∥∥UU⊤ −XX⊤∥∥
∞ ≤ µr + 4dα2 ≤ 65κµr.

Finally, we apply the spectral norm bound on N from equation (B.3) to u⊤
ANuA. Put together, we get

q
∥∥Xvu⊤

A + uA(Xv)⊤∥∥2
F
≥ 2q⟨UU⊤ −XX⊤, uAu⊤

A⟩ − δq,

where

δ = (δ1 + δ2)

√
16 log(2d)

dq
+

√
32µ2r2 log(2d)

dq
+ Õ(n−1/2d−1).

By simplifying the above calculation and using the fact that uA is a unit vector, we get that

4 ∥Xv∥2 + 2
∥∥X⊤uA

∥∥2 ≥ 2
∥∥U⊤uA

∥∥2 − δ. (53)

Recall that uA is a unit vector and uA is in the column span of UA. Therefore,

∥U⊤uA∥ = ∥U⊤
A uA∥ ≥ (σmin(UA))2,

and the right hand side of equation (53) is greater than 2(σmin(UA))2 − δ.

Moreover, recall that ∥Xv∥ = σmin(X) and ∥X⊤uA∥ ≤ σmin(X). Therefore, the left hand side of equation
(53) is at most 6(σmin(X))2, in which we apply Cauchy-Schwarz to the cross term. Put together, from
equation (53) we conclude that

(σmin(X))2 ≥ 1
3(σmin(UA))2 − δ

6 ≥
3
16(σmin(U))2 − δ

6 ,

by equation (51).

Thus, when
dq ≥ cκ6r3µ3 log(d),

for c = 16× 652 × 9, we have that
δ

6 ≤
σmin(U))2

16 ,

which concludes the proof of equation (50).
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B.5 Characterization of The Population Loss

In the next result, we show that we could remove the effect of the regularizer term in the residual error. We
use the fact that the regularizer follows the same direction as X, as stated in Proposition B.6.
Lemma B.10. In the setting of Theorem 3.4, suppose X ∈ Rd×r satisfies that

(σmin(X))2 ≥ 1
8(σmin(U))2,

and α ≥ 4κ2r
√

µ/d,∥∥UU⊤X −XX⊤X
∥∥2

F
≤
∥∥UU⊤X −XX⊤X − γ∇R(X)

∥∥2
F

, for any γ ≥ 0. (54)

Proof. Let S = {i ∈ [d] : |Xi| ≥ α} be the index set of row vectors of X whose ℓ2 norm is greater than α. By
the definition of the regularizer R(X), for any i not in S, we have that (∇R(X))i = 0. Thus, for any i /∈ S,
we have that ∥∥UiU

⊤X −XiX
⊤X
∥∥ =

∥∥UiU
⊤X −XiX

⊤X + (∇R(X))i

∥∥ .

For any i that is in S, we have that∥∥UiU
⊤X −XiX

⊤X
∥∥2 =

∥∥UiU
⊤X −XiX

⊤X − (γ∇R(X))i

∥∥2
,

where Ui, Xi are the i-th row vectors of U, X ∈ Rd×r, for every i = 1, 2, . . . , d. As for each i ∈ S, we will
show that

⟨(∇R(X))i, XiX
⊤X − UiU

⊤X⟩ ≥ 0. (55)

By Proposition B.6, we have

(∇R(X))i =
(

4λ

d∑
i=1

(|Xi|3 − α)3
+

|Xi|

)
Xi := aiXi,

where ai ≥ 0 denotes the multiplier in front of Xi. Then, we have that

⟨(∇R(X))i, XiX
⊤X⟩ = ai

∥∥XX⊤
i

∥∥2

≥ ai ∥Xi∥2
σmin

(
X⊤X

)
≥ ai

8 ∥Xi∥2 (σmin(U))2,

by the condition on the smallest singular value of U . On the other hand,

⟨(∇R(X))i, UiU
⊤X⟩ =ai⟨Xi, UiU

⊤X⟩
≤ai ∥Xi∥ · ∥Ui∥ · σmax(U) · σmax(X)
≤ai ∥Xi∥ ∥Ui∥ (σmax(U))22

√
r (by equation (43), plus σmax(X) ≤ ∥X∥F )

≤ai ∥Xi∥ ∥Ui∥ (σmin(U))22κ2√r (since σmax(U) = κ · σmin(U))

≤ ai

16 ∥Xi∥2 (σmin(U))2,

where the last step is because

∥Xi∥ ≥ α ≥ 4κ2r

√
µ

d
≥ 4κ2√r ∥Ui∥ ,

since ∥Ui∥ ≤
√

µr/d by Assumption 3.3. Putting both sides together, we therefore conclude that equation
(55) must hold. The proof is completed.

Finally, we show that the above result also implies that UU⊤ is close to XX⊤.

35



Published in Transactions on Machine Learning Research (01/2026)

Lemma B.11. In the setting of Theorem 3.4, suppose X ∈ Rd×r satisfies equations (44) and (54). Then,
with probability at least 1−O(d−1), the following must be true:∥∥XX⊤ − UU⊤∥∥2

F
≤ cµ2r5κ6 log(2d)

dq
, (56)

for some fixed constant c > 0.

Proof. We separate U into one part that is in the column span of X and another part that is orthogonal to
the column span of X. Let U = Z + V where Z is the projection of U to the column span of X, and V is the
projection of U to the orthogonal column subspace of X. In particular, we have V ⊤X = 0. Thus,

UU⊤X = (Z + V )(Z + V )⊤X = ZZ⊤X + V Z⊤X

⇒
∥∥UU⊤X −XX⊤X

∥∥2 =
∥∥ZZ⊤X −XX⊤X

∥∥2
F

+
∥∥V Z⊤X

∥∥2
F
≤ δ2, (57)

for

δ = 42σmax(U)

√
µ2r4 log(2d)

dq
,

by applying equation (44) and also equation (54).

Notice that Z has the same column span as X. As a result,∥∥ZZ⊤X −XX⊤X
∥∥2

F
≥ σ2

min(X)
∥∥ZZ⊤ −XX⊤∥∥2

F
,

which can be verified by inserting the SVD of X into the above inequality. Combined with equation (57), we
thus have that ∥∥ZZ⊤ −XX⊤∥∥2

F
≤ δ2

(σmin(X))2 ≤
8δ2

(σmin(U))2 ,

since (σmin(X))2 ≥ (σmin(U))2/8.

Next, let a ∈ Rd, b ∈ Rr be two unit vectors such that

a⊤ZZ⊤Xb = σmin(ZZ⊤X).

From equation (57) we can infer that∣∣σmin(ZZ⊤X)− a⊤XX⊤Xb
∣∣ ≤ δ. (58)

Now we consider two cases. Suppose a⊤XX⊤Xb is positive. Then the left-hand side of equation (58) must
be at least

a⊤XX⊤Xb− σmin(ZZ⊤X) = σmin(XX⊤X)− σmin(ZZ⊤X).

The other case is that if a⊤XX⊤Xb is negative, then the left hand side of equation (58) must be at least∣∣a⊤XX⊤Xb
∣∣− σmin(ZZ⊤X) ≥ σmin(XX⊤X)− σmin(ZZ⊤X).

We know that
σmin(XX⊤X) ≥ (σmin(U))3/(8

√
8).

Thus, if δ ≤ (σmin(U))3/(16
√

8), then

σmin(ZZ⊤X) ≥ (σmin(U))3/(16
√

8).

On the other hand,

σmin(ZZ⊤X) ≤ σmax(Z) · σmin(Z⊤X)
≤ ∥U∥2 · σmin(Z⊤X),
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which implies

σmin(Z⊤X) ≥ (σmin(U))3

8
√

8 ∥U∥2
.

Also note that
∥∥V Z⊤X

∥∥2
F
≤ δ2, which implies that

∥V ∥2
F ≤

δ2

(σmin(Z⊤X))2 ≤
512δ2 ∥U∥2

2
(σmin(U))6 = 512δ2κ2

(σmin(U))4 .

Finally, ∥∥ZV ⊤∥∥
F
≤ ∥Z∥2 · ∥V ∥F ≤ ∥U∥2 · ∥V ∥F ,

since Z is a projection of U to the column space of X.

In summary, we have that ∥∥UU⊤ −XX⊤∥∥2
F

=
∥∥ZZ⊤ −XX⊤∥∥2

F
+ 2

∥∥ZV ⊤∥∥2
F

+
∥∥V V ⊤∥∥2

F

≤ 16δ2

(σmin(U))2 + 1024δ2κ4

(σmin(U))2 + 5122δ4κ4r

(σmin(U))8

≤ (512κ4r + 1024κ4 + 16)δ2

(σmin(U))2 ,

since δ ≤ (σmin(U))3/(8
√

8), which concludes the proof of equation (56), for c = 422 × 512.

Now we are ready to complete the proof of Theorem 3.4.

Proof of Theorem 3.4. Suppose X satisfies the first-order and second-order optimality conditions. Then by
Lemma B.7 and Lemma B.8, we have that X satisfies the incoherence condition in equation (39). As a result,
(σmin(X))2 ≥ (σmin(U))2/8 by Lemma B.9. In particular, we require α to be at least 4κ2r

√
µ/d.

In addition, based on Lemma B.8, we require α ≤
√

µ(r + 1)q/λ, which requires

λ ≥ µ(r + 1)q/α2 ≥ dq/8.

Recall that
q = 1− (1− p2)n = 1− (1− C2/d2)n ≈ C2n/d2.

When
n ≥ cdr5κ6µ2 log(2d)

C2ϵ2 ,

the right hand side of equation (56) is at most ϵ2. This concludes the proof of equation (10).

Remark B.12. Our proof has been inspired by the important early work of Ge et al. (2016). We build on
and expand their work in three aspects.

• First, in the one-sided completion setting, the sampling patterns are non-random. In particular, the
diagonal entries are fully observed, while the off-diagonal entries are sparsely observed. Thus, there
is a mix of dense and sparse samplings in Ω. To address this problem, we use a weighted projection
as defined in Section 2.

• Second, the bias of the Hájek estimator is complex due to the nonlinear form of the estimator, and
requires a delicate analysis of the noise matrix N . This is studied in detail in Corollary B.2 and
Corollary B.3.
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• Third, the observation patterns in the off-diagonal entries of Ω are not completely independent,
requiring a new, row-by-row concentration inequality that leverages a conditional independence
property, i.e., Lemma 4.2.

More broadly, non-uniform sampling patterns are very common in real-world datasets and have received lots
of recent interest in causal inference (Athey et al., 2021; Xiong & Pelger, 2023). We hope this work inspires
further studies of modeling non-uniform sampling on sparse panel data from an optimization perspective.

Recent work such as Dong et al. (2025) examine the optimization landscape of neural networks through
evaluating the Hessian structure, such as the Hessian spectrum. In light of the proof techniques developed in
this work, it might also be interesting to revisit these insights in the setting of low-rank matrix factorization,
which can be related to two-layer quadratic neural networks (Li et al., 2018).

C Omitted Experiments

In this section, we describe the dataset statistics and pre-processing procedures. The MovieLens-32M
dataset comprises 32 million user ratings on approximately 87, 000 movies, collected from the MovieLens
recommendation platform, with ratings ranging from 1 to 5. The sparsity ratio is roughly 3× 10−4. We also
consider two related MovieLens datasets with 20 million and 25 million entries to ensure the robustness of
our findings. We split 80% into training and hold out the rest for testing.

• The Amazon Reviews dataset includes 571 million user ratings on 48 million products, collected from
Amazon, with ratings ranging from 1 to 5. The sparsity ratio is roughly 2× 10−7. For the Amazon
reviews dataset, we choose the Automotive category with 50, 000 items rated by 100, 000 users as M .
We use 80-20 split.

• The Genomes dataset contains phased genotype data for 2, 054 individuals gathered from diverse
populations. The dataset is represented as a dense matrix, with rows representing genomic sites and
columns corresponding to individuals. Each entry represents a biallelic genotype, encoded as 0 or 1.
We map them to 1 and 2, and use 0 to indicate missing entries. This dataset is fully observed. Thus,
we use 1% for training and hold out the rest for testing.

• For MovieLens and Amazon Reviews datasets, we use T̂ on M⊤M to obtain the ground truth second-
moment matrix. Then, the estimation error is evaluated against this matrix. In our experiments, we
set the sampling probability p = 0.8. Given that the original datasets have an average sparsity of
approximately 0.3%, even with p = 0.8, the number of observed entries remains very sparse. When
T is not fully observed, we focus on measuring the mean squared error within the observed entries
instead and treat the missing entries as zero.

C.1 Implementation

We provide a detailed description of all the baseline methods we have implemented in our experiments.

• Alternating-GD minimizes the squared reconstruction error on the observed entries of M . We
minimize the following objective:

min
X∈Rn×r,Y ∈Rd×r

∥PΩ(XY ⊤ −M)∥2
F ,

where PΩ denotes the projection onto the observed entries. We initialize X and Y from an isotropic
Gaussian distribution. We perform the optimization using Adam with a learning rate of 0.1 over 300
training epochs.

• SoftImpute-ALS alternates between matrix completion using singular value decomposition (SVD)
and imputing missing values (Hastie et al., 2015). At each iteration, missing entries are filled with
the current estimates, followed by SVD and soft thresholding of the singular values. The resulting
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Figure 7: One-sided recovery error of T (shown in the left two columns) and the root mean squared recovery
error of the original matrix M (shown in the right two columns) using our algorithms on synthetic matrix
data. Figures 7a, 7b: One-sided recovery error under uniform sampling by varying p, and sampling two
entries per row (C = 2) while varying the number of rows n. Figures 7c, 7d: Recovery error on M , also
under uniform sampling, and sampling two entries per row. Overall, we find that our approach consistently
provides more accurate estimates compared with the three baseline methods, all of which are widely used in
the matrix completion literature. Figures 7e, 7f, 7g, 7h: Vary C and repeat the same experiment.

truncated low-rank approximation is used to update the matrix. We repeat this process until
convergence, as measured by the Frobenius norm difference between successive reconstructions, or
until a maximum of 500 iterations. We set the target rank to the same as r and the convergence
threshold to 10−5.

• Nuclear norm regularization is another commonly used approach for matrix completion. In one-sided
estimation, we compute empirical averages based on the observed data (Cao et al., 2023). For
off-diagonal entries (i, j), we identify all samples in which the pair (i, j) appears and average the
product of the corresponding entries from the two relevant columns. For diagonal entries (i, i), we
consider all samples where index i appears in either position of a pair, square the corresponding
data matrix entry for each such sample, and average these squared values. We then estimate the full
matrix using symmetric alternating gradient descent by solving the following optimization problem:

min
X∈Rd×r

∥∥PΩ(XX⊤ − T )
∥∥2

F
+ λ ∥X∥⋆ ,

where ∥X∥⋆ denotes the nuclear norm of X and λ is set as 0.01. We perform the optimization using
Adam with a learning rate of 0.1 for 1, 000 steps.

Hyperparameter configurations. We report the hyperparameter configurations used in our experiments.
The learning rate η is varied from 10 to 105, the regularization coefficient λ from 10−2 to 10−5, and the
regularization parameter α from 10−4 to 1. Based on cross-validation, we select η = 104, λ = 10−4, and
α = 10−3, which yield the lowest error. For the Amazon Review dataset, we set λ = 0.01 and α = 0.1.
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Table 4: We report the recovery error for both one-sided matrix completion (i.e., recovering T ), and recovering
M , along with the corresponding running time (measured in seconds on an Ubuntu server) on three MovieLens
datasets. We run each experiment with five random seeds and report the mean and standard deviation.

Dataset MovieLens-20M MovieLens-25M MovieLens-20M MovieLens-25M
Estimating T One-sided recovery error Running time (Seconds)
Alternating-GD 0.015±0.009 0.006±0.002 1.9±0.1 × 102 4.4±0.1 × 102

SoftImpute-ALS 0.008±0.005 0.006±0.002 3.4±0.1 × 103 9.4±0.7 × 103

Algorithm 1 0.002±0.001 0.002±0.10 4.8±0.2 × 101 1.1±0.6 × 102

Estimating M Root mean squared error Running time (Seconds)
Alternating-GD 1.11±0.00 1.27±0.02 1.9±0.1 × 102 4.4±0.1 × 102

SoftImpute-ALS 1.09±0.00 1.25±0.00 3.4±0.1 × 103 9.4±0.7 × 103

Algorithm 2 0.99±0.00 1.04±0.00 1.0±0.1 × 102 2.6±0.1 × 102

C.2 Omitted Comparison Results

First, we report the runtime comparison between Hájek-GD and nuclear norm regularization. We run
gradient descent with 1, 000 iterations until it has converged. We also fix the number of observed entries as
200d while varying d from 103 to 104. We find that our approach requires 0.95 seconds for d = 103 and 1.61
seconds for d = 104. By contrast, solving a convex program with nuclear norm penalty takes 5.68 seconds for
d = 103 and 100.34 seconds for d = 104, measured on the Ubuntu server.

Second, we present the recovery error for imputing M , illustrated in Figure 7. Our approach consistently
reduces the recovery error compared to all three baseline methods. For instance, when C = 2 (sampling two
entries per row), our approach incurs an error of 0.0003, compared to 0.002 for nuclear norm regularization.
We also observe similar results on synthetic data when sampling five entries per row (C = 5) or sampling ten
entries per row (C = 10) in Figures 7e and 7f.

Similar results are observed when our approach is applied to recover the missing entries of M . For recovering
M , our approach reduces estimation error by 94% relative to alternating-GD and by 98% compared to
softImpute-ALS.

Finally, we report the results on MovieLens-20M and MovieLens-25M in Table 4. For one-sided matrix
completion, our approach reduces the Frobenius norm error between the estimate and the true T by up to
87% compared to alternating-GD and up to 75% compared to softImpute-ALS, while also achieving lower
running times.

For recovering the missing entries of M , our approach reduces the RMSE by up to 10% compared to
alternating-GD and up to 6% compared to softImpute-ALS.

C.3 Ablation Analysis

Setting the rank of the target matrix. In Section 5, we use a target rank of 10 for all the reported experiments.
To further assess the robustness of our approach, we conduct additional experiments on three real-world
datasets using Algorithm 1, with the target rank in the range of 1 to 30. The results are shown in Table 5.
We find that larger ranks may lead to overfitting in sparse settings; for example, on the Amazon dataset,
increasing r beyond 10 results in worse performance when recovering M from the estimated T .

We also run similar analyses on synthetic data and find that the algorithm is not particularly sensitive to
different choices in this context. In particular, we conduct different simulations by varying the rank r of
M between 1 and 50. We vary the target rank used in Algorithm 1 between 1 and 50. We find that the
estimation errors are comparable between different choices of target ranks.
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Table 5: We vary the rank of the variable matrix in Hájek-GD, corresponding to the results we reported in
Table 3. The results are averaged over five independent runs.

Dataset MovieLens-20M Amazon Reviews Genomes
Estimating T (Using Algorithm 1) One-sided recovery error on T

r = 1 7.0±0.1 × 10−3 4.5±0.1 × 10−3 5.8±0.1 × 10−5

r = 10 4.7±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

r = 20 1.9±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

r = 30 1.8±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

Estimating M (Using Algorithm 2) Root mean squared recovery error on M

r = 1 3.7±0.1 4.6±0.1 0.1±0.1
r = 10 1.1±0.1 1.9±0.1 0.2±0.1
r = 20 1.0±0.1 2.3±0.1 0.2±0.1
r = 30 1.0±0.1 2.7±0.1 0.2±0.1

Sensitivity of Algorithm 1. We evaluate the sensitivity of adding noise to M̂ on the final output of Algorithm
1. We use synthetic datasets with varied numbers of rows between 5d and 20d, and a fixed dimension of 1, 000.
We also test different ranks of M , ranging from 5 to 20. We add Gaussian noise with a standard deviation
that ranges from 0 to 0.01 to the input. Interestingly, we find that estimation error increases linearly with
σ. Moreover, when varying n, the sensitivity level of Hájek-GD (recall its definition in equation (17)) is
generally low. When n = 5d, the slope of the line is 19. When n = 10d, the slope decreases to 14. When
n = 20d, the slope further decreases to 13. Similar results hold after varying the rank between 20, 10, 5, and
the sensitivity level ranges between 16, 13, 11. See illustration in Figure 8.
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(a) Varying noise level σ for different number of rows n
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(b) Varying noise level σ for different rank r of M

Figure 8: Illustrating the estimation error after adding Gaussian noise with mean zero and variance σ2 to M̂
on the non-zero entries. In Figure 8a, we vary the number of rows n with a fixed rank r = 10. In Figure 8b,
we vary rank r (of M) with a fixed m = 20d. Across all six cases, the sensitivity level, measured by the slope
of the line, is at most 19 and drops to 11 as the sample size increases or the rank decreases. We report the
mean and standard deviation from five independent runs.
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