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ABSTRACT

Remote photoplethysmography (rPPG), a non-contact technology for extracting
physiological signals from facial videos, has drawn increasing interest in the AI
community. However, most existing approaches are tailored for idealized studio
lighting situations and struggle to generalize to complex real-world scenes. While
some studies attempt to mitigate illumination interference by referencing subject-
background features, heterogeneous lighting on the face often violates their under-
lying assumptions, thus limiting further performance gains. To address these chal-
lenges, we propose a novel rPPG framework to counteract the adverse effects of
complex external illumination on biosignal perception. Considering the unknown
and dynamic nature of lighting distributions and their influence on facial imaging
variations, we introduce a relative total variation to disentangle global illumination
components and preserve high-frequency biosignal transients, while compressing
subtle temporal cues within video sequences. This operation enables a contrastive
strategy to model facial illumination representations. The captured illumination
distribution is then self-supervisedly separated from the original input to yield pu-
rified rPPG features. Furthermore, we incorporate a frequency-aware feedforward
Transformer to exploit the quasi-periodic nature of pulse waveforms for vital sign
estimation. Extensive experiments on multiple public datasets under diverse light-
ing and motion conditions show that our model achieves competitive performance.
The codes are available at: https://github.com/sachiel0916/dippg/.

1 INTRODUCTION

Figure 1: Illustration of how intrinsic physiological activ-
ity and extrinsic illumination affect facial appearance. Re-
ducing external interference and enhancing biosignal rep-
resentation are essential for advancing rPPG accuracy.

Heart rate (HR) estimation is critical for
applications such as face anti-spoofing,
disease prevention, identity authentica-
tion, and fatigue warning (Choi et al.
(2024); Wu et al. (2024)). Traditional
electrocardiography and photoplethys-
mography (PPG) methods require con-
tact sensors, limiting practicality due to
complex setup procedures and deploy-
ment constraints. Alternatively, vision-
based, contactless algorithms (Yang et
al. (2023); Wang et al. (2025)) provide
scalable and real-time sensing without
physical touch, ideal for large-scale scanning in crowded public environments like airports and train
stations. Beyond individual-level assessments, these methods can also enable rapid responses during
public health emergencies, highlighting their potential in AI-powered physiological sensing.

Facial skin color varies with the blood volume pulsation (BVP), producing periodic patterns linked to
HR. This principle underlies remote PPG (rPPG) for HR estimation using computer vision (Haan &
Jeanne (2013); Wang et al. (2017)). Recent advances in deep learning have enhanced rPPG detection
algorithms (Chen & McDuff (2018); Yue et al. (2025)). For instance, convolutional networks (Li et
al. (2023)) identify regions of interest (ROI) through strong biosignal imaging, while Transformer-
based models (Shao et al. (2024)) capture long-term dependencies across facial time series to recover
physiological signs, thereby continuously improving the accuracy of non-contact HR estimation.
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However, pulse-induced facial imaging signals are inherently subtle and readily disturbed by sources
of interference. While subject-related disturbances (motion and expressions) have been partially ad-
dressed (Shao et al. (2026)), interference caused by external illumination remains underexplored due
to its potentially large amplitude variations or stochastic flickering. As the result, most existing rPPG
methods perform well indoors but struggle in complex outdoor environments (Wang et al. (2024);
Zou et al. (2025a)). As shown in Fig. 1, facial imaging comprises 2 major components: physiological
information and illumination variations. Ignoring illumination effects hampers accurate biosignal re-
construction. Effectively separating and suppressing the latter while preserving the former remains
a key challenge for practical and robust rPPG applications (Anil et al. (2025); Chen et al. (2025)).

Figure 2: Conventional rPPG pipelines and comparison of
de-interfering methods: ours vs. existing approaches.

As shown in Fig. 2 (a), rPPG capturing
based solely on facial skin area is often
affected by external interference, par-
ticularly illumination variations, which
can significantly contaminate biosignal
features. Fig. 2 (b) illustrates that most
existing methods address this challenge
by leveraging background prior knowl-
edge to model the interference, assum-
ing that the face and background share
similar illumination distributions, and
apply adversarial (Liu & Yuen (2024))
or contrastive learning (Huang et al.
(2025); Shao et al. (2025)) to separate
them. However, this mechanism limits
the interpretability of the learned repre-
sentation due to the absence of explicit
illumination artifact modeling, thereby
restricting the controlled guidance for performance improvement. Moreover, this assumption is not
always valid. In some cases, light may come from varying directions, causing flickering or shadows
on the facial surface. Additionally, the face and background also have distinct materials and reflec-
tive properties, which can result in uneven lighting, making the background illumination distribution
a comparatively less reliable reference and possibly introducing superfluous environmental noise.

To address the challenges above, we propose a novel rPPG framework that explicitly disentangles
external interference to improve both robustness and interpretability. Unlike existing methods that
suppress interference implicitly in high-dimensional feature spaces, we adopt a “disentangle-then-
estimate” strategy (see Fig. 2 (c)). While background distribution is considered, our framework is
not entirely reliant on it for interference removal. Instead, we focus on the amplitude and frequency
relationships among various imaging components involved in skin color changes, which allows for
the extraction of implicit vital signs with quasi-periodic characteristics. Specifically, given the un-
known and complex nature of illumination, as well as its potential to interfere with rPPG modeling,
we observe that biosignals typically exhibit stable patterns in terms of frequency and amplitude, re-
flecting a high degree of structural regularity. In contrast, interference introduced by external factors
tends to be irregular and lacks such consistency, resembling unstructured signals. Motivated by this
distinction between structured and unstructured components, we introduce the relative total variation
operation to achieve a global decomposition of the facial imaging. This processing preserves the sig-
nificant biosignal spikes while effectively suppressing subtle temporal clues. Afterwards, we employ
self-supervised learning to represent facial illumination based on the differences in amplitude and
frequency between lighting interference and physiological imaging. Finally, the estimated illumina-
tion is removed from the raw input video, resulting in purified rPPG features, which are then utilized
to inspire a frequency-domain-aware Transformer for HR estimation. We evaluate our method on 3
public datasets: COHFACE (Heusch et al. (2017)), BUAA-MIHR (Xi et al. (2020)), and MR-NIRP
(Nowara et al. (2022)), under various lighting situations, motions, and real-world scenarios. Numer-
ous experiments demonstrate that our approach outperforms existing state-of-the-art rPPG methods.
The main contributions of this paper are as follows:

• We address the critical challenges that current rPPG methods encounter when dealing with
external interference in non-ideal outdoor environments, whereas they are typically limited
to deployment in controlled studio settings and static scenarios.
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• We introduce an interference decoupling model based on relative total variation of imaging,
which reduces reliance on the illumination priors, effectively preventing misinterpretations
caused by inconsistencies between background and facial lighting or material properties.

• We propose a hierarchical architecture that integrates interference feature disentanglement
with physiological imaging mining, utilizing appearance-structured self-supervised learn-
ing to interpret illumination distributions and enhance performance.

• Our network outperforms existing rPPG methods across multiple public datasets and com-
plex scenario verifications, demonstrating its superior robustness and effectiveness.

2 RELATED WORKS

Vision-Based rPPG. rPPG has attracted growing attention in computer vision for contactless vital
signal monitoring. Early approaches, based on biosignal blind source separation and facial imaging
chromaticity analysis (Nowara et al. (2018)), were highly sensitive to motions and skin tone changes.
Recent advances leverage deep learning to improve the rPPG robustness and performance. Liu et al.
(2020; 2023) enhanced dynamic temporal features via inter-frame differences, while Yu et al. (2023)
introduced the vision Transformer to capture long-term temporal dependencies. However, their per-
formances degrade under varying scenarios. To improve generalization, Du et al. (2023) synthesized
domain noise to reduce distribution gaps, and Lu et al. (2023) promoted broader feature coverage to
mitigate activation bias. In terms of network design, Qian et al. (2024) proposed a spatiotemporal
dual-path module, and Liu et al. (2025) improved a spike-driven framework. However, they remain
inefficient for practical deployment. To address this, Yan et al. (2025) and Luo et al. (2025b) adopted
the Mamba to enhance efficiency. In addition, Yue et al. (2023) and Sun et al. (2024) utilized the un-
supervised framework to address limited training data. Despite these efforts, most methods are still
limited in handling real-world challenges such as complex environments and illumination situations.

Interference Disentanglement in rPPG. External illumination interference has long been recognized
as a major bottleneck in computer vision-driven rPPG. Initial studies, such as Lee et al. (2015), at-
tempted to suppress the radiance-induced facial artifacts utilizing external fill light in the dark room,
but relied heavily on prior contrast distributions and had limited applicability in real-world scenarios.
While the rise of deep learning, feature decoupling frameworks emerged. Niu et al. (2020b) encoded
non-physiological features and used cross-validation for separation. Chung et al. (2022) disentan-
gled features into domain-specific components, and Qian et al. (2025) applied the diffusion model
to decouple vital signals at both frequency and amplitude levels. Despite these advances, they per-
form remains suboptimal under highly dynamic environments. Background reference modeling has
revealed improved robustness. Nowara et al. (2021) introduced an inverse masked attention mecha-
nism to suppress distractions, Liu et al. (2024) employed adversarial learning with noise-prior-based
assumptions, while Shao et al. (2025) and Huang et al. (2025) enhanced physiological signal sepa-
ration via foreground-background similarity. However, they remain lack explicit interpretability of
external interference, limiting their ability to guide further performance improvements.

3 METHODOLOGY

3.1 FACIAL POTENTIAL ILLUMINANCE INFORMATION REPRESENTATION

Figure 3: The framework of our de-interfering model employs weight-sharing encoders to extract fa-
cial features and capture structural changes in temporal signals. This architecture design effectively
decouples external disturbances from physiological cues, thereby enabling more accurate regression.
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External illumination interference poses a major conundrum in current rPPG tasks. However, exist-
ing methods (Nowara et al. (2021); Liu & Yuen (2024)) predominantly rely merely on background
distribution as a reference, which becomes unreliable and susceptible to environmental noise when
the face and background exhibit heterogeneous properties. To overcome this issue, we first investi-
gate how to characterize lighting information from unknown distributions without solely depending
on the background, then subsequently decouple it from the subtle physiological signal.

To perform this, we first distinguishing the facial skin ROI from the background. For an input video
clip: Vin ∈ R3×T×H×W , where T is the number of frames, and H and W are the height and width
of each frame, the face is denoted as: Vface ∈ R3×T×H′×W ′

, where H ′ and W ′ are the height and
width of identified region. Subsequently, considering the quasi-periodicity of the biosignal, to guide
inter-frame skin interactions, we partition Vface into S non-overlapping rectangle patches per frame,
and apply average pooling within each patch. Each frame is then converted into an L× 1 sequence,
yielding the spatiotemporal map (STMap) of the facial video, denoted as: Vst ∈ R3×L×T . Niu et al.
(2020a) have demonstrated that this operation can enhance the temporal dynamic features of weak
biosignals, now widely employed in current rPPG methods (Wang et al. (2025); Shao et al. (2026)).

After obtaining the facial STMap Vst, we proceed by extracting its core structured temporal distri-
bution. This step is crucial, as the presence and distribution of external interference during face color
changes over time remain unknown. We consider two possible scenarios: 1) external interference
affects facial imaging, and 2) there is no severe interference. In the first case, where intense, random,
or flickering external interference impacts physiological imaging, our structured temporal extraction
strategy can effectively capture illumination changes, isolates the interference, and achieves blind
decoupling. In the second case, where the correlated noise is insufficient to obscure the amplitude of
biosignal, our strategy enhances the expression of pulse spike information in the waveform, thereby
facilitating the quasi-periodic feature learning for rPPG. Afterwards, we apply self-supervised con-
trastive learning to assess whether the extracted structured time sequence contains interference.

Traditional approaches for extracting structured information from mappings primarily focus on re-
moving fine-grained details, typically through smoothing techniques such as weighted least squares
(e.g., linear filtering). Since our strategy involves converting video segments into STMaps, similar
operations can be employed within our framework. However, they are inadequate for preserving the
spikes of weak physiological signals. In accurate HR measurement, the significance of feature is im-
balanced, with spikes at the biosignal’s peaks and troughs being particularly significant. Extracting
these spike features is critical for mitigating high-frequency noise and improving computational ef-
ficiency. Therefore, we can naturally think that depending on the combination of gradient amplitude
and total variation, we can preserve temporal spikes as much as possible while denoising. Specif-
ically, the gradient magnitude captures the intensity of local variations within the STMap, which
helps identify salient transitions corresponding to spikes. Meanwhile, the total variation factor en-
forces a global regularization constraint, encouraging smoothness in non-informative regions while
maintaining the signal transitions at the peaks.

Among various total variation methods, the TV-L2 model is particularly suitable for extracting struc-
tured components from mappings with mixed, unknown, or irregular patterns of structured and un-
structured content. It preserves large-scale edges by combining a total variation regularization term
with a quadratic penalty to enforce the structural similarity between the input and output. However,
it still struggles to differentiate strong structural spikes and local features. To address this limitation,
Xu et al. (2012) introduced a relative total variation model. The core insight is that within a local
window, domain spikes contribute more to the gradient and share similar directions, whereas features
with complex patterns (oscillation) do not exhibit such regularity. This method incorporates a novel
regularization term, applies a universal pixel-wise windowed total variation metric, and combines
inherent variation within the window to avoid assumptions or manual judgments about local types.
Through iterative calculations, it can more effectively distinguish between spikes and stochastic
surface details. Taking this benefit, we process Vst, and the resulting Vrtv can be expressed as:

Vk
rtv = (I+ λ Lk−1)−1 ·Vst, (1)

where k denotes the iteration step in the variational model, with the regularization term dynamically
adjusted based on the mapping content (in this study, k is set to 2), λ is a parameter that controls the
influence of the regularization term (set to 0.01), I represents the identity matrix, and (I+ λ Lk−1)
is a symmetric positive-definite Laplacian matrix. The discrete gradient is approximated using the
forward difference approach, resulting in a sparse five-point Laplacian matrix. Additionally, L is the
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weight matrix computed based on the temporal structure vector V′
rtv generated from the previous

iteration (initialized as Vst). Specifically, L is given by:

L = C⊤
s UsWsCs +C⊤

t UtWtCt, (2)
where Cs and Ct are the Toeplitz matrices obtained by applying the forward difference approach to
the time dimension t and the spatial dimension s, respectively, using the discrete gradient operator.
The matrices Us, Ut, Ws, and Wt are diagonal, with their diagonal elements defined as follows:
Us[i, i] = us i, Ut[i, i] = ut i, Ws[i, i] = ws i, and Wt[i, i] = wt i. To illustrate this process,
consider the temporal series within the rectangular region centered on pixel q:

ut q =
(
Gσ ∗ 1

|Gσ ∗ ∂tV′
rtv|+ ε1

)
q
, wt q =

1∣∣(∂tV′
rtv)q

∣∣+ ε2
, (3)

where Gσ represents the Gaussian filter with standard deviation σ set to 5, and ε1 and ε2 are small
positive constants introduced to avoid division by zero (set to 1×10−3 and 2×10−2, respectively). In
the presence of external interference, the STMap by the relative total variation can act as a reference
for lighting changes, mitigating inconsistencies between simulated illumination and background
distribution. When external interference is minimal, it can still capture biosignal spikes. The key to
detecting interference lies in self-supervised learning based on the specific period and amplitude of
physiological signal, which aids in signal decoupling. This process will be discussed in Sec. 4.4.

3.2 EXTERNAL DYNAMIC ILLUMINATION DE-INTERFERING

At this stage, we introduce a spatiotemporal feature extraction module designed to encode Vst and
Vrtv, respectively. While Vst contains all the details of the facial skin imaging, and Vrtv represents
the temporal structure after removing fine-grained information. The resulting feature representations
are: Fface and Ffore ∈ RC×S×T , where C is the channel dimension and S denotes the compressed
tensor space dimension after encoding. These features correspond to the facial characteristics and
the foreground features, respectively, which either have an unknown or non-lighting distribution.

At this point, to guide the model in learning temporal sequence features, we design a self-supervised
learning mechanism to train the encoder, enabling the network to quickly capture dynamic rhythm
characteristics during this phase. To address the issue of inconsistencies reflected light and material
differences between the face and background when the background is used as a reference, we per-
form contrastive learning independently on the face, rather than constructing positive and negative
sample pairs in the foreground-background as done in previous rPPG architectures (such as those
in Fig. 2 (b)). In the training process, positive samples are Ffore and its randomly shuffled tensor
F′

fore along the spatial dimension. Negative samples are derived from the m resampled time series
tensor Bfore. According to existing research (Jeanningros et al. (2024)), normal HR ranges from 40
to 240 heartbeats per minute (bpm), while video sampling frequencies are typically from 20 to 30
frames per second (fps). To ensure that positive samples correspond to genuine pulse waveforms fall
outside the HR confidence interval, we randomly expand or downsample the time series by a factor
of 8× to 12×. Based on this, we optimize the model using the following loss function:

Lcf = log

(
exp
(D(Ffore,F

′
fore)

τ

)
∑m

i=1

(
exp
(D(Ffore,Bforei

)

τ

)
+ exp

(D(F′
fore

,Bforei
)

τ

)) + 1

)
, (4)

where D represents the mean square error (MSE) between the two tensors with respect to time, and
τ is the temperature hyperparameter which is set to 0.08 as per (Yue et al. (2023)).

Next, we use global illumination intensity for learning. This metric is not entirely based on back-
ground distribution, but rather on the trend of its amplitude variation. Therefore, we extract its core
structured temporal information while discarding all fine details to avoid introducing additional am-
bient noise, periodic flickering, and unnecessary oscillations, while still capturing the cross-frame
illumination pattern. For the input background, we process it frame by frame, resize it to H ′ ×W ′,
then apply the STMap transformation and relative total variation to obtain the background STMap:
Vback ∈ R3×L×T . Subsequently, based on Equ. 5, we employ the encoder to extract background
illumination features and handle image variations with random perturbations, and guiding the model
for self-supervised temporal distribution mining:

Lcb = log

(
exp
(D(Fback,F

′
back)

τ

)
∑m

i=1

(
exp
(D(Fback,Bbacki

)

τ

)
+ exp

(D(F′
back

,Bbacki
)

τ

)) + 1

)
, (5)
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where {Fback,F
′
back} and {Bback1

, ...,Bbacki
} are the augmented positive samples and the negative

samples, respectively. The acquisition manner follows the same procedure as described in Equ. 4.

Subsequently, we extract the similar distributions from both the facial and background core temporal
structure tensors (Ffore and Fback), and compute their respective similarity matrices, which are then
regularized to emphasize the most relevant temporal relationships. The regularized similarity matri-
ces are subsequently multiplied by the facial temporal pattern feature matrix, yielding the illumina-
tion distribution features Film:

Film = Softmax
(
PSD(Fback) ·

(
PSD(Ffore)

)T) · Ffore, (6)

where PSD represents the power spectral density processing applied to the features. Ultimately, the
purified rPPG features used for regressing physiological signals are expressed as: Fbvp = Fface −
Film. In comparison with existing decoupling methods, the proposed approach allows for contrastive
analysis, thereby enabling more informed visual inspection, guiding targeted model improvements,
and contributing to a more robust evaluation of the rPPG detection results.

3.3 PHYSIOLOGICAL SIGNAL REGRESSION AND MODEL OPTIMIZATION

Once the feature Fbvp is calculated, physiological signal regression is performed using the estimator.
This step enables the mapping of the extracted features to specific waveforms, facilitating accurate
HR prediction. Therefore, we impose a constraint based on the negative Pearson’s correlation:

Lp = 1−
T
∑T

i=1 PsiPgi −
∑T

i=1 Psi

∑T
i=1 Pgi√(

T
∑T

i=1 P
2
si − (

∑T
i=1 Psi)

2
)(

T
∑T

i=1 P
2
gi − (

∑T
i=1 Pgi)

2
) , (7)

where Ps denotes the model-predicted biosignal, while Pg is the corresponding ground truth (GT).

Figure 4: Distribution of imaging feature frequencies.

Regarding the overall network frame-
work, as illustrated in Fig. 3, we design
our architecture with the Swin Trans-
former (Liu et al. (2022)) as the encoder
backbone. The video segment input ini-
tially passes through a feature stem for
preliminary spatiotemporal integration,
thereby enhancing low-level represen-
tations. The encoder consists of twelve
Swin Transformer modules, organized
into four hierarchical Swin stages with
2, 2, 6, and 2 modules per stage. Spatial downsampling (by a factor of 2×) is executed in each stage
while maintaining the temporal dimension. Each stage alternately stacks window-based multi-head
self-attention and shifted-window multi-head self-attention, enabling hierarchical feature extraction
while balancing local pulse spike modeling and global context integration. The attention head counts
for these stages are 3, 6, 12, and 24, respectively, with a fixed window size of 8. Compared to convo-
lutional architectures, our STMap-oriented model more effectively captures long-range dependen-
cies and cross-frame contextual information in time series. The shifted window mechanism further
facilitates interaction between local and global features, which is key for modeling the dynamic and
weak temporal signals associated with rPPG regression tasks.

As shown in Fig. 4, the temporal-frequency characteristics of different feature imaging contents ex-
hibit variability. To more appropriately capture the unique quasi-periodic nature of cardiac pulses
and distinguish them from noise, we replace the standard feedforward module in the vision Trans-
former with a dual-domain modeling module that integrates information from both the temporal and
frequency domains. This module consists of three key components: domain conversion, frequency
domain interaction, and domain inversion. Specifically, the domain conversion module applies the
fast Fourier transform (FFT) to project time-domain features into the frequency domain, thereby ex-
plicitly incorporating periodicity and spectral characteristics. Then, the domain interaction module
captures and reweights frequency components via a fully connected layer, emphasizing structural
relationships among key frequencies. Finally, the domain inversion module applies the inverse FFT
to project the enhanced frequency features back into the temporal domain, ensuring their effective
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Table 1: Comparative results (in bpm and dB). Here ↓ indicates that lower is better, ↑ is vice versa,
* is unsupervised methods, the best result is bolded, and the second-best result is underlined.

rPPG Methods COHFACE (Heusch et al. (2017)) BUAA-MIHR (Xi et al. (2020)) MR-NIRP (Nowara et al. (2022))
MAE↓ RMSE↓ ρ↑ SNR↑ MAE↓ RMSE↓ ρ↑ SNR↑ MAE↓ RMSE↓ ρ↑ SNR↑

CHROM(Haan & Jeanne (2013)) 11.22 15.83 0.31 –5.91 6.09 8.29 0.51 –4.21 14.52 17.41 0.18 –3.60
POS(Wang et al. (2017)) 11.65 15.14 0.35 –3.21 5.04 7.12 0.63 0.81 12.75 15.36 0.34 –0.31
AutoSparsePPG(Nowara et al. (2022)) 9.54 13.82 0.33 –2.93 5.36 7.46 0.63 –2.90 5.67 10.62 0.68 –3.56

C
N

N
-B

as
ed

DeepPhys(Chen & McDuff (2018)) 6.79 12.34 0.31 1.48 4.78 6.74 0.69 1.58 13.22 18.39 0.43 –2.39
TS-CAN(Liu et al. (2020)) 7.65 10.90 0.40 2.14 4.84 6.89 0.68 –0.16 12.70 18.03 0.47 2.95
DualGAN(Lu et al. (2021)) 6.79 8.56 0.68 2.22 3.41 5.23 0.84 3.06 8.00 12.18 0.71 4.31
PFE-TFA(Li et al. (2023)) 6.68 9.38 0.66 1.87 1.29 2.65 0.91 3.94 5.34 8.92 0.73 3.95
NEST(Lu et al. (2023)) 7.01 11.41 0.64 2.15 2.88 4.69 0.89 4.36 3.61 7.32 0.82 4.12
Contrast-Phys+(Sun & Li (2024))* 7.52 15.23 0.62 2.03 4.64 6.51 0.73 3.11 6.70 11.21 0.63 2.70
rPPG-HiBa(Wang et al. (2024)) - - - - 2.45 3.28 0.98 - - - - -
ND-DeeprPPG(Liu & Yuen (2024)) 5.27 6.91 0.77 3.24 0.58 1.81 0.95 7.28 3.47 6.54 0.85 4.73
DD-rPPGNet(Huang et al. (2025))* 8.54 8.86 0.46 - - - - - 13.93 15.14 0.18 -

Tr
an

sf
or

m
er EfficientPhys(Liu et al. (2023)) 5.70 8.13 0.74 2.59 1.43 4.98 0.93 4.95 3.67 12.28 0.81 4.07

PhysFormer++(Yu et al. (2023)) 5.35 7.72 0.76 3.88 0.93 1.66 0.94 5.33 3.56 7.59 0.83 4.15
Spiking-PhysF.(Liu et al. (2025)) 5.01 7.99 0.80 2.83 2.12 5.08 0.90 6.76 3.62 7.39 0.85 4.88
RhythmFormer(Zou et al. (2025a)) 5.42 8.26 0.73 4.09 0.67 1.57 0.94 7.40 3.44 6.72 0.82 5.56
ND-rPPG-ViT(Shao et al. (2025)) 5.03 8.25 0.82 3.87 0.53 1.20 0.95 8.58 2.69 6.03 0.87 5.63

M
am

ba PhysMamba(TD)(Luo et al. (2024)) 6.04 8.30 0.71 2.96 1.09 1.94 0.86 4.83 3.89 7.92 0.79 2.80
RhythmMamba(Zou et al. (2025b)) 5.48 8.03 0.73 3.74 0.96 1.82 0.90 7.10 3.31 6.36 0.84 5.53
PhysMamba(SSD)(Yan et al. (2025)) 4.97 8.22 0.72 3.23 0.89 1.89 0.88 7.09 3.60 6.45 0.82 3.59

Ours 4.89 7.94 0.82 4.85 0.50 1.16 0.98 9.37 2.58 5.90 0.88 5.75

fusion with the original rPPG information. This feedforward strategy preserves the nonlinear trans-
formation capabilities of the vanilla architecture while significantly enhancing expressiveness and
predictive performance for periodic time series data, especially physiological signals.

Additionally, the feature regression module adopts a convolutional architecture consisting of two
groups of submodules, each containing two 3×3 convolutional layers, followed by the ReLU activa-
tion and batch normalization. A linear projection layer then reduces spatial dimensions and converts
high-dimensional features into time-series form for regression of the target physiological signal (out-
put Ps). The overall loss function Ltotal is defined as follows: Ltotal = α Lp + β (Lcf + Lcb),
where α=0.5 and β=1 in our setting following the ablation studies (Sec. 4.4).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Figure 5: Illustration of sample changes in rPPG datasets.

We train our network and conduct ex-
tensive experiments on the publicly rec-
ognized and accessible rPPG datasets:
COHFACE, BUAA-MIHR, and MR-
NIRP, which serve as important bench-
marks for evaluating remote vital sens-
ing performance in complex settings.
Specifically, the COHFACE dataset in-
cludes recordings captured in indoor environments characterized by insufficient natural light, uneven
illumination conditions, and supplemental artificial lighting from ceiling lamps. The BUAA-MIHR
dataset provides eleven controlled lighting scenarios, with illumination intensities ranging from level
100.0 to 102.0 lux. The MR-NIRP dataset is a large-scale collection from varied real-world outdoor
scenarios, such as actual driving, encompassing significant lighting variations, and day-night transi-
tions. Their representative participants and corresponding changes are illustrated in Fig. 5.

Given the differences in video frame rates and biosignal label frequencies across datasets, we uni-
formly interpolate them to 25 fps. The open-source face recognition module is used to segment the
facial ROI box and background area. Based on this, the temporal dimension (T ) of each STMap is
set to 320, and the spatial scale (L) is set to 64. Following (Yue et al. (2023)), the number of negative
samples (m) in our illumination self-supervised representation constraint is define to 4. Our model
is implemented using the PyTorch framework and runs on a system equipped with four NVIDIA
RTX 4090 GPUs. We employ the AdamW optimizer and conduct 100 training epochs, starting with
an initial learning rate of 1×10−5, which is adjusted to 0.5×10−5 after the 50th epoch. Notably,
to prevent cross-contamination during training and testing, we divide the samples in each dataset
according to scenario, subject, and illumination, randomly selecting 3/4 of the samples for training
and the remaining 1/4 for testing, rather than partitioning them by random STMap-level.
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4.2 COMPARISON WITH STATE-OF-THE-ART RPPG APPROACHES

Table 2: RMSE across different scenes and motion states.

Scenarios Movements
rPPG Methods COHFACE MR-NIRP

Lamp Nature Day Night Garage Motion Still
AutoSparsePPG 11.58 17.03 15.92 16.23 2.90 17.69 16.10
PhysFormer++ 6.63 11.93 9.19 8.75 3.99 10.35 7.05
ND-DeeprPPG 5.67 11.59 7.69 8.02 3.50 7.46 6.28
RhythmFormer 6.49 10.30 8.18 9.23 3.82 7.76 6.34
ND-rPPG-ViT 7.35 9.66 5.45 7.51 2.15 7.30 5.74
Ours 5.93 9.40 5.34 7.48 2.05 6.95 5.58

We train and test each dataset indepen-
dently, and combining MR-NIRP with
its indoor supplementary set (Nowara et
al. (2018)) to enhance sensing robust-
ness. Since the network outputs tempo-
ral waveform sequences, we utilize the
open-source rPPG toolbox1 to calculate
and statistically analyze HR values. For
evaluation, we employ the mean abso-
lute error (MAE), root MSE (RMSE),
and Pearson’s correlation coefficient (ρ) of the HR values, along with the signal-to-noise ratio (SNR)
of the pulse waveforms. Based on these metrics, we compare our results with the most representative
and current state-of-the-art rPPG approaches, as summarized in Tab. 1.

Figure 6: De-interfering performance on MR-NIRP.

The experimental results on the COH-
FACE, BUAA-MIHR, and MR-NIRP
datasets demonstrate that the proposed
approach achieves competitive perfor-
mance across diverse situations. Cru-
cially, on BUAA-MIHR and MR-NIRP
datasets, which are characterized by the
complex, varying, and extreme lighting
conditions, our targeted external illu-
mination de-interfering solution signif-
icantly outperforms existing rPPG al-
gorithms across multiple quantitative
evaluation metrics. On the COHFACE
dataset, however, our approach exhibits
the slightly higher RMSE compared to ND-DeeprPPG (Liu & Yuen (2024)). This can be attributed
to the relatively controlled and simplistic video conditions of COHFACE, where limited variability
and stable lighting reduce the performance disparity among different methods. Nevertheless, further
analysis (see Tab. 2) reveals that our method performs notably well under low-illumination scenarios
within COHFACE, underscoring its robustness in challenging lighting environments.

Figure 7: Variational approach results on MR-NIRP.

To moreover validate our performance
across diverse scenes, we conduct ad-
ditional experiments on COHFACE and
MR-NIRP datasets, specifically assess-
ing the impact of varying lighting con-
ditions and subject movements. These
evaluations provide a more comprehen-
sive evaluation of the robustness of our
algorithm in complex and real-world
settings. As presented in Tab. 2, our ap-
proach consistently outperforms base-
line frameworks, particularly under low-light and high-motion conditions, demonstrating its strong
adaptability and effectiveness. This also explains the slightly suboptimal performance of our method
relative to ND-DeeprPPG Liu & Yuen (2024) in the RMSE metric on the COHFACE dataset.

4.3 PERFORMANCE ANALYSIS AND DE-INTERFERING VISUALIZATION

We discuss the architectural design in stages. First, we evaluate the effectiveness of the proposed
de-interfering strategy. To this end, we design two rPPG networks: one incorporating the disentan-
glement framework and one without it. Both models are trained and tested on the MR-NIRP dataset,
and their HR estimation results are visualized using scatter plots, as shown in Fig. 6. We also report
the corresponding RMSE values to provide a quantitative comparison. The scatter plot of our full

1https://github.com/PHUSELab/pyVHR/
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model (right) presents a stronger correlation with the GT, and closely follows the identity line. In
contrast, the network without the de-interfering framework (left) exhibits larger deviations, particu-
larly in boundary cases (extremely large or small points). This demonstrates that our design not only
improves overall estimation accuracy but also enhances robustness under challenging conditions.

Figure 8: Visualization of frequency domain features.

Next, we evaluate the effect of incorpo-
rating the relative total variation to the
STMap. Using the MR-NIRP dataset,
we compare algorithms with (right) and
without (left) this component. As seen
in Fig. 7, we plot the distribution of GT,
along with predicted HR distributions
from both methods, and report RMSE.
It is evident that the variational model
produces results closer to the GT, espe-
cially under challenging conditions.

We extract features from the final layer of the encoder and compute the frequency characteristics of
Fbvp, Fface, and Film separately. These features are then visualized using t-SNE, as shown in Fig. 8.
Allowing us to assess their distributions in a low-dimensional space and evaluate the effectiveness
of rPPG feature extraction and external interference disentanglement.

4.4 EFFECTIVENESS ANALYSIS AND ABLATION STUDIES

Figure 9: Analysis of our parameter configurations.

We conduct a series of ablation studies
on the COHFACE dataset to evaluate
the impact of key algorithmic choices
and network parameter settings, using
MAE as the evaluation criterion. As il-
lustrated in Fig. 9, the experiments are
divided into three parts: 1) the effect
of different temporal and spatial scales
in the STMap (left), where temporal
scales (T ) of 80, 160, 320, and 480
frames, and spatial sizes (L) of 32, 64,
and 128 pixels are learned; 2) the impact of varying the loss hyperparameter β while keeping α
fixed (middle); and 3) the effect of variational model configurations (right), including the number of
iterations (k), and the core Gaussian parameter (σ). They validate our model under various settings.

Table 3: Computational cost and performance comparison.

rPPG Methods Parameters FLOPs RTX 4090 GPU RMSE↓
TS-CAN 3.91 M 110.15 G 5.52 ms 18.03 bpm
PhysFormer++ 9.79 M 49.85 G 217.07 ms 7.59 bpm
ND-DeeprPPG 6.05 M 320.08 G 29.87 ms 6.54 bpm
RhythmFormer 3.25 M 38.49 G 29.49 ms 6.72 bpm
ND-rPPG-ViT 6.03 M 55.04 G 24.64 ms 6.03 bpm
Ours 5.97 M 55.20 G 23.12 ms 5.90 bpm

We compare the efficiency of our model
against several existing approaches in
terms of parameter count, floating point
operations per second (FLOPs), and in-
ference time, all benchmarked on an
RTX 4090 GPU. Additionally, we re-
port their RMSE indexes on MR-NIRP.
As shown in Tab. 3, our method reveals
an overall competitive advantage across
both accuracy and computational efficiency, highlighting its suitability for real-time applications.

5 CONCLUSION

Our proposed method introduces a principled disentanglement framework for robust rPPG estima-
tion under complex conditions. By leveraging relative total variation to suppress global illumination
while preserving critical subtle physiological cues, our method enables self-supervised learning of
facial illumination representations and effective recovery of clean biosignals. Extensive experiments
across diverse real-world scenarios and benchmark datasets demonstrate that our method consis-
tently outperforms the existing state-of-the-art rPPG approaches, offering a significant advancement
toward practical, unconstrained remote physiological signal and vital sign sensing.
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