
Avoiding spurious sharpness minimization broadens applicability of SAM

Sidak Pal Singh 1 Hossein Mobahi 2 Atish Agarwala 2 Yann Dauphin 2

Abstract
Curvature regularization techniques like Sharp-
ness Aware Minimization (SAM) have shown
great promise in improving generalization on vi-
sion tasks. However, we find that SAM performs
poorly in domains like natural language process-
ing (NLP), often degrading performance — even
with twice the compute budget. We investigate the
discrepancy across domains and find that in the
NLP setting, SAM is dominated by regularization
of the logit statistics –— instead of improving
the geometry of the function itself. We use this
observation to develop an alternative algorithm
we call FUNCTIONAL-SAM, which regularizes
curvature only through modification of the
statistics of the overall function implemented
by the neural network, and avoids spurious
minimization through logit manipulation. Further-
more, we argue that preconditioning the SAM
perturbation also prevents spurious minimization,
and when combined with FUNCTIONAL-SAM,
it gives further improvements. Our proposed
algorithms show improved performance over
ADAMW and SAM baselines when trained for
an equal number of steps, in both fixed-length
and Chinchilla-style training settings, at various
model scales (including billion-parameter scale).
On the whole, our work highlights the importance
of more precise characterizations of sharpness
in broadening the applicability of curvature
regularization to large language models (LLMs).

1. Introduction
One of the most fundamental questions in machine learning
research is: how do we train models that are useful beyond
their training data? This question arises in multiple scenar-
ios — from generalizing to unseen samples, dealing with
distribution shift, and fine-tuning on specific domains. A

1Google Research 2Google DeepMind. Correspondence to:
Sidak Pal Singh <ssidak@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

commonly held belief is that it is important for models to
converge to well-behaved and robust solutions. The ‘regu-
larity’ of the model is often obtained using regularization
techniques, which — even in the day and age of LLMs —
remain an indispensable part of any training algorithm.

Some of the most prominent regularization methods
include weight decay (Krogh & Hertz, 1991), dropout (Sri-
vastava et al., 2014), data augmentation (Ciregan et al.,
2012; Krizhevsky et al., 2012), Mixup (Zhang, 2017), and
curvature-based controls (Foret et al., 2020; Wu et al., 2020).
In recent years, curvature regularization techniques have
gained popularity due to their effectiveness in promoting
generalization. These techniques bias learning dynamics
to areas of lower curvature (i.e., less sharp regions) in the
loss landscape (Chaudhari et al., 2017; Keskar et al., 2017;
Foret et al., 2020; Pittorino et al., 2020; Wu et al., 2020).
The origins of these curvature or sharpness minimization
techniques can be traced back to the classical ideas of
minimum description length (Rissanen, 1978; Hinton &
Van Camp, 1993; Hochreiter & Schmidhuber, 1997). Lately,
their development has been inspired by their success in a
large-scale correlational study (Jiang et al., 2019) and in
the NeurIPS generalization competition (Jiang et al., 2020).

Sharpness minimization has demonstrated significant im-
provement on vision tasks. In contrast, there has not been
much uptake of these methods in NLP1 and, especially for as
cornerstone (Brown et al., 2020) a task in NLP as language
modeling. Curiously enough, we observe that Sharpness
Aware Minimization (SAM), one of the best studied sharp-
ness regularization methods (Foret et al., 2020), shows poor
performance here; indeed, its validation metrics are typi-
cally worse than ADAMW throughout training (Figure 1),
despite using more computation per step. Hence, this raises
the following questions which form the basis of our work:

What are the reasons for SAM’s poor perfor-
mance in language modeling? How can they be
addressed to successfully yield generalization ben-
efits, while being equal in cost as SAM?

Towards this end, in Section 3, we perform a novel analysis

1The most notable exception of SAM in NLP is in the fine-
tuning scenario (Bahri et al., 2022), where the parameters are con-
strained to move smaller distances by the very nature of the setup.

1

Avoiding spurious sharpness minimization broadens applicability of SAM

2000 4000 6000 8000 10000
Training steps

3.50

3.75

4.00

4.25

4.50

4.75

5.00
V

al
id

at
io

n
Lo

ss
Nanodo 23.9M trained on C4

SAM
AdamW

8000 10000
3.45

3.50

3.55

Figure 1: Evaluation loss curves of ADAMW and SAM for
Nanodo decoder-only Transformer model (Liu et al., 2024)
on the C4 dataset (Raffel et al., 2020).

of the path SAM takes to sharpness reduction, and show
that it can be split into two contributions — one which
modifies the logit statistics to reduce sharpness, and the
other which modifies the geometry of the function itself.
We measure these two contributions and find that in vision
(where SAM works well) the contributions are relatively
balanced; in contrast, in language modeling settings the
logit path to sharpness minimization dominates.

We hypothesize that the functional path to sharpness mini-
mization needs to be amplified in the language setting, and
in Section 4, develop a novel sharpness minimization algo-
rithm called FUNCTIONAL-SAM that achieves this. Addi-
tionally, we motivate another algorithm, PRECONDITIONED
SAM, based on preconditioning, and give a theoretical ar-
gument that shows it promotes the functional path.

In Section 5, we show that FUNCTIONAL-SAM and PRE-
CONDITIONED SAM provide improvements over baseline
ADAMW when trained on the C4 dataset using the Nan-
odo Transformer codebase (Liu et al., 2024). Moreover,
FUNCTIONAL-SAM and PRECONDITIONED SAM can be
combined to yield maximal gains. This resulting com-
bination consistently improves validation metrics in both
fixed number of steps as well as Chinchilla-like scaling set-
tings (Hoffmann et al., 2022) at a variety of model sizes,
spanning three orders of magnitude.

We conclude with an extensive discussion, in Section 8,
of additional SAM variants that may be useful in other
domains as well as important future directions implied by
our work.

2. Setup and Background
Let us assume that we are given data points z ∈ Z drawn
i.i.d. from some (unknown) distribution D, where the sam-
ples z are input-output tuples (x,y), with the input x ∈ Rd

of dimension d and the targets y ∈ RK of dimension K. We

seek to model the input-output relation via a neural network
fθθθ(x) : Rd 7→ RK with learnable parameters θθθ ∈ Rp, such
that fθθθ(x) ≈ y , ∀ (x,y) ∈ D. We take the usual route
of empirical risk minimization (Vapnik, 1991) and consider
θθθ∗ := argminθθθ∈ΘΘΘ L(θθθ) with L(θθθ) := 1

n

∑n
i=1 ℓ(zi;θθθ) and

where, S = {zi}ni=1 is the training set of size n and ℓ
denotes the loss function. Hereafter we will consider the
loss to be cross-entropy, which is the most popular choice;
however, our analyses extend to other loss functions as well.

Under the above setup, Foret et al. (2020) formulates
sharpness-aware minimization as the following min-max
problem: minθθθ max∥ϵϵϵ∥≤ρ L(θθθ + ϵϵϵ) , where ϵϵϵ denotes a per-
turbation of the parameters. In particular, the inner maxi-
mization is approximated to first order in the perturbation,

max
∥ϵϵϵ∥≤ρ

L(θθθ) + ϵϵϵ⊤∇θθθL(θθθ) , (1)

which subsequently yields ϵϵϵ∗(θθθ) = ρ∇θθθL(θθθ)/∥∇θθθL(θθθ)∥
as the optimal perturbation. In SAM (Foret et al., 2020),
the authors propose making an update along the direction,

g SAM = −∇θθθL(θ + ρ ϵ∗), ϵ∗ ≡ ∇θL(θ)
∥∇θL(θ)∥

. (2)

3. The Dual Routes to Sharpness Minimization
In this section, we develop a diagnostic tool to understand
the failures of SAM in language modeling settings. Our
theoretical analysis shows that there are two possible routes
to sharpness minimization via SAM— the logit path and
the functional path. We derive quantities which can be used
to measure the extent to which each route is active. We
find that each path is relatively balanced in vision, but in
language modeling settings (where SAM performs poorly)
the logit path overwhelms the functional path.

3.1. The Penalty Formalization

We begin by looking at PENALTY-SAM, an alternative ver-
sion of SAM that is often used in theoretical analyses (An-
driushchenko & Flammarion, 2022; Dauphin et al., 2024)
and whose gradient matches g SAM to first order in ρ:

min
θθθ

L(θθθ) + ρ ∥∇θθθL(θθθ)∥︸ ︷︷ ︸
SP

, (3)

We can think of the added gradient norm term as a sharpness
penalty SP. To understand how SP influences optimization,
we investigate the structure of its gradient:

∇θθθ SP(θθθ) := ρ
∂

∂θθθ
∥∇θθθL(θθθ)∥ =

(
∂

∂θθθ
∇θθθL(θθθ)

)
· ϵϵϵ∗(θθθ) .

(4)

The gradient itself can be decomposed by the chain rule as

∇θθθL(θθθ) := ∇θθθF (θθθ) · ∇FL(θθθ) , (5)

2

Avoiding spurious sharpness minimization broadens applicability of SAM

where F (θθθ) =
(
fθθθ(x1)

⊤ · · ·fθθθ(xn)
⊤)⊤ ∈ RKn collates

the output over the entire dataset. The first term ∇θθθF (θθθ)
represents the Jacobian (derivative of the model function
outputs with respect to parameters); while the second term
∇FL(θθθ) is the derivative of the loss with respect to the
outputs and which comes out to be the difference of the
(softmax-ed) logits and the targets.

Using the product rule, we can rewrite Eqn. 4 as,[
∇θθθF (θθθ) · ∂

∂θθθ

(
∇FL(θθθ)

)]
· ϵϵϵ∗(θθθ)︸ ︷︷ ︸

SP gradient from logit perturbation := δlogit

+

[
∂

∂θθθ
(∇θθθF (θθθ)) · ∇FL(θθθ)

]
· ϵϵϵ∗(θθθ)︸ ︷︷ ︸

SP gradient from perturbing the function Jacobian := δfunc

. (6)

The first term δlogit represents the logit-path to sharpness
minimization — directly optimizing the sharpness via the
effect of the logits on the loss. In contrast, the second term
δfunc represents the functional-path to sharpness minimiza-
tion — that is, sharpness minimization via modification of
the Jacobian statistics.

3.2. Contribution of Logit and Functional paths

We can explicitly relate the logit and functional paths to
sharpness minimization (δlogit and δfunc in Eqn. 6) with
a decomposition of the Hessian of the loss HL = ∇2

θθθL,

∇θθθ SP = δlogit + δfunc = HG · ϵϵϵ∗ + HF · ϵϵϵ∗ = HL · ϵϵϵ∗
(7)

where, we use the Gauss-Newton Decomposition of the
Hessian (Schraudolph, 2002), namely:

HL = HG +HF =
1

n

n∑
i=1

∇θθθfθθθ(xi)
[
∇2

f ℓi
]
∇θθθfθθθ(xi)

⊤

+
1

n

n∑
i=1

K∑
k=1

[∇fℓi]k · ∇2
θθθ f

k
θθθ (xi) (8)

where, the Generalized Gauss Newton (GGN) (HG) and
the functional Hessian (HF) (Singh et al., 2021) are the
component matrices of the loss Hessian (HL). The GGN
term captures the curvature of the linearized model; in con-
trast, the functional Hessian (also known as the Nonlinear
Modeling Error) captures curvature due to model second
derivatives (Dauphin et al., 2024).

Thus, we can interpret the gradient through the logit and
functional paths based on the Hessian component they de-
pend upon — the GGN and functional Hessian respectively.

Normalized composition of Sharpness Gradient. To
better gauge which mode of sharpness gradient domi-
nates, we will measure the following natural quantities,

τlogit, τfunc, τcross, where the three sum to 1:

τlogit :=
∥δlogit∥2

∥∇θθθ SP∥2
, τfunc :=

∥δfunc∥2

∥∇θθθ SP∥2
,

τcross := 2
⟨δlogit, δfunc⟩
∥∇θθθ SP∥2

(9)

Hence based on their values, we can realize whether sharp-
ness minimization will prioritise reduction of logit sharp-
ness more or that of functional sharpness, as well as how
correlated they are by looking at the cross term.

3.3. Composition of Sharpness Gradient in Practice

We will now analyze SAM’s behavior in language model-
ing, focusing on how the sharpness gradient composition
reveals key differences between its application in language
and vision tasks. More concretely, we consider next-token
prediction task in the case of language using the C4 dataset
and image classification in the case of vision. Since the typ-
ical vocabulary sizes in language is in the order of tens
of thousands, so besides ImageNet-1K, we adopt other
datasets like JFT (Sun et al., 2017) and ImageNet-21K (Rid-
nik et al., 2021) to make the settings further comparable
in terms of number of outputs. For both settings, we em-
ploy Transformer-based networks, Nanodo (Liu et al., 2024),
which is a simplified version of GPT-2 (Radford et al., 2019),
in language modeling and Vision Transformer (ViT, Doso-
vitskiy et al., 2021) for vision tasks. Furthermore, in both
cases, we train with ADAMW as the optimizer and measure
the normalized sharpness gradient contributions (Eqn. 9)
throughout training using exact Hessian-vector products.
We present the results for Nanodo, C4 as well as ViT with
ImageNet-1K and JFT in Figure 2, and that on ImageNet-
21K in Appendix A.1.

Observations. Comparing these figures, we find a stark con-
trast between the language and vision settings. For vision,
we find that the τlogit starts close to 0 but that τlogit and
τfunc quickly become comparable for most of the training
process (Figure 2, leftmost and second from left). In con-
trast for language, the logit-related gradient fraction τlogit
is close to 1 while the sharpness gradient related to the
functional part is much smaller Figure 2 (second from right
and rightmost). In all cases, τcross tends to be negative
through most of training (see Figure 4 in the Appendix).
This suggests that the two paths to sharpness regularization
are antagonistic — taking one path moves you against the
other. In language modeling, the dominance of the logit
path, combined with negative τcross, means that the overall
contribution from the gradient of SP is unaligned, or even
anti-aligned, with the functional path to sharpness.

Logit Sharpness vs Functional Sharpness. The above
observations suggest that in NLP settings, SAM is heav-
ily biased towards minimizing sharpness by reducing the

3

Avoiding spurious sharpness minimization broadens applicability of SAM

0 7540 15080 22620 30160 37700

Training Steps

10 3

10 2

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

ViT, ImageNet1k

0 10680 21360 32040 42720 53400

Training Steps

10 3

10 2

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

ViT JFT

0 1600 3200 4800 6400

Training Steps

10 3

10 2

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

23.9 M, Nanodo, C4

0 41150 82300 123450 164600

Training Steps

10 3

10 2

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

1208.01 M, Nanodo, C4

τlogit

τfunc

Figure 2: Normalized sharpness contributions τlogit and τfunc show dramatically different trends across modalities. For
ViT trained on ImageNet-1K (leftmost) and JFT (second from left), τlogit starts near 0 but quickly increases to a comparable
magnitude as τfunc. For Transformer models trained on C4 (second from right and rightmost), τlogit ≫ τfunc after the first
few steps of training. This suggests that the pathways to sharpness regularization are more imbalanced in NLP compared to
vision settings, which may contribute to the poor performance of SAM in NLP settings. τcross (plotted in Appendix A.1) is
usually negative, suggesting the two methods of sharpness regularization tend to be antagonistic.

gradient of the loss with respect to the logits. There is
not much sharpness reduction happening due to making
the function more well-behaved. While both of these con-
tribute to decreasing sharpness, the underlying mechanisms
show interesting differences. Recalling the relation of logit-
sharpness to the Gauss-Newton term HG, we see that a
simple but spurious way to decrease it is by making the
network over-confident about its predictions. This is be-
cause of the presence of the term ∇2

f ℓi, which equates to
diag(pi)−pip

⊤
i , where pi = softmax(fθθθ(xi)). And thus

as pi becomes more one-hot (irrespective of leading to the
correct output or the incorrect), the logit sharpness will get
reduced.

In contrast, the functional sharpness is connected to the func-
tional Hessian, and the ways of decreasing it (such as via
modeling the target better pi → yi; or reducing the second-
derivative of the function with respect to the parameters
∥∇2

θθθf∥ → 0 and hence encouraging a functional simplic-
ity) are intuitively more desirable, even though setting a
particular proportion of it might be unclear.

These observations lead to the hypothesis that if we could
encourage a reduction of functional sharpness in lieu of
logit sharpness, then sharpness minimization might in fact
work for language modeling too. In the next section, we op-
erate under this hypothesis and derive simple but principled
modifications of the SAM update rule.

4. Algorithms to promote the functional path
to sharpness minimization

From the PENALTY-SAM formulation in Eqn. 3 and the
form of the corresponding sharpness gradients in Eqn. 7, we
can see that the functional path to sharpness can, in principle,
be amplified by manipulating δlogit and δfunc. However,
while PENALTY-SAM is competitive with the SAM
algorithm, it is less robust than SAM due to ill-behaved
second derivatives (Dauphin et al., 2024). In contrast to
PENALTY-SAM, the perturbation approach in SAM does
not explicitly involve second-derivatives in the gradient.
Therefore, it is important to develop strategies that promote

4

Avoiding spurious sharpness minimization broadens applicability of SAM

the functional path using the methodology taken in SAM.

In this section, we discuss two strategies — one direct and
the other indirect — that promote the functional path to
sharpness minimization, using algorithms which maintain
the benefits of the SAM formulation.

4.1. FUNCTIONAL-SAM

The simplest way to promote the functional path would
be to use a perturbation which aligns more with δfunc
than δlogit. We can find such a perturbation by decom-
posing the SAM update rule from Eqn. 2, as follows:

∇θθθL(θθθ + ρϵϵϵ∗) = [∇θθθF (θθθ) · ∇FL(θθθ + ρϵϵϵ∗)−∇θθθL(θ)]︸ ︷︷ ︸
δlogit up to first order in ρ

+ [∇θθθF (θθθ + ρϵϵϵ∗) · ∇FL(θθθ)−∇θθθL(θ)]︸ ︷︷ ︸
δfunc up to first order in ρ

+∇θθθL(θ) + O(ρ2)

(10)

The first term is δlogit up to first order in ρ, and the sec-
ond term is δfunc up to first order in ρ. This suggests the
following update rule which we call FUNCTIONAL-SAM:

g FUNC-SAM = −∇θθθF (θθθ + ρϵϵϵ∗) · ∇FL(θθθ) (11)

where, we discard the δlogit contribution. Further,
FUNCTIONAL-SAM uses the same perturbation ϵϵϵ∗ as the
SAM formulation, but only perturbs the Jacobian — thus
emphasizing the functional path to sharpness as desired.
This update rule can be implemented as efficiently as regular
SAM using the very same vector-Jacobian product opera-
tions that are used to compute gradient in most autodiffer-
entiation frameworks. In Appendix C, we provide the JAX
code snippets for SAM and FUNCTIONAL-SAM, demon-
strating that the difference in their implementation is a mat-
ter of a few lines. Further, like SAM, FUNCTIONAL-SAM
remains compatible with methods like ADAMW which take
a gradient and then further process it.

Overall, the update rule in Eqn. 11 has the same cost as
the SAM update rule, and keeps the benefit of the finite-
differences based perturbation approach to sharpness estima-
tion that keeps SAM robust — meeting all our initial goals.

4.2. PRECONDITIONED SAM

In language modeling, Transformers (Vaswani, 2017) are
almost exclusively trained with ADAMW or other adaptive
methods, and SGD-based training is known to be signifi-
cantly worse (Liu et al., 2020). This is commonly attributed
to the presence of heterogeneity in the gradients (Liu et al.,
2020; Noci et al., 2022; Pan & Li, 2023) and the curva-
ture (Zhang et al., 2024; Ormaniec et al., 2024; Jiang et al.,
2024) across different “modules” (layer types, layers at dif-
ferent depths, etc.), with the idea that ADAMW alleviates

heterogeneity and improves conditioning.

Naively combining SAM and ADAMW creates a potential
mismatch — the SAM perturbation is carried out with re-
spect to the unpreconditioned geometry. We hypothesize
that this mismatch offers grounds for spurious sharpness
minimization. To rectify this, we consider preconditioning
the perturbation ϵϵϵ∗ with the inverse of the same second-
moment statistics M from ADAMW, resulting in the update:

g PRECOND SAM ≡ −∇θθθL
(
θθθ + ρ̃ M−1(θθθ)∇θθθL(θθθ)

)
, (12)

where ρ̃ := ρ/∥M−1(θθθ)∇θθθL(θθθ)∥, and g PRECOND SAM is
then passed to the rest of Adam in lieu of the gradient
∇θθθL(θθθ).

Another motivation for PRECONDITIONED SAM is that
the gradients often align with the principal eigenspaces of
HG (Gur-Ari et al., 2018). This would amplify δlogit over
δfunc, since δlogit = HG · ϵϵϵ∗ and ϵϵϵ∗ is parallel to the
gradient. Preconditioning ϵϵϵ∗ by H−1

G reduces this effect,
thereby promoting the functional path over the logit path
(see Appendix B.1 for a more detailed argument). Although
H−1

G would be the best preconditioner in this regard, it is
expensive to estimate generally and ADAMW already gives
us a diagonal estimator in its own preconditioner M−1 at
no additional cost.

To conclude, this algorithm (Eqn. 12) has only marginally
higher computational cost than standard SAM + ADAMW,
and provides an indirect way to improve the contribution of
the functional path to sharpness minimization.

5. Empirical Evaluation
5.1. Setup

Training Lengths. In order to evaluate language mod-
els of multiple sizes, we consider (pre-)training them in
two scenarios: (a) when the training length is kept fixed
across scales and (b) when the training length is adjusted as
per compute-optimality considerations (Kaplan et al., 2020;
Hoffmann et al., 2022).

(a) Fixed-Length Training Scheme. In this setup, we train all
the models for 10K steps, which amounts to seeing roughly
a total of 1.3 billion tokens. The results for this setting are
presented in Table 2. (b) Chinchilla-style Training Hori-
zon Scheme. Unlike traditional image-classification based
scenarios, training language models often involves deter-
mining compute-optimal scaling laws, and whereby models
are trained on a corpus size in proportion to their parame-
ters. Specifically, we follow the 20× over-training policy
suggested in the Chinchilla (Hoffmann et al., 2022) training
regime, and use it together with the fixed-depth scheme,
as considered in Everett et al. (2024). The corresponding
results are shown in Table 3.

5

Avoiding spurious sharpness minimization broadens applicability of SAM

Training Details and Hyperparameters. In both scenar-
ios, we consider a batch size of 256 sequences, of maxi-
mum length 512, and evaluate model at 5 different sizes:
2M (for prototyping), 23.9M, 42.5M, 117.9M, and 1208M
in terms of non-embedding parameters (see details in Ap-
pendix A.6), and trained with ADAMW (Kingma & Ba,
2017; Loshchilov & Hutter, 2019) as the underlying opti-
mizer on the C4 dataset (Raffel et al., 2020). We used a
decoupled weight decay parameter set to 10−4 for all ex-
perimental settings. We use the Nanodo (Liu et al., 2024)
framework to implement these minimal decoder-only Trans-
former models, in Flax (Heek et al., 2024) together with
JAX (Bradbury et al., 2018).

5.2. Comparison of direct and indirect approaches

Before carrying out an extensive evaluation across differ-
ent model scales, we do initial prototyping on a smaller
model size. This lets us save computational resources and
scale up the most promising methods. In particular, we are
interested in knowing which methods out of direct and indi-
rect approaches, and their combinations, are most relevant.
In Table 1, we present results on a model with 2M non-
embedding parameters trained in the fixed-length regime.

Table 1: Effect of Preconditioning the SAM perturbation
on FUNC-SAM with 2M parameter model when trained
for 50K steps and at a peak learning rate of 0.001. Lower
is better.

METHOD EVAL LOSS

ADAMW 3.901
SAM 3.910

PRECOND SAM 3.889
FUNC-SAM 3.880
PRECOND FUNC-SAM 3.861

We notice that the plain version of FUNCTIONAL-SAM
outperforms both ADAMW and preconditioned SAM. But,
FUNCTIONAL-SAM can be further improved by using pre-
conditioning alongside, yielding a significant improvement
in terms of evaluation loss. Also, it should be noted that
the standard deviation across different seeds is typically
around ∼ 0.002. Moreover, mid-third decimal differences
in evaluation loss are typical of the gains provided by new
optimization methods for pre-training LLMs look like, e.g.,
in CASPR (Duvvuri et al., 2024), and even in newer variants
of attention (Leviathan et al., 2024), as well as when fus-
ing LLMs (Mavromatis et al., 2024) or when deduplicating
training corpus (Lee et al., 2021). Thus, the kind of gains
shown in Table 1 are indeed significant.

The experiments suggest that FUNCTIONAL-SAM also ben-

efits from preconditioning; we hypothesize that the func-
tional route to sharpness also benefits from reduction in
heterogeneity across modules and better matching between
inner and outer optimization geometries. Hereafter, we will
use the preconditioned variant for FUNCTIONAL-SAM, in-
stead of just the plain FUNCTIONAL-SAM, to reduce the
computational costs associated with testing at larger model
scales. This relationship merits further study, which is out-
side the scope of our work.

5.3. Results at Multiple Model Scales

Hyperparameter Setup. For thoroughness, at each model
size separately, we simultaneously tune learning rate and
perturbation strength ρ in our experiments, even though this
may be difficult at even bigger model sizes or when faced
with computational constraints. The upside of this much
harder testing ground is to provide us the key assurance that
the resulting gains cannot be obtained through other means
such as strong hyperparameter tuning of baselines. These
results can be found in Tables 2 and 3.2

In the case of billion-plus parameter model, this procedure
however amounted to extremely high computational costs,
and so we instead tuned the learning rate for the baseline
AdamW first. Subsequently, we tuned ρ for all SAM meth-
ods based on this corresponding optimal learning rate for
AdamW.

Observations. We find that in both the training regimes,
our proposed algorithms, namely PRECOND FUNCTIONAL-
SAM and PRECOND SAM, significantly outperform SAM,
at all the model scales in Tables 2 and 3. The gains typi-
cally range from 5 · 10−3 − 10−2, are largest for 117.9M
parameters. We find that SAM performs the worst of the
lot, even worse than ADAMW while being 2× computa-
tionally expensive. The numbers reported for SAM repre-
sent the smallest ρ tested (0.1), since it monotonically gets
worse with increasing ρ. Overall, we find that PRECOND
FUNCTIONAL-SAM achieves the best results, followed by
a mix of PRECOND SAM and ADAMW.

At the billion-parameter scale, PRECOND SAM and
SAM show susceptibility to numerical instabilities
(yielding NaNs) across training regimes, whereas PRECOND
FUNCTIONAL-SAM is significantly more robust. In the
relatively cheaper fixed-length runs where we could carry
out additional investigation, we find that warming up the
perturbation radius or a lower learning rate choice can
sometimes mitigate these issues for PRECOND SAM and
SAM, however, they are still outperformed by our best

2For brevity, we omit the standard deviation for the baselines
in these Tables. But in the Appendix, the reader can also find the
full table with standard deviations for all baseline methods as well.
The standard deviation for the baselines results are nevertheless
very similar.

6

Avoiding spurious sharpness minimization broadens applicability of SAM

Table 2: Evaluation loss comparison of different methods
in a fixed-length (10K steps) training setup, where the op-
timal learning rate is found for each model size separately.
Results are averaged over 5 seeds. For completeness, the
optimal values of the perturbation strength for PRECOND
FUNCTIONAL-SAM at the various scales are respectively
0.5, 0.5, 0.4, 0.4. Lower is better.

SIZE
PRECOND

FUNC-SAM
PRECOND

SAM
SAM ADAMW

23.9 M 3.425±0.5×10−3 3.431 3.450 3.430
42.5 M 3.344±2.2×10−3 3.350 3.366 3.349

117.9 M 3.218±2.2×10−3 3.224 3.257 3.228

1208 M 3.048±1.5×10−3 3.059 NaN 3.056

method, PRECOND FUNCTIONAL-SAM, which obtains
a lower evaluation loss and does not need a perturbation
warm-up in either training regime.

Table 3: Evaluation loss comparison of different methods in
Chinchilla like training (Everett et al., 2024), where the opti-
mal learning rate is found for each model size separately. All
results have been averaged over 5 seeds, except for the more
expensive billion parameter runs which are based on a single
seed. For completeness, the optimal values of the perturba-
tion strength for PRECOND FUNCTIONAL-SAM at the vari-
ous scales are respectively 0.7, 0.5, 0.4, 0.5. Lower is better.

SIZE
PRECOND

FUNC-SAM
PRECOND

SAM
SAM ADAMW

23.9 M 3.492±2.9×10−3 3.498 3.516 3.497

42.5 M 3.340±2.0×10−3 3.348 3.359 3.344

117.9 M 3.070±2.2×10−3 3.074 3.094 3.079

1208 M 2.557 2.562 NaN 2.561

We note that for the 1208M parameter models, ρ was tuned
more coarsely due to computational costs. Despite less
tuning, the gains for PRECOND FUNCTIONAL-SAM persist
at this scale in the Chinchilla training horizon experiments.

In Tables 6 and 7 of the appendix, we also illustrate how
the results fare if a common learning rate of 0.0001 is used
across all model scales. Interestingly, we find that PRECOND
FUNCTIONAL-SAM is much less sensitive to the lack of
rightly tuned learning rate than the baselines. As a matter
of fact, in such settings we find the corresponding gains to
be even bigger.

5.4. Discussion

The above-mentioned results demonstrate that the issue
with SAM in NLP can be successfully resolved through
PRECOND FUNCTIONAL-SAM. The significant improve-
ments in validation performance above are especially
intriguing if we bear in mind that these are obtained (a)
even when using a clean corpus such as C4 and (b) training
in an online fashion where no batch is seen more than once
due to massive size of the C4 corpus (even when training
for longer duration like in the Chinchilla setup). These are
ideal conditions which may not always hold. This suggests
that further improvements in generalization may occur
when training on noisy corpora or in multipass settings; we
leave exploration of these potential effects for future work.

All in all, these results confirm the benefits imparted by
FUNCTIONAL-SAM and PRECONDITIONED SAM over
SAM, and these improvements in generalization over
ADAMW restore the promise of sharpness regularization.

6. Ablation Studies
Perturbation strengths. In the above-mentioned results,
the best values for SAM typically occur around perturbation
radius ρ = 0.1, which, in our experiments, happens to
be the smallest nonzero perturbation radius considered.
However, if we employ larger perturbation radii, the
performance of SAM rapidly deteriorates, as shown in
Figure 3 (left), which moreover suggests that the optimal
value of perturbation size ρ is 0 — i.e., not using SAM
at all. In contrast, the optimal value of perturbation for
PRECOND FUNCTIONAL-SAM tends to be much larger,
across all values of learning rate as shown in Figure 3
(right). This explains why we needed to modify the
relative magnitudes of the sharpness contributions using
PRECOND FUNCTIONAL-SAM— the logit term degrades
performance at even small ρ, overwhelming the potential
gains from the functional path to sharpness minimization.

Non-linearity Choice. While all the above experimental
results utilize GeLU non-linearity, we also carry out exper-
iments with ReLU as the choice of non-linearity. These
results can be found in Table 8 of the Appendix, but the key
observation is that similar improvements are observed in the
evaluation loss when using PRECOND FUNCTIONAL-SAM
for ReLU based architectures as well.

6.1. Sharpness of Final Solutions

Here, we confirm that the generalization benefits imparted
by PRECOND FUNCTIONAL-SAM are brought about
convergence to a solution with lower curvature, as shown
in the Table 4 for the 23.9M model. Similar results can also
be found on other model sizes, and Table 9 of the Appendix
shows them for the 117.9M model.

7

Avoiding spurious sharpness minimization broadens applicability of SAM

Figure 3: Effect of increasing perturbation strength ρ for SAM (left) and PRECOND FUNCTIONAL-SAM (right) across
various peak learning rates, in an equal compute setup. Each cell shows the evaluation loss, averaged over 5 seeds, at the
corresponding values of learning rate and perturbation radius. The best performing value of perturbation strength at a given
learning rate is marked by white squares, while the overall best learning rate and perturbation strength pair is marked in
green. We see that with SAM any non-zero ρ does worse than the baseline (ρ = 0), while PRECOND FUNCTIONAL-SAM,
with the same compute costs, shows improvements at all values of peak learning rates (Nanodo trained on C4, 23.9M
parameters, Chinchilla like setup).

Table 4: Comparison of different methods based on Hessian
HL and GGN HG maximum eigenvalue and trace for the
23.9M model trained as per Chinchilla like training setup,
with a peak learning rate of 0.001. Lower is better for
all metrics. The best entry is in bold, the second best is
underlined.

METHOD EVAL LOSS λmax(HL) tr(HL) tr(HG)

ADAMW 3.688 10.61 4897.52 4745.03

SAM 3.706 2.71 3324.58 3231.46

PRECOND
SAM 3.663 5.62 3182.78 3097.87

PRECOND
FUNC-SAM

3.631 6.20 2687.12 2503.86

We notice that all sharpness minimization methods yield
lower value of the maximum eigenvalue and the trace,
as compared to ADAMW. Interestingly, we also find that
SAM results in the lowest Hessian maximum eigenvalue,
even though it performs much worse than ADAMW when
evaluating on the validation set. This further highlights how
SAM, by default, in language modeling tasks is set up to
minimize sharpness spuriously. In contrast, we see that for
both of our proposed methods, the improved generalized
performance comes hand-in-hand with better landscape
properties of their solutions.

7. Related work
Improved variants of SAM in Vision. An extensive line
of work has attempted to propose better definitions of sharp-
ness — particularly those which are less sensitive to details
of parameterization (Kwon et al., 2021; Tahmasebi et al.,

2024; Li & Giannakis, 2024). Some of these methods have
shown small improvements on vision tasks. We believe
our decomposition approach is orthogonal to this line of
research. Therefore, the obtained FUNCTIONAL-SAM al-
gorithm is substantially different from prior work.

Studies exploring preconditioning for SAM. Other work
has also suggested that the perturbation step in SAM
should be taken in an alternative geometry. Our approach to
preconditioning is most similar to Fisher SAM (Kim et al.,
2022), and the concurrent work of Zhang et al. (2025) which
describes a more general preconditioning scheme for SAM.
Our key insight is that it is useful to take the SAM pertur-
bation in the exact same geometry used by the optimizer,
which can be accomplished for negligible cost in the case of
Adam and its variants. Furthermore, our work is primarily
driven by the problem of making SAM work in language
modeling, which is far from the focus of these other works.

Role of the indefinite Hessian term. At a more conceptual
level, our study aligns with recent works (Singh et al., 2021;
Dauphin et al., 2024) which underscore paying more impor-
tance to the functional Hessian, the understudied indefinite
term of the Hessian in the Gauss-Newton decomposition,
as opposed to focusing solely on the positive semi-definite
GGN term as suggested by prior studies (Sagun et al., 2018;
Papyan, 2019; Jacot et al., 2020). The decomposition of the
sharpness gradient into logit and functional modes, along
with the demonstrated significance of FUNCTIONAL-SAM
in NLP tasks (which is closely tied to the functional Hes-
sian), highlights the risks of over-reliance on the GGN and
the corresponding outlier spectrum of the Hessian — espe-
cially in the context of regularization of sharpness.

SAM in NLP. Prior works building on SAM in NLP have
been restricted to the fine-tuning setting (Bahri et al., 2022),
domain transfer (Sherborne et al., 2024) or on small-scale
machine translation setups (Li & Giannakis, 2024). To

8

Avoiding spurious sharpness minimization broadens applicability of SAM

the best of our knowledge, SAM has hitherto not been
successfully applied to language modeling, particularly in
any scaling setting.

8. Discussion and Future Work
There are several important aspects that we would like to
elaborate on, which could spark interesting future work:

Interpolating smoothly between paths to sharpness mini-
mization. In this work, we focused on FUNCTIONAL-SAM
due to our diagnosis of issues in language modeling. How-
ever, one can imagine that there might be other domains
where FUNCTIONAL-SAM gives spurious minimization,
and the alternative “LOGIT-SAM” may need to be empha-
sized. Our implementation of FUNCTIONAL-SAM can
be extended to a more continuous “ANGLE-SAM” which
can smoothly interpolate between the extremes, which we
discuss in detail in Appendix D. Though we did not find
ANGLE-SAM necessary in the language modeling setting,
there might be other model-dataset-optimizer triples where
it would prove beneficial.

The Perturbation Scope. One of the key takeaways from
this work is how scoping the perturbation to the level of the
function Jacobian suffices to enable the benefits of SAM in
NLP tasks. This scoping can be generalized to any set of
paths or branches in the computational graph. For example,
the output of network with residual connections can be
decomposed into multiple streams like f(x) = f1(x) +
f2(x) + · · ·+ fm(x) and practitioners can choose to either
have the perturbation go through all or some of them. This
perspective opens the door to many more creative levels of
perturbation scoping and new regularization techniques.

Optimal Perturbation Transfer. At the largest scales,
extensive tuning of the perturbation radius is unfeasible;
FUNCTIONAL-SAM and its variants will benefit from
improved parameterizations that optimally transfer the per-
turbation radius across model scales. The recently explored
layerwise perturbation scaling regime for SAM in vision
tasks (Haas et al., 2024) may be promising for language too.

Utility for Downstream tasks and deployment. An
added advantage of training with sharpness minimization
methods is that the resulting flatter solutions can adapt more
gracefully to the post-training pipeline, like downstream
fine-tuning or model compression. These benefits have been
demonstrated in prior work such as (Liu et al., 2023), where
a lower Hessian trace at the solution has been shown to
correlate better with performance on downstream tasks, and
we expect similar benefits to also hold with FUNCTIONAL-
SAM and its variants, given the obtained flatter solutions
(see Tables 4, 9). Likewise prior work (Na et al., 2022) has
also advocated the use of such methods when subsequent
model compression is intended, and we also present a very

simple demonstration with one-shot pruning in Figure 5
where we see that FUNCTIONAL-SAM shows a more grace-
ful degradation as opposed to ADAMW with increasing
sparsity. We leave a detailed study to future work.

Efficiency. A common drawback of sharpness minimization
methods is that they require twice the gradient computation
per step, and hence are twice as expensive as compared to
other optimizers like ADAMW. In this paper, our singular
focus has been to address the ineffectiveness of SAM in
language modeling, which we have been able to carry out
successfully through the proposed FUNCTIONAL-SAM and
its preconditioning variants. However, these algorithms still
share the same 2× computational burden like SAM itself,
and thus additional work is required in the future to make it
suitable for deployment. Thankfully, since FUNCTIONAL-
SAM is structured similarly to SAM, most advancements
in efficient implementations of SAM should be useful for
FUNCTIONAL-SAM as well. Given the plethora of recent
work in this area for vision (Du et al., 2022; Liu et al., 2022;
Becker et al., 2024; Xie et al., 2024), we are optimistic about
the development of efficient FUNCTIONAL-SAM variants
for language modeling in the near future.

Data-bound scenarios and model size constraints. In any
case, we would like to emphasize that our primary compar-
ison point in the paper is that at equal number of steps —
which is becoming an increasingly relevant scenario. This
is because industrial settings are often bound by data avail-
ability or a limited model size (e.g., inference constraints).
Therefore, here extra training time is acceptable for better
final quality.

9. Conclusion
Our work thoroughly highlights the ineffectiveness of SAM
for language modeling and uncovers the underlying reasons
behind such an occurrence. We show that this arises because
sharpness reduction in NLP settings is prone to logit ma-
nipulation, and hence spurious sharpness minimization, —
rather than being driven by promoting the simplicity of the
network function. Based on this insight, we propose address-
ing this issue via FUNCTIONAL-SAM and preconditioning.
We demonstrate that both these simple but principled modi-
fications to SAM restore its generalization properties across
multiple model scales.

More broadly, we believe that our novel foray into functional
and logit modes of sharpness reduction will reinvigorate the
existing research into SAM, and pave the way for advanced
curvature regularization techniques. Lastly, we are excited
about the nuanced characterization of sharpness introduced
here and hope that it advances our fundamental understand-
ing of sharpness, its dynamics, and the broader nature of
loss landscapes.

9

Avoiding spurious sharpness minimization broadens applicability of SAM

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Andriushchenko, M. and Flammarion, N. Towards un-

derstanding sharpness-aware minimization, 2022. URL
https://arxiv.org/abs/2206.06232.

Bahri, D., Mobahi, H., and Tay, Y. Sharpness-aware mini-
mization improves language model generalization, 2022.
URL https://arxiv.org/abs/2110.08529.

Becker, M., Altrock, F., and Risse, B. Momentum-sam:
Sharpness aware minimization without computational
overhead, 2024. URL https://arxiv.org/abs/
2401.12033.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide val-
leys, 2017. URL https://arxiv.org/abs/1611.
01838.

Ciregan, D., Meier, U., and Schmidhuber, J. Multi-column
deep neural networks for image classification. In 2012
IEEE conference on computer vision and pattern recogni-
tion, pp. 3642–3649. IEEE, 2012.

Dauphin, Y. N., Agarwala, A., and Mobahi, H. Neglected
hessian component explains mysteries in sharpness regu-
larization, 2024.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers

for image recognition at scale, 2021. URL https:
//arxiv.org/abs/2010.11929.

Du, J., Zhou, D., Feng, J., Tan, V. Y., and Zhou, J. T.
Sharpness-aware training for free. arXiv preprint
arXiv:2205.14083, 2022.

Duvvuri, S. S., Devvrit, F., Anil, R., Hsieh, C.-J., and
Dhillon, I. S. Combining axes preconditioners through
kronecker approximation for deep learning. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., et al. Scaling exponents across parameterizations
and optimizers. arXiv preprint arXiv:2407.05872, 2024.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. arXiv preprint arXiv:2010.01412, 2020.

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient
descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754, 2018.

Haas, M., Xu, J., Cevher, V., and Vankadara, L. C. µP2: Ef-
fective sharpness aware minimization requires layerwise
perturbation scaling, 2024. URL https://arxiv.
org/abs/2411.00075.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2024. URL http://
github.com/google/flax.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference
on Computational learning theory, pp. 5–13, 1993.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neu-
ral Computation, 9:1–42, 1997. URL https://api.
semanticscholar.org/CorpusID:733161.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal large
language models, 2022. URL https://arxiv.org/
abs/2203.15556.

Jacot, A., Gabriel, F., and Hongler, C. The asymptotic
spectrum of the hessian of dnn throughout training, 2020.
URL https://arxiv.org/abs/1910.02875.

10

https://arxiv.org/abs/2206.06232
https://arxiv.org/abs/2110.08529
https://arxiv.org/abs/2401.12033
https://arxiv.org/abs/2401.12033
http://github.com/jax-ml/jax
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1611.01838
https://arxiv.org/abs/1611.01838
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2411.00075
https://arxiv.org/abs/2411.00075
http://github.com/google/flax
http://github.com/google/flax
https://api.semanticscholar.org/CorpusID:733161
https://api.semanticscholar.org/CorpusID:733161
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/1910.02875

Avoiding spurious sharpness minimization broadens applicability of SAM

Jiang, K., Malik, D., and Li, Y. How does adaptive optimiza-
tion impact local neural network geometry? Advances in
Neural Information Processing Systems, 36, 2024.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Ben-
gio, S. Fantastic generalization measures and where to
find them, 2019. URL https://arxiv.org/abs/
1912.02178.

Jiang, Y., Foret, P., Yak, S., Roy, D. M., Mobahi, H., Dz-
iugaite, G. K., Bengio, S., Gunasekar, S., Guyon, I.,
and Neyshabur, B. Neurips 2020 competition: Pre-
dicting generalization in deep learning, 2020. URL
https://arxiv.org/abs/2012.07976.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,
and Amodei, D. Scaling laws for neural language mod-
els, 2020. URL https://arxiv.org/abs/2001.
08361.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima, 2017.
URL https://arxiv.org/abs/1609.04836.

Kim, M., Li, D., Hu, S. X., and Hospedales, T. Fisher sam:
Information geometry and sharpness aware minimisation.
In International Conference on Machine Learning, pp.
11148–11161. PMLR, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization, 2017. URL https://arxiv.org/abs/
1412.6980.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Krogh, A. and Hertz, J. A simple weight decay can im-
prove generalization. Advances in neural information
processing systems, 4, 1991.

Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive
sharpness-aware minimization for scale-invariant learn-
ing of deep neural networks. In International Conference
on Machine Learning, pp. 5905–5914. PMLR, 2021.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

Leviathan, Y., Kalman, M., and Matias, Y. Selec-
tive attention improves transformer. arXiv preprint
arXiv:2410.02703, 2024.

Li, B. and Giannakis, G. Enhancing sharpness-aware op-
timization through variance suppression. Advances in
Neural Information Processing Systems, 36, 2024.

Liu, H., Xie, S. M., Li, Z., and Ma, T. Same pre-training loss,
better downstream: Implicit bias matters for language
models, 2023. URL https://openreview.net/
forum?id=F5uYcwABMu.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Understand-
ing the difficulty of training transformers. arXiv preprint
arXiv:2004.08249, 2020.

Liu, P. J., Novak, R., Lee, J., Wortsman, M., Xiao, L., Ev-
erett, K., Alemi, A. A., Kurzeja, M., Marcenac, P., Gur,
I., Kornblith, S., Xu, K., Elsayed, G., Fischer, I., Pen-
nington, J., Adlam, B., and Dickstein, J.-S. Nanodo: A
minimal transformer decoder-only language model im-
plementation in JAX., 2024. URL http://github.
com/google-deepmind/nanodo.

Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. Towards
efficient and scalable sharpness-aware minimization. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12360–12370, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

Mavromatis, C., Karypis, P., and Karypis, G. Pack of llms:
Model fusion at test-time via perplexity optimization.
arXiv preprint arXiv:2404.11531, 2024.

Na, C., Mehta, S. V., and Strubell, E. Train flat,
then compress: Sharpness-aware minimization learns
more compressible models. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pp. 4909–4936. Association for Computational Lin-
guistics, 2022. doi: 10.18653/v1/2022.findings-emnlp.
361. URL http://dx.doi.org/10.18653/v1/
2022.findings-emnlp.361.

Noci, L., Anagnostidis, S., Biggio, L., Orvieto, A., Singh,
S. P., and Lucchi, A. Signal propagation in transformers:
Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:
27198–27211, 2022.

Ormaniec, W., Dangel, F., and Singh, S. P. What does it
mean to be a transformer? insights from a theoretical
hessian analysis, 2024. URL https://arxiv.org/
abs/2410.10986.

Pan, Y. and Li, Y. Toward understanding why adam con-
verges faster than sgd for transformers. arXiv preprint
arXiv:2306.00204, 2023.

11

https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2012.07976
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=F5uYcwABMu
https://openreview.net/forum?id=F5uYcwABMu
http://github.com/google-deepmind/nanodo
http://github.com/google-deepmind/nanodo
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
http://dx.doi.org/10.18653/v1/2022.findings-emnlp.361
http://dx.doi.org/10.18653/v1/2022.findings-emnlp.361
https://arxiv.org/abs/2410.10986
https://arxiv.org/abs/2410.10986

Avoiding spurious sharpness minimization broadens applicability of SAM

Papyan, V. The full spectrum of deepnet hessians at scale:
Dynamics with sgd training and sample size, 2019. URL
https://arxiv.org/abs/1811.07062.

Pennington, J. and Bahri, Y. Geometry of neural net-
work loss surfaces via random matrix theory. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pp. 2798–2806. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
pennington17a.html.

Pittorino, F., Lucibello, C., Feinauer, C., Malatesta, E. M.,
Perugini, G., Baldassi, C., Negri, M., Demyanenko, E.,
and Zecchina, R. Entropic gradient descent algorithms
and wide flat minima. CoRR, abs/2006.07897, 2020. URL
https://arxiv.org/abs/2006.07897.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor,
L. Imagenet-21k pretraining for the masses, 2021. URL
https://arxiv.org/abs/2104.10972.

Rissanen, J. Modeling by shortest data description. Auto-
matica, 14(5):465–471, 1978.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou,
L. Empirical analysis of the hessian of over-parametrized
neural networks, 2018. URL https://arxiv.org/
abs/1706.04454.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural Computation,
14:1723–1738, 2002.

Sherborne, T., Saphra, N., Dasigi, P., and Peng, H. Tram:
Bridging trust regions and sharpness aware minimiza-
tion, 2024. URL https://arxiv.org/abs/2310.
03646.

Singh, S. P., Bachmann, G., and Hofmann, T. Analytic
insights into structure and rank of neural network hes-
sian maps. In Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural In-
formation Processing Systems, 2021. URL https:
//openreview.net/forum?id=otDgw7LM7Nn.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisit-
ing unreasonable effectiveness of data in deep learning
era, 2017. URL https://arxiv.org/abs/1707.
02968.

Tahmasebi, B., Soleymani, A., Bahri, D., Jegelka, S., and
Jaillet, P. A universal class of sharpness-aware minimiza-
tion algorithms, 2024. URL https://arxiv.org/
abs/2406.03682.

Vapnik, V. Principles of risk minimization for learning the-
ory. Advances in neural information processing systems,
4, 1991.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wu, D., tao Xia, S., and Wang, Y. Adversarial weight
perturbation helps robust generalization, 2020. URL
https://arxiv.org/abs/2004.05884.

Xie, W., Pethick, T., and Cevher, V. Sampa: Sharpness-
aware minimization parallelized, 2024. URL https:
//arxiv.org/abs/2410.10683.

Zhang, H. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo,
Z.-Q. Why transformers need adam: A hessian perspec-
tive, 2024. URL https://arxiv.org/abs/2402.
16788.

Zhang, Y., Li, B., and Giannakis, G. B. Precondi-
tioned sharpness-aware minimization: Unifying anal-
ysis and a novel learning algorithm. arXiv preprint
arXiv:2501.06603, 2025.

12

https://arxiv.org/abs/1811.07062
https://proceedings.mlr.press/v70/pennington17a.html
https://proceedings.mlr.press/v70/pennington17a.html
https://arxiv.org/abs/2006.07897
https://arxiv.org/abs/2104.10972
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/2310.03646
https://arxiv.org/abs/2310.03646
https://openreview.net/forum?id=otDgw7LM7Nn
https://openreview.net/forum?id=otDgw7LM7Nn
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/2406.03682
https://arxiv.org/abs/2406.03682
https://arxiv.org/abs/2004.05884
https://arxiv.org/abs/2410.10683
https://arxiv.org/abs/2410.10683
https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2402.16788

Avoiding spurious sharpness minimization broadens applicability of SAM

A. Additional Results
A.1. Sharpness Composition Plots

0 7540 15080 22620 30160 37700

Training Steps

100

10 1

0

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

ViT, ImageNet1k

0 11580 23160 34740 46320 57900

Training Steps

100

10 1

0

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

ViT ImageNet21K

0 10680 21360 32040 42720 53400

Training Steps

100

10 1

0

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

ViT JFT

0 1600 3200 4800 6400

Training Steps

100

10 1

0

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

23.9 M, Nanodo, C4

0 41150 82300 123450 164600

Training Steps

100

10 1

10 2

0

10 2

10 1

100

S
ha

rp
ne

ss
 c

om
po

si
tio

n

1208.01 M, Nanodo, C4

τlogit

τfunc

τcross

Figure 4: Sharpness contributions τlogit, τfunc and τcross for various datasets. τcross tends to be negative for most of
training.

13

Avoiding spurious sharpness minimization broadens applicability of SAM

A.2. Detailed Table Results

Below in Table 5, we include the standard deviation for each of the baseline method as well, in addition to that listed for
PRECOND FUNCTIONAL-SAM in Table 3.

Table 5: Evaluation loss comparison of different methods in Chinchilla like training (Everett et al., 2024), where the optimal
learning rate is found for each model size separately. All results have been averaged over 5 seeds, except for the more
expensive billion parameter runs which are based on a single seed. Lower is better.

SIZE
PRECOND

FUNC-SAM
PRECOND

SAM
SAM ADAMW

23.9 M 3.492±2.9×10−3 3.498±3.6×10−3 3.516±2.9×10−3 3.497±2.9×10−3

42.5 M 3.340±2.0×10−3 3.348±1.7×10−3 3.359±3.4×10−3 3.344±2.5×10−3

117.9 M 3.070±2.2×10−3 3.074±4.0×10−3 3.094±3.1×10−3 3.079±2.7×10−3

1208 M 2.557 2.562 NaN 2.561

A.3. Results across Scales at a common learning rate

Table 6: Evaluation loss comparison of different methods in a fixed-length (10K steps) training setup at a common learning
rate of 0.001. Lower is better.

SIZE
PRECOND

FUNC-SAM
PRECOND

SAM
SAM ADAMW

23.9 M 3.527 3.547 3.587 3.565
42.5 M 3.414 3.439 3.462 3.451
117.9 M 3.252 3.266 3.288 3.280
1208 M 3.054 NaN NaN 3.081

Table 7: Evaluation loss comparison of different methods in Chinchilla like training (Everett et al., 2024) at a common
learning rate of 0.001. Lower is better.

SIZE
PRECOND

FUNC-SAM
PRECOND

SAM
SAM ADAMW

23.9 M 3.631 3.663 3.706 3.688
42.5 M 3.414 3.435 3.460 3.445
117.9 M 3.096 3.108 3.126 3.120
1208 M 2.612 NaN NaN 2.627

14

Avoiding spurious sharpness minimization broadens applicability of SAM

A.4. Results across non-linearities

Table 8: Comparison of SAM variants across non-linearities for a Nanodo model with 2M (non-embedding parameters) on
C4 dataset.

NON-LINEARITY METHOD EVAL LOSS

GeLU
PRECOND
FUNCTIONAL-SAM 3.8614

GeLU
PRECOND
SAM 3.8894

GeLU ADAMW 3.9069

ReLU
PRECOND
FUNCTIONAL-SAM 3.8777

ReLU
PRECOND
SAM 3.8937

ReLU ADAMW 3.9145

A.5. Hessian spectra results at another model size

Table 9: Comparison of different methods based on Hessian HL and GGN HG metrics for the 117.9M model trained as per
Chinchilla like training setup.

METHOD EVAL LOSS λmax(HL) tr(HL) tr(HG)

PRECOND
FUNC-SAM 3.096 8.884 2790.650 2746.559

PRECOND
SAM 3.108 7.415 2920.445 2060.214

SAM 3.126 3.381 2235.759 2222.779

ADAMW 3.120 9.259 3299.497 3285.881

A.6. Architectural Details.

The 23.9M, 42.5M, 117.9M, and 1208M models have the same depth of 6, and whose width has been scaled together with
the number of heads. In particular, these correspond to h = 9, 12, 20, and 64 heads per block and the width m scales as
m = 64× h, and the MLP dimension is f = 4×m. The 2M model used for prototyping has depth 3, 4 heads per block,
width m = 256 and MLP dimension f = 1024.

15

Avoiding spurious sharpness minimization broadens applicability of SAM

A.7. Downstream benefits of sharpness minimization

Figure 5: Effect of one-shot (unstructured) global magnitude pruning: We see that sharpness minimization methods tend
to degrade more gracefully as increasing number of parameters are pruned. Also, from this figure we can see that the
performance gained imparted by FUNCTIONAL-SAM over ADAMW is equivalent to setting about 25% parameters of zero,
and is thus significant.

B. Additional theory
B.1. Argument for reducing matrix-vector products with inverse preconditioning

We will use a random matrix model to reason about the effects of preconditioning with a matrix inverse. Random matrices
have been used to model the spectra of the Hessian of the large models found in machine learning, and in particular treating
the Gauss-Newton and the functional Hessian/NME as independent yields quantitative insights about the structure of the
overall Hessian (Pennington & Bahri, 2017).

Consider two N ×N symmetric invertible matrices A and B. Suppose A and B are random and freely independent. Free
independence is the non-commutative analog to classical independence, implied by classical independence of entries in the
limit of large matrix size (Pennington & Bahri, 2017). The key feature it induces is

E[tr[AjBk]] = E[tr[Aj]]E[tr[Bk]] (13)

for any j, k, where tr is the trace.

Given a random unit vector v, the expected squared lengths of the matrix vector products with A and B are given by

E[∥Av∥2] = 1

N
E[tr[A2]], E[∥Bv∥2] = 1

N
E[tr[B2]] (14)

The ratio r1 of magnitudes is given by

r1 ≡ E[∥Bv∥2]
E[∥Av∥2]

=
E[tr[B2]]

E[tr[A2]]
(15)

Now consider the norm of w = A−1v passed through each matrix:

E[∥Aw∥2] = 1

N
, E[∥Bw∥2] = 1

N
E[tr[A−1B2A−1]] (16)

The new ratio of magnitudes r2 is given by

r2 ≡ E[∥Bw∥2]
E[∥Aw∥2]

= E[tr[A−1B2A−1]] =
E[tr[B2]]

E[tr[A−2]]−1
(17)

From Jensen’s inequality, tr[A2] ≥ tr[A−2]−1. Therefore r2 > r1; preconditioning by the inverse of A causes matrix-vector
products to upweigh products with B relative to products with A, relative to the unpreconditioned product.

In neural network settings, there are non-trivial relationships between the gradient, the Gauss-Newton matrix HG and the
functional Hessian HF; however, the eigenvectors and eigenvalues of HG and HF are only weakly related. Therefore even
though the exact calculations in the example above don’t hold, we suspect that generically preconditioning by H−1

G will
downweigh HGϵ

∗ compared to HFϵ
∗.

16

Avoiding spurious sharpness minimization broadens applicability of SAM

C. Code Snippets for SAM and FUNCTIONAL-SAM
from jax import grad, vjp
from jax.tree_util import tree_map
from utils import normalize_grad

def sam_gradients(params, loss_fn, rho):

compute the usual loss gradient
dL_dtheta = grad(loss_fn)(params)

normalize the gradients
dL_dtheta = normalize_grad(dL_dtheta)

perturb the parameters
perturbed_params = tree_map(lambda a, b: a + rho * b, params, dL_dtheta)

compute the gradient as by SAM
sam_grad = grad(loss_fn)(perturbed_params)

return sam_grad

def functional_sam_gradients(params, loss_fn, network_fn, rho):

compute the usual loss gradient, but also extract dL_dlogits
(dL_dlogits), dL_dtheta = grad(loss_fn, hax_aux=True)(params)

normalize the gradients
dL_dtheta = normalize_grad(dL_dtheta)

perturb the parameters
perturbed_params = tree_map(lambda a, b: a + rho * b, params, dL_dtheta)

set up the VJP at the perturbed parameters
_, dF_dtheta_fn = vjp(lambda theta: network_fn(theta), perturbed_params)

do the VJP with the (unperturbed) dL_dlogits
functional_sam_grad = dF_dtheta_fn(dL_dlogits)[0]

return functional_sam_grad

Listing 1: Illustration of how to get the gradients in the two methods. Functional SAM differs from the SAM implementation
only in the last couple lines

17

Avoiding spurious sharpness minimization broadens applicability of SAM

D. ANGLE-SAM
In this section, we present a general variant of SAM, which includes both FUNCTIONAL-SAM and SAM as its particular
instantiations. The core idea is that once we have been able to decompose the sharpness gradient into those arising from
logit and functional paths, we can design our bespoke or custom versions of SAM which lean more or less towards one path
than another.

To do so, let’s assume that out custom path is at an angle ϕ with the functional path. We weigh the functional path by a
factor of cos(ϕ), while we weigh the logit path by sin(ϕ). Then the gradient update in ANGLE-SAM can be described as:

g ANGLE-SAM := ∇θθθL(θθθ) + sin(ϕ) · glogit + cos(ϕ) · gfunc (18)
= ∇θθθL(θθθ) + sin(ϕ) · [∇θθθF (θθθ) · ∇FL(θθθ + ρϵϵϵ∗)−∇θθθL(θθθ)] + cos(ϕ) · [∇θθθF (θθθ + ρϵϵϵ∗) · ∇FL(θθθ)−∇θθθL(θθθ)] (19)

= ∇θθθL(θθθ) + ρ sin(ϕ) · HG · ϵϵϵ∗ + ρ cos(ϕ) · HF · ϵϵϵ∗ +O(ρ2) (20)

We see that ϕ = π
4 recovers SAM upto first order in ρ, while ϕ = 0 would yield FUNCTIONAL-SAM and ϕ = π

2 would
result in a variant that optimizes solely along the logit path and which can thus be called LOGIT-SAM. All in all, this shows
how ANGLE-SAM is a clean generalization of SAM, that equips it with a perturbation angle in addition to the usual
perturbation radius ρ.

At some level, this above formulation could be viewed as making an assumption that these two paths are orthogonal3. On
another level, one can simply think of these weights as a mere strategy to obtain convenient weight settings that have their
sum of squares as unity.

We expect that this approach might pay dividends in different model-dataset-optimizer triples, and we expect this to be an
interesting direction for future work.

3This is not far-fetched. As we noted in our experiments, these two paths tend to be anti-correlated, but often the correlation is quite
small in magnitude and and approaches zero.

18

