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Abstract

The effectiveness of autoregressive LLMs has001
allowed many language and vision tasks to002
be reframed as generative problems. Gener-003
ative visual language models (VLMs) have re-004
cently shown potential across various down-005
stream tasks. However, it is still an open ques-006
tion whether, and to what extent, these models007
can properly understand a multimodal context008
where language and vision provide complemen-009
tary information—a mechanism routinely in010
place in human language communication. In011
this work, we test various VLMs on the task of012
generating action descriptions consistent with013
both an image’s visual content and an intention014
or attitude (not visually grounded) conveyed by015
a textual prompt. Our results show that BLIP-2016
is not far from human performance when the017
task is framed as a generative multiple-choice018
problem, while other models struggle. Further-019
more, the actions generated by BLIP-2 in an020
open-ended generative setting are better than021
those by the competitors; indeed, human anno-022
tators judge most of them as plausible contin-023
uations for the multimodal context. Our study024
reveals substantial variability among VLMs in025
integrating complementary multimodal infor-026
mation, yet BLIP-2 demonstrates promising027
trends across most evaluations, paving the way028
for seamless human-computer interaction.029

1 Introduction030

In recent years, transformer-based generative vi-031

sual language models (VLMs) have shown out-032

standing results in many downstream tasks. Sim-033

ilar to what happened in NLP, where pre-trained034

generative models have supplanted previous archi-035

tectures thanks to their flexibility and portability,036

VLMs have proven effective in solving language-037

and-vision tasks by turning them into generative038

problems. This is possible thanks to their massive039

multimodal pre-training, which typically builds on040

a pre-trained language model and image processing041

If I feel athletic. . . I will. . .

(a) stand and take
a break with the
baseball players ✗

(b) play baseball
with friends ✓

(c) play tennis
with friends ✗

Figure 1: We test generative visual language models’
(VLMs) abilities to combine complementary informa-
tion brought into context by the two modalities. In this
example from the BD2BB dataset (Pezzelle et al., 2020)
(slightly edited for space reasons), only one of the ac-
tions on the right, (b), is consistent with both the textual
prompt and the image on the left. As for (a) and (c), they
are plausible based on the image or the textual prompt,
respectively, but not on the combination of both.

model. This has enabled systems that can, in zero- 042

shot mode and without further fine-tuning, seam- 043

lessly describe the content of an image, answer 044

questions about it, or engage in a dialogue (see 045

Caffagni et al., 2024, for an overview). This might 046

suggest that VLMs have skills similar to those 047

needed for meaningful multimodal communication. 048

In real-life multimodal communication, human 049

speakers continuously integrate complementary in- 050

formation from various modalities, including lan- 051

guage and vision, to understand and convey mes- 052

sages and properly act in various situations (Partan 053

and Marler, 1999; Benoît et al., 2000; Forceville, 054

2020). An example of such complementarity is 055

shown in Figure 1: If someone observing the scene 056

depicted in the image feels athletic, they would 057

likely take an action that is consistent with both the 058

visual content and their attitude or intention, i.e., 059

play baseball with friends. In contrast, actions that 060

are plausible given either the image or the textual 061

intention, but not both, would not be considered. 062
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Note that making this type of inference is also key063

for any multimodal model that aims to be commu-064

nicatively plausible and useful. Consider the case065

of a virtual assistant that has access to the visual066

context and a spoken or written request from a user.067

If asked to recommend an appropriate activity to do068

in a specific context—e.g., I feel adventurous. What069

do you recommend I do?—the assistant should sug-070

gest something suitable for the user’s location, and071

obviously in line with their attitude. Despite the072

relevance of the problem, only a few studies have073

investigated, to date, whether language-and-vision074

models master this ability. One notable exception075

is Pezzelle et al. (2020), which proposed the Be076

Different to Be Better (BD2BB) benchmark (see077

an example in Figure 1) to test the ability of multi-078

modal encoders such as LXMERT (Tan and Bansal,079

2019) to integrate complementary information. In080

that study, these models were shown to lag far be-081

hind human intuitions, leaving ample room for im-082

provement in future systems. To the best of our083

knowledge, no subsequent work addressed whether084

generative VLMs have filled this gap.085

In this research, we use the BD2BB benchmark086

and test how several generative VLMs deal with it.087

We do so employing two main experiments. First,088

we challenge the models to solve the task in its089

original multiple-choice format, i.e., by picking,090

for a given image, one among 5 candidate actions091

(I will. . . ) that we give to the model via prompting092

together with the intention (If I. . . ). We evaluate093

model performance in terms of accuracy, that we094

measure both extrinsically (considering the label,095

corresponding to a given action, that is output by096

the model) and intrinsically (looking at the proba-097

bility assigned by a model to each action following098

the same intention). Second, we test VLMs in the099

setup that best suits them, that is, by letting them100

generate an action based on the image and the in-101

tention. In this case, we assess model performance102

using both a reference-based, automatic metric (we103

compute BERTScore similarity between the gener-104

ated action and the target one from BD2BB) and105

a reference-free, human-based evaluation (we ask106

annotators to judge whether a certain action is good107

for a given <image, intention> pair).108

The results of our first experiment show that,109

while most tested models hover around the chance110

level, BLIP-2 achieves fairly high accuracy, much111

closer to human performance than LXMERT (re-112

ported in Pezzelle et al., 2020). Similarly, in our113

second experiment, the actions generated by BLIP- 114

2 are deemed plausible by human participants in 115

most cases, which is not the case for other mod- 116

els. Taken together, these results highlight sub- 117

stantial variability across VLMs in their ability to 118

combine complementary multimodal information. 119

At the same time, the promising trends exhibited 120

by BLIP-2 reveal that this model is capable of 121

understanding—to some extent—the visual scene, 122

the intention, and their complex interaction. 123

2 Related Work 124

2.1 Generative Language-and-Vision Models 125

With the introduction of Transformers (Vaswani 126

et al., 2017), NLP research has experienced un- 127

precedented development. This, in turn, influenced 128

the work on language and vision processing, which 129

followed the same ‘evolutionary’ steps. First, based 130

on Masked Language Models such as BERT (De- 131

vlin et al., 2019) and RoBERTa (Liu et al., 2019), 132

the community proposed many multimodal en- 133

coders, either single-stream (i.e., jointly processing 134

language and vision from the beginning), such as 135

UNITER (Chen et al., 2020), VL-BERT (Su et al., 136

2019), and VisualBERT (Li et al., 2019), or dual- 137

stream (i.e., processing language and vision sepa- 138

rately, and later combining them through a series 139

of multimodal layers), such as LXMERT (Tan and 140

Bansal, 2019) and ViLBERT (Lu et al., 2019). 141

Later, in the wake of the success of autore- 142

gressive Large Language Models (LLMs) such as 143

GPT (Radford et al., 2019), OPT (Zhang et al., 144

2022) or LLaMA (Touvron et al., 2023), the 145

language-and-vision community has taken a gener- 146

ative direction. With such an approach, answering 147

questions about an image (VQA) or describing its 148

content (IC) can be done by simply feeding the 149

model with the image and the appropriate prompt. 150

Various generative language-and-vision models 151

have been proposed in recent years, such as BLIP- 152

2 (Li et al., 2023), Flamingo (Alayrac et al., 2022), 153

FROMAGe (Koh et al., 2023), MAPL (Mañas et al., 154

2022), and IDEFICS (Laurençon et al., 2023). In 155

general, a common feature of all these models 156

is that they leverage a pre-trained text-only LLM 157

and a visual encoder, on top of which a relatively 158

lightweight trainable network is learned. Such a 159

network—which can consist of a bunch of Trans- 160

former (BLIP-2, Flamingo, IDEFICS), fully con- 161

nected (MAPL), or linear layers (FROMAGe)—is 162

responsible for connecting the two modalities and 163
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making the model capable of solving multimodal164

tasks. Using this strategy, generative language165

and vision models have achieved results never ap-166

proached before (e.g., when introduced, Flamingo167

was the best-performing model on 16 multimodal168

tasks). Furthermore, their architecture makes these169

models much more flexible and portable than their170

predecessors, as they can be applied, without any171

fine-tuning, to virtually any unseen task.172

2.2 Complementary Language and Vision173

The models described above have been quite exten-174

sively tested in various downstream tasks, such as175

Visual Question Answering (Antol et al., 2015) and176

Image Captioning (Bernardi et al., 2016), which177

typically require dealing with aligned information178

from language and vision. To illustrate, these tasks179

challenge the models to locate a phrase or sentence180

in the image, retrieve information from it, or verify181

that what is depicted complies with a description.182

Comparably less attention has been paid to assess-183

ing whether, and to what extent, they can genuinely184

combine complementary information from the two185

modalities—something necessary, e.g., to generate186

a plausible action for the example in Figure 1.187

This ability is certainly necessary for tasks such188

as Visual Dialog (Das et al., 2017; Mostafazadeh189

et al., 2017) or Visual Storytelling (Huang et al.,190

2016; Hong et al., 2023). In the former, multi-191

modal models are asked to maintain a meaningful192

conversation starting from the contents of an im-193

age, which requires more than simply describing194

visible aspects. As for the latter, the goal is to195

produce a story based on a sequence of images.196

Again, this task requires not only understanding197

the visual content (which is, however, crucial; see198

Surikuchi et al., 2023), but also making inferences199

over people’s emotions and feelings, understanding200

social dynamics, and so on. These are challeng-201

ing tasks for large multimodal models, which were202

recently shown to have little social awareness and203

struggle with recognizing subtle and culturally di-204

verse emotions (Deng et al., 2023). Similarly, these205

models face difficulties in handling semantically206

underspecified language (where the language signal207

needs to be complemented by extra information,208

e.g., visual info; see Pezzelle, 2023); moreover,209

they have trouble understanding humor (Hessel210

et al., 2023), an aspect of multimodal language211

use that can only be mastered by going beyond the212

literal (i.e., image-aligned) meaning of a sentence.213

To explore more complementary scenarios, var- 214

ious directions have been taken. These include 215

approaches to Image Captioning that are sensitive 216

to the context and communicative purpose of the 217

captions (Kreiss et al., 2021, 2022); tasks that chal- 218

lenge the models to predict something external to 219

the multimodal sample, such as the motivation or 220

intent of a social media post (Kruk et al., 2019), or 221

the cause or consequence of an event (Hessel et al., 222

2022); datasets to test complex inference abilities 223

in multimodal setups, such as predicting the next ut- 224

terance or frame in a comic strip (Iyyer et al., 2017). 225

BD2BB (Pezzelle et al., 2020) also belongs to this 226

latter category, as it challenges models to predict 227

what comes next based on both grounded (the im- 228

age contents) and non-grounded information (the 229

textual intention). In this work, for the first time, 230

we study how generative visual language models 231

deal with complementary multimodal information. 232

3 Methods 233

3.1 Data 234

We use the BD2BB dataset and corresponding 235

multiple-choice task (Pezzelle et al., 2020). The 236

task is exemplified in Figure 1: given an image 237

and a textual intention (If I...), a model must select 238

the correct action (I will. . . ), i.e., the one that com- 239

plies with both the visual and textual information. 240

Note that, in BD2BB (and differently from what 241

is shown in the figure), each sample comes with 242

5 candidate options—two that are valid given the 243

image only (so-called visual decoys), two that are 244

valid given the intention only (language decoys), 245

and the correct one. The images in BD2BB come 246

from a subset of COCO images (Lin et al., 2014) de- 247

picting at least one person.1 The dataset, collected 248

via crowdsourcing and further post-processed, in- 249

cludes around 10K <image, intention, candidate 250

actions> samples. In this work, we test models in 251

a zero-shot setup (without training or fine-tuning 252

them) on the test set, which includes 4081 samples. 253

3.2 Models 254

We experiment with four state-of-the-art, open- 255

source generative VLMs, i.e., MAPL, FROMAGe, 256

BLIP2, and IDEFICS. As mentioned in Section 2.1, 257

these models are all based on a similar architec- 258

ture that leverages two frozen pre-trained unimodal 259

models (a language and a vision one) and learns 260

1This choice is meant to increase the likelihood of interact-
ing with these images by performing some action.
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MAPL FROMAGe BLIP-2 IDEFICS
Publication year 2022 2023 2023 2023
Underlying language model GPT-J OPT OPT / FlanT5 LLaMA
Underlying vision model Vit-L14 Vit-L14 Vit-L14 / Vit-G14 OpenClip5

Mapping network’s architecture Fully connected layers Linear layers Transformer Transformer
# trainable parameters 3.4M 5.5M 188M 1.4B
Generated output Text Text / Image Text Text
Trained with COCO? no no yes no
Visual model trained with COCO? no no no no

Table 1: A comparison of the four VLMs used in this work concerning some of their main features.

a relatively lightweight mapping network on top261

of them. Below, we briefly describe these models262

from smallest to largest in terms of learnable param-263

eters. For convenience, we provide an overview264

of their most important features in Table 1. We265

refer the reader to the original papers for further266

details on each model’s architecture, training data,267

and optimization strategies.268

MAPL (Mañas et al., 2022) builds on269

CLIP (Radford et al., 2021) and GPT-J (Wang270

and Komatsuzaki, 2021) as a visual and language271

frozen model, respectively. The trainable network272

to map visual features into token embeddings con-273

sists of a few fully connected layers with ReLU274

activations (Nair and Hinton, 2010) and dropout275

regularization (Srivastava et al., 2014). With only276

trainable 3.4M parameters, this network is the light-277

est of the four we use in this work.278

FROMAGe (Koh et al., 2023) leverages CLIP279

Vit-L14 (Radford et al., 2021) and OPT (Zhang280

et al., 2022) as its frozen visual and language281

model, respectively. The projection of the image282

and text representations into a common latent space283

is done through several trainable linear layers. This284

makes this model lightweight, with only 5.5M train-285

able parameters. Among the four models we use,286

FROMAGe is the only one capable of producing287

outputs including both text and images.288

BLIP2 (Li et al., 2023) bootstraps language-and-289

vision representations from the underlying frozen290

pre-trained unimodal models via a Transformer-291

based network. It allows using various underlying292

frozen models: CLIP Vit-L14 (Radford et al., 2021)293

or Vit-G14 from EVA-CLIP (Fang et al., 2023)294

on the vision side; OPT (Zhang et al., 2022) or295

FlanT5 (Chung et al., 2022) on the language side296

(here, we use the version with FlanT5 and Vit-G).297

The multimodal mapping is carried out by a train-298

able Querying Transformer (Q-Former) network.299

The Q-Former includes two transformer submod- 300

ules sharing self-attention layers: an image trans- 301

former interacting with the frozen image encoder 302

for visual feature extraction, and a language trans- 303

former serving as both a text encoder and decoder. 304

It is worth noting that, among the four models here 305

considered, BLIP-2 is the only one also trained 306

with images from COCO (Lin et al., 2014), i.e., the 307

images used to build the BD2BB dataset. Though 308

the model has not seen the BD2BB data, it could 309

still have an advantage over other architectures. 310

IDEFICS (Laurençon et al., 2023) is the most 311

recent model among the four we tested in this 312

work. It is an open-access re-implementation of the 313

Flamingo model (Alayrac et al., 2022) which lever- 314

ages LLaMA as the language model (Touvron et al., 315

2023) and OpenClip5 (a model pre-trained with a 316

contrastive text-image approach, similar to CLIP 317

Radford et al., 2021) as the vision model. Simi- 318

lar to BLIP-2, IDEFICS uses a Transformer-based 319

architecture to connect language and vision. In par- 320

ticular, it employs a Perceiver Resampler module 321

to map varied-size vision features to a few tokens, 322

which are then used to condition the frozen LM 323

through cross-attention layers. We employ the 9B 324

parameter instructed version with 1.4B trainable pa- 325

rameters, nearly 10 times more than BLIP-2. This 326

makes IDEFICS the largest model we consider. 327

3.3 Experimental Settings 328

We test the four models in two experiments: a 329

multiple-choice experiment (Section 4) and an 330

open-ended generative experiment (Section 5). In 331

both experiments, we test the pre-trained models 332

in a zero-shot manner.2 That is, we do not further 333

2The pre-trained models can be downloaded from:
https://github.com/octarinesec/MAPL (MAPL)
https://github.com/kohjingyu/fromage (FROMAGe)
https://huggingface.co/docs/transformers/en/
model_doc/blip-2 (BLIP-2)
https://huggingface.co/docs/transformers/en/
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train or fine-tune them.3 We ran the models on an334

A1000 GPU using their default hyperparameters335

to ensure deterministic results. We also conducted336

the multiple-choice experiment with other hyperpa-337

rameter settings (see Appendix A).338

4 Multiple-Choice Experiment339

We test the four generative models in the original340

BD2BB multiple-choice classification task. Here,341

together with the intention and the image, we pro-342

vide the model with the five candidate actions and343

task the model to select the correct one. We evalu-344

ate model performance in terms of accuracy, which345

we measure both intrinsically and intrinsically. Be-346

low, we describe the two evaluations in more detail.347

Extrinsic evaluation Given an <image, intention,348

actions> sample, we ask the models to provide the349

correct action via prompting. Since we present350

the candidate actions as options preceded by an351

alphabet letter (A-E), models are expected to out-352

put the letter corresponding to the action they con-353

sider correct. To elicit model responses, we used354

the following template, filled with the intention,355

the five actions, and a prompt describing the task:356

"[intention], [prompt]: A. [action1] B. [action2] C.357

[action3] D. [action4] E. [action5]". Given this tem-358

plate, we experiment with 30 prompts (provided in359

Appendix B) and compute average accuracy and360

standard deviation over them. An example of a tem-361

plate filled with all information for one dataset’s362

sample is the following (we give the prompt in363

italic): "If I feel adventurous, what should I do?364

Choose the best option from the following: A. I will365

ride an elephant. B. I will merely watch my friend366

fly an animal kite. C. I will go bird watching on an367

outdoor public patio. D. I will ride a horse like the368

man. E. I will stand and observe the zebras."369

Intrinsic evaluation Given an <image, intention,370

actions> sample, we consider its 5 <intention, ac-371

tion> pairs and compute the cross-entropy loss be-372

tween each of these sequences (we concatenate the373

intention and the action) and the image. To do so,374

we first obtain the logits from the model’s final375

hidden layer for the current input sequence. Then,376

we calculate the cross-entropy loss between these377

logits and the target tokens. The total cross-entropy378

loss for a sequence is the sum of the losses at each379

model_doc/idefics (IDEFICS)
3Data and code to reproduce our results will be made

available at: https://anonymized/repo/

model accuracy
intrinsic extrinsic

LXMERT* 62.2±2.2
CLIP 53.2
MAPL 63.1 22.0±0.8
FROMAGe 47.9 20.0±0.5
BLIP-2 42.0 75.7±0.8
IDEFICS 63.7 35.5±7.2
Humans* 79.0

Table 2: Multiple-choice experiment. Intrinsic and ex-
trinsic model accuracy. Numbers in bold are the highest
in the column. * Results from Pezzelle et al. (2020).

word position. The sequence with the lowest cross- 380

entropy loss is selected as the model answer. These 381

predictions are used to compute model accuracy. 382

4.1 Results 383

In Table 2, we report the extrinsic and intrinsic 384

accuracy of each tested model. We compare our 385

results with those by humans and the pre-trained 386

LXMERT (Tan and Bansal, 2019) (best-performing 387

in Pezzelle et al., 2020), as they are given in the 388

BD2BB paper. As an additional baseline, we report 389

the results by CLIP (Radford et al., 2021), which 390

we obtain by computing the CLIPScore (Hessel 391

et al., 2021) (quantifying the plain degree of align- 392

ment between the visual and textual inputs) be- 393

tween the image and each of the <intention, action> 394

pairs, fed to the model as a sequence. By looking 395

at the numbers in the table, we identify a few key 396

findings, that we summarize below. 397

BLIP-2 approaches human performance in the 398

extrinsic evaluation The first key finding of our 399

experiment concerns the performance of BLIP-2 400

in the extrinsic evaluation: the model achieves an 401

average accuracy of 75.7%, i.e., only 3-accuracy 402

points far from human performance. This means 403

that, for more than 3 samples out of 4, the model 404

identifies the correct action for a given <image, in- 405

tention> pair. This result is even more remarkable 406

considering that the other three models do not fare 407

much better than chance in this evaluation setting. 408

As mentioned in Section 3.2, BLIP-2 is the only 409

model of the leaderboard trained with COCO im- 410

ages. Moreover, it is the only one leveraging a 411

language model, FlanT5, which was instruction- 412

finetuned on a mixture of tasks. Therefore, it is 413

reasonable to hypothesize both these aspects could 414

give an advantage to BLIP-2 over the other models. 415
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Figure 2: Multiple-choice experiment. Distribution of
correct and wrong answers by BLIP-2 (top) and FRO-
MAGe (bottom) against their position (A-E) in the tem-
plate. While BLIP-2 has only a minor bias toward first-
position answers, FROMAGe is heavily biased.

Some VLMs are biased towards early-presented416

options Upon manual inspection of the model-417

generated outputs in the extrinsic evaluation, we418

noticed a bias of MAPL, FROMAGe, and IDEFICS419

toward predicting the actions presented earlier in420

the template; that is, these models appeared to pre-421

fer A over E. To quantify this effect, we calcu-422

lated, for each model, the percentage of predicted423

responses based on their position. In Figure 2, we424

visualize the results for FROMAGe (MAPL and425

IDEFICS exhibit a very similar pattern), which we426

plot against the behavior of BLIP-2. As can be427

seen, FROMAGe is heavily biased toward the first428

positions/letters in the template, while BLIP-2 is429

not, or to a much lesser extent. This striking differ-430

ence highlights that, while BLIP-2 can treat each431

action in the template (almost) equally, this is not432

the case for the other models. This is likely one of433

the reasons for the success of this model.434

VLMs do not overtly outperform LXMERT in435

the intrinsic evaluation When evaluated intrinsi-436

cally on the task, generative VLMs do not exhibit a437

generalized advantage over the previous-generation438

models. While MAPL and IDEFICS do perform439

slightly better than LXMERT (see Table 2), this440

is not the case for FROMAGe and BLIP-2 (note,441

though, that in an additional experiment, we found442

that BLIP-2 with underlying OPT achieves better443

BLIP-2 Humans*
multimodal 75.7±0.8 79.0
language-only 59.1±0.4 50.0
vision-only 57.0±2.5 72.3

Table 3: BLIP-2 and human accuracy in three settings:
multimodal, language-only, and vision-only, evaluated
extrinsically. *From Pezzelle et al. (2020).

accuracy: 62.4%). This suggests that generative 444

VLMs may not, by default, be necessarily better 445

encoders than previous models, in line with what 446

was discussed by BehnamGhader et al. (2024) for 447

text-only LMs. At the same time, all VLMs except 448

FROMAGe outperform CLIP, which reveals that 449

the cross-modal scores we obtain from them encode 450

more than simple image-text alignment, which is 451

all that CLIP captures. This provides indirect proof 452

that VLMs can, to some extent, combine comple- 453

mentary information from the two modalities. 454

4.2 Is BLIP-2 Using the Multimodal Context? 455

As discussed above, BLIP-2 achieves near-human 456

accuracy in the multiple-choice experiment when 457

evaluated extrinsically. In this analysis, we explore 458

whether this performance is due to genuine integra- 459

tion of language and vision or biases and shortcuts 460

exploited in one of the two modalities. To do so, 461

we run the same experiment in two additional set- 462

tings: (1) a language-only one, where we provide 463

the model with the intention and the actions, but 464

not the image; (2) a vision-only one, where we pro- 465

vide the model with the image and the actions, but 466

not the intention(See the prompts in Appendix(?)). 467

If the model genuinely leverages the two modali- 468

ties, it should perform worse in both these settings 469

than the multimodal one, where both the image and 470

the intention are given as input. The results of this 471

analysis are presented in Table 3. 472

As can be seen, the model fed with the mul- 473

timodal input neatly outperforms both unimodal 474

settings. This reveals that jointly leveraging infor- 475

mation conveyed by the image and the intention is 476

beneficial to solving the task, a pattern that is also 477

observed in human behavior. Compared to humans, 478

however, BLIP-2 exhibits a slight advantage in the 479

language-only setting and a large disadvantage in 480

the vision-only setting. This pattern suggests, on 481

the one hand, that the underlying FlanT5 language 482

model might be driven by some biases and default 483

choices when performing the inference task; on the 484

other hand, its image processor is less capable than 485
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humans to understand the subtleties of a scene and486

which actions it pragmatically licenses.487

In Appendix D, we present the results of an ad-488

ditional analysis that further investigates whether,489

and when, the model leverages complementary in-490

formation or simply counts on a single modality.491

5 Open-Ended Generative Experiment492

In the multiple-choice experiment, only BLIP-2,493

but none of the other models, is extrinsically good.494

At the same time, most VLMs can assign a higher495

probability to the correct action in many cases. This496

discrepancy is likely due more to how the different497

models have been trained and designed than to498

what the models do or do not know. Moreover,499

we acknowledge that a multiple-choice scenario is500

not the most naturalistic way to interrogate these501

models. To overcome these issues, in the second502

experiment, we feed the VLMs with the image and503

the intention and let them generate an open-ended504

continuation. This is a more straightforward way505

to assess the models, but it poses challenges on506

the evaluation side. Below, we describe the two507

methods we use to evaluate model performance.508

Reference-based evaluation In this evaluation,509

we take the continuation generated by a model and510

compare it to each of the five candidate actions in511

the sample. We make the simplistic assumption512

that, if the generated action is good, it should be513

more similar to the correct action than the decoy514

actions. This assumption allows us to compute515

model accuracy: we consider the model correct516

every time the similarity between the generated517

and correct actions is the highest in the batch.518

Intuitively, the choice of the prompt to use to519

elicit a continuation from a model plays a big role.520

Indeed, we noticed that some prompts may be ef-521

fective for some models, but not for others. After a522

careful, manual exploration of prompts, we focused523

on four that appeared to be good-performing across524

models. We provide further details about this ex-525

ploration and the actual prompts in Appendix ??.526

To compute similarities, we used various com-527

mon NLG metrics, including BLEU4 (Papineni528

et al., 2002), ROUGE (Lin, 2004), CIDER (Vedan-529

tam et al., 2015), Meteor (Banerjee and Lavie,530

2005), and the more recent BERTScore (Zhang531

et al., 2019). While the scores by various metrics532

can be different, we observed that various metrics533

led to similar patterns. Therefore, from now on, we534

model accuracy
MAPL 32.9±8.7
FROMAGe 32.7±4.8
BLIP-2 49.5±2.6
IDEFICS 31.5±10.9

Table 4: Open-ended generative experiment. Reference-
based accuracy is computed using BERTScore similar-
ity. Average and std. over results for 4 different prompts.

only focus on BERTScore and refer the reader to 535

Appendix E for further details on other metrics. 536

Reference-free evaluation Evaluating model 537

outputs using automatic, reference-based metrics is 538

simplistic as it assumes that only an action that is 539

similar to the target one is a good one. To evaluate 540

the plausibility of the actions in a reference-free 541

manner, we therefore carried out a human evalua- 542

tion. We sampled 50 <image, intention, generated 543

action> datapoints per model and presented them, 544

one at a time, to six participants.4 We asked them 545

to judge whether the second part of the sentence 546

(displayed in bold), i.e., the generated action, was 547

a plausible continuation of the first part, i.e., the 548

ground-truth intention, based on the contents of 549

the image. As the question was binary, they could 550

choose between the options Yes or No. To ensure 551

the quality of human annotations, we added 20 552

clear-cut cases to the data (10 correct, 10 wrong), 553

that we used as a control group. All participants 554

achieved high accuracy (≥ 75%) on these control 555

samples. In total, each participant assessed 220 556

samples (200 model-generated + 20 control ones). 557

5.1 Results 558

Table 4 and Figure 3 report, respectively, the results 559

of the reference-based and reference-free evalua- 560

tion. Below, we summarize the main findings. 561

BLIP2 is the best-performing model accord- 562

ing to both evaluations Based on the results of 563

both evaluations, BLIP-2 appears to be the best- 564

performing model in this experiment. Indeed, this 565

model achieves the highest average reference-based 566

accuracy (49.5%) across the board, outperforming 567

the other models by nearly 20 accuracy points. As 568

for the reference-free evaluation, human partici- 569

pants judge BLIP-2’s generated actions as plau- 570

4Participants were recruited among colleagues at our insti-
tution and carried out the annotation voluntarily. They were
informed about the use of the annotations they provided and
agreed to their use through informed consent.
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Figure 3: Open-ended generative experiment.
Reference-free accuracy is based on human judgments,
300 per model (i.e., one per assessed sample).

sible in 77% cases. This is a remarkably higher571

accuracy than the one obtained by the other mod-572

els, whose accuracy ranges between 40 and 45%.573

These results confirm the superiority of BLIP-2574

in generating actions consistent with both a visual575

context and a non-grounded textual intention.576

BLIP-2’s abilities can also be appreciated by577

looking at cases where it generates actions that are578

judged implausible by human annotators, as the579

one in Figure 4. Here, given the intention If I want580

to socialize, the model generates a good action,581

which is also consistent with the scene content—a582

pool in the foreground and several people standing583

around it. However, in this case, this action is prag-584

matically implausible, as the people in the image585

are busy playing video games. From this single586

example, it appears that the strengths of BLIP-2 lie587

in its ability to understand the scene, the intention,588

and their complex interaction. On the other hand,589

there is room for improvement in understanding the590

dynamics of events and relationships between peo-591

If I want to socialize. . .

If I want to . . .

Ground-truth
I will play the
Wii with my
friends

BLIP-2
I will play pool
with the guys ✗

Figure 4: An example of an action generated by BLIP-2.
In this case, the human annotators considered this action
implausible given the intention and the image.

ple conveyed by an image. Improving this aspect 592

can be a good direction to develop semantically 593

valid and pragmatically plausible models. 594

Other models perform similarly (poorly) As 595

for MAPL, IDEFICS, and FROMAGe, it can be 596

noted that their performance is similar according to 597

both evaluations. This is interesting as the models 598

build on different language and vision models, have 599

varying sizes, and are trained with different data. 600

Once again, this observation seems to reiterate the 601

peculiarity of BLIP-2 compared to other architec- 602

tures, from which it differs by the instruction-tuned 603

LM and the presence of COCO in the training data. 604

6 Conclusion 605

In this work, we focused on the problem of combin- 606

ing complementary information brought to a con- 607

text by language and vision. We used a benchmark 608

proposed for previous-generation multimodal mod- 609

els, i.e., language-and-vision encoders based on the 610

Masked Language Modeling objective, and tested, 611

for the first time, how state-of-the-art generative 612

visual language models deal with it. Through two 613

experiments, we found that the BLIP-2 performs 614

consistently and significantly better than compet- 615

ing models. While most generative VLMs struggle, 616

this model achieves both near-human accuracy in 617

the multiple-choice experiment and high human 618

judgments in the open-ended generative experi- 619

ment. This reveals the superiority of this model 620

on the task, likely due to instruction finetuning 621

and having seen COCO images in training. These 622

two ingredients appear to be key for the model, 623

which exhibits a deep understanding of the image, 624

the textual intention, and the complex interaction 625

between them. Based on these findings, we conjec- 626

ture that this recipe—and, particularly, instruction 627

finetuning—may help models develop better gen- 628

eralized semantic and pragmatic abilities. These 629

skills are crucial to language-mediated communica- 630

tion; future work might extend our investigation to 631

other scenarios, including more naturalistic ones. 632

We argue that future work should focus on build- 633

ing more datasets and resources that encompass 634

complex interactions between image content and 635

its accompanying text. This implies taking a more 636

communicative perspective on the study of lan- 637

guage in multimodal contexts, which is what is 638

needed to develop linguistic technologies ready to 639

communicate seamlessly with human users. 640
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Limitations641

Our investigation is limited to one (English) dataset642

and a handful of models. This narrows the scope of643

the findings we presented. While our approach can644

be easily applied to other resources, languages, and645

models, we acknowledge that the claims made in646

this paper may not necessarily generalize. Another647

limitation is the choice of prompts used to elicit648

the responses from the models. There is growing649

evidence of the significant role of prompt word-650

ing on model generation, that we fully recognize.651

Although we believe we conducted a fairly compre-652

hensive prompt search, our results can only speak653

for the prompts we used. Furthermore, the human654

evaluation we conducted is arguably small-scale as655

it involves few participants and a relatively small656

number of samples. We cannot fully exclude that657

the reported patterns may not replicate when in-658

creasing the number of participants and stimuli.659
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A Different Parameter Combinations for921

Multiple-Choice Experiment922

We tested each model’s most promising prompt923

with 4 different parameter combinations. The result924

shows in below table 5.925

- FROMAGe BLIP2 IDEFICS
Default parameter 20.5 77.1 42.1
Temp = 0.8,topp = 0.8 19.7 75.9 33.1
Temp = 0.8,topp = 0.9 17.8 74.3 30.0
Temp = 0.8,topp = 0.8 17.7 75.2 30.5
Temp = 0.8,topp = 0.8 17.7 73.5 28.3

Table 5: The result for 3 generative models in discrimi-
native setting across different parameter combinations

B 30 Prompts for Multipul-Choice926

Experiments927

1. What am I supposed to do <intention>? <can-928

didate actions>929

2. What am I supposed to do <intention>? Pick930

the best option from the following ones: <can-931

didate actions>932

3. Question: What am I supposed to do <inten-933

tion>? Pick the best option from the following934

ones: <candidate actions> Answer:935

4. Given this visual context, what am I supposed936

to do <intention>? Pick the best option from937

the following ones: <candidate actions>938

5. What am I supposed to do given this visual939

context, <intention>? Pick the best option940

from the following ones: <candidate actions>941

6. Suppose I am faced with this situation. What942

am I supposed to do <intention>? Pick the943

best option from the following ones: <candi-944

date actions>945

7. What action will I perform <intention>? Pick946

the best option from the following ones: <can-947

didate actions>948

8. Suppose I am faced with this situation. What949

actions should I perform <intention>? Pick950

the best option from the following ones: <can-951

didate actions>952

9. Imagine I am in this visual scenario. What953

action should I perform <intention>? Pick the954

best option from the following ones: <candi-955

date actions>956

10. What actions should I perform <intention>? 957

Considering both my feeling and the image, 958

pick the best option from the following ones: 959

<candidate actions> 960

11. Considering both my feeling and the image, 961

what will I do <intention>? Pick the best op- 962

tion from the following ones: <candidate ac- 963

tions> 964

12. What will I do <intention>? Pick the best 965

option from the following ones: <candidate 966

actions> 967

13. <intention>, what’s the best step to take? Se- 968

lect the optimal choice from the options pro- 969

vided.<candidate actions> 970

14. <intention>, what’s the most suitable action 971

to choose? Select the best option from the 972

following list.<candidate actions> 973

15. <intention>, what’s the recommended action 974

to perform? Choose the best option from the 975

following ones.<candidate actions> 976

16. Which action is most advisable <intention>? 977

Choose from the following options. <candi- 978

date actions> 979

17. What’s the best step to follow <intention>? 980

Pick from the following options. <candidate 981

actions> 982

18. <intention>, what’s the most appropriate deci- 983

sion to make? Select the right choice from the 984

options provided. <candidate actions> 985

19. What’s the recommended response <inten- 986

tion>? Choose from the following options. 987

<candidate actions> 988

20. What should I do <intention>? Choose from 989

the following options considering both my 990

feeling and the image.<candidate actions> 991

21. Taking into account both my feeling and the 992

image, what’s the recommended step to take 993

<intention>? Pick from the following options. 994

<candidate actions> 995

22. Considering equally the image and my feel- 996

ing, what should be my action <intention>? 997

Choose the right action from the following 998

list.<candidate actions> 999
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23. With both the image and my feeling in mind,1000

how should I react <intention>? Select the1001

best choice from the following options. <can-1002

didate actions>1003

24. With both the image and my feeling in mind,1004

what action is most advisable <intention>?1005

Choose from the following options. <candi-1006

date actions>1007

25. When taking both the image and my feeling1008

into consideration, what’s the best step to fol-1009

low <intention>? Pick from the following1010

options.1011

26. <intention>. <candidate actions>1012

27. <intention>, what happens next? <candidate1013

actions>1014

28. <intention>, what will I do? <candidate ac-1015

tions>1016

29. What will I do <intention>? <candidate ac-1017

tions>1018

30. How should I behave <intention>? <candidate1019

actions>1020

C 4 Prompts For Open-Ended Generative1021

Experiment1022

1. What am I supposed to do <intention>? I1023

will. . .1024

2. <intention>, what will I do? I will. . .1025

3. What should I do <intention>? I will. . .1026

4. What action will I perform <intention>? I1027

will. . .1028

For this open-ended generative experiment, it is1029

important to note that the optimal prompt may vary1030

for each model. For instance, the prompt "What am1031

I supposed to do + [intention]+? " can yield results1032

for BLIP2 but did not work well for the MAPL and1033

FROMAGe models. For the MAPL model, "Ques-1034

tion:... Answer:", and for the FROMAGe model,1035

"Q:... \nA: " are the template prompts provided by1036

the model developer. Additionally, adding "I will"1037

at the end of the prompt is proved to be effective1038

for both models. After a careful manual inspection1039

of several prompts and their outputs, we focused1040

on the 4 most promising ones as in this appendix.1041

Actions generated using these prompts also need1042

to be further processed to ensure they conform to1043

the same format as the target action and other op- 1044

tional actions. For example, IDEFICS consistently 1045

generates sentences prefixed with "Assistant:". To 1046

calculate the similarity score of these answers with 1047

other actions, it is necessary to remove the "Assis- 1048

tant:" prefix and retain only the main action, which 1049

typically begins with a verb. 1050

D Error Analysis 1051

We performed an error analysis aiming to compare 1052

the outputs of the three versions of BLIP2: multi- 1053

modal, language-only, and vision-only. By doing 1054

so, we aimed to gain insights into how, and when, 1055

BLIP2 effectively leveraged information from lan- 1056

guage and vision to achieve better performance in 1057

the task. We observed that, in 1,350 cases (33%), 1058

all three model versions provided a true prediction. 1059

In such cases, the model could make a correct as- 1060

sessment by relying only on one single modality, 1061

which suggests that, in these cases, the information 1062

conveyed by the multimodal input may be redun- 1063

dant. 1064

In 221 cases (around 5%), only the multimodal 1065

BLIP2 could correctly predict the right answer, 1066

while no unimodal model versions could. In these 1067

cases, BLIP2 genuinely leveraged complementary 1068

information from the two modalities, which was 1069

necessary but not sufficient on their own to perform 1070

the task. 1071

The entire test dataset, comprising 4,081 sam- 1072

ples, was categorized into eight different groups 1073

based on the consensus of model predictions under 1074

three conditions. The categories are as follows: 1075

• TTT: The model correctly produces the an- 1076

swer in LV, L, and V. 1077

• TTF: The model correctly produces the an- 1078

swer in LV, L, but not in V. 1079

• ...and so on for the remaining categories. 1080

For each category, a manual inspection of 100 1081

cases was conducted to identify the sources of er- 1082

rors in the models. The results of this analysis are 1083

summarized in Table 6. 1084

This error analysis table reveals a wealth of in- 1085

formation. The second and third rows of the table 1086

indicate that when there is correct information in 1087

one modality, the multimodal model knows how 1088

to utilize it effectively. Furthermore, the examples 1089

in the fourth row demonstrate that these cases can 1090

only be predicted correctly using complementary 1091

information. 1092
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Is the prediction
correct? Number of Cases Percentage Comments

BLIP_LV: T
BLIP_V: T
BLIP_L: T

1350 0.3308

No errors were found in these
cases, indicating that they may
be too easy for the multimodality
model to handle.

BLIP_LV: T
BLIP_V: T
BLIP_L: F

581 0.1424
The model in the L setting gave
incorrect predictions due to the
absence of image information.

BLIP_LV: T
BLIP_V: F
BLIP_L: T

808 0.1980
The model in the V setting gave
incorrect predictions due to the
absence of intention information.

BLIP_LV: T
BLIP_V: F
BLIP_L: F

222 0.0544
Only multimodality setting can
give true predictions.

BLIP_LV: F
BLIP_V: T
BLIP_L: T

11 0.0027
The model’s incorrect predictions
can be attributed to the following
reasons:
1. Problematic/borderline cases;
2. Wrong object detection;
3. Failure to understand the
intention;
4.Only considering one modality;

BLIP_LV: F
BLIP_V: T
BLIP_L: F

221 0.0542

BLIP_LV: F
BLIP_V: F
BLIP_L: T

117 0.0287

BLIP_LV: F
BLIP_V: F
BLIP_L: F

771 0.1889

Table 6: Error Analysis Table: Each row provides information on some specific cases, indicating whether the BLIP2
model can produce a correct prediction under three different conditions and the potential reasons for such results.

E Different Metrics to Calculate1093

Similarity1094

We tested different metrics to conduct the1095

Reference-based evaluation for the open-ended gen-1096

erative experiment. We tested in three settings:1097

multimodal, language-only, and vision-only.1098

F Degree of Visual Grounding1099

In our previous analysis, we evaluated the BLIP21100

model’s performance in the BD2BB task by exam-1101

ining the accuracy of the generated actions. How-1102

ever, accuracy alone does not fully capture the1103

model’s ability to utilize the information from two1104

modalities. Therefore, we can also evaluate the1105

model from a different perspective by considering1106

its ability to incorporate information only from the1107

image. We assumed that if the model successfully1108

utilizes the image information, it will explicitly1109

mention objects from the image in the generated1110

actions. This indicates that the action is grounded1111

in the visual content.1112

Thanks to the labeling of golden nouns in the1113

image data, we can easily determine whether the1114

generated action mentions any objects from the 1115

image. Based on how many actions are grounded in 1116

the visual content, we can calculate the grounding 1117

rate by following the formula: 1118

grounding_rate =
Ngrounded

Ntotal
(1) 1119

We calculated the grounding rate for generated 1120

actions using 15 manually selected prompts. These 1121

prompts were carefully crafted to vary in their fo- 1122

cus: some directed the model’s attention toward 1123

language aspects, others toward visual elements, 1124

and some involved variations in linguistic forms. 1125

The prompts we use are shown in Table 8. The 1126

grounding rate varied across different prompts. In- 1127

terestingly, we found that by changing the prompt, 1128

we could easily influence the grounding rate while 1129

accuracy remain stable. Although we cannot sup- 1130

press a modality by altering the prompt (prompt 6), 1131

we can effectively focus selectively on one modal- 1132

ity by being explicit (prompts 7, 8, 9, and 14). 1133

Figure 5 is the bar plot about both accuracy and 1134

grounding rate. The pink bar represents the accu- 1135

racy of different prompts in an ascending order. It 1136
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Setting BERTScore BLEU-4 CIDER METEOR ROUGE
LV 0.53 0.54 0.52 0.48 0.51
L 0.39 0.49 0.38 0.29 0.36
V 0.42 0.37 0.41 0.38 0.4

Table 7: Results for BLIP2 in three different conditions(row) using different similarity scores(column).

prompt2
prompt4

prompt1
prompt6
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prompt14
prompt9

prompt10

prompt13

prompt12
prompt5
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Accuracy vs Grounding rate for each prompt
Accuracy
Grounded rate

Figure 5: A bar plot illustrates the accuracy and ground-
ing rate across different prompts. Accuracy increases
from left to right. The bar with the highest grounding
rate corresponds to Prompt 8: "Suppose I am in this
specific visual context. What actions should I take [in-
tention]? Please mention at least one object from the
image." The bar with the lowest grounding rate corre-
sponds to Prompt 2: "Q: What am I supposed to do
[intention]? A:" This variation highlights the impact of
prompt design on model performance.

is shown that the grounding rate does not always1137

align with the accuracy.1138

By introducing the grounding rate as an evalua-1139

tion metric, we provide an additional perspective1140

to assess the performance of multimodal models.1141

It highlights the model’s ability to ground its gener-1142

ated actions in visual information, offering insights1143

beyond accuracy alone (Surikuchi et al., 2023).1144
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Prompt Accuracy Grounding rate
prompt1 Question: What am I supposed to do + [intention]? Answer: 52.66 53.10
prompt2 Q: What am I supposed to do + [intention]? \nA: 52.34 51.58
prompt3 What am I supposed to do + [intention]? 53.20 58.25
prompt4 What am I supposed to do + [intention]+? I will 52.63 63.44
prompt5 What am I supposed to do + [intention]+? Answer in the format ”I will” 54.57 55.67
prompt6 What am I supposed to do + [intention]+? Please provide an answer based

solely on the intention, without considering the image.
53.08 56.82

prompt7 What action should I take +[intention]+? Please base your response solely
on the image. Additionally, kindly mention at least one object visible in
the image.

53.32 75.97

prompt8 Suppose I am in this specific visual context. What actions should I take+
[intention]+? Please mention at least one object from the image.

54.76 76.06

prompt9 Imagine I am in the given visual scenario. What actions should I take regarding
+[intention]+’? Please mention at least one object from the image.

54.06 75.74

prompt10 Imagine yourself in this specific visual context. Considering both the
intention and the image, what actions should be taken +[intention]+?

54.06 67.78

prompt11 Considering both the intention and the image, what will you do +[intention]+? 55.16 68.41
prompt12 What will I do +[intention]+? 54.47 61.67
prompt13 What will you do +[intention]+? I will 54.37 62.23
prompt14 What will you do +[intention]+? Please give a plausible reason by mentioning

at least one object from the image.
53.96 75.89

Table 8: The accuracy and grounding rate across different variations of the prompt.
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