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ABSTRACT

The rapid advancement of AI models has significantly impacted daily life, with
Large Language Models (LLMs) playing a pivotal role in automating tasks and
providing all-in-one solutions via API services. Meanwhile, there is a growing
demand for private, resource-constrained, customizable, and high-performance
models tailored to specific user needs. However, many users struggle to deploy
these models due to limited resources or technical expertise. In this work, we
try to address these challenges by focusing on two primary objectives: (1) to
meet the specific needs of a broad range of users, and (2) to lower the barriers
to AI model usage (e.g., resource constraints, technical expertise) for most users.
In our preliminary exploration, we introduce FLAME, a framework that deter-
mines and generates AI models based on data or task descriptions provided by
users. While existing solutions rely on pre-built models or extensive finetuning,
FLAME leverages LLMs (e.g., GPT4-turbo) to capture data patterns and task fea-
tures from user input, converting them into user requirements and structured meta-
data (e.g., task type, model architecture, and classifier dimension). Then, FLAME
uses them as guidance to generate customized models by hypernetworks. This ap-
proach significantly improves efficiency, achieving up to 270x faster model pro-
duction compared to finetuning-based paradigms (e.g., all-parameter and LoRA
fine-tuning) while maintaining comparable performance across various tasks. We
validate the effectiveness of FLAME through comprehensive experiments on Nat-
ural Language Processing (NLP), Computer Vision (CV), and tabular datasets,
demonstrating its ability to quickly deliver high-quality, customized models.

1 INTRODUCTION

Recent advancements in AI models, especially in LLMs such as GPT-4 (OpenAI, 2023), LLaMA
3.1 (AI, 2024) and Phi-3 (Abdin et al., 2024) have significantly influenced our daily life (Zhao
et al., 2023; Yang et al., 2023). Leveraging their impressive abilities, LLMs offer an all-in-one
solution for versatile user requirements through API services, making advanced AI accessible for
tasks like text generation, summarization, and chatbots. However, there is still a growing demand
for private (deployed), customizable, and resource-constrained models suited to specific domains
(Staab et al., 2023; Yao et al., 2023). Since user requirements vary widely, deploying general models
might not always achieve optimal results, particularly in specialized areas such as law, economics,
and medicine. In contrast, tailored models tend to exhibit superior performance (Turc et al., 2019;
Gunasekar et al., 2023; Fu et al., 2023; Hsieh et al., 2023; Yao et al., 2024; Chen & Varoquaux,
2024). However, users might not have adequate expertise or enough data, time and resources to
determine the model and finetune it. These barriers greatly hinder the wider application of AI
models. Therefore, our research aims (I) to meet the specific needs of a broad range of users and
(II) to lower the barriers to AI model usage (e.g., resource constraints, technical expertise) for
most users.

However, these pursuits face certain challenges. First, changes in user requirements can lead to
model adjustments at varying levels. While minor changes in user requirements may necessitate
adjusting the parameters of the target model for better performance (Sagawa et al., 2020; Lv et al.,
2023), significant task alterations (e.g. regression to classification, data modality change) might
require the model to change its output dimensions or even its architecture. Second, to reduce con-
straints on AI model usage, both general capabilities (e.g., task understanding) and precise
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[sentence] hide new secretions from the 
parental units [label] negative
[sentence] contains no wit , only labored 
gags [label] negative
[sentence] that loves its characters and 
communicates something rather beautiful 
about human nature [label] positive
…
[sentence] remains utterly satisfied to 
remain the same throughout [label] 
negative

User Data

User Input

This is a 2-class text classification task 
for sentiment analysis.

User Description

Previous Methods (LLM / Finetune)

Predictions
[label] negative
[label] positive
…
[label] negative

Finetune with
User Data

Distil-BERT

FLAME
Prompting Data
or Description

Prompting User
Requirement

Parameter
Generator

User Requirement
This is a task of 2-class and
base-scaled text-cls, with …
varied emotional expressions
and sentiment intensity.

Requirement
Generator

Metadata
{"task": "seq_cls",
"out_dim": 2,
"scale": "base",
"arch": "distilbert-
base-uncased"}

Model
Generator

Off-the-Shelf
Distil-BERT

Predictions
[label] negative
[label] positive
…
[label] negative

Finetune
(Optional)

Comparison
Metric LLM Finetune FLAME

Private ✔ ✔

Resource-
Constrained ✔ ✔

Customizable ✔ ✔

Fast ✔ ✔

Prompting Data
or Description

Manually Select
Model Arch

Figure 1: Overview of the framework of FLAME and comparison with previous paradigms.

customization, ideally without extensive training, are essential. In real-world scenarios, data
often is limited or lacks insufficient supervisions (Wang et al., 2021), and sometimes only a basic
task description is provided. Without strong task understanding, accurately capturing user needs
becomes difficult, and without precise customization, those needs may not be fully met. Third,
finding efficient methods to provide optimal models, without requiring extensive resources or
expertise, remains a key challenge.

To address the above challenges, we humbly think that one could leverage the complementary
strengths of general large models and specific small models. Specifically, we could unleash the
capabilities of large models to capture user requirements and use them to generate customized small
models.

In our preliminary exploration, we initiate our idea into FLAME, as depicted in Figure 1. Specif-
ically, given users’ input (User Data, User Description, or both), FLAME constructs prompts to
utilize LLMs (GPT4-turbo) to summarize the task, analyze data patterns and task features, and for-
mat it into a user requirement (just a single sentence) and structured metadata (determines the most
appropriate target model for the given task). Next, FLAME uses Multi-Head Module-Wise Param-
eter Generator to decode user requirements into model parameters to output the tailored model,
which could be directly used by users for prediction. For instance, as shown in Figure 1, for a text
classification task of sentiment analysis, users can provide data batches (User Data) or just describe
the task (User Description). FLAME then constructs a prompt, interacts with LLM, and outputs
User Requirement in Requirement Generator and structured Metadata in Model Generator. Next,
we use User Requirement and Metadata to generate the model parameters by Parameter Generator.
An optional finetune process (either full-parameter or LoRA (Hu et al., 2022) finetuning) can be
undergone for better performance. Finally, users can apply this tailored model to their data. In short,
our contributions can be summarized as follows:

• We propose a novel framework FLAME to determine and generate AI models tailored to
user data or task description effectively and efficiently.

• FLAME involves Multi-Head Module-Wise Parameter Generator for adjustable and task-
conditioned parameters, which extends LoRA-based hypernetworks to more model archi-
tectures.

• We conduct extensive experiments in NLP, CV, and tabular data. FLAME can generate tai-
lored models at most 270x faster than previous methods, while still maintaining comparable
performance.

2 RELATED WORKS

2.1 LARGE LANGUAGE MODELS

In recent times, the field of natural language processing (NLP) has been significantly reshaped by
the emergence of large language models (LLMs) like ChatGPT (Wang et al., 2019a), GPT-4 (Ope-
nAI, 2023), LLaMA (Touvron et al., 2023), and others. The concept of LLM arises from language
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model (Vaswani et al., 2017; Devlin et al., 2019), an algorithm used in natural language processing
to predict the likelihood of a sequence of words occurring in a sentence. Characterized by deep ar-
chitectures, billions of parameters, and tremendous training corpus, LLMs have drastically enhanced
the ability of machines to understand, interpret, and generate human language (Naveed et al., 2023;
Brown et al., 2020).

Upon their introduction, LLMs have quickly gained widespread attention and have been applied
across various domains, including machine translation, text completion, conversational agents, and
so on (Shen et al., 2023; Romera-Paredes et al., 2023; Pan, 2023). However, despite their impressive
capabilities, LLMs come with their own set of challenges. Research indicates that in certain specific
areas, smaller models can outperform LLMs (Turc et al., 2019; Gunasekar et al., 2023; Fu et al.,
2023). Moreover, due to the immense size and complexity of these models, they are often impractical
for users to employ or fine-tune, particularly when faced with limitations in computational resources
or technical expertise (Hu et al., 2022).

2.2 HYPERNETWORKS

Hypernetwork, the model designed to output the weights of another model is first proposed by Ha
et al. (2017). Since it only needs a single forward pass to output model parameters, it provides a fast
and efficient alternative to the vanilla pretrain-finetune paradigm. Given its unique capability, it has
gained wide attention in various fields like recommendation system, natural language processing,
and computer vision. Lv et al. (2023) proposes a framework DUET for efficient device model
generalization, which uses hypernetwork to generate the MLP layers of device models for model
personalization. Alaluf et al. (2022) proposes HyperStyle, which learns to modulate StyleGAN’s
weights to faithfully express a given image in editable regions of the latent space. Ivison et al.
(2023) proposes HINT, which uses hypernetwork to encode task definitions into task-conditioned
LoRA adapters (Hu et al., 2022) and applies them to LLMs. To clarify, it’s important to note that
HINT and FLAME differ greatly in both motivations and technical details. HINT focuses on
using hypernetworks to make instruction tuning more efficient for LLMs, but ours is broader. We
aim to generate a variety of models that meet specific user needs, which involves significant technical
differences from HINT. For more information, we kindly refer readers to Section 3.

While most hypernetworks are mlps, recently, a few works discuss the potential of hypernetworks
with more complex architectures, like GAN (Ratzlaff & Li, 2019), ResNet (Alaluf et al., 2022).
These works explore the potential of hypernetworks in model generation to some extent.

3 METHODOLOGY

The workflow of FLAME consists of 2 main modules: Requirement Generator and Model Cus-
tomizer, as depicted in Figure 2. Requirement Generator takes User Data or User Description as
input and outputs User Requirement, while Model Customizer translates User Requirement into an
off-the-shelf AI model. In this section, we elaborate on the details of our framework.

3.1 REQUIREMENT GENERATOR

Given User Data or User Description, Requirement Generator interacts with LLM (GPT4-turbo) to
analyze data patterns and task features and summarize them into one sentence: User Requirement
r ∈ R.

Effective prompt design is crucial for accurately distilling patterns from data. On the one hand,
User Data might be insufficient, and the lack of data poses challenges to reflect the real distribution
in users’ scenarios. On the other hand, LLMs tend to highlight simpler patterns directly inferable
from labels. User Description could enable LLM to focus more precisely on the proper and unique
patterns. Generally, we summarize the demands of prompt design as follows:

• The metadata of the task (e.g. task type, output dimensions) must be pointed out in the final
sentence.

• Data-specific information, if any, should be reflected in the final sentence and must only
focus on the data itself rather than the labels given.
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Please give me an artificial intelligence model, making it 

best suitable for [User Data]/[User Description].

Model Customizer

/

Please help me discriminate the category of 

the given images. These images are office 

supplies taken by a DSLR camera.

D
a
ta

D
e
sc

.

*. Users can choose to provide labeled data or descriptions, or both

Model

Generator

Encode

Requirement

Multi-Head and Module-

Wise Parameter Generator

Feed-Forward

Network

Static

Module 1:

layer1.0.conv1

Static

Module 2:
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…

Dynamic

Module n:
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Parameter Generator

scissors

…

mouse bottle bike

Image
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Please help me discriminate whether the input 
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D
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ta

D
e
sc

.

Text

/

Please help me classify the tabular data from 

the dataset Iris.

D
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ta

D
e
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.

Tabular

Other Methods (Optional)

LoRA

All-Parameter Finetuning (Optional)

Generated

Model

Generated

Model

Tabular

Image
Multi-class

Image

Classification

MLP

ResNet

Distill-BERT

→

Type Recognition

Text

Binary

Text 

Classification 

MLP

Distill-BERT

ResNet

→

TextImage

Tabular
Multi-class

Tabular 

Classification

ResNet

MLP

Distill-BERT

→

Generated

Model

Modules

Aggregation

Generated

Model

Image

Text

Tabular

Requirement Generator

FLAME

[General requirements to instruct LLM]

[Example case study and analysis for LLM to imitate]

Scissors

…

Mouse Bottle Bike

Please follow these guidelines and describe the task as 

instructed above in JUST ONE sentence without ANY 

other text or mark like " for the given input:

They are taken by a DSLR camera.

Image

This is a task of 31-class and base-scaled image 

classification, with each image demonstrating the 

high resolution and color accuracy typical of 

DSLR photography.

Please follow these guidelines and describe the task as 

instructed above in JUST ONE sentence without ANY 

other text or mark like " for the given input:
[sentence] They drank the pub dry [label] 

acceptable

[sentence] They drank the pub [label] 

unacceptable

...

[sentence] The professor talked us [label] 

unacceptable

Text

Please follow these guidelines and describe the task as 

instructed above in JUST ONE sentence without ANY 

other text or mark like " for the given input:

This is dataset Iris.

[input] {{"SepalLen":5.1,"SepalWid":3.5, 

"PetalLen":1.4,"PetalWid":0.2}} [label] 

Iris-setosa ...

[input] {{"SepalLengthCm":5.8,"SepalWidthCm":

2.7,"PetalLengthCm":4.1,"PetalWidthCm":1}} 

[label] Iris-versicolor

Tabular

This is a task of 3-class, 4-feature and base-

scaled tabular classification to recognize 

which type of iris plant the input is.

Generated Model 

They drank the pub dry. — acceptable

They drank the pub. — unacceptable

The professor talked us into a stupor. — acceptable

…

The professor talked us. — unacceptable

SepalLen SepalWid PetalLen PetalWid Label

5.1 3.5 2.4 0.2 Iris-setosa

5.8 2.7 4.1 1 Iris-versicolor

4.9 2.5 4.5 0.7 Iris-virginica

…

5.4 3.4 1.5 0.4 Iris-setosa

This is a task of 2-class and base-scaled text 

classification, focusing on grammatical 

acceptability of sentences.

…

Customized

Modules

User RequirementUser Data/Description
Output

User

Input

Finetune

(Optional)

𝐿𝑜𝑠𝑠
ො𝑦 𝑦

𝐿𝑜𝑠𝑠
ො𝑦 𝑦FLAME

Requirement 

Generator

Model 

Customizer

User

Data

User

Data

Figure 2: Details of the workflow of FLAME.

The first one is easy to understand, since accurately capturing the task’s nature, such as task type
and model dimension, is essential for identifying an appropriate model. In contrast, the second
one is less intuitive. While a general model may perform adequately in standard scenarios, it often
struggles with special data patterns like domain shifts in specific user contexts, leading to significant
performance drops (Wang & Deng, 2018; Zhou et al., 2022). Consequently, Requirement Genera-
tor must detect these data patterns present in the data, like spurious correlations between background
elements and labels for precise customization. The examples of User Requirements can be seen in
Figure 2. The prompt of Requirement Generator can be seen in Appendix C.

3.2 MODEL CUSTOMIZER

Given User Requirement, Model Customizer translates it into a tailored model. It is comprised of 2
sub-modules, Model Generator and Parameter Generator, responsible for architecture and parameter
generation individually.

3.2.1 MODEL GENERATOR

Given User Requirement, Model Generator determines the architecture of the target model by
prompting GPT4-turbo. The output, denoted as Metadata, is a json with keys: task, out dim,
scale, arch and in dim. task represents the type of the task (e.g., img cls) and arch
means the architecture of the output model. in dim and out dim represents the number of input
(used for tabular tasks only) and output features of the task. scale determines the scale of the out-
put model (e.g., DistilBERT-base or DistilBERT-large) and is selected according to users’ resources.
task, scale and arch has pre-defined choices. For simplicity, we fix scale to be base and
leave more options for future work. The prompt of Model Generator can be seen in Appendix D.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 PARAMETER GENERATOR

Once target model architecture T is determined, Parameter Generator P (·; θp = (θe, θg)) generates
the parameters θt with User Requirement r ∈ R as input, following an encoder-decoder architecture,
where the encoder E(·; θe) encodes r into a latent variable, the decoder (Multi-Head and Module-
Wise Parameter Generator) G(·; θg) decodes it into model parameters module by module.

The Encoder E(·; θe) : R 7→ Rd is a language model (DistilBERT-base) followed by a feed forward
network for further feature transformation. Following previous solutions (Wang et al., 2019b) to get
the latent variable of User Requirement r, before FFN, we use the latent of the first token [CLS] as
the sentence embedding, formatted as Equation (1):

z = E(r; θe). (1)
Vanilla hypernetworks then decode z into the modules of θt (e.g., layer1.0.weight) one by
one. However, the diversity of User Requirements brings three challenges.

The diversity of User Requirements leads to variations in architecture even for similar tasks.
A subtle difference in requirements can significantly alter the target model architecture, making
it challenging for hypernetworks. For instance, switching from MRPC to STS-B in the GLUE
Benchmark (both tasks involve semantic similarity) changes the model requirement from a 2-class
classification to regression. However, hypernetworks could not generate these different architectures
simultaneously and efficiently. Our preliminary solution is to use a multi-head approach. We first
split the target model modules into two types: the static components (e.g., inner layers, remains
consistent across tasks), and the dynamic components (e.g., the final classifier, varies across tasks).
Hypernetworks can easily generate the static component, as its structure remains unchanged across
user requirements. For the dynamic component, which poses more challenges, we assign a decoder
head to each task. This ensures that the output shape in each head is fixed, allowing the model to
efficiently adapt to changes in architecture.

For instance, to generate a DistilBERT-base model for both MRPC and STS-B, we need to di-
vide its modules into static components (e.g., layer1.0.weight) and dynamic components
(e.g., classifier.weight is 768 × 2 for MRPC and 768 × 1 for STS-B). During infer-
ence, we first output the parameters of the static components. Then, for MRPC, to handle the dy-
namic component, we switch to the MRPC-specific decoder head, outputting modules like 768× 2
classifier.weight. For STS-B, the only change is switching to the STS-B-specific decoder
head. It’s important to note that this approach works only for tasks seen during training. For new
test tasks, we could only manually select the most similar task head. Addressing this limitation is
left for future work.

Direct generating large models would result in convergence issues. Generally, it is not practical
to output the parameters of large-scale models directly for convergence issues (Dinh et al., 2022;
Alaluf et al., 2022). As a result, we add LoRA adapters (Hu et al., 2022) into the model, generate
their parameters, and finally obtain the target model by merging them.

While reducing generation size by only producing LoRA adapter weights can cut down on
complexity, it doesn’t always lead to optimal model performance. Previous works like HINT
(Ivison et al., 2023) have demonstrated that hypernetworks can generate LoRA adapters to adjust
transformer models. Yet, this success might not extend to non-transformer models like ResNet, suf-
fering from performance degradation. We’ve discovered that this issue arises from overlooking the
adjustable layers present in these models (e.g. norm layers). Unlike the LayerNorm in transformers,
other norm layers, such as BatchNorm are learnable. However, outputting their parameters together
with LoRA adapters would greatly increase the scale of hypernetworks, resulting in convergence
issues or out-of-CUDA-memory errors. Therefore, we disable the functionality of these layers. For
implementation details, we kindly refer readers to Appendix B.

Solving the above challenges, we generate the parameters θt and aggregate them into the model
T (·; θt) as shown in Equation (2).

θt = G(z; θg). (2)
The training process of this module is demonstrated in Algorithm 1. To train Parameter Generator,
we provide sufficient task-requirement pairs A = {(Di = {Xi, Yi}, ri)}Ni=1. Given a certain re-
quirement ri, we follow the above procedure to obtain the parameter θti = P (ri; θp) for the target

5
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Algorithm 1 Pseudo-code of Parameter Generator P (·; θp)

Require: A = {(Di = {Xi, Yi}, ri)}Ni=1
Ensure: θp = (θe, θg) satisfies Equation (4)

i← 1
for = 0 to ♯epoch do

for (Di, ri) in A do
for batch in Di do

Obtain θt with Equations (1) and (2)
Use batch to compute the loss, update θt and get the update difference ∆θt
Use ∆θt to compute the gradients of θp and update θp

end for
end for
Save best checkpoint according to Equation (4)

end for

model T . Using model T and data Di = {Xi, Yi}, we compute the loss based on the task type,
as shown in Equation (3). The loss function l is chosen according to the task: Cross-Entropy for
classification tasks, and MSE for regression tasks. We then update θt based on the loss. Finally, the
difference in θt before and after the update is used to compute the gradients of θp and update θp.

Li = E(x,y)∼Di
l(T (x; θti), y). (3)

It is important to note that, during inference, we only need the user requirement r to infer the
parameters, which is the key factor behind the speedup compared to other paradigms.

To obtain the best performance on all task-requirement pairs, we require the average loss to be
minimal, as shown in Equation (4). Generally, the number of data samples varies from task to task,
which could result in an uneven number of task-requirement pairs being generated and in turn lead
to inadequate training for tasks with fewer data samples. Such an imbalance is detrimental to the
model’s overall performance. To address this issue, we manually adjust the portions of each task
during the construction of task-requirement pairs. The portion could be found in Appendix A.

θ̂p = argmin
θp

1

N

N∑
i=1

Li. (4)

4 EXPERIMENTS

To evaluate our framework, we analyze FLAME with the following questions:

1. Can FLAME be effectively and efficiently applied to different modalities?
2. Can FLAME generalize to unseen tasks while maintaining performance and effi-

ciency?
3. How well does FLAME’s output model serve as a foundation for further adaptations?

4.1 EXPERIMENT SETTINGS

Three settings are selected for our main experiments: NLP, CV, and tabular data.

NLP. We use GLUE Benchmark (Wang et al., 2019b), which has nine sentence- or sentence-pair
language understanding tasks built on established existing datasets and selected to cover a diverse
range of dataset sizes, text genres, and degrees of difficulty1. Distil-BERT base is the target model.

Tabular Data. We choose 10 famous tabular classification tasks from UCI Machine Learning
Repository2: Iris (Unwin & Kleinman, 2021), Heart Disease (Detrano et al., 1989), Wine (Aeberhard
et al., 1994), Adult (Becker & Kohavi, 1996), Breast Cancer (Street et al., 1993), Car Evaluation
(Bohanec & Rajkovic, 1988), Wine Quality (Cortez et al., 2009), Dry Bean (Koklu & Özkan, 2020),
Rice (Cınar & Koklu, 2019), Bank Marketing (Moro et al., 2014). MLP is the target model.

1https://gluebenchmark.com/
2https://archive.ics.uci.edu/
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CV. We use the Office-31 dataset (Saenko et al., 2010), which is commonly used in domain adap-
tation, to evaluate both the effectiveness, efficiency and zero-shot ability of our approach. This
dataset contains 31 object categories in three domains: Amazon, DSLR, and Webcam with 2817,
498, and 795 images respectively, different in background, viewpoint, color, etc. ResNet-50 (He
et al., 2016) is the target model. In the main experiment, we first train our model with Amazon and
DSLR, directly feed User Requirements extracted by LLM on Webcam’s training data to FLAME,
and test the output model on Webcam’s test set, where FLAME sees no Webcam’s data but its
requirements. We have more zero-shot experiments in Section 4.3.1.

4.1.1 BASELINES

Generally speaking, FLAME introduces a novel capability: translating user data or descriptions into
model parameters. As this is the first framework of its kind, there are no directly comparable base-
lines. To address this, we compare FLAME with two widely adopted training paradigms: Finetune
and LoRA, which are standard for adapting models to new tasks. In Finetune, we finetune the tar-
get model with all parameters by the training data in each task individually. Since FLAME uses
LoRA to reduce the complexity, we treat finetuning the target model with LoRA adapters in each
task as the baseline LoRA. The LoRA adapters are the same as FLAME’s. In tabular experiment,
since MLP is simple, FLAME directly outputs its weights, rather than using LoRA adapters. Mind
that in each setting, we ONLY need ONE FLAME to solve the tasks, while other paradigms need
finetuning for each tasks.

For our study, we introduce a variant of FLAME, FLAME-F. This adaptation includes an additional
step where, following FLAME’s generation, we perform full-parameter finetuning using consistent
hyperparameter settings (1 epoch if no specified). Details are available in Appendix A.

4.1.2 METRICS

In addition to the performance metric, we stand at the viewpoint of common users WITHOUT
technical expertise and propose additional metrics. We humbly think that it is NOT how long
it takes to train a FLAME but how long they could get a model that counts for the most
users. Hence, we evaluate FLAME with two additional efficiency metrics: E2E Runtime and
Relative Efficiency. E2E (end-to-end) Runtime measures total task completion time (seconds),
while Relative Efficiency scales this runtime against the worst-performing method.

4.2 RESULTS AND OBSERVATIONS

The results can be seen from Tables 1 to 3, underscoring the efficiency, and satisfactory performance
of our framework. For hyperparameter settings, we kindly refer readers to Appendix A. Here,
we provide detailed discussions of our results.

FLAME yields progressively more significant speed gains as the size of the target model in-
creases. Leveraging the power of hypernetworks, FLAME generates custom model weights in a
single forward pass, eliminating the need for a resource-intensive and expertise-dependent finetun-
ing process. This approach yields progressively more significant speed gains over the conventional
pretrain-finetune paradigm as the size of the target model increases. The acceleration observed
ranges from approximately 40x for a simple MLP (1K) to 270x for Distil-BERT base (66M), mark-
ing a 7-fold increase in efficiency. It is also interesting to find out that in the experiments of tabular
data, LoRA is a bit slower than Finetune. The deficiency in speed stems from the target model.
Since tabular tasks are rather simple, FLAME directly uses MLP, a very shallow neural network iso-
morphic to LoRA adapters. Hence, directly finetuning the target model is more efficient than using
LoRA to finetune it. These results highlight FLAME’s exceptional efficacy in producing tailored
models, particularly for larger target architectures.

Inter-task knowledge empowers FLAME for enhanced model generation. Due to hypernet-
works’ limitations, FLAME cannot generate large models directly. Instead, our implementation
for sizable target models is to generate LoRA adapters and merge them to construct the final mod-
els. This approach may initially seem at most comparable to the baseline LoRA. Yet, in practice,
FLAME surpasses LoRA in all experiments and even outperforms Finetune in CV and tabular data
tasks. This performance boost is largely attributable to the inter-task knowledge gleaned by FLAME.
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Table 1: Detailed results on GLUE with Distil-BERT as the target model. We use GLUE’s metrics to
evaluate these tasks. ♯Epoch represents target model’s training epochs for each method to obtain the
results. E2E (end-to-end) Runtime measures total task completion time (seconds), while Relative
Efficiency scales this runtime against the worst-performing method.

Results on GLUE Benchmark (Distil-BERT)

Methods CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE WNLI DM Score ♯Epoch E2E
Runtime (s)

Relative
Efficiency

LoRA 48.3 91.0 84.9 / 80.3 81.2 / 80.0 68.9 / 87.3 80.5 33.1 88.1 52.8 65.1 0.0 71.5 20 75672 1.3
Finetune 45.5 91.3 86.6 / 80.8 82.1 / 80.9 69.2 / 87.8 81.8 80.8 87.6 56.9 63.7 35.6 74.4 20 95870 1.0
FLAME 39.5 88.9 85.3 / 78.4 80.9 / 80.3 63.3 / 83.5 77.8 78.0 84.6 69.5 64.4 28.0 73.4 0 350 273.8

FLAME-F 36.9 90.8 85.5 / 79.4 81.3 / 80.5 67.0 / 86.6 77.8 78.1 85.8 70.0 62.3 29.9 73.8 1 1101 87.0

Table 2: Detailed results of various methods on 10 tabular classification tasks with accuracy as the
evaluation metric. ♯Epoch represents target model’s training epochs for each method to obtain the
results. E2E (end-to-end) Runtime measures total task completion time (seconds), while Relative
Efficiency scales this runtime against the worst-performing method.

Results on Tabular Data (MLP)

Methods Iris Heart Wine Adult Breast Car Wine Dry Rice Bank
Disease Cancer Evaluation Quality Bean Marketing Average ♯Epoch E2E

Runtime (s)
Relative

Efficiency

LoRA 93.3 63.0 67.3 54.7 95.9 71.3 55.0 88.9 92.5 89.8 77.2 20 272 1.0
Finetune 88.9 54.3 89.1 55.2 96.5 71.0 55.3 90.6 93.1 89.9 78.4 20 233 1.2
FLAME 100.0 60.9 94.5 54.7 95.3 71.5 54.1 85.0 92.5 89.8 79.8 0 6 46.2

FLAME-F 100.0 62.0 94.5 55.1 95.9 71.3 55.4 88.8 92.9 90.0 80.6 1 14 20.2

Table 3: Detailed results of various methods on Office-31 (31-class classification). The metric is
accuracy, top-3 & 5 accuracy. Our results on Webcam are conducted with no training data provided.
♯Epoch represents target model’s training epochs for each method to obtain the results. E2E (end-to-
end) Runtime measures total task completion time (seconds), while Relative Efficiency scales this
runtime against the worst-performing method. The average only considers Amazon and DSLR here.

Results on Office-31 (ResNet-50, FLAME is ZERO-SHOT in Webcam)

Domain Amazon DSLR Average Webcam

Methods Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5
♯Epoch E2E

Runtime (s)
Relative

Efficiency

LoRA 66.4 77.7 84.8 78.4 92.2 96.1 72.4 85.0 90.5 72.5 87.5 93.8 400 3393 1.1
Finetune 67.5 79.2 83.7 84.3 98.0 100.0 75.9 88.6 91.9 90.0 100.0 100.0 400 3770 1.0
FLAME 66.4 79.9 83.7 92.2 100.0 100.0 79.3 90.0 91.9 76.2 87.5 91.2 0 15 257.6

FLAME-F 67.8 81.3 85.9 92.2 100.0 100.0 80.0 90.7 92.8 77.5 90.0 91.3 1 18 206.4

Although tasks within a single experiment differ, they share common knowledge. For example, in
NLP experiments, both MRPC and QQP tasks focus on semantic equivalence between sentences,
and in CV experiments, all domains involve similar classification tasks with unique data-specific
characteristics. This observation is also confirmed by our zero-shot success in the Webcam task,
where it outperforms LoRA without direct data access, relying solely on User Requirements. We
provide further zero-shot analyses in Section 4.3.1

FLAME not only generates well-performed models but also provides efficient initial weights.
In our main experiments, we introduce FLAME-F which undergoes a 1-epoch full-parameter fine-
tuning post-generation. This approach leads to more favorable outcomes, achieving an average
performance improvement of 0.8 absolutely while only doubling the total time consumption. We
provide detailed analyses of this observation in Section 4.3.2.

4.3 FURTHER ANALYSES

To further answer Question 2&3 in Section 4, we conduct further experiments to evaluate FLAME’s
zero-shot ability (Section 4.3.1) and the capability of weight initialization (Section 4.3.2). In ad-
dition, we have also in depth analyzed FLAME’s prompt design and case study of Requirement
Generator and Model Generator, the impact of user input and the robustness of the quality of User
Requirements. We kindly refer readers to Appendices C to F for detailed results.

4.3.1 ZERO-SHOT ABILITY

In our main experiments, we evaluated the zero-shot capability of FLAME using the Webcam do-
main. This section expands the analysis by considering DSLR and Amazon as zero-shot domains,
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Table 4: Analyses on the zero-shot ability of FLAME on Office-31. LoRA and Finetune use training
data, while Zero-Shot and FLAME see no data in the zero-shot domain. FLAME-F additionally
finetunes the target model with zero-shot domain’s training data individually.

Setting AD → W DW → A AW → D

Metrics A D Average W D W Average A A W Average D

LoRA 66.4 78.4 72.4 72.5 78.4 72.5 75.5 66.4 66.4 72.5 69.5 78.4
Finetune 67.5 84.3 75.9 90.0 84.3 90.0 87.2 67.5 67.5 90.0 78.8 84.3

Is Seen Task? ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Zero-Shot 67.7 86.0 76.9 63.7 90.0 91.3 90.7 17.0 67.0 85.0 76.0 70.0
FLAME 66.4 92.2 79.3 76.2 100.0 88.7 94.4 19.8 64.3 83.8 74.1 84.3

FLAME-F 67.8 92.2 80.0 91.3 98.0 93.8 95.9 68.2 67.8 87.5 77.7 84.3

training on the remaining two domains separately. This results in three settings: AD→W (Amazon,
DSLR→Webcam), DW→A, and AW→D.

Additionally, we performed zero-shot evaluations in NLP using five Natural Language Inference
(NLI) tasks: ANLI R1, ANLI R2, ANLI R3 (Liu et al., 2020), CB3, and MNLI4, with the last two
tasks as zero-shot domains. All of these tasks are to decide the relationship between the premise and
the hypothesis (entailment, contradiction, or neutral).

Since these tasks have the same output dimensions, to facilitate a more direct comparison, we
introduce a new baseline, Zero-Shot. For CV, it trains a 31-class ResNet-50 model on two domains
and evaluates it on the zero-shot domain. For NLP, it trains a 3-class DistilBERT-base model on
ANLI R1,2 and 3 (abbreviated as R1, R2, and R3) and evaluates it on the zero-shot tasks (CB &
MNLI). In contrast, FLAME generates the target model based solely on User Requirements, while
FLAME-F further refines it by full-parameter finetuning after FLAME’s generation (10 epochs for
AD→W, 15 epochs for DW→A and 1 epoch for others).

Table 5: Accuracy on NLI tasks. CB & MNLI are
zero-shot. MNLI has 2 sub-tasks.

Methods R1 R2 R3 Average CB MNLI Average

LoRA 39.0 38.5 42.5 40.0 50.0 77.8/78.7 68.8
Finetune 42.0 44.7 45.3 44.0 57.1 79.6/79.6 72.1

Seen Tasks Unseen Tasks

Zero-Shot 46.8 43.4 42.9 44.4 28.6 57.4/59.4 48.5
FLAME 51.0 41.0 41.9 44.6 53.6 57.8/59.5 57.0

FLAME-F 51.9 40.2 42.1 44.7 66.1 79.4/80.5 75.3

The results in Tables 4 and 5 showcase the
strong zero-shot capabilities of FLAME, with
the model even outperforming LoRA in cer-
tain cases. This can be attributed to the com-
bination of user requirement supervision and
the inter-task knowledge. This observation
is consistent with the main experiments. The
only difference between Zero-Shot and Fine-
tune is that Zero-Shot trains the seen tasks al-
together while Finetune trains them separately.
Leveraging inter-task knowledge, Zero-Shot
consistently outperforms Finetune across all

seen tasks. Moreover, with User Requirement (have additional knowledge) as supervision, FLAME
shows even further improvements over Zero-Shot in some settings, despite being trained with LoRA.
Notably, in DW→ A, FLAME experiences a sharp performance drop compared to LoRA and Fine-
tune. This decline is attributed to the distinctive nature of Amazon, which exhibits a larger disparity
with other domains. Zero-Shot’s similar performance in this scenario can support our viewpoint.
When FLAME’s output undergoes further finetuning for a limited duration, the model shows im-
proved performance, we will in depth analyze this in Section 4.3.2.

4.3.2 CAPABILITY OF WEIGHT INITIALIZATION

In Section 4.2, we state that FLAME not only generates well-performed models but also provides
efficient initial weights. To further testify to this viewpoint, we finetune the target model (ResNet-50)
with all parameters under the same hyperparameter setting to Finetune, with the zero-shot output
of FLAME on Webcam as weight initialization. It is important to notice that the major difference
between the two methods lies in the weight initialization. While Finetune uses the weights pretrained
on ImageNet (Deng et al., 2009), ours uses the weights outputted by FLAME in a zero-shot manner.

3https://super.gluebenchmark.com/
4https://gluebenchmark.com/
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Figure 3: Detailed analyses on the capability of weight initialization of FLAME. For clearer com-
parison, we increase the length of the starting epochs. Meanwhile, we mark the best checkpoint of
each method in the figures with a solid round point.

We save the best checkpoint in evaluation and test it on Webcam’s test data. The results, detailed
in Table 6, reveal a notable aspect: despite a roughly 10% performance gap compared to Finetune
without access to Webcam’s data shown in Table 3, our framework exhibits remarkable convergence
speed when finetuned with Webcam’s training data, using the same hyperparameters as Finetune.
Specifically, while Finetune requires 108 epochs to reach optimal evaluation results, our frame-
work, given FLAME’s zero-shot output as initialization, achieves comparable performance in just
16 epochs, a 6.75-fold increase in speed.

Table 6: Results on the test dataset using the best
evaluation checkpoint of each method. ♯epoch im-
plies the number of epochs for each method to
achieve the checkpoint.

Office-31 (Webcam) Results with Different Weight Initializations

Methods \ Metrics Acc Acc@3 Acc@5 ♯Epoch

Finetune 90.0 100.0 100.0 108
FLAME 95.0 98.8 100.0 16

Moreover, we meticulously track the progres-
sion of training and evaluation losses, alongside
the corresponding accuracy as presented in Fig-
ure 3 with five different seeds. The depicted
curves represent the mean value, while the
shaded areas denote the range within one stan-
dard deviation. All the figures demonstrate the
superiority of FLAME’s output as a weight ini-
tialization. As shown in Figure 3b, FLAME’s
initialization outperforms the baseline in evalu-
ation throughout the process. Notably, the sub-
stantial standard deviation observed in the base-

line during the initial epochs in Figure 3b can be attributed to the instability often encountered at
the onset of training. Moreover, while the baseline shows a marginally improved performance in the
later stages of training in Figure 3c, our approach demonstrates better performance on evaluation
data in Figure 3d, suggesting a better generalization capability and robustness.

5 FUTURE WORK AND CONCLUSION

In this work, we introduce FLAME, a framework that leverages LLMs to determine and generate
customized models based on user data or task descriptions. While FLAME shows strong perfor-
mance in generating customized models, efficiently addresses specific user needs and lowers the
barrier to AI model usage, it is important to note that this is merely a preliminary exploration, and
several challenges remain unsolved.

First, the granularity of Model Generator can be improved. A more detailed analysis of factors
such as task complexity and available user resources could enable more refined model architecture
decisions. Second, the capabilities of Parameter Generator need expansion. The current multi-head
solution is limited to tasks resembling the training data. For tasks with greater disparity (e.g., new
output dimensions or modalities), FLAME still falls short. Further, for different modalities, separate
FLAMEs are required. Developing an all-in-one FLAME for different modalities is a key goal for
future research.

Generally speaking, by introducing FLAME, we aim to paves the way for a new paradigm in adap-
tive, efficient model creation. However, our research is still in its early stages, and we welcome
discussions and collaborative efforts to further explore this emerging field.
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Lihu Chen and Gaël Varoquaux. What is the role of small models in the llm era: A survey, 2024.
URL https://arxiv.org/abs/2409.06857.

P. Cortez, Antonio Luı́z Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
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A HYPERPARAMETER SETTING

In the main text, we conduct comprehensive experiments on FLAME. In this section, we provide
detailed hyperparameter settings to reproduce our results in Tables 1 to 3, as shown in Table 7.
Since FLAME is a framework that generates target models directly. During the training of FLAME
(denoted as pretrain for simplicity), we need to train both FLAME and the target model to update
the overall framework. Therefore, we set their learning rate and weight decay individually.

Table 7: Detailed Hyperparameter Setting of Our Main Experiments

Parameter \ Setting NLP CV Tabular Data
GPU A100 80G A100 80G A100 80G

Optimizer (FLAME) Adam Adam Adam
Learning Rate (FLAME) 1e-5 1e-4 1e-3
Weight Decay (FLAME) 1e-4 1e-5 1e-4

Optimizer (Target Model) Adam Adam Adam
Learning Rate (Target Model) 1e-4 1e-3 2e-2
Weight Decay (Target Model) 1e-4 1e-3 1e-4

lora r 16 8 NA
lora alpha 32 16 NA

lora droput 0.05 0.1 NA
target modules .*[qv] lin layer.\..\.conv. NA

♯Epoch (Pretrain) 50 100 80
Batch Size 256 256 64

Latent Dimension 768 128 25
Seed 2024 2024 2024

The hyperparameter settings of baselines are similar. We set the number of training epochs to 20,
200, and 20 in NLP, CV, and tabular data individually with the learning rate to be 1e-3, 1e-3, and
2e-2 individually. The LoRA config of baseline LoRA is the same to FLAME, except that in tabular
data, lora r is 4, lora alpha is 8, lora dropout is 0.1, and target modules is mlp\.\d\.*.

Since the portion of each task’s training data is imbalanced, we manually re-balance the weight
of each task by simply retrain the samples several times. In CV experiments, we do not use this
technique. In NLP experiments, we upweight WNLI and RTE with factor 5 and STS-B, CoLA and
MRPC with factor 3. In tabular experiments, we upweight Wine, Iris with factor 10 and HeartDis-
ease, Rice and DryBean with factor 2.

B IMPLEMENTATION DETAILS

As we stated in the main text, to solve convergence issues, we adopt LoRA adapters to the target
model and generate their parameters. Besides, since we only need very simple AI models like
MLPs to solve tabular tasks, FLAME directly outputs target models’ parameters rather than LoRA
adapters’ parameters. The implementation of MLP is shown below. We accordingly mark their
hyperparameters concerning LoRA to NA in Table 7.

class MLP(nn.Module):
def __init__(self,

in_dim: int,
out_dim: int,
hidden_dim: int,
n_layers: int, *args, **kwargs):

super().__init__(*args, **kwargs)
self.mlp = nn.Sequential(

nn.Linear(in_dim, hidden_dim), *[
nn.Linear(hidden_dim, hidden_dim)
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for _ in range(n_layers)
],
nn.Linear(hidden_dim, out_dim)

)

def forward(self, x: Tensor) -> Tensor:
return self.mlp(x)

Generally, in the context of fine-tuning, we could use LoRA adapters to reduce the overall cost.
Although such paradigm operates flawlessly in traditional scenarios, it does have some problems in
FLAME. To be specific, complex models have parameters that are not trained but changed during
the stage of finetuning (e.g. running mean and variance of BatchNorm Layers). Due to conver-
gence and CUDA memory consumption issues, it is not practical for us to generate these parameters
alongside the generation of LoRA adapters. However, leaving these modules unsettled would result
in unacceptable performance degradation. Hence, to enable FLAME to generate complex models,
we disable the functionality of these layers in the target model at the expense of less stability with
the code below:

def train(self, mode=True):
type(model).train.__call__(self, mode)
for m in self.modules():

if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False

model.train = functools.partial(train, model)

C PROMPT DESIGN AND CASE STUDY ON REQUIREMENT GENERATOR

Since FLAME directly uses LLM to summarize User Requirements, it is crucial to design proper
prompts for them. As discussed in Section 3.1, the prompt should tell the type of the task and the
data-specific information. However, due to various reasons (e.g. lack of data), summarizing users’
requirements often poses challenges. In response, we carefully design the prompt and incorporate
users’ knowledge (User Data or Description) into it, resulting in better performance.

As shown in Figure 4, the first row is the system prompt (prompt template), which contains our re-
quirement of generating User Requirements, two examples for better reasoning, and the place (last
2 lines) to fill User Description and User Data individually. In the requirement part, we emphasize
that LLM ought to succinctly identify the type of the task (e.g. classification) and point out the
data-specific information. For further uses, we require the output User Requirement must have 5
elements, namely task type, data pattern, number of classes, number of input features (optional) and
scale. These features are curial for further process in Model Generator, which determines the archi-
tecture of target model. In the example part, we provide 2 examples and analyze them, following
the idea of COT (Chain of Thought) (Wei et al., 2022) for better performance.

As shown in Figure 4, in NLP, we use benchmark GLUE for experiments. The major difference
between GLUE’s tasks can be directly summarized from their task name since they vary in task
type (e.g. binary two-input classification, multi-class one-input classification, one-input regression.)
Therefore, to instruct LLMs to precisely capture user requirements in NLP, we don’t need to provide
User Description. In the example, with the prompt given, LLM successfully points out that the given
data is a task of binary sentiment analysis. Similar results can be observed in tabular data. Here,
different from NLP, we also provide background information (User Description) on the given data.
We directly tell LLM that the data comes from datasets such as Iris and Car Evaluation. With
User Description and User Data provided, LLM successfully points out that the input is a tabular
classification to evaluate the acceptability of car purchases. For CV, since the task is multi-class
image classification and there is 31 categories, for better accuracy, we directly tell the number of
classes in User Description. Without it, LLM would tell that it is multi-class, losing the information
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System

Prompt

Suppose you are given either a User Description or a batch of User Data. User Description gives the background information about the task, while User Data could be in any modality such as text, 

images, tabular data or others and is paired with its label.
Your task is to succinctly identify the type of processing task demonstrated (e.g., classification, detection) based on the information provided.

Focus specifically on the unique characteristics or patterns relevant to User Data or User Description, i.e. presented in the data or described in the text.

The output MUST be ONE sentence, including the following information:
1. task type: a 2-word phrase indicating the data type (like image, text, sequence-to-sequence, tabular, audio) and the task type (like classification, generation, regression, detection) individually.

2. data pattern: the common of User Data (like photography features), MUST unique to this batch and irrelevant to the label, preferable patterns inferable from User Description yet not identical to it.
3. number of classes: specified if the task involves some form of classification (cls).

4. number of input features: specified only in tabular tasks

5. scale: selected from "small", "base", and "large" according to user resources, which, if not noted in advance, should default to "base".

Example No. 1:
# Input, comment line, not included in real samples
This is dataset Iris.

[input] {{"SepalLengthCm":5.1,"SepalWidthCm":3.5,"PetalLengthCm":1.4,"PetalWidthCm":0.2}} [label] Iris-setosa

[input] {{"SepalLengthCm":5.8,"SepalWidthCm":2.7,"PetalLengthCm":4.1,"PetalWidthCm":1}} [label] Iris-versicolor

[input] {{"SepalLengthCm":4.9,"SepalWidthCm":2.5,"PetalLengthCm":4.5,"PetalWidthCm":1.7}} [label] Iris-virginica

[input] {{"SepalLengthCm":5.4,"SepalWidthCm":3.4,"PetalLengthCm":1.5,"PetalWidthCm":0.4}} [label] Iris-setosa

# Output, comment line, not included in real samples
This is a task of 3-class, 4-feature and base-scaled tabular classification to recognize which type of iris plant the input is.

Analysis:

The first example provides a tabular classification task from dataset Iris. The first line of the input should be User description. The following lines are the batch of data, whose inputs and labels are 

explicitly noted.
Since it is a tabular task, the output sentence should include all the five elements as required above. Given User Description and User Data, we can conclude that this task is a 3-class classification with 

4 input features. Since user does not specify the model scale, we default it to base.

Example No. 2:

# Input, comment line, not included in real samples
You should classify these images into 15 categories. These images are captured with a DSLR camera. My resources are limited.

[input] ... [label] pen

[input] ... [label] ruler

[input] ... [label] chair

[input] ... [label] scissors

# Output, comment line, not included in real samples
This is a task of 15-class and small-scaled image classification, with each image demonstrating a shallow depth of field and 

selective focus typical of DSLR photography.

Analysis:

The second example provides an image classification task. Due to the limitations of LLM, we cannot directly embed images in this input. The real scenario is also the same situation, with the input 
images appended at the end of the prompt.

As it is not a tabular task, the output sentence should include 4 elements except number of input features. Since the user has limited resources, the scale should be small.

As User Description specifies that these images are taken by a DSLR camera, the output sentence precisely catches the unique patterns in the data: "a shallow depth of field and selective focus" typical 
of DSLR photography.

Please follow these guidelines and describe the task as instructed above in JUST ONE sentence without ANY other text or mark like " for the given input:

{USER DESCRIPTION}

{USER DATA}

NLP

Example

{EMPTY USER DESCRIPTION}

[sentence] contains no wit , only labored gags. [label] negative

[sentence] the greatest musicians [label] positive

…

[sentence] oblivious to the existence of this film [label] negative

This is a task of 2-class and base-scaled

text classification, with each sentence

demonstrating varying degrees of emotional

sentiment.

Tabular

Example

This is dataset CarEvaluation.

[input] {"buying":"med","maint":"vhigh",…,"safety":"high"} [label] acc

[input] {"buying":"med","maint":"high",…,"safety":"low"} [label] unacc

…

[input] {"buying":"med","maint":"low",…,"safety":"high"} [label] vgood

This is a task of 4-class, 6-feature and

base-scaled tabular classification to

predict car evaluation status based on

attributes like buying price and safety.

CV

Example

You should classify these images into 31 categories, which are are taken by a webcam

camera.

file_cabinet, mobile_phone, bottole,

…, keyboard

This is a task of 31-class and base-scaled

image classification, with each image

characterized by varying lighting and

clarity typical of webcam photography.
…

Figure 4: Prompt Details and Case Study on Requirement Generator. The prompt remains
the same on NLP, CV and tabular modalities and is used to GPT4-turbo to get User Require-
ments. The green color texts are those reflecting the correct data-specific information, while
texts with light blue background are the User Descriptions.

of the number of classes. As shown in Figure 4, the green texts in all examples clearly reflect the
domain-specific features in user data.

C.1 IMPACT OF USER DESCRIPTION

As discussed above, for easy tasks, the provision of User Data would be sufficient to the generation
of User Requirements. However, we find that for difficult tasks (like CV tasks), User description
could sufficiently improve the quality of User Requirement.

Begin with the example in Figure 4, if we remove User Description in the CV example, the output
of LLM would be: This is a multi-class image classification task, where each image features office
and personal items, often with a shallow depth of field and soft lighting, suggesting an indoor
setting with artificial light. Without User Description, LLM first fail to figure out the classifier
dimension, simply telling that it is multi-class classification. Meanwhile, it outputs some WRONG
features. The shallow depth of field is the feature of the domain DSLR, which does not apply to
Webcam. As a result, FLAME would output a model not well customized to the Webcam domain.
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Table 8: Human-evaluated Average Rank of User Requirements on Office-31.

Average Rank (↓) of User Requirements on Office-31 (CV exps)

Settings FLAME w/o User Data w/o User Description

Amazon 1.2 2.08 2.72
DSLR 1.3 2.0 2.7

Webcam 1.22 2.78 2.0

Average 1.24 2.29 2.47

To conduct a more detailed analysis of the impact of User Descriptions on hard tasks, we perform a
human-evaluated experiment on Office-31 (CV). Annotators are asked to rank requirements gener-
ated by (1) FLAME, (2) w/o User Data, and (3) w/o User Description based on the ground truth
provided (50 samples per domain). The results are shown in Table 8. FLAME, when both User Data
and User Descriptions are provided, produces the most accurate User Requirements. The average
ranking of User Requirements using only User Descriptions is lower than those generated using only
User Data, demonstrating the importance of User Descriptions in accurately capturing requirements
for difficult tasks.

We attribute this phenomenon to two factors. First, compared to User Data, User Descriptions
provide more straightforward supervision, which LLMs can more easily capture and translate into
User Requirements. Second, LLMs (GPT-4 turbo in our implementation) still struggle with solving
multi-modal tasks, and this limitation might also negatively impact their performance in this context.

D PROMPT DESIGN AND CASE STUDY ON MODEL GENERATOR

Given User Requirements, Model Generator prompts LLM to get json-format Metadata to determine
the architecture of the target model. Examples can be found in Figure 5. Here, LLM is asked to
determine the architecture of the target model based on the User Requirement given and pre-defined
choices. All modalities use the same prompt.

System

Prompt

Suppose you are asked to specify the desired model architecture information given a User Requirement, which is a sentence describing the user's task. 

You should detail the following features in a JSON format:

1. task: like img_cls, s2s_gen, seq_cls, tabular_cls, seq_reg.

2. out_dim: a number indicating the output dimension, specified if the task involves some form of classification (cls).

3. in_dim: a number indicating the number of input features, specified only in tabular tasks.

4. scale: selected from "small", "base", and "large" according to user resources, which, if not noted in advance, should default to "base".

5. arch: suggested model architecture, selected from "mlp_small", "mlp_base", "mlp_large", "mobilenet_v3_small", "resnet50", "resnet152", "distilbert-

base-uncased", "bert-base-uncased"

As a result, one desired output could be: {"task":"img_cls", "out_dim": 31, "scale": "base", "arch": "resnet50"}

Please provide JUST the JSON output based on the User Requirement given:

NLP

Example

This is a task of 2-class and base-scaled text classification,

with each sentence demonstrating varying degrees of emotional

sentiment.

{

"task": "seq_cls",

"out_dim": 2,

"scale": "base",

"arch": "distilbert-base-uncased"

}

Tabular

Example

This is a task of 4-class, 6-feature and base-scaled tabular

classification to predict car evaluation status based on

attributes like buying price and safety.

{

"task": "tabular_cls",

"out_dim": 4,

"in_dim": 6,

"scale": "base",

"arch": "mlp_base"

}

CV

Example

This is a task of 31-class and base-scaled image classification,

with each image characterized by varying lighting and clarity

typical of webcam photography.

{

"task": "img_cls",

"out_dim": 31,

"scale": "base",

"arch": "resnet50"

}

Figure 5: Prompt Details and Case Study on Model Generator. The prompt remains the same on
NLP, CV and tabular modalities and is used to GPT4-turbo to get Metadata. The green color texts
are those reflecting the correct data-specific information.
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Table 9: Detailed results of the influence of the number of User Requirements on the final perfor-
mance in tabular tasks.

Results on Tabular Data (MLP)

♯Requirements Iris Heart Wine Adult Breast Car Wine Dry Rice Bank
Disease Cancer Evaluation Quality Bean Marketing Average

1 97.8 60.4 57.4 81.2 94.7 69.0 43.4 88.0 92.3 89.8 77.4
2 86.7 56.0 90.7 82.2 81.3 69.0 52.0 89.0 91.5 89.8 78.8
5 100.0 60.9 94.5 54.7 95.3 71.5 54.1 85.0 92.5 89.8 79.8

10 97.8 57.1 85.2 82.0 97.7 69.0 48.1 72.6 91.8 90.0 79.1
20 97.8 56.0 79.6 76.4 84.2 69.4 52.9 82.8 88.8 89.8 77.8

Table 10: Analyses on the zero-shot ability of FLAME on Office-31. LoRA and Finetune use train-
ing data, while Zero-Shot and FLAME see no data in the zero-shot domain. FLAME-F additionally
finetunes the target model with zero-shot domain’s training data for 10 epochs.

Results on Office-31 (ResNet-50, FLAME is ZERO-SHOT in Webcam)

Domain Amazon DSLR Average Webcam

Methods Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5

LoRA 66.4 77.7 84.8 78.4 92.2 96.1 72.4 85.0 90.5 72.5 87.5 93.8
Finetune 67.5 79.2 83.7 84.3 98.0 100.0 75.9 88.6 91.9 90.0 100.0 100.0

Is Seen Task ? ✓ ✓ ✓ ✗

Zero-Shot 67.7 80.5 86.2 86.0 98.0 100.0 76.9 89.3 93.1 63.7 78.8 83.8
FLAME 66.4 79.9 83.7 92.2 100.0 100.0 79.3 90.0 91.9 76.2 87.5 91.2

FLAME-F 67.8 81.3 85.9 92.2 100.0 100.0 80.0 90.7 92.8 91.3 100.0 100.0

Table 11: Analyses on the zero-shot ability of FLAME on Office-31. LoRA and Finetune use train-
ing data, while Zero-Shot and FLAME see no data in the zero-shot domain. FLAME-F additionally
finetunes the target model with zero-shot domain’s training data for 15 epochs.

Results on Office-31 (ResNet-50, FLAME is ZERO-SHOT in Amazon)

Domain DSLR Webcam Average Amazon

Methods Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5

LoRA 78.4 92.2 96.1 72.5 87.5 93.8 75.5 89.9 95.0 66.4 77.7 84.8
Finetune 84.3 98.0 100.0 90.0 100.0 100.0 87.2 99.0 100.0 67.5 79.2 83.7

Is Seen Task ? ✓ ✓ ✓ ✗

Zero-Shot 90.0 100.0 100.0 91.3 98.8 100.0 90.7 99.4 100.0 17.0 29.8 39.4
FLAME 100.0 100.0 100.0 88.7 98.8 100.0 94.4 99.4 100.0 19.8 33.6 45.2

FLAME-F 98.0 100.0 100.0 93.8 98.8 100.0 95.9 99.4 100.0 68.2 78.4 83.7

Table 12: Analyses on the zero-shot ability of FLAME on Office-31. LoRA and Finetune use train-
ing data, while Zero-Shot and FLAME see no data in the zero-shot domain. FLAME-F additionally
finetunes the target model with zero-shot domain’s training data for 1 epoch.

Results on Office-31 (ResNet-50, FLAME is ZERO-SHOT in DSLR)

Domain Amazon Webcam Average DSLR

Methods Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5 Acc Acc@3 Acc@5

LoRA 66.4 77.7 84.8 72.5 87.5 93.8 69.5 82.6 89.3 78.4 92.2 96.1
Finetune 67.5 79.2 83.7 90.0 100.0 100.0 78.8 89.6 91.9 84.3 98.0 100.0

Is Seen Task ? ✓ ✓ ✓ ✗

Zero-Shot 67.0 77.7 84.8 85.0 95.0 97.5 76.0 86.4 91.2 70.0 82.0 86.0
FLAME 64.3 78.8 83.7 83.8 97.5 97.5 74.1 88.2 90.6 84.3 96.1 96.1

FLAME-F 67.8 80.2 84.1 87.5 96.3 97.5 77.7 88.3 90.8 96.1 98.0 98.0

E ROBUSTNESS OF MODEL CUSTOMIZER

As introduced in Section 3.2, Model Customizer is trained with requirement-data pairs and opti-
mized for the given batch of data. The pairs are created randomly from the Cartesian product of the
requirement set and dataset to ensure Model Customizer’s robustness. We evaluate how the number
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of requirements affects results in Tabular experiments. Results can be found in Table 9. As shown in
the results, the number of User Requirements has a certain impact on the final performance. How-
ever, the influence is not significant, demonstrating Model Customizer’s stability across the size of
requirement set. Meanwhile, we can conclude from the results that to obtain optimal performances,
a medium number (roughly 5) of requirements would be better.

F DETAILED RESULTS ON FLAMES’S ZERO-SHOT ABILITIES

In Section 4.3.1, we analyze the zero-shot ability of FLAME on Office-31. Due to space reason, we
only demonstrate the Accuracy metric, we put full results in Tables 10 to 12 for reference.
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