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Abstract

Deep neural networks have demonstrated remarkable performance in various vision
tasks, but their success heavily depends on the quality of the training data. Noisy
labels are a critical issue in medical datasets and can significantly degrade model
performance. Previous clean sample selection methods have not utilized the well
pre-trained features of vision foundation models (VFMs) and assumed that training
begins from scratch. In this paper, we propose CUFIT, a curriculum fine-tuning
paradigm of VFMs for medical image classification under label noise. Our method
is motivated by the fact that linear probing of VFMs is relatively unaffected by
noisy samples, as it does not update the feature extractor of the VFM, thus robustly
classifying the training samples. Subsequently, curriculum fine-tuning of two
adapters is conducted, starting with clean sample selection from the linear probing
phase. Our experimental results demonstrate that CUFIT outperforms previous
methods across various medical image benchmarks. Specifically, our method
surpasses previous baselines by 5.0%, 2.1%, 4.6%, and 5.8% at a 40% noise
rate on the HAM10000, APTOS-2019, BloodMnist, and OrgancMnist datasets,
respectively. Furthermore, we provide extensive analyses to demonstrate the impact
of our method on noisy label detection. For instance, our method shows higher
label precision and recall compared to previous approaches. Our work highlights
the potential of leveraging VFMs in medical image classification under challenging
conditions of noisy labels.

1 Introduction

Deep neural networks have demonstrated remarkable performance across various tasks, including
classification, detection, and segmentation [20, 16, 19, 57]. In medical imaging, these neural networks
leverage large amounts of labeled data to train models capable of accurately detecting or classifying
medical conditions from images such as dermatoscopes, X-rays, MRIs, and CT scans. However,
in practical settings, data often contain noisy labels and it is well established that neural networks
perform well only when the quality of training data is sufficiently high [42, 29, 5]. Noisy labels occur
when the data annotations—the labels assigned to training images—are incorrect or inconsistent.
This issue is particularly problematic in medical imaging, where annotating images is more complex
compared to natural images [53, 25]. Consequently, improving the robustness of neural networks
against noisy labels is a crucial area of research, directly affecting the effectiveness and reliability of
medical imaging technologies.

A large number of algorithms have been developed to address the issue of performance degradation
caused by noisy samples [42]. In particular, clean sample selection methods, such as MentorNet [24],
Co-teaching [17], Co-teaching+ [56], JoCor [47], and CoDis [50], have demonstrated superior
performance without requiring modifications to the model architecture or training loss. The core
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Figure 1: Illustration of linear probing (a) and adapter usage (b). Specifically, the weights of the
foundation model are frozen, while the fully connected layer or adapter weights (shown in orange)
are updated during the training phase. In (c), a performance comparison using a simulated noisy
dataset (HAM10000) is presented. It demonstrates that linear probing is more robust to noisy labels
compared to the adapter, whereas the adapter outperforms linear probing when there are no noisy
labels.

principle behind these methods is that small-loss samples are likely to be clean, as they are easier to
classify and the model memorizes them faster. Additionally, using two different but homogeneous
networks to select small-loss samples for each other is more stable than relying on a single model
for sample selection. These methods have shown outstanding performance using traditional neural
network architectures based on convolutional layers. However, there are practical issues with these
methods in two aspects: (i) it cannot be guaranteed that these methods will perform equally well
with transformer-based architectures, which have recently gained significant attention, and (ii) their
assumption that training starts from scratch is impractical, as it prevents the use of rich features from
pre-trained models, which could be beneficial for filtering noisy labels.

Recently, large-scale vision foundation models (VFMs) with transformer-based architectures [13],
such as CLIP [39], MAE [18], SAM [28], and DINOv2 [37], have gained attention for their perfor-
mance and applicability across various tasks. The self-supervised training of VFMs on large-scale
datasets enhances their robustness against various image corruptions and improves their generalization
capabilities [10, 48, 38, 40]. The inherent robustness and rich features of VFMs can be beneficial for
detecting noisy labels. For instance, linear probing of VFMs is relatively unaffected by noisy samples
since it does not modify the VFM’s feature extractor, preventing the memorization of noisy data, as
shown in Figure 1. However, linear probing does not fully leverage the VFM’s capabilities when
there is a domain gap between the pretraining task of the VFM and the target task (e.g., pretraining
on natural images versus medical image classification) [48]. To address this issue, some researchers
have proposed using trainable fine-tuning adapters for VFMs [22, 23, 48, 9]. Yet, these adapters
might degrade performance by memorizing noisy labels due to their trainable parameters involved in
feature extraction. Therefore, we state our research question as follows: How can we use the power of
pre-trained vision foundation models for medical image classification in the presence of noisy labels?

In this paper, we introduce a Curriculum Fine-Tuning paradigm for vision foundation models in
medical image classification under noisy labels, called CUFIT. CUFIT is a curriculum-learning
framework designed to fine-tune VFMs with noisy medical datasets. The framework consists of three
training modules: the Linear Probing Module (LPM), the Intermediate Adapter Module (IAM), and
the Last Adapter Module (LAM). During the training stage, clean samples are selected based on an
agreement criterion, where a sample is selected if its annotation matches the module’s prediction.
Specifically, the LPM is trained using all available samples, as linear probing is robust against
noisy labels. Subsequently, the IAM is trained with the samples selected by the LPM, and the
LAM is trained with the samples selected by the IAM. This inter-module curriculum training (i.e.,
LPM→IAM→LAM) is beneficial for increasing the number of clean samples available to train
the LAM, considering that the LPM only selects a limited number of samples due to performance
degradation caused by the domain gap. Consequently, CUFIT leverages the LAM for final predictions,
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offering strong fine-tuning performance for medical image classification in the presence of noisy
labels by utilizing the strengths of both linear probing and adapters, as illustrated in Figure 1-c. In
summary, the main contributions of this paper are as follows:

• We introduce CUFIT, a simple yet effective fine-tuning paradigm for medical image classification
using VFMs in the presence of noisy labels. This method leverages the robustness of linear
probing and the generalization capability of fine-tuning adapters to handle noisy datasets during
training stage.

• We conduct various experiments demonstrating that CUFIT significantly improves the robustness
of VFMs against noisy labels in medical datasets. We show that CUFIT outperforms previous
methods across several medical image benchmarks.

• We provide extensive analyses to enhance the understanding of our fine-tuning paradigm. Addi-
tionally, we validate our framework with various VFMs and adapter configurations.

2 Related Work

Vision foundation models. Vision transformers (ViTs) embed 2D images into 1D tokens and
model their global correlations using the self-attention mechanism [13, 35, 43]. ViTs are known to
be effective when large datasets are used, and the concept of vision foundation models is introduced.
Several studies have developed pre-trained vision transformers based on self-supervised learning. For
instance, contrastive language-image pre-training (CLIP) provides high-quality visual representations
through contrastive learning with a large amount of image-text pairs [39]. Additionally, masked auto-
encoder (MAE) offers high-capacity models that generalize well through self-supervised learning
with masked auto-encoding, where the task is to reconstruct token patches from the given masked
tokens [18]. Moreover, knowledge distillation with no labels (DINOv1) [7] proposed a teacher-
student framework for self-training without annotations, resulting in a well-generalized ViT. More
recently, DINOv2 introduced a self-training framework that combines masked autoencoding and
teacher-student training based on carefully curated datasets [37].

Since large models and self-training in VFMs provide strong generalization capabilities for various
tasks, parameter-efficient fine-tuning has gained attention. Parameter-efficient fine-tuning (PEFT)
aims to adapt foundation models to new tasks by training only a few adapter parameters while keeping
the model itself frozen. Notably, there is research that proposes low-rank adaptation (LoRA), which
introduces trainable rank decomposition matrices into each layer of the transformer architecture in
large language models [22]. For the VFMs, visual prompt tuning [23] proposed appending prompts
to the input sequence of each transformer block, achieving excellent fine-tuning performance with
minimal parameters. Similarly, Adaptformer [9] introduces a novel MLP block to replace the original
one in transformer blocks, allowing for the use of both original and few trainable parameters. More
recently, Wei et al. proposed Rein, which aims to adapt VFMs for semantic segmentation with
domain generalization capabilities [48]. Also, Dutt et al. investigate PEFT algorithms across both
convolutional and large transformer-based networks for medical image classification, demonstrating
the effectiveness of PEFT, particularly in the low-data regimes common in medical imaging [14]. In
this paper, we focus on fine-tuning VFMs for image classification in the presence of noisy labels
using adapters. Rather than introducing a new adapter, we utilize an existing adapter within our
training paradigm.

Learning with noisy label. Deep neural networks have demonstrated remarkable performance
on large-scale datasets. However, it is well-known that neural networks can easily memorize noisy
labeled samples, leading to degraded performance. Several studies have been conducted to explore
robust supervised learning in the presence of noisy labels. These studies can be categorized into five
approaches [42]: (i) robust architectures, (ii) robust regularization, (iii) robust loss functions [15, 33,
46, 59], (iv) loss adjustment [26, 31, 32], and (v) sample selection [24, 36, 17, 56, 50]. In this paper,
we categorize our method as a sample selection method, which selects samples with clean labels
from a noisy training dataset. While previous sample selection methods typically consider training
from scratch, we focus on training starting from a pre-trained model, which is known to be more
robust to noisy labels [21]. Additionally, research has explored using CLIP to enable robust training
by leveraging its text-image matching capability on noisy datasets [49].
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Various methods have been proposed for clean sample selection from noisy datasets. For example,
MentorNet introduced the use of a teacher network to guide the student network to focus on clean
labels [24]. Similarly, Decoupling proposed updating two networks by using only the samples
with differing predictions between them [36]. Co-teaching also trains two networks simultaneously,
updating them based on sample recommendations from each other [17]. Co-teaching+ [56] improved
upon Co-teaching by introducing the "update by disagreement" strategy, where only the samples
with differing predictions between the two networks are used. More recently, Xia et al. proposed
CoDis, an extension of Co-teaching+ that employs an "update by discrepancy" strategy, selecting
samples with high-discrepancy prediction probabilities between the two networks to utilize more
samples [50]. These methods are based on the assumption that clean samples can be identified using
certain criteria, and that network collaboration is more stable than self-selection, which may lead to
error accumulation. In this paper, we develop our method based on same assumption, but we assume
that we start the learning process from the pre-trained VFM.

3 Problem Setup

We consider a k-class classification task using a neural network. Let X ∈ Rd denote the input
space and Y ∈ Rk represent the ground-truth label space. In a typical classification task, the neural
network is trained to align the input space with the label space. To this end, a training dataset
D = {(xi, ŷi)}ni=1 is used for supervised learning with cross-entropy loss. In practice, a sample
(xi, ŷi) is considered as a noisy labeled sample when human-annotated label ŷi does not match the
true label yi. The objective of this paper is to develop a fine-tuning approach for VFMs that is robust
to noise and capable of performing accurately on noisy datasets.

Given a pre-trained VFM with parameters θVFM, consisting of a sequence of layers (e.g., attention
blocks in ViT [13]) L1, L2, ..., LM , where M is the depth of θVFM, the learning objective for a
classification problem can be formulated as:

min
θt

n∑
i=1

Lce(p(xi|θVFM, θt), ŷi), (1)

where θt and Lce represent the parameters targeted for updating and the cross-entropy loss, re-
spectively. Here, p(·|θ) refers to the prediction for a given input using parameters θ. We refer to
the training process as linear probing when θt is limited to the parameters of the linear layer θl.
Additionally, we refer to the training process as full-tuning when θt includes θVFM, and as adapter
tuning when it includes adapter parameters θa, which are not part of θVFM.

4 Method

In this section, we begin by describing the adapter method for fine-tuning the VFM in Section 4.1.
Following this, in Section 4.2, we introduce our method, CUFIT, which utilizes three modules: a
linear layer and two adapters, to combat noisy labels. The key idea behind CUFIT is to leverage the
well-pre-trained features of the VFM without updating the feature extractor when handling corrupted
samples. Subsequently, the adapters are trained using the samples selected in a curriculum-based
training manner, as shown in Figure 2 (i.e., linear probing → intermediate adapter → last adapter).
This approach helps increase the number of selected samples by reducing the domain gap between
the pretraining task and the medical image task. It is important to note that our framework does not
train the modules sequentially (i.e., where one module starts training only after another finishes);
instead, it trains the modules simultaneously on the current batch, similar to multi-task training.

4.1 Learning with Adapter

We consider various adapters for fine-tuning VFMs on medical image datasets.In particular, adapters
like Visual Prompt Tuning (VPT [23]), AdaptFormer [9], Low Rank Adaptation (LoRA [22]) and
Rein [48] can be used. These methods have been shown to be efficient for various image and video
tasks, even compared to full model training [9, 48]. Typically, when an adapter is used for fine-tuning,
the parameters of the VFM are frozen and not included in the optimization process.

In this section, we briefly introduce how an adapter works. Note that our goal is not to propose a
novel adapter but rather to present a training paradigm that can be applied to various adapters. For
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Figure 2: Illustration of our proposed training framework, CUFIT, which consists of a pre-trained
VFM and three distinct modules: (a) the linear probing module (LPM), (b) the intermediate adapter
module (IAM), and (c) the last adapter module (LAM). During the training stage, the LPM selects
clean samples for the IAM based on the agreement criterion, and the IAM selects clean samples for
the LPM. During the inference stage, only the LAM is used for prediction.

vision transformers (ViTs), the output of the attention block for the given input patches is calculated
as follows:

x′
l = Attention(Q,K, V ) = Softmax(

QKT

√
d

V ) + xl−1, (2)

where xl−1 is the output token of the previous block.Here, Q, K, and V refer to the query, key, and
value vectors, respectively, which are derived from linear projection and LayerNorm [6] applied to
xl−1. The final output of the block, xl, is then computed using LayerNorm and an MLP. Without
using an adapter, this process is formulated as:

xl = MLP(LN(x′
l)) + x′

l, (3)

where xl is the output token of the l-th block. When an adapter is used, the Eq 3 is replaced by the
following:

xl = MLP(LN(x′
l)) + x′

l + Adapt(xl−1; θ
a
l−1), (4)

where Adapt(·; θal ) refers to the adapter function for the l-th layer, parameterized by θal . We consider
this process to be an arbitrary function, as various adapters can be used.In the last block, the [CLS]
token is passed to the following linear layer for final image classification.

4.2 Curriculum training of three different modules

We consider a pre-trained VFM, θVFM, with a single linear layer parameterized by θLPM ∈ Rc×k,
an intermediate adapter module parameterized by θIAM, and a last adapter module parameterized
by θLAM, where c refers to the dimension of the class token (e.g., 384 dimensions for the ViT-small
architecture). Then, we propose a curriculum training framework for these three modules, in which
the LPM is trained with all samples from the given batch, while the adapter modules are trained
with filtered samples selected by their corresponding module using the agreement criterion. The
agreement criterion refers to a method where a sample is considered clean if the module’s prediction
matches the sample’s annotation. The idea behind this criterion is that a robust classifier will correctly
predict the sample under the assumption that clean labels are in the majority within a noisy class.
Therefore, a sample is selected as clean if it meets the agreement criterion (e.g., a "dog" image with a
"dog" annotation). Thus, we build the curriculum training framework based on the robustness of the
LPM against noisy labels using the agreement criterion.

In particular, the linear probing module (LPM) is trained as follows:

min
θLPM

n∑
i=1

Lce(p(xi|θVFM, θLPM), ŷi), (5)
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which directly represents supervised learning using the given images and corresponding labels. Here,
p(xi|θVFM, θLPM) refers to the output of the network using θVFM and θLPM for the given image xi.
During the training stage, the intermediate adapter module (IAM) is trained as follows:

min
θIAM

n∑
i=1

Lce(p(xi|θVFM, θIAM), ŷi)1{argmax p(xi|θVFM, θLPM) = ŷi}, (6)

where 1{·} is the indicator function. This simple modification using the indicator function ensures
that the adapter module is trained only on selected samples chosen by the linear layer. Finally, the
last adapter module (LAM) is trained as follows:

min
θLAM

n∑
i=1

Lce(p(xi|θVFM, θLAM), ŷi)1{argmax p(xi|θVFM, θIAM) = ŷi}. (7)

The Eq 7 is equivalent to Eq 6, but it uses LAM and IAM instead of IAM and LPM, respectively.
This simple yet effective sample selection strategy is well-suited for fine-tuning the VFM on noisy
image datasets. Notably, it does not require any hyperparameters like the estimated noise rate, which
are commonly needed in previous works [17, 47, 50], where they assume the noise rate is known in
order to select small-loss samples (e.g., selecting 60% of samples in a batch for a known noise rate
of 40%). After training is completed, only the last adapter module is used to predict the given test
image.

5 Experiments

5.1 Settings

Datasets. We evaluate our approach on four simulated noisy label medical multi-class image classi-
fication benchmarks: HAM10000 [44], APTOS-2019 [11], BloodMnist [3], and OrgancMnist [52].
Additionally, we conduct an evaluation on a real-world noisy label benchmark, Kaggle-EyePACS [2].
In particular, the detail of datasets are as follows:

• HAM10000 [44]: This dataset contains 10,015 dermatoscopic images for skin lesion classification,
with each image classified into one of seven possible disease categories. We use all the images
for training, and the evaluation is conducted using the 1,512 test images provided by the ISIC
2018 challenge [1].

• APTOS-2019 [11]: This dataset consists of 3,662 retina images taken with fundus photography
under various imaging conditions. Each image is rated for the severity of diabetic retinopathy
(DR) on a scale from 0 to 4. We use 2,930 images for training and 366 images for evaluation.

• BloodMnist [3]: This dataset contains 17,092 images of individual cells, with each image
annotated as one of eight possible cell types. We use 11,959 images for training and 3,421 images
for evaluation.

• OrgancMnist [52]: This dataset includes 23,538 images that are center-sliced from the Hounsfield-
Unit of 3D images in a coronal view. Each image is labeled as one of eleven body organs. We use
12,975 images for training and 8,216 images for evaluation.

• Kaggle-EyePACS [2]: This Kaggle competition dataset provides 35,126 retina images categorized
into five DR severity grades for training, which are known to contain noisy labels [25]. Specifically,
some DR category labels (e.g., mild DR labeled as moderate DR) are noisy, and some images
considered normal may actually contain retinal diseases such as glaucoma or drusen, which
are not included in the classification categories. It is estimated that there is approximately a
30%–40% label error in this dataset [25, 45]. We use the original 35,126 training images and
their annotations for training, and all images from APTOS-2019 for evaluation. Additionally, we
use the FGADR [60] dataset for further evaluation.

Baselines. We compare the performance of CUFIT with basic training paradigms: full training,
linear probing, and fine-tuning with Rein [48]. Additionally, we evaluate our approach against other
training-based methods, including Co-teaching [17], JoCor [47], and CoDis [50]. Like ours, these
methods do not modify the training loss or architecture. Specifically, Co-teaching trains two networks
simultaneously, with each network selecting small-loss samples from its peer’s predictions to guide
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MethodDataset Noise rate Full-training Linear probing Rein Co-teaching JoCor CoDis CUFIT
0.1 66.5 75.6 78.6 81.5 81.1 81.9 82.6
0.2 62.6 75.3 72.1 79.1 79.4 80.1 81.5
0.4 56.1 71.0 54.9 74.3 73.9 74.1 79.1
0.6 59.9 61.9 37.8 67.3 67.1 66.1 70.1

HAM10000

Mean 61.3 71.0 60.8 75.5 75.4 75.5 78.3
0.1 66.8 79.2 82.5 82.8 84.8 83.2 84.2
0.2 65.9 79.4 78.7 81.2 83.1 82.0 84.2
0.4 69.9 79.5 77.2 79.5 76.0 79.5 81.6
0.6 48.2 66.9 42.0 72.9 74.2 75.7 76.3

APTOS-2019

Mean 62.7 76.3 68.9 79.1 79.5 80.1 81.6
0.1 95.4 97.2 95.9 98.6 98.5 98.5 99.0
0.2 93.9 96.7 89.0 97.6 97.3 97.2 98.8
0.4 91.8 95.8 69.3 93.7 93.0 93.5 98.3
0.6 87.9 90.3 45.6 88.7 87.3 88.0 98.2

BloodMnist

Mean 92.3 95.0 75.0 94.7 94.0 94.3 98.6
0.1 85.3 83.3 87.4 92.1 92.1 92.1 93.7
0.2 79.9 82.9 82.0 90.9 91.9 90.7 93.6
0.4 72.1 79.9 63.8 85.8 85.3 85.8 91.6
0.6 64.5 72.2 43.1 82.8 82.6 81.9 87.4

OrgancMnist

Mean 75.5 79.6 69.1 87.9 88.0 87.6 91.6
Table 1: Average test accuracy (%) on four simulated noisy datasets with different noise levels. The
test accuracy is averaged over the last ten epochs. The best and second-best results in each case are
highlighted in bold and underline, respectively.

Testset Method

Full-training Linear probing Rein Co-teaching JoCor CoDis CUFIT

APTOS-2019 34.2 65.4 69.1 70.9 69.3 69.2 69.8
FGADR 14.3 46.4 48.8 44.9 53.1 53.0 53.7
Total 27.5 59.0 62.3 62.2 63.9 63.8 64.4

Table 2: Average test accuracy (%) on real-world noisy datasets (Kaggle-EyePACS for training).
After the training is done, we evaluate the model on two datasets: APTOS-2019 and FGADR. The
best result and second-best result in each case are highlighted in bold and underline, respectively.

learning. JoCor extends this idea by incorporating co-regularization to maximize agreement between
the two networks. CoDis further refines this process by selecting samples that not only have small
losses but also show high divergence between the two networks. It is important to note that we do not
compare our proposed framework with state-of-the-art methods that modify the training loss (e.g.,
semi-supervised learning) or model architecture [51, 8]. In the experiments, we apply these methods
to VFMs with adapters, as they do not require specific model architectures, and VFMs with adapters
outperform the linear probing of VFMs (i.e., DINOv2 with the Rein adapter is used as the default
setting for training with Co-teaching, JoCor, and CoDis for a fair comparison).

Implementation details. For the experiments, we use DINOv2 [37] with the ViT-small [13]
backbone as our basic vision foundation model. Additionally, we use Rein [48] as the fine-tuning
adapter, originally proposed for domain-generalized semantic segmentation of VFMs. In our setup,
we utilize the class token from the block for classification, rather than the patch tokens from multiple
blocks.

We use the PyTorch [4] codebase for our experiments. BloodMnist and OrgancMnist datasets are
sourced from MedMnist [54, 55]. We use the ViT-small architecture and the Adam optimizer [27].
All training runs for 100 epochs with a batch size of 32. The initial learning rate is 0.001, which
decays by a factor of 10 at epochs 50, 75, and 90. For full-parameter training, however, we start with
an initial learning rate of 0.0001. For the simulated noisy label benchmarks, we generate symmetric
noise [17] for evaluation, with noise rates set at 10%, 20%, 40%, and 60%.

5.2 Simulated noisy medical image classification benchmark

First, we evaluate our framework on simulated noisy label benchmarks using four medical datasets.
The average classification test accuracy for each dataset is provided in Table 1. Our framework
consistently outperforms previous baselines, demonstrating its effectiveness under noisy labels by
leveraging the pre-trained features of DINOv2 and the Rein adapter. Notably, our framework proves
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Figure 3: Illustration of label precision (a,d), label recall (b,e), and test accuracy (c,f) vs. epoch. The
first row is for HAM10000 with 40% noise rate, and the second row is for APTOS-2019 with 40%
noise rate.

to be more effective as the noise rate increases. For example, CUFIT achieves 0.85% relateively
higher accuracy than CoDis on HAM10000 with a 10% noise rate, while the improvement rises to
3.7% at a 60% noise rate. This result indicates that the pre-trained features of the VFM are particularly
useful for handling noisy labels in the given datasets.

5.3 Real-world noisy medical image classification benchmark

We train DINOv2 with Rein on the real-world benchmark, using the Kaggle-EyePACS dataset for
training and the APTOS-2019 and FGADR datasets for testing. Given the highly imbalanced training
set (e.g., approximately 73% of the samples are labeled as the normal class), we use weighted
cross-entropy loss to train the model. Since previous sample selection methods require a noise rate
hyperparameter, we employed the noise estimation method from [34], following Co-teaching [17].

In Table 2, we report the classification accuracy on the APTOS-2019 and FGADR datasets, as
well as the overall accuracy across both datasets. Our method outperforms other baselines on the
FGADR dataset and the combined dataset, while Co-teaching achieves the highest accuracy on
the APTOS-2019 dataset. We believe this discrepancy is due to the distribution of normal class
samples—approximately 50% in APTOS-2019 and about 5% in FGADR. Co-teaching performs
well in classifying the normal class, whereas our method excels at classifying diseased samples. For
example, our method achieves 53.9% macro-average test accuracy, while Co-teaching achieves 48.5%
on the combined test set.

6 Discussion

6.1 How does CUFIT works?

So far, we have demonstrated through empirical results that our framework significantly improves the
robustness of VFM fine-tuning against noisy labels. However, we have not yet discussed why our
framework is effective in learning with noisy labels. In Figure 3, we present label precision, label
recall, and test accuracy over the number of epochs to illustrate how our framework functions. In
principle, higher label precision indicates fewer noisy samples in the selected data, while higher label
recall indicates fewer clean samples in the unselected data. We have following three observations:
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Figure 4: Test accuracy of our method with various VFMs (DINOv1 [7], MAE [18], DINOv2 [37])
and adapters (VPT [23], AdaptFormer [9], Rein [48]). We use HAM10000 and APTOS-2019 with
40% noise rate for training.

Dataset Noise Rate Full-training Linear probing CoDis CUFIT

ResNet DINOv2 ResNet DINOv2 ResNet DINOv2 ResNet ResNet+rein DINOv2

HAM10000 0.2 73.1 66.5 71.1 75.6 74.9 80.1 77.7 79.9 82.6
0.4 59.6 62.6 67.8 75.3 72.4 74.1 73.8 75.4 81.5

APTOS-2019 0.2 80.4 66.8 80.3 79.2 80.3 82.0 82.4 82.2 84.2
0.4 64.7 65.9 73.4 79.4 78.1 79.5 80.5 82.2 84.2

Table 3: Average test accuracy on simulated noisy datasets (HAM10000 and APTOS-2019) using the
ResNet50 architecture. Test accuracy is averaged over the last ten epochs.

• We find that CoDis exhibits lower label precision during training compared to LPM and IAM,
suggesting that previous sample selection methods fail to effectively utilize the pre-trained features
of VFMs, leading to lower test accuracy. These methods train the network on all training data
without sample selection during the early stages of training (e.g., epochs 1 to 10 in their default
setting). However, this approach may harm the feature extraction capability of VFMs and result
in degraded performance.

• LPM consistently achieves the highest label precision across epochs but has the lowest label recall,
indicating that it effectively prevents the memorization of noisy samples. However, because the
feature extractor remains unchanged, its overall accuracy is limited, thus selecting only a small
number of clean samples.

• IAM, on the other hand, achieves similar label precision but higher label recall by leveraging the
adapter module, which contributes to the improved test accuracy of LAM. This suggests that by
adapting the feature extractor through training the adapter on a few certain clean samples, IAM
can be a more accurate module. It can then provide more clean samples to LAM, resulting in
better overall performance.

6.2 Performance comparison across various VFMs and adapters

To validate the performance of CUFIT in various settings, we present experimental results using
three VFMs and adapters in Figure 4. We use the same experimental setup (i.e., 100 epochs with
the Adam optimizer) to train the network across all backbones and adapters. Specifically, we utilize
four backbones, including DINOv1 [7], MAE [18], DINOv2 [37], and BioMedCLIP [58] and four
adapters, including VPT [23], AdaptFormer [9], LoRA [22], and Rein [48]. BioMedClip is a CLIP-
like model trained with the PMC-15M dataset, which contains 15 million biomedical image-text
pairs collected from 4.4 million scientific articles. Our results demonstrate that our framework
consistently helps build a robust classifier across different VFMs and adapters. For example, our
framework achieves better performance compared to both adapter-based methods and linear probing.
Additionally, we observe that linear probing consistently outperforms the adapter method in all cases,
indicating that the performance of adapters can be degraded by noisy labels across various adapters.
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Dataset Noise rate Method

Full-training Linear probing Rein Co-teaching JoCor CoDis CUFIT

CIFAR10 0.8 25.9 79.0 24.8 78.2 75.7 76.3 83.9
CIFAR100 6.3 59.6 25.6 66.7 64.2 63.7 73.8
ANIMAL10N 0.08∗ 74.5 89.1 88.0 92.2 91.9 91.7 92.3

Table 4: Average test accuracy on the natural image dataset with simulated noisy labels (CIFAR,
symmetric noise at 80%) and real-world noisy labels (ANIMAL10N [41], which has an estimated
noise ratio of 8%). The test accuracy is averaged over the last ten epochs. We use DINOv2 with Rein
adapter for the experiment. Bold values the best result.

6.3 Performance on CNNs with adapters

We designed CUFIT for VFMs due to their strong pre-trained feature extraction capabilities, enabled
by self-supervised training on large datasets. However, CNN-based architectures like ResNet [20]
also utilize pre-trained weights instead of starting from scratch. Therefore, we validate CUFIT on
ImageNet [12] pre-trained ResNet50, with and without the Rein adapter modified for ResNet. The
experimental results are shown in Table 3. We observe that our method outperforms other training
paradigms when using the ImageNet pre-trained ResNet architecture. Additionally, the Rein adapter
for ResNet improves performance, demonstrating that using fewer trainable parameters with an
adapter, compared to full training, is beneficial for combating noisy labels. Finally, we show that the
more representative pre-trained features of DINOv2 outperform the ImageNet pre-trained features
across all training methods.

6.4 Performance on noisy natural image classification benchmark

Since our framework is easily applicable not only to medical image classification but also to natural
image classification, we present experimental results on the CIFAR [30] simulated noisy classification
benchmarks and ANIMAL10N [41] real-world noisy classification benchmark in Table 4. We
validate our framework under an extremely high noise rate setting (80%) for CIFAR benchmark, as
it is intuitive that our framework performs well under low noise rates due to the feature extraction
capabilities of VFM. As shown in Table 4, our framework outperforms other sample selection
methods in natural image classification benchmarks as well. This demonstrates the effectiveness of
our framework, highlighting that using well pre-trained VFMs is beneficial for detecting noisy labels
in natural images, as expected.

7 Conclusion

This paper presents a curriculum fine-tuning paradigm called CUFIT, designed to robustly fine-
tune vision foundation models (VFMs) for medical image classification. Our framework is based
on the insight that linear probing of VFMs is robust to noisy labels, as it does not modify the
feature extraction process. Building on this, CUFIT consists of three training modules: the linear
probing module (LPM), the intermediate adapter module (IAM), and the last adapter module (LAM).
These modules are trained simultaneously, with each selecting clean samples for the next module.
Specifically, while the LPM is trained on all samples, the LPM and IAM select clean samples for
the IAM and LAM, respectively (i.e., LPM→IAM→LAM). Experiments demonstrate that CUFIT
significantly improves the performance of VFMs in the presence of noisy labels for medical image
classification. Additionally, we provide extensive analyses to enhance the understanding of CUFIT.
We hope our insights inspire future research to further explore the robustness of vision foundation
models when learning with noisy labels for various medical imaging tasks.
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Justification: We provide the main claims in the introduction and validate it in the experi-
ments and discussion sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We discuss the limitation in the conclusion.
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• The answer NA means that the paper has no limitation while the answer No means that
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should reflect on how these assumptions might be violated in practice and what the
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Justification: We do not provide the theoretical result in the paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experimental setting of our paper. Also, we provide source
code for experiments in supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Datasets used in this paper are available publicly. The code will be open-
sourced upon publication.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give the training and test details in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report the statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments are relatively free from computational resources since it
updates adapters of the model using small batch-size.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have used publicly opened code and data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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