
Under review as submission to TMLR

LD3M: Latent Dataset Distillation with Diffusion Models

Anonymous authors
Paper under double-blind review

Abstract

The concept of dataset distillation, which condenses large datasets into smaller but highly
representative synthetic samples, is gaining significant traction because it addresses some of
modern AI’s core challenges, such as preserving the privacy of training data or storing replay
memory samples for continual learning. However, unlocking the full potential of dataset
distillation remains difficult due to two main issues. The first is architecture generalization:
the distilled dataset often performs well with the architecture used during distillation,
typically ConvNet, but struggles to generalize to others. The second is effectively distilling
images at resolutions commonly found in standard datasets, such as 128x128 and 256x256.
This paper introduces Latent Dataset Distillation with Diffusion Models (LD3M), a novel
approach that is the first to combine a modified diffusion process in latent space with dataset
distillation to address these issues. LD3M allows for more effective distillation of images with
resolutions of 128×128 or 256×256 and improved generalization across various architectures.
Additionally, LD3M enables fine control over both distillation speed and dataset quality
by adjusting the number of diffusion steps. Experimental results demonstrate that LD3M
outperforms state-of-the-art methods by up to 4.8 percentage points for one image per class
and 4.2 percentage points for ten images per class across several ImageNet subsets.

1 Introduction

The undeniable success of employing larger datasets has led to a question captivating a growing body of
research (Cazenavette et al., 2023; Ramesh et al., 2022; Bengio et al., 2019): Are large-scale datasets necessary
to solve complex visual tasks? Using such datasets demands special equipment and infrastructure. Further,
it poses challenges regarding storing and data pre-processing (Ganguli et al., 2022). As an alternative,
dataset distillation focuses on generating a small set of representative synthetic samples from large datasets,
often condensing them into as few as one image per class (Wang et al., 2018). This approach has gained
significant traction due to its versatility, particularly in applications such as privacy preservation (Dong et al.,
2022) - where sensitive training data can be substituted with abstract yet representative synthetic data -
and accelerated neural architecture search (Such et al., 2020; Masarczyk & Tautkute, 2020). Nevertheless,
distillation methods like Dataset Condensation (Zhao et al., 2020), Distribution Matching (Zhao & Bilen,
2023), and Matching Training Trajectories (Cazenavette et al., 2022) still face major limitations. The
fundamental problems are the generalization across architectures and the handling of image resolutions
commonly found in standard datasets, such as 128× 128 or 256× 256. Classifiers show peak performance
when their architecture matches the one used for distillation. However, performance tends to deteriorate
when other architectures are trained on the distilled data. A related challenge is that dataset distillation
struggles with images larger than 32 × 32, primarily because the common practice of distilling raw pixel
values results in overfitting to the specific architecture used during distillation (Baradad Jurjo et al., 2021;
Cazenavette et al., 2023).

A promising solution is to integrate a generative prior into dataset distillation, as generative models have
already demonstrated remarkable success in producing high-fidelity images at resolutions beyond 32× 32
(Frolov et al., 2024; Bar-Tal et al., 2023). By leveraging the capabilities of generative models, it becomes
possible to distill synthetic latent codes that can be decoded to synthetic images that generalize better across
architectures and perform well at higher resolutions. One notable example is GLaD (Cazenavette et al., 2023),
which combines StyleGAN-XL with dataset distillation algorithms.

1

Under review as submission to TMLR

Despite this innovative approach, GLaD’s performance still has much room for improvement. A key limitation
of GLaD lies in its reliance on GANs, which, while effective, do not fully exploit the advantages offered
by more recent and superior generative models, such as diffusion models. However, incorporating diffusion
models into dataset distillation introduces its own set of challenges. One of the most significant issues is
the vanishing gradient problem that can occur during distillation due to the many iterative time steps in
the diffusion process (Hochreiter, 1998). This makes maintaining a strong gradient flow throughout the
distillation procedure difficult, especially when dealing with images of resolution 128 × 128 or 256 × 256.
To overcome these challenges, it is crucial to design a distillation process that can effectively balance the
strengths of diffusion models while mitigating the gradient vanishing problem.

This is where Latent Dataset Distillation with Diffusion Models (LD3M) comes in. Our work contrasts recent
attempts to integrate diffusion in the distillation process like Su et al. (2024) and Duan et al. (2023), which
primarily utilize the autoencoder encapsulating the diffusion model to avoid the vanishing gradient problem:
Instead of relying on averaged encoded codes or solely utilizing the decoder, LD3M enables for the first time
the effective learning of latent codes through the entire diffusion process. This is achieved by introducing a
modified diffusion process that enhances gradient flow, enabling more effective distillation of high-resolution
images while ensuring that the distilled datasets generalize well across diverse model architectures.

Another benefit is that LD3M leverages pre-trained diffusion models, enabling it to perform efficient dataset
distillation without fine-tuning the diffusion model. Moreover, the flexible framework of LD3M supports any
diffusion model, making it highly extensible and adaptable to emerging models. Thus, new and pre-trained
diffusion models can be easily integrated. Finally, our experiments show that LD3M distills notably faster
and generates 128× 128 and 256× 256 datasets of much higher quality for training various architectures than
the state-of-the-art latent dataset distillation method GLaD. Overall, our work:

• presents LD3M as the first latent distillation method that fully leverages the diffusion process. In
contrast, others rely solely on pre-trained decoders or averaging encoded codes, limiting their ability
to truly learn representations.

• introduces a novel diffusion process, designed specifically for dataset distillation. By enhancing
gradient flow through residual connections, LD3M not only accelerates the distillation process but
also sets a new foundation for future innovations in generative modeling.

• offers a seamless integration into existing distillation frameworks without requiring further training
or customization.

• achieves superior results across multiple benchmarks, significantly outperforming the state-of-the-
art method GLaD. LD3M consistently generates more diverse and expressive synthetic datasets,
demonstrating its ability to improve training efficiency and generalization across unseen architectures.

2 Background

Recent studies have shown that many large-scale datasets include redundant samples that do not affect model
training and can be ignored (Katharopoulos & Fleuret, 2018). This insight inspired methods that try to
decrease the size of training sets, e.g., importance sampling and coreset selection (Moser et al., 2022; Guo
et al., 2022; Mirzasoleiman et al., 2020; Csiba & Richtárik, 2018). In a similar spirit, dataset distillation
methods have emerged to address the inefficiencies of large datasets, such as frameworks like SRe2L (Yin
et al., 2024), which focus on decoupling synthesis processes to reduce the computational cost of traditional
distillation. In this Section, however, we will only review the foundational algorithms in dataset distillation
that are relevant to our analysis and discuss their relation to LD3M.

2.1 Dataset Distillation

Let T = (Xr, Yr), where Xr ∈ RN×H×W ×C , be a real image classification dataset and N its number of
samples. The goal is to compress T into a small synthetic set S = (Xs, Ys), where Xs ∈ RM×H×W ×C , where
M is the total number of synthetic samples with M = C · IPC, C the number of classes and IPC the Images
Per Class (IPC). We aim to achieve M ≪ N , and describe the problem as:

S∗ = arg min
S

L(S, T), (1)

2

Under review as submission to TMLR

where L is some objective for dataset distillation, which will be discussed in the next Sections. Broadly
speaking, the synthetic images are learnable, similar to weights in neural networks. After distillation, each
synthetic image constitutes an expressive representation of a class in the original dataset. Most approaches
initialize the synthetic images with IPC-many random images from each class. In the following, we describe
three commonly used methods to define L, namely Dataset Condensation (Zhao et al., 2020), Distribution
Matching (Zhao & Bilen, 2023), and Matching Training Trajectories (Cazenavette et al., 2022).

Dataset Condensation (DC) ensures alignment by deriving the gradients via a classification error (Zhao
et al., 2020). It calculates the loss on real (ℓT) and the respective synthetic data (ℓS). Next, it minimizes the
distance between the gradients of both network instances. More concretely,

LDC = 1− ∇θℓ
S(θ) · ∇θℓ

T (θ)
∥∇θℓS(θ)∥ ∥∇θℓT (θ)∥ . (2)

Distribution Matching (DM) obtains gradients by minimizing the logits on the real and synthetic datasets.
It enforces the feature extractor (ConvNet) to produce similar features for real and synthetic images (Zhao &
Bilen, 2023). The distribution matching loss is

LDM =
∑

c

∥∥∥∥∥ 1
|Tc|

∑
x∈Tc

ψ(x)− 1
|Sc|

∑
s∈Sc

ψ(s)
∥∥∥∥∥

2

, (3)

where Tc,Sc are the real and synthetic images for a class c.

Matching Training Trajectories (MTT) does not rely on the gradients obtained by calculating the
classification error or the feature distance. Instead, it leverages the network parameters, i.e., ConvNet,
(Cazenavette et al., 2022). In more detail, this approach exploits several trained instances of the model on
the original dataset, called experts, and stores the training trajectory of parameters {θ∗

t }T
0 at predetermined

intervals, called expert trajectories. For dataset distillation, MTT samples a random set of parameters θ∗
t

from the trajectory at a given timestamp. Next, it trains a new network, θ̂t+N , initialized with the parameters
on the respective synthetic images (for N iterations). Finally, the distance between the trajectory on the real
dataset, θ∗

t+M with M steps, and the trajectory on the synthetic one, θ̂t+N , is minimized. As a result, MTT
tries to mimic the original dataset’s training path (trajectory of parameters) with the synthetic images:

LMT T =
∥θ̂t+N − θ∗

t+M∥2

∥θ∗
t − θ∗

t+M∥2 . (4)

2.2 Dataset Distillation with Generative Prior

Dataset distillation with a deep generative model as the generative prior optimizes the latent codes of a
pre-trained generative model instead of directly focusing on the raw pixel values (Cazenavette et al., 2023).
More formally, let D : RM×h×w×d → RM×H×W ×C be a generator or decoder and h ·w · d≪ H ·W ·C. As a
result, we can reformulate Equation 1 to:

Z∗ = arg min
Z

L(D(Z), T) (5)

L is again some objective for dataset distillation, thereby agnostic to the applied distillation algorithm. One
of the first methods exploiting generative priors is GLaD (Cazenavette et al., 2023), which uses a pre-trained
StyleGAN-XL (Sauer et al., 2022). Yet, StyleGAN-XL offers a wide variety of latent spaces for generating
images. This requires evaluating all possible latent spaces with various distillation methods to find the most
suitable one, which is a time-consuming process. Moreover, even distilling into the more expansive W+ latent
space is overly restrictive, as it limits synthetic samples to resemble images from the training dataset of
StyleGAN-XL (Abdal et al., 2019). But, as synthetic samples compress a whole set of images, they do not
need to look real. Concurrent works, such as Zhong et al. (2024), try to mitigate this problem by proposing
an extensive greedy search spanning different hierarchical latent spaces of StyleGAN-XL. In contrast, LD3M
offers a single latent space efficient enough to express synthetic images of higher quality than GLaD.

3

Under review as submission to TMLR

Another drawback of using GANs is that they restrict the common practice of initializing synthetic samples
with real images (Kim et al., 2022; Liu et al., 2023; Zhao & Bilen, 2021). That would mean we must derive
the latent codes leading to the real images by applying D. However, getting the latent codes of an image for
a GAN is similar to a pseudo-inversion task, connecting to the broader research domain of GAN inversion
(Brock et al., 2017; Zhu et al., 2016). The central concept involves mapping an actual input image into GAN
latent codes, where selecting a particular latent code balances expressiveness and reconstruction fidelity, as
evidenced in prior research (Tov et al., 2021; Zhu et al., 2020). The cost-intensive GAN inversion process is
a significant drawback compared to our method LD3M, as LD3M can initialize the initial latent codes by
straightforwardly applying a pre-trained encoder E .

2.3 Diffusion Models for Image Generation

Diffusion models are a class of generative models that learn to generate data by gradually transforming
simple noise into complex, structured outputs. They achieve this by modeling the process in two phases: a
forward process, q, where noise is added to the data, and a reverse process, p, where the noise is removed to
recover the original data distribution. This reversal aids in approximating a complex target data distribution
gradually (Yang et al., 2023; Moser et al., 2023c). The main characteristic of diffusion models, which sets
them apart from previous generative models, is their dependency on previous time steps. Through iterative
refinement, the generative model keeps track of small perturbations and corrects them instead of predicting a
large and challenging transformation like GANs (Ho et al., 2020; Nichol & Dhariwal, 2021).

To reduce the computational requirements for generating high-resolution images, Rombach et al. (2022)
propose to move the diffusion process towards the latent space representations of an autoencoder structure,
which they called Latent Diffusion Model (LDM). Usually, a pre-trained autoencoder (Esser et al., 2021),
defined by the encoder E : RM×H×W ×C → RM×h×w×d and decoder D : RM×h×w×d → RM×H×W ×C , is used
to compress input data into a low-dimensional latent code Z ∈ RM×h×w×d. Next, LDM uses the diffusion
pipeline in the latent space and employs a decoder to translate the result, the processed latent code, denoted
by z0, back to pixel space via D(z0). The exploit of the latent space is essential for LD3M, as we want to
optimize the latent codes Z that generate synthetic images.

3 Latent Dataset Distillation with Diffusion Models (LD3M)

LD3M leverages the generative power of diffusion models for dataset distillation. The presented model
focuses on generating synthetic images in the latent space to address the generalization problem of unseen
architectures and images of higher resolution than 32x32, i.e., 128x128 and 256x256. The following will
explain the sampling process, which takes the latent and conditioning code as input and generates the
synthetic image. Next, we describe how we initialize the latent codes before distillation and, finally, how we
use gradient checkpointing to reduce VRAM consumption. Figure 1 shows a general overview of LD3M.

3.1 Sampling Process

Since we use a pre-trained LDM without fine-tuning, we can primarily focus on the backward diffusion process
p. It starts from an initial state zT , usually Gaussian noise, and performs the inference conditioned on c, i.e.,
an embedding of the class label (Yang et al., 2023; Moser et al., 2024). The forward diffusion process q, on
the other hand, is only needed to derive zT ∼ q(zT | Z) from the learned and distilled latent representations
Z. Therefore, we can view zT as the distorted representation of Z, which the LDM refines. We approximate
p with a parameterized time-conditional process pθ, such that

pθ(z0:T |c) = p(zT)
∏T

t=1
pθ(zt−1|zt, c) (6)

p(zT) = N (zT | 0, I) (7)
pθ(zt−1|zt, c) = N (zt−1 | µθ(c, zt, γt), σ2

t I). (8)

4

Under review as submission to TMLR

forward
diffusion
process

latent code

conditioning code

synthetic
codes

+ ... image
decoder

synthethic
class
image

denoiser

real
image

classification
dataset

distilled
to

residuals for enhanced gradient flow

LD3M

any
pixel-based

dataset
distillation
algorithm

Figure 1: Overview of the LD3M framework. Two components influence the generation of the synthetic images:
The distilled latent codes and the distilled conditioning codes. The distilled latent codes are perturbated
via Gaussian noise to the initial state zT . Next, it is iteratively denoised (T − 1) times with the pre-trained
denoising U-Net of the LDM. Within each computation of the intermediate state zt, we add a linearly
decreasing influence of zT to allow an enhanced gradient flow to the distilled latent codes while making the
conditioning also learnable. The pre-trained decoder translates the final latent code z0 back to pixel space.
Note that LD3M can be used with any existing distillation algorithm, e.g., DC, DM, or MTT.

As a standard procedure in the literature (Li et al., 2022; Saharia et al., 2022), we predict the parameterized
mean by subtracting the scaled noise between two subsequent time steps with

µθ(c, zt, γt) = 1
√
αt

(
zt −

1− αt√
1− γt

fθ (c, zt, γt)
)
, (9)

where fθ (c, zt, γt) is the noise prediction of εt with a time-conditional U-Net at time step t. Together with
the variance σ2

t , we can calculate the subsequent state zt−1 via

zt−1 ← µθ(c, zt, γt) + σ2
t εt. (10)

For dataset distillation, we make the embedded conditioning c as well as the latent code Z leading to the
initial state zT learnable. Since the LDM is not trained from scratch, merely modifying the condition state c
is insufficient for generating expressive synthetic images, necessitating that Z be learnable (Park et al., 2023;
Kwon et al., 2022). We will show this quantitatively in the experiments, which indicate that making only
the conditioning c learnable predominantly produces images resembling real data. Our overall optimization
objective for a given class becomes

Z∗, c∗ = arg min
Z,c

L(D[pθ(z0|zT , c)], T), with zT ∼ q(zT |Z) (11)

A significant challenge in making the latent code Z, which leads to the initial state zT , learnable arises
from the numerous time steps during the backward diffusion process, which can take T = 200 steps or more
(Rombach et al., 2022). This extensive computation chain leads to vanishing gradients for zT ∼ q(zT | Z),
impeding an effective distillation of Z (Hochreiter, 1998). We modify Equation 10 to counteract this by
including residual connections in the computational graph, thereby enhancing gradient flow that work reliably
to timesteps up to T = 40, which we will show empirically for T = 10 and T = 20 in our experiments.
Specifically, we integrate the initial state zT into the computation of the intermediate states zt. Additionally,
we systematically diminish its influence as t approaches 0. This adjustment ensures an enhanced gradient
propagation crucial for the generation of diverse and representative synthetic latent codes Z:

zt−1 ←
(

(1− t

T
) · µθ(c, zt, γt) + t

T
· zT

)
+ σ2

t εt. (12)

This formulation leads to the following enhanced gradient flow with the initial latent code Z at t = T :

∂L
∂Z

=
T∑

t=1

(
1− T − 1

T

)
·
[
∂L
∂zt
· ∂zt

∂zt−1
· ... · ∂z0

∂Z

]
+

(
t

T

)
·
[
∂L
∂zT

· ∂zT

∂Z

]
(13)

5

Under review as submission to TMLR

<

images of one class

random
image
sample

image
encoder

class label

save latent code

label
encoder

save conditioning code

synthetic
codes

GAN
generator

synthethic
image

(1) update latent code until convergence

synthetic
codes

(2) save after
convergence

LD3M

GLaD

(Monte Carlo Estimation)

Figure 2: Latent code initialization based on real samples of LD3M and GLaD. While GLaD needs multiple
steps to sample a latent code that leads to a synthetic image close to a real image, LD3M applies a pre-trained
image encoder. Moreover, LD3M uses a label encoder to save additional information for image generation.

A comprehensive algorithmic description can be found in the appendix.

Note on Markovian Property: zt−1 depends on zt and zT , but not on any earlier states such as zt+1, zt+2,
and so on. Therefore, the probability distribution for zt−1 only depends on zt and the fixed initial state zT ,
which is constant throughout the diffusion process. Thus, we have: p(zt−1|zt, zt+1, . . . , zT) = p(zt−1|zt, zT).
This confirms that LD3M remains Markovian. Notes on the noise addition are in the appendix (A.1).

Note on Generalisability: This reformulation is not bound to LDMs and can be used by any diffusion
model type for future work. Nevertheless, we focused on LDM because of several advantages: (a) there exists
a pre-trained model, (b) it is foundational for diffusion models (especially in exploiting latent space), and (c)
it serves as a proof of concept.

3.2 Initializing Latent Codes

As standard in dataset distillation, we want to initialize the synthetic images using random samples from
the respective class. With GLaD, which relies on StyleGAN-XL, computationally expensive GAN-inversion
techniques are required to obtain the latent code of a real image, making the initialization process far more
complex. With GAN-inversion, one has to solve the optimization problem Z∗ = arg minZ L (x, G(Z)). A
solution can be optimization-based, learning-based, or hybrid-based, all needing careful adjustments and
testing (Xia et al., 2022; Cazenavette et al., 2023). Moreover, finding solutions is time-consuming as an iterative
sampling of possible Z∗ or extra training is required, as illustrated in Figure 2. In contrast, LD3M can initialize
the latent codes straightforwardly by applying the pre-trained encoder E : RM×H×W ×C → RM×h×w×d to the
random images, i.e., Z = E (Xs) for a randomly selected collection Xs. Furthermore, LD3M initializes the
embedded condition information by applying the pre-trained embedding network. As a result, initialization
with LD3M is more straightforward and computationally more efficient than GLaD and omits careful
adjustments before applying dataset distillation.

3.3 Gradient Checkpointing

Like GLaD (Cazenavette et al., 2023), we employ gradient checkpointing (Chen et al., 2016) to reduce the
VRAM requirements. At each distillation iteration, we generate the synthetic images S = D(Z) without
gradients. Then, we calculate the distillation loss L and the gradients for the synthetic images (∂L/∂S). Next,
we delete the computation graph and its gradient. To compute ∂L/∂Z, we recompute the forward pass through
D, S = D(Z), to obtain ∂S/∂Z. The application of the chain rule delivers ∂L/∂Z = (∂L/∂S)(∂S/∂Z)
which is used to update the latent codes and the conditioning.

6

Under review as submission to TMLR

Since our generative model D applies multiple diffusion steps, we also employ checkpointing within D(Z) for
each noise prediction ϵt of the U-Net. It saves ∂zt/∂zt+1. The application of the chain rule leads to

∂L/∂Z = (∂L/∂z0) ·
T∏

t=1

∂zt−1

∂zt
· (∂zT /∂Z) (14)

Note that this formulation does not include the residual connections introduced in Equation 12 for the sake
of simplicity. Similarly, the condition information c is derived by

∂L/∂c = (∂L/∂z0) ·
T∏

t=1

∂zt−1

∂zt
· (∂zT /∂c) (15)

Even though LD3M needs more checkpoints than GLaD, our experiments will show that LD3M is still faster.

4 Experiments

We follow the setup of Cazenavette et al. (2023) and evaluate the cross-architecture performance for IPC=1
(MTT, DC, DM) and IP=10 (DC, DM) with image size 128× 128. Furthermore, we run an evaluation with
DC and image size 256× 256 for IPC=1 as well as a low-resolution evaluation on CIFAR-10 (32× 32). Finally,
we visually compare the results with GLaD and analyze the impact of different latent and conditioning code
initializations, various diffusion lengths, and different components of LD3M. In all experiments, we maintain
consistent hyperparameters to guarantee a fair comparison (more details in the appendix, A.3).

4.1 Setup

Datasets. We evaluate the accuracy of classifiers trained on synthetic images on 10-class subsets of
ImageNet-1k (Deng et al., 2009). The 10-class subsets were derived from previous work, i.e., ImageNet-Birds,
ImageNet-Fruits, and ImageNet-Cats (Cazenavette et al., 2022). In addition, we employ two other commonly
used subsets, namely ImageNette and ImageWoof (Howard, 2019). Lastly, the remaining used subsets are
based on the evaluation performance of a ResNet-50 model (pre-trained on ImageNet)(Cazenavette et al.,
2023). These subsets are ImageNet-A, consisting of the top-10 classes; ImageNet-B, consisting of the next 10
and so on for ImageNet-C, ImageNet-D, and ImageNet-E. More details can be found in the appendix.

Evaluation Protocol. We first distill synthetic datasets using the designated algorithms and then assess
the quality of the datasets by measuring the performance across unseen network architectures. To evaluate a
synthetic dataset with a specific architecture, we train a new network from scratch on the distilled dataset
and subsequently evaluate its performance on the test set (real images). This entire process is replicated five
times, with the report including the mean test accuracy plus or minus one standard deviation.

Network Architectures. As in GLaD (Cazenavette et al., 2023) and prior dataset distillation work (Nguyen
et al., 2021; Cui et al., 2023; Nguyen et al., 2020), we use the ConvNet-5 and ConvNet-6 architecture to
distill the 128× 128 and 256× 256 datasets, respectively (Gidaris & Komodakis, 2018). Similarly, we use
AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan & Zisserman, 2014), ResNet-18 (He et al., 2016), and
a Vision Transformer (Dosovitskiy et al., 2020) for evaluating unseen architectures.

Latent Diffusion Model. For the diffusion model, we use the ImageNet pre-trained LDM (Rombach
et al., 2022), which guarantees a fair comparison with the ImageNet pre-trained StyleGAN-XL used in
GLaD (Cazenavette et al., 2023). We use the pre-trained autoencoder with 2× compression of the LDM
without further adjustments to compress into and decompress out of the latent space. We employ for all
experiments a max. diffusion time step T = 10 for image size 128×128 and T = 20 for 256×256. Besides this
hyper-parameter, no adjustment to the pre-trained LDM was necessary. In addition, we want to highlight that
using a pre-existing diffusion model is not a limitation but an advantage, showing that a pre-trained diffusion
model can be used out of the box (and empirically more consistent as GLaD w.r.t. various experiments).

7

Under review as submission to TMLR

Distil. Space Alg. ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
MTT 33.4±1.5 34.0±3.4 31.4±3.4 27.7±2.7 24.9±1.8 24.1±1.8 16.0±1.2 25.5±3.0 18.3±2.3 18.7±1.5

pixel space DC 38.7±4.2 38.7±1.0 33.3±1.9 26.4±1.1 27.4±0.9 28.2±1.4 17.4±1.2 28.5±1.4 20.4±1.5 19.8±0.9
DM 27.2±1.2 24.4±1.1 23.0±1.4 18.4±0.7 17.7±0.9 20.6±0.7 14.5±0.9 17.8±0.8 14.5±1.1 14.0±1.1

MTT 39.9±1.2 39.4±1.3 34.9±1.1 30.4±1.5 29.0±1.1 30.4±1.5 17.1±1.1 28.2±1.1 21.1±1.2 19.6±1.2
GLaD DC 41.8±1.7 42.1±1.2 35.8±1.4 28.0±0.8 29.3±1.3 31.0±1.6 17.8±1.1 29.1±1.0 22.3±1.6 21.2±1.4

DM 31.6±1.4 31.3±3.9 26.9±1.2 21.5±1.0 20.4±0.8 21.9±1.1 15.2±0.9 18.2±1.0 20.4±1.6 16.1±0.7
MTT 40.9±1.1 41.6±1.7 34.1±1.7 31.5±1.2 30.1±1.3 32.0±1.3 19.9±1.2 30.4±1.5 21.4±1.1 22.1±1.0

LD3M DC 42.3±1.3 42.0±1.1 37.1±1.8 29.7±1.3 31.4±1.1 32.9±1.2 18.9±0.6 30.2±1.4 22.6±1.3 21.7±0.8
DM 35.8±1.1 34.1±1.0 30.3±1.2 24.7±1.0 24.5±0.9 26.8±1.7 18.1±0.7 23.0±1.8 24.5±1.9 17.0±1.1

Table 1: Cross-architecture performance with 1 image per class on all ImageNet (128×128) subsets. We used
the unseen architectures AlexNet, VGG11, ResNet18, and ViT. The average performance of these models
was then evaluated on actual validation sets. Using LDM as a deep generative prior markedly enhanced the
ability of all tested methods to generalize across various architectures in all the datasets examined. In 9 out
of 10 subsets (marked with blue), LD3M reaches the best overall performance. The best performance within
one distillation algorithm is marked in bold in each subset, primarily achieved by LD3M, showing that LD3M
improves DC, MTT, and DM by +3.76%, +5.68%, and +16.34%, respectively, on average.

Distil. Space Alg. All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E
DC 42.3±3.5 52.3±0.7 45.1±8.3 40.1±7.6 36.1±0.4 38.1±0.4pixel space DM 44.4±0.5 52.6±0.4 50.6±0.5 47.5±0.7 35.4±0.4 36.0±0.5
DC 45.9±1.0 53.1±1.4 50.1±0.6 48.9±1.1 38.9±1.0 38.4±0.7GLaD DM 45.8±0.6 52.8±1.0 51.3±0.6 49.7±0.4 36.4±0.4 38.6±0.7
DC 47.1±1.2 55.2±1.0 51.8±1.4 49.9±1.3 39.5±1.0 39.0±1.3LD3M DM 47.3±2.1 57.0±1.3 52.3±1.1 48.2±4.9 39.5±1.5 39.4±1.8

Table 2: Cross-architecture performance with 10 images per class on the subsets ImageNet A to E. LD3M
(marked with blue) achieved the best performance per subset. The best performance within one distillation
algorithm is marked in bold in each subset, primarily achieved by LD3M, with an improvement of +2.52%
and +3.46% with DC and DM, respectively.

4.2 Results

Cross-Architecture Evaluation, IPC=1. Our method LD3M (T = 10) consistently surpasses the
performance of GLaD on unseen architectures for IPC=1 (see Table 1). Following Cazenavette et al. (2023),
we test all ten aforementioned subsets of ImageNet and apply the distillation algorithms MTT, DC, and DM.
The enhanced performance of our LD3M is consistent across most subsets, except for slight deviations in
MTT on ImageNet-C and DC on ImageNet-B. Notably, these exceptions still closely align with the original
performance metrics and fall within the standard deviation range, underlining the robustness of our approach.
The enhancement in performance is most pronounced when employing the DM distillation algorithm (with
+16.34% improvement on average). LD3M with LDM outperforms its GAN-based GLaD counterpart by
approximately 4 p.p. across most subsets. This significant improvement underscores the effectiveness of LDMs
in capturing complex class feature distributions in synthetic images more effectively than StyleGAN-XL. In
conclusion, LD3M improves the gap between pixel-based and latent-based dataset distillation.

Cross-Architecture Evaluation, IPC=10. Further supporting our findings, Table 2 illustrates the superior
performance of LD3M (T = 10) over GLaD in scenarios with IPC=10 using the distillation algorithms DC and
DM on ImageNet A to E. The trend observed is similar to the IPC=1 scenario, with LD3M demonstrating a
clear advantage over GLaD by improving the performance of DC and DM by +2.52% and +3.46%, respectively.
The exception of DM on ImageNet-C is marginal and still outperforms pixel-based distillation, but also shows
that the application of LDM for IPC=10 has the most significant improvements in DM compared to DC, e.g.,
ca. 4 p.p. improvement on ImageNet-A. LD3M reaches an overall average accuracy of 47.08 % with DC and
47.28 % with DM compared to 45.88 % and 45.76 % of GLaD. This experiment highlights the consistency
and reliability of the LDM approach across different settings.

8

Under review as submission to TMLR

Distil. Space All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E
pixel space 29.5±3.1 38.3±4.7 32.8±4.1 27.6±3.3 25.5±1.2 23.5±2.4
GLaD (ImageNet) 34.4±2.6 37.4±5.5 41.5±1.2 35.7±4.0 27.9±1.0 29.3±1.2
GLaD (Random) 34.5±1.6 39.3±2.0 40.3±1.7 35.0±1.7 27.9±1.4 29.8±1.4
GLaD (FFHQ) 34.0±2.1 38.3±5.2 40.2±1.1 34.9±1.1 27.2±0.9 29.4±2.1
LD3M (ImageNet) 36.3±1.6 42.1±2.2 42.1±1.5 35.7±1.7 30.5±1.4 30.9±1.2
LD3M (Random) 36.5±1.6 42.0±2.0 41.9±1.7 37.1±1.4 30.5±1.5 31.1±1.4
LD3M (FFHQ) 36.3±1.5 42.0±1.6 41.9±1.6 36.5±2.2 30.5±0.9 30.6±1.1

Table 3: 256×256 distilled HR images using the DC distillation algorithm and IPC=1. For both scenarios
(LDM and GAN), we evaluate pre-trained generators on ImageNet (Deng et al., 2009), FFHQ (Karras et al.,
2019), and randomly initialized. Again, LD3M improves the performance of GLaD by roughly +6.03% on
average, whereas it improves the performance by roughly +23.28% compared to pixel space.

Dist. Method Dist. Space AlexNet ResNet18 VGG11 ViT Average

DC
pixel space 25.9±0.2 27.3±0.5 28.0±0.5 22.9±0.3 26.0±0.4
GLaD (rand G) 30.1±0.5 27.3±0.2 28.0±0.9 21.2±0.6 26.6±0.5
GLaD (trained G) 26.0±0.7 27.6±0.6 28.2±0.6 23.4±0.2 26.3±0.5
LD3M (trained G) 27.2±0.8 26.6±0.9 31.5±0.3 29.0±0.2 28.6±0.6

DM
pixel space 22.9±0.2 22.2±0.7 23.8±0.5 21.3±0.5 22.6±0.5
GLaD (rand G) 23.7±0.3 21.7±1.0 24.3±0.8 21.4±0.2 22.8±0.6
GLaD (trained G) 25.1±0.5 22.5±0.7 24.8±0.8 23.0±0.1 23.8±0.5
LD3M (trained G) 27.2±0.4 17.0±0.7 25.4±0.4 23.8±0.3 23.4±0.5

Table 4: CIFAR-10 Performance on unseen architectures, IPC=1.

Cross-Architecture Evaluation and different Pixel Spaces, 256x256. As shown in Table 3, a similar
pattern of improved performance is evident. LD3M (T = 10) achieved all top-3 results per subset. To explore
the versatility of the LDMs that can be used in LD3M, we experimented with various training configurations,
including models pre-trained on ImageNet, FFHQ, and a randomly initialized model (no pre-training). These
varied LDM configurations demonstrate improved cross-architectural generalization compared to GLaD and
are notably better than direct pixel-space distillation.

CIFAR-10. Like Cazenavette et al. (2023), we evaluated LD3M on CIFAR-10 in Table 4. While it presents
a less challenging task, we observe that LD3M is still on par with DM while significantly better with DC.

Initializations. In Table 5, we investigate the influence of different initializations, either Gaussian noise or
initialized with a randomly selected image. In conclusion, we can see that LD3M’s performance significantly
benefits from real images and the straightforward initialization process, especially for the distillation algorithms
DM and DC, while MTT seems more robust.

Visual Comparison, 128x128. As presented in Figure 3, visual comparisons depict the results of GLaD
and the LD3M. These comparisons reveal that the generated images by LD3M are notably more abstract
and exhibit higher contrast than those produced by GLaD. This highlights a more flexible learning space for
dataset distillation algorithms.

Visual Comparison, 256x256. Figure 4 shows 256× 256 resolution results under different initializations.
Again, LD3M generates visually distinctive synthetic images with sharper contrast and richer abstractions,
which, despite their non-realistic appearance, encode essential class-specific information that improves
generalization across unseen architectures. Surprisingly, LD3M generates more stable images under different
initializations, as GLaD’s generated images vary more based on the dataset used for pre-training the generator.
GLaD’s generation becomes more noisy towards random initialization (see from left to right). Additional
visualizations are provided in the appendix.

9

Under review as submission to TMLR

Dist. Method Dist. Space AlexNet ResNet18 VGG11 ViT Average

MTT Gauss. noise 28.7±1.6 34.1±1.5 32.2±0.6 29.1±1.8 31.0±1.4
random image 30.1±1.4 35.6±1.4 32.2±0.3 30.0±1.2 32.0±1.3

DC Gauss. noise 13.1±1.5 11.6±1.8 13.8±2.2 13.7±2.7 13.1±2.1
random image 31.6±1.3 30.4±0.6 31.8±1.2 37.7±1.5 32.9±2.1

DM Gauss. noise 13.4±2.0 12.4±1.8 13.4±1.4 14.4±2.1 13.4±1.8
random image 31.9±1.3 23.2±2.2 25.9±2.0 26.1±1.4 26.8±1.7

Table 5: Performance with different initializations of the latent and conditioning codes per class on
ImageNette for the IPC=1 setting with 5,000 iterations. MTT with random initialization reaches comparable
performance (still under initialization with randomly selected images and their labels), whereas random
initialization leads to synthetic datasets with significantly reduced quality for DC and DM.

Tench English
Springer

Cassette
Player Chainsaw Church French

Horn
Garbage

Truck Gas Pump Golf Ball Parachute

LD
3M

G
La

D

Figure 3: Visual comparison of LD3M versus GLaD for 1000 iterations with MTT on ImageNette. LD3M
produces more abstract and contrast-richer synthetic images.

ImageNet FFHQ Random

LD
3M

G
La

D

Reference Image
(from orig. data)

Figure 4: Example 256× 256 images of a distilled class (ImageNet-B: Lorikeet) with differently initialized
generators GLaD and LD3M. The various initializations, i.e., which dataset was used for training the
generators, are denoted at the bottom.

Diffusion Steps Analysis. Our investigation on the trade-off between runtime and accuracy is shown in
Figure 5. It illustrates the accuracy of LD3M across different maximum time steps T in the diffusion process,
specifically evaluated on the ImageNet A-E datasets using the MTT algorithm. Setting the maximum time
step up to 40 for the diffusion process results in a notable increase in accuracy. However, performance declines
significantly as we progress beyond 40. This decline could be attributed to vanishing gradients during the

10

Under review as submission to TMLR

2 10 20 30 40 50 60 70 80 90 100
Max. Time Steps

32
33
34
35
36
37
38

Ac
cu

ra
cy

 [%
]

GLaD

LD3M

90
100
110
120
130
140

Di
st

illa
tio

n
Ti

m
e

[s
]GLaD

LD3M

Figure 5: Distilled dataset performance (average of ImageNet A-E via MTT and IPC=1) for different max.
time steps employed in the diffusion process with mean and standard deviation (light blue dotted). It
illustrates the trade-off between runtime and accuracy over increasing time steps. LD3M shows improved
performance for the first 40 steps, while performance deteriorates for greater steps. GLaD needs around 140
seconds per iteration on the same hardware (NVIDIA RTX3090) with 34.72 % average accuracy, shown as
dotted lines. Best trade-off marked with "X".

Figure 6: Example images of a distilled class (Freight Car) for different time steps settings. We observe that
distillation can collapse for higher time step settings (see the three images on the right).

Method All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E
GLaD 35.4±1.3 41.8±1.7 42.1±1.2 35.8±1.4 28.0±0.8 29.3±1.3
LD3M (w/o diffusion) 35.3±1.3 40.6±1.9 41.9±1.1 35.3±1.0 29.4±1.4 29.5±1.3
LD3M (w/ diffusion) 36.5±1.3 42.3±1.3 42.0±1.1 37.1±1.8 29.7±1.3 31.4±1.1

+1.2+0.0 +1.7-0.6 +0.1+0.0 +1.8+0.8 +0.3-0.1 +1.9-0.2

Table 6: Performance analysis of LD3M with and without diffusion using the DC distillation algorithm
(IPC=1). Without diffusion, LD3M delivers mixed results compared to GLaD, underperforming on datasets
like ImageNet-A and ImageNet-C, while achieving comparable overall performance. Incorporating diffusion
enables LD3M to consistently outperform GLaD.

diffusion process, suggesting that strategies other than the linear addition of the initial state could avoid the
performance decline. An example is shown in Figure 6 for the freight car class from ImageNet-C.

Hardware Resources and Time. Overall, LD3M with T = 20 needs 574 minutes versus 693 minutes for
GLaD. Furthermore, on an A100-40GB, LD3M with T = 20 needs 73.58% max. GPU allocation / 29.4GB vs
GLaD with 77.94% max. GPU allocation / 31.2GB. Also, LD3M can distill with less memory by adjusting
the number of diffusion steps (i.e., from T = 2 to T = 35), which is not doable with GLaD due to the fixed
GAN. The ability to tailor the diffusion process according to specific accuracy and runtime opens up new
possibilities for dataset distillation across various computational settings: It allows for strategically allocating
computational resources, ensuring the models are accurate and practically viable for real-world applications.
While dataset distillation remains computationally expensive, LD3M introduces a flexible and significantly
lighter alternative to GLaD. Concerning the remaining experiments, we chose T = 10 as it represents a good
trade-off between accuracy and inference time.

11

Under review as submission to TMLR

10 12 14 16 18 20
Timesteps

0

2

4

6

8

10

12

14

16

18

20

SN
R

With Modification
Without Modification

Figure 7: Gradient flow analysis comparing the Signal-to-Noise Ratio (SNR) of gradient norms for LD3M
with and without our modification. Diffusion demonstrates a more stable gradient flow, indicating enhanced
optimization dynamics. Dashed lines show a polyfit plot to highlight the trends.

Impact of Diffusion. Table 6 shows the performance of LD3M with and without diffusion, compared to the
baseline GLaD. Without diffusion, LD3M exhibits comparable overall performance to GLaD, achieving a
score of 35.3 versus 35.4 but underperforming on specific subsets such as ImageNet-A (-1.2), ImageNet-B
(-0.1) and ImageNet-C (-0.5). With the inclusion of diffusion, LD3M demonstrates a clear improvement,
achieving an overall score of 36.5 (+1.1 over GLaD and +1.2 over LD3M without diffusion).

Improved Gradient Flow. To investigate the impact of the modified Equation 12, we measured the
gradient norms of the latent code during distillation for both cases, with and without the incorporation of
the initial state zT . The increase from the non-modified version to the modified version is approximately
66.87 %. The results visualized in Figure 7 show that incorporating our modified diffusion process stabilizes
the gradient flow, as indicated by the higher Signal-to-Noise Ratio (SNR) of gradient norms across timesteps,
with a trend of descending gradient flow for higher timesteps. This outcome emphasizes the importance of
the modified formula for combating vanishing gradients.

Component Analysis. In our initial experiments, we evaluated the impact of incorporating different aspects
of the LDM, as described in our methodology section and shown in Table 7. We used LD3M on ImageNette
and MTT for 1,000 distillation steps and an Image Per Class (IPC) of 1. We also compared against GLaD
and evaluated the results with unseen architectures. By applying only learnable conditioning, the resulting
performance of LD3M is just roughly five p.p. above random chance. However, the real breakthrough was
observed when we allowed the latent representation within the LD3M to be learnable. This adjustment
significantly improved accuracy across all models but still lagged behind those achieved with GLaD. Another
enhancement was implementing the modified formula for calculating the intermediate states zt in the LDM.
This involved incorporating the initial state zT into the calculation of intermediate states zt, enabling LD3M
to surpass the GLaD performance.

5 Related Work

Diffusion Models vs GANs. The study by Dhariwal & Nichol (2021) showed that diffusion models
outperform GANs in image generation tasks. Since then, diffusion models have impacted fields like image
restoration (Moser et al., 2023a;b; Saharia et al., 2022; Li et al., 2022), layout-to-image (Zheng et al., 2023),
inpainting (Lugmayr et al., 2022; Yu et al., 2023), medical imaging (Müller-Franzes et al., 2022; Namatevs
et al., 2023) and more (Yang et al., 2023; Moser et al., 2024; Bar-Tal et al., 2023; Mukhopadhyay et al., 2023).

12

Under review as submission to TMLR

Method All AlexNet VGG-11 ResNet-18 ViT
GLaD 26.6±1.6 28.7±0.3 29.2±1.2 30.8±2.9 17.8±1.5
LDM learnable conditioning (c) 15.8±1.5 14.2±2.6 15.1 ±1.6 16.5±4.9 16.8±4.0
+ learnable latent code (Z) 22.3±2.0 22.8±2.0 26.3±0.9 23.4±3.2 17.5±2.0
+ enhanced gradient flow (Eq. 12) 28.1±3.3 29.2±1.9 29.2±1.2 30.6±1.3 25.1±1.7

Table 7: Different LDM variations with MTT on ImageNette and IPC=1. Tested was the distillation by
making only the conditioning learnable (c), one with also learnable latent representation (Z), and lastly, one
which incorporates the initial latent representation in the calculation of intermediate latent states (Eq. 12).

This development of the superior performance of diffusion models over GANs across various fields inspired
this work. Unlike GANs, diffusion models do not require extensive regularization and optimization strategies
to mitigate issues like optimization instability and mode collapse (Frolov et al., 2021).

LDMs for GLaD. The closest work to ours is Duan et al. (2023), which also uses the pre-trained autoencoder
of LDM in GLaD and utilizes straightforward initialization. However, they do not utilize any diffusion,
limiting their decoding to that of a basic autoencoder. In addition, their experimental setup diverges from
GLaD, complicating direct comparison. For instance, they evaluate latent codes per class (LPC), defined by
how many latent vectors would have the same memory as one IPC, i.e., 12 LPC for IPC=1 or 120 LPC for
IPC=10. Compared to GLaD and us, we have one latent code for one IPC.

Diffusion Models in Dataset Distillation. Another notable mention is the work of Gu et al. (2023), which
proposed a Minimax Diffusion process for dataset distillation. While they present a promising hierarchical
diffusion control mechanism to enable dataset distillation, it is another dataset distillation algorithm and,
therefore, orthogonal to our work. Also, we enable a more straightforward mechanism by linearly adding the
initial latent representation to enable distillation. For future work, we see great potential in using our method
before applying the Minimax Diffusion process, as LD3M can be applied with any dataset distillation method.

6 Conclusion and Future Work

We introduced LD3M, a novel diffusion-based distillation approach. A core innovation is its modified diffusion
process to address the challenge of the vanishing gradients arising from the iterative time steps. By enhancing
gradient flow, LD3M ensures stable optimization, leading to diverse and expressive synthetic datasets without
the computational overhead of GAN-based approaches. The abstract yet class-specific synthetic images
generated by LD3M also facilitate better generalization across architectures, significantly improving other
traditional methods. Our results show that LD3M surpasses the state-of-the-art approach GLaD and provides
enhanced data quality and faster distillation. LD3M also offers more control by adjusting the diffusion steps
to balance runtime and quality. Also, the initialization of latent codes is straightforward with an autoencoder,
avoiding the need for GAN inversion. In conclusion, LD3M constitutes a transformative step in dataset
distillation, broadening its applicability and enhancing its practicality.

For future work, other diffusion models in LD3M and alternative formulations of our modified equation, i.e.,
non-linear, should be investigated. Another interesting avenue is using sampling mechanisms that reduce the
overall amount of time steps needed, such as DPM-Solver Lu et al. (2022), which not only helps reduce the
vanishing gradient problem but also can be combined with LD3M.

Acknowledgment

Will be updated...

References
Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan

latent space? In ICCV, pp. 4432–4441, 2019.

13

Under review as submission to TMLR

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for controlled
image generation. 2023.

Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to see by
looking at noise. NeurIPS, 34:2556–2569, 2021.

Samy Bengio, Krzysztof Dembczynski, Thorsten Joachims, Marius Kloft, and Manik Varma. Extreme
classification (dagstuhl seminar 18291). In Dagstuhl Reports, volume 8. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo editing with introspective
adversarial networks. ICLR, 2017.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In CVPR, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Generalizing
dataset distillation via deep generative prior. In CVPR, pp. 3739–3748, 2023.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. The Journal of Machine Learning
Research, 19(1):962–982, 2018.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
constant memory. In ICML, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS, 34:
8780–8794, 2021.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help privacy? In
ICML, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR, 2020.

Yuxuan Duan, Jianfu Zhang, and Liqing Zhang. Dataset distillation in latent space. arXiv preprint
arXiv:2311.15547, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In CVPR, pp. 12873–12883, 2021.

Stanislav Frolov, Tobias Hinz, Federico Raue, Jörn Hees, and Andreas Dengel. Adversarial text-to-image
synthesis: A review. Neural Networks, 144:187–209, 2021.

Stanislav Frolov, Brian B Moser, and Andreas Dengel. Spotdiffusion: A fast approach for seamless panorama
generation over time. arXiv preprint arXiv:2407.15507, 2024.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova
Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large generative models. In
2022 ACM Conference on Fairness, Accountability, and Transparency, 2022.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In CVPR, 2018.

Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and Yiran Chen.
Efficient dataset distillation via minimax diffusion. arXiv preprint arXiv:2311.15529, 2023.

14

Under review as submission to TMLR

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selection in
deep learning. In International Conference on Database and Expert Systems Applications, pp. 181–195.
Springer, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

Jeremy Howard. A smaller subset of 10 easily classified classes from imagenet, and a little more french. URL
https://github.com/fastai/imagenette, 2019.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, pp. 4401–4410, 2019.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with importance
sampling. In ICML, pp. 2525–2534. PMLR, 2018.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha,
and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In International
Conference on Machine Learning, pp. 11102–11118. PMLR, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. NeurIPS, 25, 2012.

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space.
arXiv preprint arXiv:2210.10960, 2022.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff:
Single image super-resolution with diffusion probabilistic models. Neurocomputing, 479:47–59, 2022.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
distillation by representative matching. arXiv preprint arXiv:2302.14416, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information Processing
Systems, 35:5775–5787, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic models. In CVPR, pp. 11461–11471, 2022.

Wojciech Masarczyk and Ivona Tautkute. Reducing catastrophic forgetting with learning on synthetic data.
In CVPR, pp. 252–253, 2020.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine
learning models. In ICML, pp. 6950–6960. PMLR, 2020.

B Moser, Stanislav Frolov, Federico Raue, Sebastian Palacio, and Andreas Dengel. Waving goodbye to low-res:
A diffusion-wavelet approach for image super-resolution. arXiv preprint arXiv:2304.01994, 2023a.

Brian Moser, Federico Raue, Jörn Hees, and Andreas Dengel. Less is more: Proxy datasets in nas approaches.
In CVPR, pp. 1953–1961, 2022.

Brian B Moser, Stanislav Frolov, Federico Raue, Sebastian Palacio, and Andreas Dengel. Yoda: You only
diffuse areas. an area-masked diffusion approach for image super-resolution. arXiv preprint arXiv:2308.07977,
2023b.

15

Under review as submission to TMLR

Brian B Moser, Federico Raue, Stanislav Frolov, Sebastian Palacio, Jörn Hees, and Andreas Dengel. Hitch-
hiker’s guide to super-resolution: Introduction and recent advances. IEEE TPAMI, 2023c.

Brian B Moser, Arundhati S Shanbhag, Federico Raue, Stanislav Frolov, Sebastian Palacio, and Andreas
Dengel. Diffusion models, image super-resolution and everything: A survey. arXiv preprint arXiv:2401.00736,
2024.

Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan, Archana Swaminathan,
Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion models beat gans on image classification.
arXiv preprint arXiv:2307.08702, 2023.

Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger,
Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, et al. Diffusion
probabilistic models beat gans on medical images. arXiv preprint arXiv:2212.07501, 2022.

Ivars Namatevs, Kaspars Sudars, Arturs Nikulins, Anda Slaidina, Laura Neimane, Oskars Radzins, and
Edgars Edelmers. Denoising diffusion algorithm for single image inplaine super-resolution in cbct scans
of the mandible. In 2023 IEEE 64th International Scientific Conference on Information Technology and
Management Science of Riga Technical University (ITMS), pp. 1–6. IEEE, 2023.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression.
arXiv preprint arXiv:2011.00050, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. NeurIPS, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In ICML.
PMLR, 2021.

Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the latent
space of diffusion models through the lens of riemannian geometry. arXiv preprint arXiv:2307.12868, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. IEEE TPAMI, 45(4):4713–4726, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse datasets. In
ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
ICLR, 2014.

Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. Dˆ 4: Dataset distillation via disentangled
diffusion model. In CVPR, pp. 5809–5818, 2024.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative teaching
networks: Accelerating neural architecture search by learning to generate synthetic training data. In ICML,
2020.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder for
stylegan image manipulation. ACM TOG, 40(4):1–14, 2021.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

16

Under review as submission to TMLR

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan inversion: A
survey. IEEE TPAMI, 45(3):3121–3138, 2022.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1–39, 2023.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at imagenet
scale from a new perspective. NIPS, 36, 2024.

Tao Yu, Runseng Feng, Ruoyu Feng, Jinming Liu, Xin Jin, Wenjun Zeng, and Zhibo Chen. Inpaint anything:
Segment anything meets image inpainting. arXiv preprint arXiv:2304.06790, 2023.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In ICML, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In WACV, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. ICLR,
2020.

Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
Controllable diffusion model for layout-to-image generation. In CVPR, pp. 22490–22499, June 2023.

Xinhao Zhong, Hao Fang, Bin Chen, Xulin Gu, Tao Dai, Meikang Qiu, and Shu-Tao Xia. Hierarchical features
matter: A deep exploration of gan priors for improved dataset distillation. arXiv preprint arXiv:2406.05704,
2024.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipulation on
the natural image manifold. In ECCV, pp. 597–613. Springer, 2016.

Peihao Zhu, Rameen Abdal, Yipeng Qin, John Femiani, and Peter Wonka. Improved stylegan embedding:
Where are the good latents? arXiv preprint arXiv:2012.09036, 2020.

17

Under review as submission to TMLR

A Appendix

A.1 Note on the Impact of Equation 12 during the Reverse Process

Our experiments show that the error introduced by these modifications can be minimized through optimization
of the latent codes Z and conditioning codes c. However, we also can indicate this theoretically. The error at
each time step t caused by the modifications can be defined as ϵt = zorig

t − zmod
t . Given that the LDM is

well-trained, we can approximate ϵt using a first-order Taylor expansion:

ϵt ≈ Jt(ϵt−1) + ηt(ϵT)

where Jt is the Jacobian matrix of the transformation from zt−1 to zt, and ηt represents the influence of the
residual connection from zT .

Therefore, we approximate the modification loss as:

Lmod(ϵt) =
T∑

t=1
E

[
∥Jt(ϵt−1) + ηt(ϵT)∥2]

Since Jt and ηt are small due to the well-trained nature of the original LDM, the optimization process reduces
ϵt−1 at each step, leading to a diminishing cumulative error ϵt.

The error at each step t is bounded by:

∥ϵt∥ ≤ ∥Jt∥ · ∥ϵt−1∥+ ∥ηt∥ · ∥ϵT ∥

Given that ∥Jt∥ and ∥ηt∥ are small, ∥ϵt∥ diminishes as t decreases. After optimization, the cumulative effect
of ϵt on Lmod is negligible, meaning that the modifications do not significantly impact the quality of the
generated images.

This, however, would greatly influence the quality and especially the content of the generated images if not
applied in the context of dataset distillation but in a classical image generation setting. Since the reverse
process is altered at each step, we observe a tendency for the generated images to become increasingly abstract
and unnatural, deviating significantly from the structure and content of the original training dataset.

For example, when we apply the modification without proper tuning on a model trained with the FFHQ
dataset, the generated images exhibit exaggerated artifacts and lose the coherence expected in a facial dataset,
as shown in Figure 8. As shown in the provided images, the outputs are highly abstract and fail to resemble
the characteristics of the FFHQ dataset.

Also, we observed that the abstract images generated by the LDM with our proposed modification exhibit a
slight decrease in diversity. Specifically, we measured the average pairwise LPIPS distance of the generated
images, obtaining scores of 0.3855 with the modification and 0.4204 without it, indicating a reduction in
variability when the modification is applied.

For this reason, our proposed modification is specifically tailored to the context of dataset distillation.
Altering the reverse process introduces flexibility in learning abstract representations, but it does so at the
expense of image fidelity and content coherence in a conventional image synthesis setting. In the context of
dataset distillation, however, this abstraction serves a critical purpose: it enables the generation of synthetic
datasets that encapsulate the essential features needed for downstream tasks without overfitting the original
data’s appearance. This ensures that the distilled datasets generalize well across diverse architectures while
maintaining computational efficiency, making our approach uniquely suited for this specific application.

18

Under review as submission to TMLR

Figure 8: Influence of our modified Equation 12 in a classical image generation setting (unconditional FFHQ).
It shows that the residual connections alter the generation process significantly, leading to abstract artifacts
and the loss of coherence expected in a facial dataset: (top) with modification and (bottom) without
modification.

Parameter Value
DSA Augmentations Color / Crop / Cutout / Flip / Scale / Rotate
Iteration (Distillation) 5,000 (128× 128) / 10,000 (256× 256)
Momentum 0.5
Batch Real 256
Batch Train 256
Batch Test 128

Table 8: Common hyper-parameters for training the distillation algorithms used in this work.

A.2 Algorithmic Description

Algorithm 1 Latent Dataset Distillation with Diffusion Models (LD3M)
Input: randomly selected collection Xs, pre-trained encoder E , pre-trained decoder D, pre-trained denoiser
µθ, noise levels σt.
Z = E (Xs)
zT ∼ q(zT | Z)
for t = T, . . . , 1 do
εt ∼ N (0, I)
zt−1 ←

(
(1− t

T) · µθ(c, zt, γt) + t
T · zT

)
+ σ2

t εt

end for
Xsyn ← D (z0)
Return: Xsyn

A.3 Hyper-Parameters for Distillation Algorithms

LDM. For all our LDM experiments, we set the unconditional guidance scale to default value 3. For 128×128
images, we used max. time steps of 10, and for 256× 256 images, we used 20.

DC. We utilize a learning rate of 10−3 throughout our DC experiments to update the latent code representation
and the conditioning information.

DM. In every DM experiment conducted, we adopt a learning rate of 10−2, applying it to updates of the
latent code representation alongside the conditioning information.

19

Under review as submission to TMLR

Im
N
et
-A

Im
N
et
-B

Im
N
et
-C

Im
N
et
-D

Im
N
et
-E

Im
N
et
te

Im
W
oo

f
Im
N
et
-B
ird

s
Im
N
et
-F
ru
its

Im
N
et
-C
at
s

Figure 9: Images distilled by MTT in LD3M for IPC=1.

MTT. For MTT experiments, a uniform learning rate of 10 is applied to update the latent code representation
and the conditioning information. We buffered 5,000 trajectories for expert training, each with 15 training
epochs. We used ConvNet-5 and InstanceNorm. During dataset distillation, we used three expert epochs,
max. start epoch of 5 and 20 synthetic steps.

20

Under review as submission to TMLR

Im
N
et
-A

Im
N
et
-B

Im
N
et
-C

Im
N
et
-D

Im
N
et
-E

Im
N
et
te

Im
W
oo

f
Im
N
et
-B
ird

s
Im
N
et
-F
ru
its

Im
N
et
-C
at
s

Figure 10: Images distilled by DC in LD3M for IPC=1.

21

Under review as submission to TMLR

Im
N
et
-A

Im
N
et
-B

Im
N
et
-C

Im
N
et
-D

Im
N
et
-E

Im
N
et
te

Im
W
oo

f
Im
N
et
-B
ird

s
Im
N
et
-F
ru
its

Im
N
et
-C
at
s

Figure 11: Images distilled by DM in LD3M for IPC=1.

22

Under review as submission to TMLR

Figure 12: Images distilled by DC in LD3M for IPC=10 and ImageNet-A.

23

Under review as submission to TMLR

Figure 13: Images distilled by DC in LD3M for IPC=10 and ImageNet-B.

24

Under review as submission to TMLR

Figure 14: Images distilled by DC in LD3M for IPC=10 and ImageNet-C.

25

Under review as submission to TMLR

Figure 15: Images distilled by DC in LD3M for IPC=10 and ImageNet-D.

26

Under review as submission to TMLR

Figure 16: Images distilled by DC in LD3M for IPC=10 and ImageNet-E.

27

Under review as submission to TMLR

Figure 17: Images distilled by DM in LD3M for IPC=10 and ImageNet-A.

28

Under review as submission to TMLR

Figure 18: Images distilled by DM in LD3M for IPC=10 and ImageNet-B.

29

Under review as submission to TMLR

Figure 19: Images distilled by DM in LD3M for IPC=10 and ImageNet-C.

30

Under review as submission to TMLR

Figure 20: Images distilled by DM in LD3M for IPC=10 and ImageNet-D.

31

Under review as submission to TMLR

Dataset 0 1 2 3 4 5 6 7 8 9

ImageNet-A Leonberg Probiscis
Monkey Rapeseed Three-Toed

Sloth Cliff Dwelling Yellow
Lady’s Slipper Hamster Gondola Orca Limpkin

ImageNet-B Spoonbill Website Lorikeet Hyena Earthstar Trollybus Echidna Pomeranian Odometer Ruddy
Turnstone

ImageNet-C Freight Car Hummingbird Fireboat Disk Brake Bee Eater Rock Beauty Lion European
Gallinule Cabbage Butterfly Goldfinch

ImageNet-D Ostrich Samoyed Snowbird Brabancon
Griffon Chickadee Sorrel Admiral Great

Gray Owl Hornbill Ringlet

ImageNet-E Spindle Toucan Black Swan King
Penguin Potter’s Wheel Photocopier Screw Tarantula Sscilloscope Lycaenid

ImageNette Tench English
Springer

Cassette
Player Chainsaw Church French Horn Garbage

Truck Gas Pump Golf Ball Parachute

ImageWoof Australian
Terrier Border Terrier Samoyed Beagle Shih-Tzu English

Foxhound
Rhodesian
Ridgeback Dingo Golden Retriever English

Sheepdog

ImageNet-Birds Peacock Flamingo Macaw Pelican King
Penguin Bald Eagle Toucan Ostrich Black Swan Cockatoo

ImageNet-Fruits Pineapple Banana Strawberry Orange Lemon Pomegranate Fig Bell Pepper Cucumber Granny Smith
Apple

ImageNet-Cats Tabby
Cat

Bengal
Cat

Persian
Cat Siamese Cat Egyptian

Cat Lion Tiger Jaguar Snow
Leopard Lynx

Table 9: Class listings for our ImageNet subsets.

32

	Introduction
	Background
	Dataset Distillation
	Dataset Distillation with Generative Prior
	Diffusion Models for Image Generation

	Latent Dataset Distillation with Diffusion Models (LD3M)
	Sampling Process
	Initializing Latent Codes
	Gradient Checkpointing

	Experiments
	Setup
	Results

	Related Work
	Conclusion and Future Work
	Appendix
	Note on the Impact of Equation 12 during the Reverse Process
	Algorithmic Description
	Hyper-Parameters for Distillation Algorithms

