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Abstract

Entity matching (EM) is a critical step in entity001
resolution. Recently, entity matching based on002
large language models (LLMs) has shown great003
promise. However, current LLM-based entity004
matching approaches typically follow a binary005
matching paradigm that ignores the global con-006
sistency between record relationships. In this007
paper, we investigate various methodologies008
for LLM-based entity matching that incorpo-009
rate record interactions from different perspec-010
tives. Specifically, we comprehensively com-011
pare three representative strategies: matching,012
comparing, and selecting, and analyze their re-013
spective advantages and challenges in diverse014
scenarios. Based on our findings, we further015
design a compound entity matching framework016
(COMEM) that leverages the composition of017
multiple strategies and LLMs. COMEM bene-018
fits from the advantages of different sides and019
achieves improvements in both effectiveness020
and efficiency. Experimental results verify that021
COMEM not only achieves significant perfor-022
mance gains on various datasets, but also re-023
duces the cost of LLM-based entity matching024
for practical applications.025

1 Introduction026

Entity resolution (ER), also known as record link-027

age (Fellegi and Sunter, 1969) or deduplication (El-028

magarmid et al., 2007), aims to identify and merge029

records that refer to the same real-world entity. En-030

tity matching (EM) is a critical step in entity res-031

olution that uses complex techniques to identify032

matching records from candidate pairs filtered by033

the blocking step (Papadakis et al., 2021). The re-034

cent emergence of large language models (LLMs)035

has introduced a new zero- or few-shot paradigm to036

EM, showing great promise (Narayan et al., 2022;037

Peeters and Bizer, 2023b,a; Fan et al., 2023; Li038

et al., 2024). LLM-based entity matching methods039

can achieve similar or even better performance than040

deep learning methods trained on large amounts of041

Do these two records refer to the same real-world entity?
(1) Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(2) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
LLM Response No (a) Matching

Which of these two records is more consistent with the given record: 
Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(A) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
(B) Title: Pendrive Sandisk Cruzer Force - SDCZ71-032G-B35
LLM Response Record B (b) Comparing

Select a record from the following list that refers to the same real-
world entity as the given record: 
Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(1) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
(2) Title: Pendrive Sandisk Cruzer Force - SDCZ71-032G-B35
(3) Title: Sandisk Extreme Pro 3.1 Solid State Flash Drive 128GB
(4) Title: Kingston DataTraveler G4 32 GB USB-stick
…
LLM Response Record 2 (c) Selecting

Figure 1: Three strategies for LLM-based entity match-
ing. We omit other attributes of records for simplicity.

data, and are less susceptible to the unseen entity 042

problem (Wang et al., 2022; Peeters et al., 2024). 043

However, current LLM-based entity matching 044

methods identify matches by classifying each pair 045

of records independently. This matching strategy 046

ignores the global consistency between record re- 047

lationships and thus leads to suboptimal results. 048

On the one hand, entity resolution requires more 049

than independent classification due to the intercon- 050

nected nature of record relationships (Getoor and 051

Machanavajjhala, 2012). For example, in record 052

linkage (i.e., clean-clean ER), a single record from 053

one data source typically matches at most one 054

record from another data source, since there are 055

usually no duplicates in a single database. Unfor- 056

tunately, matching-based approaches do not take 057

advantage of this nature of record linkage. On 058

the other hand, this strategy ignores the capabili- 059

ties of LLMs to handle multiple records simulta- 060

neously to distinguish similar records. Using the 061

records in Figure 1(c) as an example, if “Cruzer 062

Glide”, “Cruzer Force”, and “Extreme Pro” appear 063

in different records of the same context, LLMs are 064

more likely to recognize that they are different San- 065
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Disk flash drive models, which helps with accurate066

matching. As a result, the matching strategy cannot067

fully unleash the potential of LLMs in EM.068

In this paper, we thoroughly investigate three069

strategies for LLM-based entity matching that in-070

corporate record interactions from different per-071

spectives, as shown in Figure 1. Specifically, apart072

from the conventional matching strategy shown in073

Figure 1(a), we investigate two additional strategies074

that leverage information from other records: 1)075

the comparing strategy, which identifies the record076

out of two that is more likely to match the anchor077

record, as shown in Figure 1(b); 2) the selecting078

strategy, which directly chooses the record from a079

list that is most likely to match the anchor record,080

as shown in Figure 1(c). Our research suggests081

that for LLM-based entity matching, incorporat-082

ing record interactions is critical and can signifi-083

cantly improve EM performance in various scenar-084

ios. Therefore, the global selecting strategy is often085

the most effective. Nevertheless, we also observe086

that the selection accuracy decreases greatly as the087

position of the matching record increases in the088

candidate list. The position bias and limited long089

context understanding of current LLMs hinder the090

generality of the selecting strategy.091

Based on our findings, we design a compound en-092

tity matching framework (COMEM) that leverages093

the composition of multiple strategies and LLMs.094

Specifically, given an entity record and its n poten-095

tial matches obtained from the blocking step, we096

first preliminarily rank and filter these candidates097

using the local matching or comparing strategy,098

implemented with a medium-sized LLM. We then099

perform fine-grained identification on only the top100

k candidates using the global selecting strategy, fa-101

cilitated by a more powerful LLM. This approach102

not only mitigates the challenges and biases faced103

by the selecting strategy with too many options, but104

also reduces the cost of LLM invocations caused105

by composing multiple strategies. Consequently,106

by integrating the advantages of different strategies107

and LLMs, COMEM achieves a more effective and108

efficient entity matching process.109

To investigate different strategies and to evaluate110

our COMEM framework, we conducted in-depth111

experiments on 8 ER datasets. Experimental results112

verify the effectiveness of incorporating record in-113

teractions through the selecting strategy, with an114

average 17.58% improvement in F1 over the cur-115

rent matching strategy. In addition, we examined116

the effect of 9 different LLMs using these strategies117

on identification or ranking. Based on the results, 118

COMEM is able to further improve the average 119

F1 of the single selecting strategy by up to 4.01% 120

while reducing the cost. 121

Contributions. Generally speaking, our contri- 122

butions can be summarized as follows1: 123

• We investigate three strategies for LLM-based 124

entity matching, and delve into their advan- 125

tages and shortcomings in different scenarios. 126

• We design a COMEM framework by integrat- 127

ing the advantages of different strategies and 128

LLMs to address the challenges of EM. 129

• We conduct thorough experiments to investi- 130

gate these strategies for EM and verify the 131

effectiveness of our proposed framework. 132

2 Related Work 133

2.1 Entity Resolution 134

As the core of data integration and cleaning, en- 135

tity resolution has received extensive attention over 136

the past decades (Fellegi and Sunter, 1969; Getoor 137

and Machanavajjhala, 2012; Binette and Steorts, 138

2020; Papadakis et al., 2021). The blocking-and- 139

matching pipeline has become the mainstream of 140

entity resolution, where blocking filters out obvi- 141

ously dissimilar records and matching identifies 142

duplicates through complex techniques. 143

Blocking. Traditional blocking approaches group 144

records into blocks by shared signatures, followed 145

by cleaning up unnecessary blocks and compar- 146

isons (Papadakis et al., 2022). Meta-blocking fur- 147

ther reduces superfluous candidates by weighting 148

potential record pairs and graph pruning (Papadakis 149

et al., 2014). Recently, nearest-neighbor search 150

techniques, especially cardinality-based ones, have 151

gained more attention and achieved state-of-the-art 152

(SOTA) results for blocking (Thirumuruganathan 153

et al., 2021; Paulsen et al., 2023). 154

Entity Matching. The open and complex nature 155

of entity matching has spurred the development 156

of various approaches to address this persistent 157

challenge, including rule-based (Benjelloun et al., 158

2009; Li et al., 2015), distance-based (Bilenko 159

et al., 2003), and probabilistic methods (Fellegi and 160

Sunter, 1969; Wu et al., 2020), etc. With the advent 161

of deep learning methods (Mudgal et al., 2018), 162

especially pre-trained language models (PLMs) (Li 163

1The source code of this paper is available at: anony-
mous.4open.science/r/LLM4EM and supplementary material.
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et al., 2020), entity matching has made significant164

progress (Barlaug and Gulla, 2021; Tu et al., 2023).165

The emergence of LLMs brings a new zero- or few-166

shot paradigm to entity matching (Narayan et al.,167

2022; Peeters and Bizer, 2023a), alleviating train-168

ing data requirements. Most deep learning and169

LLM-based approaches treat entity matching as170

an independent classification problem, except for171

GNEM (Chen et al., 2021), which models this task172

as a collective classification task on graphs. To173

the best of our knowledge, this is the first effort174

to formulate entity matching as a comparison or175

selection task using LLMs.176

2.2 Large Language Model177

The advent of LLMs such as ChatGPT marks a178

significant advance in artificial intelligence, offer-179

ing unprecedented natural language understanding180

and generation capabilities, and even general in-181

telligence (Bubeck et al., 2023). By scaling up182

the model and data size of PLMs, LLMs exhibit183

emergent abilities (Wei et al., 2022) and can thus184

solve a variety of complex tasks by “prompt engi-185

neering” without “fine-tuning”. For more technical186

details on LLMs, we refer the reader to the related187

survey (Zhao et al., 2023).188

3 Entity Matching with LLMs189

In this section, we first present the problem for-190

mulation. Then, we introduce three strategies for191

LLM-based entity matching. Finally, we propose192

our COMEM framework, which leverages the com-193

position of multiple strategies and LLMs.194

3.1 Problem Formulation195

We formulate the task of entity matching as the pro-196

cess of identifying matching records from a given197

entity record r and its n potential matches R =198

{r1, r2, . . . , rn} obtained from blocking. This for-199

mulation mitigates the limitations of independent200

pairwise matching and fits real-world entity res-201

olution scenarios. First, current SOTA blocking202

methods adhere to the k-nearest neighbor (kNN)203

search paradigm, which retrieves a list of potential204

matches for each entity record, rather than gener-205

ating candidate matches pairwise as in traditional206

blocking workflows. In addition, this formulation207

accommodates both single-source deduplication208

and dual-source record linkage, and makes good209

use of the 1-1 assumption, i.e., record r matches at210

most one of the potential matches R. This assump-211

tion is widespread in record linkage, and dedupli- 212

cation with canonical entity construction. 213

3.2 LLM as a Matcher 214

Recent work formulates entity matching as a bi- 215

nary classification task based on LLMs (Narayan 216

et al., 2022; Peeters and Bizer, 2023b,a; Fan et al., 217

2023; Li et al., 2024). In this strategy, an LLM acts 218

as a pairwise matcher to determine whether two 219

records match. Specifically, given an entity record 220

r and its potential matches R = {r1, r2, . . . , rn}, 221

this approach independently classifies each pair of 222

records (r, ri)1≤i≤n as matching or not by interfac- 223

ing LLMs with an appropriate matching prompt, as 224

shown in Figure 1(a): 225

LLMm : {(r, ri) | ri ∈ R} → {Yes,No} 226

Unlike previous studies, the core of LLM-based 227

applications is to prompt LLMs to generate the cor- 228

rect answer, namely prompt engineering. An appro- 229

priate prompt should include the task instruction, 230

such as “Do these two records refer to the same 231

real-world entity? Answer Yes or No”. Optionally, 232

a prompt could include detailed rules or several 233

in-context learning examples to guide LLMs in 234

performing this task. Given the need for long con- 235

texts in other strategies, and the instability of exist- 236

ing prompt engineering methods for entity match- 237

ing (Peeters and Bizer, 2023a), we only attempt 238

few-shot prompting for the matching strategy and 239

leave the exploration of better prompt engineering 240

with different strategies to future work. 241

This independent matching strategy ignores the 242

global consistency of ER, as well as the capabil- 243

ities of LLMs to incorporate record interactions. 244

For record linkage, according to the well-known 245

1-1 assumption, each entity record r matches at 246

most one record of the potential matches R. For 247

deduplication, this assumption can also be satisfied 248

by constructing canonical entities. The traditional 249

solution to satisfy these constraints is to construct 250

a graph based on the similarity scores si of record 251

pairs (r, ri) and to further cluster on the similarity 252

graph. We can obtain the similarity scores from 253

LLMs by calibrating the generated probabilities p 254

of labels (Qin et al., 2023). Formally, the similarity 255

score si can be defined as: 256

si =

{
1 + p(Yes | (r, ri)), if generate “Yes”
1− p(No | (r, ri)), if generate “No”

257

Unfortunately, the generation probabilities are not 258

available for many black-box commercial LLMs. 259
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Moreover, the probabilities on short-form labels are260

misaligned for common open-source chat-tuned261

LLMs because they are fine-tuned to respond in262

detail. The need to investigate better strategies for263

LLM-based entity matching arises in ER.264

3.3 LLM as a Comparator265

In this section, we introduce a comparing strategy266

for LLM-based entity matching that simultaneously267

compares two potential matches to a given record.268

Specifically, given an entity record r and its po-269

tential matches R = {r1, r2, . . . , rn}, the compar-270

ing strategy compares two records ri and rj from271

potential matches R to determine which is more272

consistent with record r by interfacing LLMs with273

a comparison prompt, as shown in Figure 1(b):274

LLMc : {(r, ri, rj) | ri,j ∈ R} → {A,B}275

where A and B are labels corresponding to record276

ri and rj . Since LLMs may be sensitive to the277

prompt order, we compare the record pair (ri, rj)278

to record r twice by swapping their order.279

Compared to the matching strategy, the com-280

paring strategy introduces an additional record281

for more record interactions and shifts the task282

paradigm. It focuses on indicating the relative rela-283

tionship between two potential matches of a given284

record, rather than making a direct match or no285

match decision. Therefore, this strategy is suitable286

for ranking and fine-grained filtering to determine287

the most likely records for identification.288

To rank candidate records using the comparing289

strategy, we can compute similarity scores to es-290

timate how closely each candidate matches the291

anchor record. Unlike the matching strategy, the292

comparing strategy can obtain similarity scores of293

record pairs using black-box LLMs, which do not294

provide probabilities. In such case, the similarity295

score si of record pair (r, ri) can be defined as:296

si = 2×
∑

j ̸=i 1ri>rrj +
∑

j ̸=i 1ri=rrj297

where 1ri>rrj and 1ri=rrj indicate that record ri298

wins twice and once in comparison with record rj299

to record r. When LLMs do provide probabilities,300

the similarity scores si can be defined as:301

si =
∑

j ̸=i (p(A | (r, ri, rj)) + p(B | (r, rj , ri)))302

However, the advantage of the comparing strat-303

egy in obtaining similarity scores comes at the cost304

of using LLMs as the basic unit of comparison and305

O(n2) complexity. Fortunately, for entity match- 306

ing, we only care about a small number of most 307

similar candidates, and there are many comparison 308

sort algorithms available to find the top-k elements 309

efficiently. In this paper, we use the bubble sort 310

algorithm to find the top-k elements, optimizing 311

the complexity of the comparing strategy to O(kn). 312

To avoid confusion, we refer to the comparison of 313

all pairs as comparingall-pair in our experiments. 314

3.4 LLM as a Selector 315

In this section, we introduce a selecting strategy 316

that uses an LLM to select the matching record 317

of a given record from a list of potential matches. 318

Specifically, given an entity record r and its po- 319

tential matches R = {r1, r2, . . . , rn}, this strat- 320

egy directly selects the match of record r from R 321

by interfacing LLMs with an appropriate selection 322

prompt, as shown in Figure 1(c): 323

LLMs : {(r,R)} → {1, 2, . . . , n} 324

where 1, . . . , n indicates the corresponding record. 325

In this way, LLMs can be explicitly required 326

to identify only one match per record r from the 327

potential matches R. Furthermore, feeding LLMs 328

all potential matches in the same context at a time 329

allows LLMs to make better decisions by consider- 330

ing interactions between records. For example, if 331

“SanDisk Cruzer Glide”, “SanDisk Cruzer Force”, 332

and “SanDisk Extreme Pro” appear in different 333

records of the same context, it is easier for LLMs 334

to recognize that these are different model names 335

of SanDisk flash drives and select the actual match. 336

One challenge in applying the selecting strategy 337

to LLM-based entity matching is that there is often 338

no actual match of record r in potential matches 339

R, because entity matching is an imbalanced task. 340

A trivial solution to this challenge could be to per- 341

form a pairwise matching after the selection, which 342

would undermine the advantages of the selecting 343

strategy. Another method could be to add “none of 344

the above” as an additional option to allow LLMs 345

to refuse to select any record from the potential 346

matches, which can be formulated as: 347

LLMsN : {(r,R)} → {0, 1, 2, . . . , n} 348

where 0 indicates the “none of the above” option. 349

However, the selecting strategy relies heavily 350

on the capabilities of LLMs for fine-grained un- 351

derstanding and implicit ranking in long contexts. 352

Our experimental results show that the current 353
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Strategy
Similarity

Score
Interaction

Level
# LLM

Invocations
# Input
Records

Matching O(n) 2n

Comparing ✓ O(kn) 3k(2n− k − 1)

Selecting ✗ O(1) n+ 1

Table 1: Comparison of different strategies. “–” means
that the matching strategy can only calibrate similarity
scores if the generation probability is available. “# Input
Records” represents the number of (#) records input
to LLMs using different strategies for record r and its
n potential matches R. k denotes the number of top
candidates considered by the comparing strategy.

LLMs suffer from position bias, with the selection354

accuracy decreasing significantly as the position355

of the matching record increases in the candidate356

list (§ 4.3). In practice, the recall-oriented block-357

ing step often generates a considerable number of358

potential matches for each record, exceeding the359

context length that LLMs can effectively reason-360

ing (Levy et al., 2024). Therefore, it is a challenge361

to mitigate the position bias and the long context362

requirement for the selecting strategy.363

3.5 Compound Entity Matching Framework364

Based on the advantages and shortcomings of dif-365

ferent strategies, we further propose a compound366

entity matching framework (COMEM). COMEM367

addresses various challenges in LLM-based entity368

matching by integrating the advantages of different369

strategies and LLMs. Table 1 shows a comparison370

of these strategies. The matching and comparing371

strategies are applicable for local ranking, while372

the selecting strategy is suitable for fine-grained373

identification. Therefore, as shown in Figure 2, we374

first utilize a medium-sized LLM to rank and filter375

potential matches R of record r with the matching376

or comparing strategy. We then utilize an LLM to377

identify the match of record r from only the top k378

candidates with the selecting strategy.379

Our COMEM framework integrates the advan-380

tages of different strategies through a filtering then381

identifying pipeline. It first utilizes the local match-382

ing or comparing strategy to rank potential matches383

for preliminary screening, which can effectively384

mitigate the position bias and the long context re-385

quirement of the selecting strategy. It then utilizes386

the global selecting strategy to incorporate record387

interactions for fine-grained optimization, which388

can effectively mitigate the consistency ignorance389

of the matching strategy. Therefore, COMEM is390

able to strike a balance between entity matching391

requirements and current LLM capabilities, achiev-392

Record

Filtering

Candidate Record

Comparing

Matching

Selecting

✓

Figure 2: Illustration of COMEM framework. It first fil-
ters candidate records by matching or comparing strate-
gies and then identifies the match via selecting strategy.

Dataset Domain # D1 # D2 # Attr # Pos

Abt-Buy (AB) Product 1076 1076 3 1076
Amazon-Google (AG) Software 1354 3039 4 1103

DBLP-ACM (DA) Citation 2616 2294 4 2224
DBLP-Scholar (DS) Citation 2516 61353 4 2308
IMDB-TMDB (IM) Movie 5118 6056 5 1968
IMDB-TVDB (IV) Movie 5118 7810 4 1072
TMDB-TVDB (TT) Movie 6056 7810 6 1095

Walmart-Amazon (WA) Electronics 2554 22074 6 853

Table 2: Statistics of experimental datasets.

ing significant performance improvements. 393

By integrating LLMs of different sizes, our 394

COMEM framework can also effectively reduce 395

the cost of LLM invocations for entity matching. In 396

practice, direct use of commercial LLMs is expen- 397

sive because entity matching is a computationally 398

intensive task. COMEM delegates a significant part 399

of the computation to medium-sized LLMs. Exper- 400

imental results show that the ranking process can 401

be performed well by using open-source medium- 402

sized (3B~11B) LLMs (§ 4.4). As a result, the 403

proper integration of LLMs not only improves the 404

performance of entity matching but also reduces 405

the cost for practical application. 406

4 Experiments 407

In this section, we conduct thorough experiments 408

to investigate three strategies for LLM-based entity 409

matching. First, we present the main experimental 410

results (§ 4.2). Next, we perform the analysis of 411

different strategies (§ 4.3). Finally, we examine the 412

effect of different LLMs on these strategies (§ 4.4). 413

4.1 Experimental Setup 414

Datasets. We focused on the common record link- 415

age that has many open-access datasets. Specifi- 416

cally, we used 8 clean-clean ER datasets collected 417

by pyJedAI (Nikoletos et al., 2022). Table 2 shows 418

the statistics of these datasets. We adapted them 419

to fit the problem formulation and to support our 420
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Method Metric AB AG DA DS IM IV TT WA Mean Cost
P 71.43 38.00 86.71 71.19 84.44 57.81 67.97 73.49 68.88
R 50.00 75.00 95.67 84.00 85.00 95.00 87.00 40.67 76.54Sudowoodo
F1 58.82 50.45 90.97 77.06 84.72 71.88 76.32 52.36 70.32

1.11

P 40.41 35.54 65.78 64.63 95.08 68.75 65.28 35.62 58.89
R 91.33 59.00 98.67 81.00 58.00 55.00 94.00 88.33 78.17Matching
F1 56.03 44.36 78.93 71.89 72.05 61.11 77.05 50.77 64.02

4.52

P 81.69 65.31 85.60 82.74 96.55 84.82 88.93 71.26 82.11
R 77.33 42.67 69.33 54.33 46.67 31.67 85.67 60.33 58.50Comparing
F1 79.45 51.61 76.61 65.59 62.92 46.12 87.27 65.34 66.86

11.75

P 74.08 58.13 81.34 73.89 89.41 84.07 77.18 72.95 76.38
R 87.67 70.33 97.33 88.67 95.67 82.67 91.33 89.00 87.83Selecting
F1 80.31 63.65 88.62 80.61 92.43 83.36 83.66 80.18 81.60

1.71

P 85.67 66.57 86.23 80.48 94.59 86.06 79.94 85.11 83.08
R 89.67 73.00 96.00 89.33 99.00 82.33 90.33 87.67 88.42COMEM
F1 87.62 69.63 90.85 84.68 96.74 84.16 84.82 86.37 85.61

1.67

Table 3: Overall performance and cost of different methods. We bold the best F1 score and underline the second best.

experiments. For each dataset with two record col-421

lections D1 and D2, we applied the SOTA blocking422

method Sparkly (Paulsen et al., 2023) to retrieve423

10 potential matches from D2 for each record in D1.424

The recall@10 of Sparkly on all datasets ranges425

from 86.57% to 99.96%, demonstrating its effec-426

tiveness in retrieving potential matches. In this427

way, we are able to investigate and evaluate differ-428

ent strategies under the real ER pipeline.429

Baseline. Except for the pairwise matching strat-430

egy, we also compare the STOA self-supervised431

learning method, Sudowoodo (Wang et al., 2023),432

which reduces the need for supervision through433

contrastive learning and pseudo-labeling.434

Evaluation Metrics. Consistent with prior studies,435

we report F1, Precision, and Recall on record pairs.436

We also report the cost ($) of LLM invocations2.437

Implementation Details. 3 We used ChatGPT438

(gpt-3.5-turbo-0613) as the main LLM for strategy439

analysis. We also examined the effect of 8 open-440

source instruction-tuned LLMs, including Llama-441

3-8B (AI@Meta, 2024), Qwen2-7B (Bai et al.,442

2023), Mistral-7B (Jiang et al., 2023), Mixtral-443

8x7B (Jiang et al., 2024), Flan-T5-XXL (Chung444

et al., 2022), Flan-UL2 (Tay et al., 2023) and Solar-445

10.7B (Kim et al., 2023). The specific prompts446

can be found in Appendix A, with the generation447

temperature of all LLMs set to 0 for reproducibil-448

ity. For each dataset, we sampled 400 records from449

record collection D1 for evaluation, 300 of which450

had matches, and formed 4000 pairs of records with451

2The inference or training cost is estimated based on the
hourly price of the cloud NVIDIA A40.

3We have provided the full code, including blocking and
sampling in the Supplementary Material for reproducibility.

Matching Matching
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Method
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Figure 3: Comparison of different strategies.

their potential matches obtained by Sparkly from 452

record collection D2. The remaining record pairs 453

(unsampled records and their potential matches) are 454

used for model training or in-context learning. For 455

Sudowoodo, we used its official implementation4 456

to train models on 500 pairs. For in-context learn- 457

ing, we select 100 record pairs and follow Peeters 458

and Bizer (2023a) to retrieve 3 positives and 3 neg- 459

atives as few-shot examples. Since the comparing 460

strategy produces only relative orders, we applied 461

the matching strategy to the top 1 candidate after 462

bubble sort ranking. In COMEM, we used Flan-T5- 463

XL to rank candidates with the matching strategy 464

and kept the top 4 candidates for selection. 465

4.2 Main Results 466

We first compare the performance and cost of dif- 467

ferent methods, with the following findings. 468

Finding 1. Incorporating record interactions 469

is essential for LLM-based entity matching. As 470

shown in Table 3, entity matching performance in- 471

4https://github.com/megagonlabs/sudowoodo
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creases as the level of record interaction increases.472

The comparing strategy outperforms the indepen-473

dent matching strategy by an average of 2.84% F1474

score, and the selecting strategy further improves475

the F1 score by up to 14.74% over the comparing476

strategy. The optimal selecting strategy is 11.28%477

higher in F1 than the SOTA self-supervised learn-478

ing method. The advantages of the comparing and479

selecting strategies over the matching strategy are480

also evident across different LLMs in Figure 4. To481

further verify that these improvements are due to482

the strategy, we perform 6-shot matching, ensuring483

that the number of records is consistent with the484

selecting strategy. As shown in Figure 3, the se-485

lecting strategy still has a significant F1 advantage486

over 6-shot matching. These results highlight the487

effectiveness of our proposed strategies and open488

new avenues for LLM-based entity matching.489

Finding 2. By integrating the advantages of dif-490

ferent strategies and LLMs, COMEM can accom-491

plish EM more effectively and cost-efficiently. As492

shown in Table 3 and Figure 3, compared to the op-493

timal selecting strategy using ChatGPT, COMEM494

achieves 4% F1 improvement while spending less.495

The filtering and identifying pipeline improves pre-496

cision considerably (6.7%) without sacrificing high497

recall of the selecting strategy. These results reveal498

that integrating multiple strategies can complement499

single strategies and mitigate the position bias of 500

the selecting strategy in long contexts. However, us- 501

ing a single powerful but costly commercial LLM 502

to complete the entire pipeline obscures the cost 503

efficiency of the selecting strategy. By introduc- 504

ing a medium-sized LLM for preliminary filtering, 505

COMEM improves performance while spending 506

less than direct selection. As a result, COMEM 507

underscores the importance of task decomposition 508

and LLM composition, illuminating an effective 509

route for compound entity matching using LLMs. 510

4.3 Analysis of Strategies 511

We then analyze the advantages and shortcomings 512

of different strategies from different perspectives. 513

Finding 3. The selecting is the most cost- 514

effective strategy for LLM-based entity matching. 515

Monetary cost is also an important factor when 516

interfacing LLMs for EM in practice, as it is com- 517

putationally intensive. As shown in Table 3, the 518

selecting strategy costs less than half of the match- 519

ing strategy. This is because the selecting strat- 520

egy saves n − 1 times of repeatedly inputting an- 521

chor records and task instructions into LLMs. The 522

comparing strategy, however, considers two po- 523

tential matches at a time and interfaces the LLM 524

twice, making its cost more than twice that of the 525

matching strategy. Therefore, the selecting strategy 526

stands out for its effectiveness and efficiency. 527

Finding 4. Strategies that incorporate multiple 528

records suffer from the position bias of LLMs. As 529

shown in Figure 5, the performance of the compar- 530

ing and selecting strategies decreases significantly 531

as the position of the matching records moves down 532

in the candidate list. For the comparing strategy op- 533

timized with bubble sort, matching records cannot 534

be ranked at the top if there is any incorrect com- 535

parison. The selecting strategy also drops about 536

10% in F1, probably due to the limited long context 537

understanding of the LLM. Therefore, the position 538

bias of LLMs restricts the performance and gener- 539

7
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ality of the comparing and selecting strategies.540

4.4 Effect of LLMs541

We further examine the effect of open-source LLMs542

on these strategies to identify matches or rank.543

Finding 5. There is no single LLM that is uni-544

formly dominant across all strategies. Figure 4545

shows the efficacy of proposed strategies for open-546

source LLMs, with detailed results in Appendix B.547

We can see that the F1 scores of the matching,548

comparing, and selecting strategies for different549

LLMs mostly fall between 50%~70%, 60%~80%,550

and 70%~80%, respectively. In general, similar to551

ChatGPT, the comparing strategy is better than the552

matching strategy, while the selecting strategy is553

further better than the comparing strategy. The con-554

sistent performance between strategies confirms the555

effectiveness of incorporating record interactions556

in these ways. Concretely, some chat LLMs such557

as Llama3-8B and Mistral-7B produce numerous558

false positives and thus perform poorly with the559

matching strategy. Nevertheless, they achieve sig-560

nificant improvement and satisfactory performance561

by comparing and selecting strategies, respectively.562

Moreover, although Flan-T5-XXL and Flan-UL2563

lag behind ChatGPT by about 4% F1 in the select-564

ing strategy, we find that they perform quite well in565

the matching and comparing strategies. These task-566

tuned LLMs follow instructions better than chat-567

tuned LLMs, and can output only the requested568

labels instead of long-form responses, making it569

convenient to utilize label generation probabilities.570

In conclusion, there is a noticeable variance in the571

capabilities of different LLMs for a single strategy,572

and the efficacy of different strategies for a single573

LLM can also be significantly distinct.574

Finding 6. Matching strategy is better for rank-575

ing and filtering than comparing strategy. The su-576

periority of Flan-T5 in the matching and comparing577
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Figure 7: Average F1, precision, and recall w.r.t. num-
ber of candidate retained (k) for further selection. See
Appendix C for detailed results on each dataset.

strategies leads us to explore the possibility of using 578

it to rank and filter potential matches for the select- 579

ing strategy. As shown in Figure 6, the matching 580

strategy outperforms the comparing strategy under 581

different model parameter sizes, even though the 582

latter performs O(n2) comparisons. The difference 583

is small on Flan-T5-XL (3B) and Flan-T5-XXL 584

(11B), but significant on smaller models. This may 585

be due to the fact that these models are trained 586

on many pairwise tasks, such as natural language 587

inference and question answering, but few triple- 588

wise tasks. Therefore, in terms of effectiveness and 589

efficiency, the matching strategy is more suitable 590

for ranking and filtering potential matches. 591

4.5 Ablation Study 592

We perform an ablation study on the number of can- 593

didate records for further identification. As shown 594

in Figure 7, recall increases and precision decreases 595

as the number of retained potential matches in- 596

creases. Consistent with Figure 5, four is the sweet 597

spot for the selecting strategy with current Chat- 598

GPT, which balances precision and recall well. 599

5 Conclusion 600

In this paper, we investigate three strategies for 601

entity matching using LLMs to bridge the gap be- 602

tween local matching and global consistency of ER. 603

Our research shows that incorporating record inter- 604

actions is essential for LLM-based entity matching. 605

By examining the effect of broad LLMs on these 606

strategies, we further design a COMEM framework 607

that integrates the advantages of multiple strategies 608

and LLMs. The effectiveness and cost efficiency of 609

COMEM highlight the importance of task decom- 610

position and LLM composition, opening up new 611

avenues for entity matching using LLMs. 612

8



Limitations613

This study aims to investigate different strategies614

for LLM-based entity matching. We conducted615

thorough experiments with 1 commercial LLM and616

8 open-source LLMs to provide a broad base for617

our analysis. The selection of models is based on618

considerations of popularity, availability, and cost.619

Future research could explore whether similar find-620

ings hold as LLMs evolve and how performance621

changes relative to our results.622

Since LLMs have been trained on massive web623

data, they are likely to have seen the similar and624

same records, or even some matching results, even625

though the labels of the matches are stored sep-626

arately. Nevertheless, the performance of these627

strategies is relatively consistent across 9 LLMs628

and varies greatly for the same LLM when using629

different strategies, highlighting that data exposure630

is not the determining factor in their effectiveness.631

In the future, it will be valuable to evaluate LLM-632

based entity matching on new or non-public data.633

The investigation of different strategies was con-634

ducted using basic zero/few-shot promting, a sim-635

ple and effective paradigm for applying LLMs. We636

could not ignore the role of potential advanced637

prompt engineering methods in improving the ac-638

curacy and robustness of LLMs. In addition, fine-639

tuning LLMs for better execution of different strate-640

gies is also a worthwhile direction.641

Finally, we have demonstrated the effectiveness642

of the compound framework in entity matching643

that integrates different strategies and LLMs. We644

would like to continue to develop specific modules645

for entity matching and extend this paradigm to646

different stages of entity resolution.647
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Matching
Do the two entity records refer to the same real-world entity?
Answer "Yes" if they do and "No" if they do not.

Record 1: {{ record_left }}
Record 2: {{ record_right }}

Comparing
Which of the following two records is more likely to refer to
the same real-world entity as the given record? Answer with
the corresponding record identifier "Record A" or "Record B".

Given entity record: {{ anchor }}

Record A: {{ candidate_left }}
Record B: {{ candidate_right }}

Selecting
Select a record from the following candidates that refers to the
same real-world entity as the given record. Answer with the
corresponding record number surrounded by "[]" or "[0]" if
there is none.

Given entity record: {{ anchor }}

Candidate records:{% for candidate in candidates %}
[{{ loop.index }}] {{ candidate }}{% endfor %}

Table 4: Specific prompts of different strategies. We use
JinJa template syntax to display the placeholders for the
anchor record and potential matches (candidates).

A Prompts870

The prompts for various strategies of LLM-based871

entity matching used in this paper are presented in872

Table 4. To ensure fairness, the same prompts were873

used for all experimental LLMs. These prompts874

were constructed through a manual process of875

prompt engineering, which involved the testing876

and comparing of multiple variations to determine877

the most effective ones. In addition to the task878

description, we included specific response instruc-879

tions such as “Answer "Yes" if they do and "No"880

if they do not” to guide the responses of LLMs.881

For in-context learning, prompts and labels were882

repeatedly inputted for each example, followed by883

the records to be matched. We post-processed the884

LLM responses to obtain the final predicted labels.885

B Detailed Results of Open-Source LLMs886

under Different Strategies887

We provide the detailed F1 scores of open-source888

LLMs under different strategies in Table 5. Among889

the 8 LLMs evaluated in our experiment, 6 achieve890

the best performance through the selecting strat-891

egy, and 2 achieve better performance through the892

comparing strategy. In summary, our proposed893

strategies are universally applicable across differ-894

ent LLMs for entity matching. We have observed895

that it is difficult to limit the output of many chat-896

tuned LLMs simply by prompts, which may affect 897

their actual performance in entity matching. There- 898

fore, how to calibrate the label probabilities from 899

the long-form responses of LLMs is also important 900

for performance improvement. 901

C Ablation Study on Each Dataset 902

Figure 8 shows the performance of COMEM with 903

respect to the varying number of top candidates 904

retained for further selection. Similar to Figure 7, 905

recall increases and precision decreases as k in- 906

creases. For the simplest dataset “DBLP-ACM”, 907

F1 achieves the highest value at k = 1. For some 908

other datasets, F1 changes dramatically as k goes 909

from 2 to 5. How to tune k to balance the LLM ca- 910

pabilities and the actual situation is a direction that 911

could be explored. One possible solution might be 912

to dynamically adjust the number according to the 913

similarity scores of potential matches. 914
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Figure 8: F1, precision, and recall w.r.t. the number of candidates retained (k) for further selection on all datasets.

LLM Strategy AB AG DA DS IM IV TT WA Mean

Mistral-Instruct-7B
Matching 40.70 37.77 24.68 28.89 64.86 64.49 49.91 55.96 45.91

Comparing 54.68 32.10 49.28 49.75 74.38 52.25 81.69 44.39 54.82
Selecting 67.26 57.31 83.36 74.27 87.84 76.95 80.89 62.54 73.80

Mistral-Instruct-8x7B
Matching 77.67 34.76 67.20 60.09 82.26 53.57 72.99 50.57 62.39

Comparing 67.81 25.20 81.48 75.54 75.15 54.05 73.93 41.22 61.80
Selecting 79.58 61.16 85.05 79.37 90.34 77.15 81.23 78.84 79.09

Solar-Instruct-10.7B
Matching 68.80 45.60 47.02 38.32 70.35 40.49 75.18 70.57 57.04

Comparing 86.22 49.14 84.70 75.16 61.68 32.57 77.49 74.41 67.67
Selecting 74.27 62.05 74.93 65.50 79.56 59.68 73.96 74.89 70.60

Flan-T5-XXL (11B)
Matching 77.85 58.35 87.63 80.34 71.82 51.62 74.62 67.23 71.18

Comparing 84.21 56.85 94.49 85.82 65.33 49.88 84.28 67.89 73.60
Selecting 77.52 69.83 84.77 80.29 85.07 68.05 78.90 77.33 77.72

Flan-UL2 (20B)
Matching 83.39 52.73 81.97 67.53 82.35 40.56 70.88 74.07 69.19

Comparing 88.09 64.52 94.81 88.26 71.43 39.51 83.66 80.66 76.37
Selecting 80.34 71.82 84.00 80.57 84.09 65.70 80.99 71.94 77.43

Command-R-35B
Matching 49.87 32.87 47.87 44.46 91.45 69.69 63.14 36.81 54.52

Comparing 72.31 51.27 76.82 65.91 90.91 77.00 86.09 57.24 72.20
Selecting 78.16 65.52 83.67 79.54 85.26 75.33 79.06 80.58 78.39

Llama-3-8B
Matching 31.01 21.97 19.27 19.27 44.78 40.24 31.55 23.91 29.00

Comparing 80.06 61.27 84.85 72.54 80.13 76.36 79.82 80.29 76.91
Selecting 74.37 49.50 78.91 68.79 76.27 54.77 69.66 42.33 64.33

Qwen-2-7B
Matching 63.41 47.33 68.35 52.46 82.89 55.54 71.84 55.06 62.11

Comparing 84.32 56.88 88.78 76.57 93.17 65.07 86.50 75.39 78.34
Selecting 72.39 61.03 81.49 76.57 82.97 73.48 78.55 72.96 74.93

Table 5: F1 score of open-source LLMs under different strategies.
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