
Partial Optimality in the Linear Ordering Problem

David Stein 1 Bjoern Andres 1 2

Abstract
The linear ordering problem consists in finding a
linear order < on a finite set A so as to minimize
the sum of costs associated with pairs of elements
a, b for which a < b. The problem is NP-hard and
APX-hard. We introduce algorithms for solving
the problem partially by deciding efficiently for
some pairs (a, b) whether a < b is in an optimal
solution. To do so, we construct maps from the
feasible set of orders to itself and establish effi-
ciently testable conditions on the cost function of
the problem for which these maps are improving.
We examine the effectiveness and efficiency of
these conditions and algorithms empirically, on
two data sets.

1. Introduction
We study the linear ordering problem, a combinatorial op-
timization problem whose feasible solutions are all linear
orders on a finite set A. Given, for any pair ab ∈ A2 with
a ̸= b, a cost cab ∈ R, the objective is to find a strict linear
order < on A so as to minimize the sum of costs of those
pairs ab for which a < b. Following Martı́ & Reinelt (2011),
we state the problem in the form of a binary linear program:

Definition 1.1. Let A ̸= ∅ and PA = {ab ∈ A2 | a ̸= b}.
The instance of the linear ordering problem with respect to
A and c ∈ RPA has the form

min
x∈{0,1}PA

∑
ab∈PA

cab xab

subject to ∀a ∈ A∀b ∈ A \ {a} : xab + xba = 1 (1)
∀a ∈ A∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

xab + xbc − 1 ≤ xac . (2)

We let XA denote the feasible set, i.e., the set of all x ∈
{0, 1}PA that satisfy (1) and (2), and let φc : XA → R

1Faculty of Computer Science, TU Dresden, Germany 2Center
for Scalable Data Analytics and AI Dresden/Leipzig. Correspon-
dence to: Bjoern Andres <bjoern.andres@tu-dresden.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

a)
a b

b)
R

A\R

c)

a

d)

a b

Figure 1. We solve instances of the NP-hard linear ordering par-
tially by deciding efficiently for some pairs of elements a and b
whether a < b in an optimal solution to the problem. We do so by
establishing and verifying conditions on the cost function which
imply that certain transformations of feasible solutions are improv-
ing maps (Shekhovtsov, 2013). As transformations, we consider
transpositions (a), groupings (b) and shiftings (c,d) of elements.

denote the objective function with respect to A and c ∈ RPA .
We note that any feasible solution x ∈ XA defines a strict
linear order <x on A such that for any a ∈ A and any
b ∈ A \ {a} we have a <x b if and only if xab = 1.

In the field of machine learning, the linear ordering problem
has two advantages as a model of ordering and ranking
tasks: Firstly, its costs can be learned from independent
classifications of pairs a, b as a < b (Class 1) or b < a (Class
0). For instance, one can learn how the cost cab = fθ(ya, yb)
associated with the decision a < b depends (via a function
fθ) on features ya, yb of a and b. This requires only some
labeled pairs. Not a single order needs to be given for
learning. Secondly, solutions to the linear ordering problem
are maximum a posteriori estimates under the assumption
that decisions of pairs a, b occuring in the order a < b are
independent a priori and dependent a posteriori only by
the fact that we associate zero probability with decisions
violating (1) and (2) and equal (positive) probability with
decisions satisfying these constraints. This is useful for
estimating orders with little inductive bias.

The linear ordering problem is NP-hard (Garey & Johnson,
1979) and hard to approximate (Mishra & Sikdar, 2004).
Here, we ask whether we can compute a partial solution to
the problem efficiently, i.e., to decide efficiently for some
pairs ab whether a < b in an optimal solution. In order to
find such partial optimality, we characterize and search for
improving maps, a technique introduced by Shekhovtsov
(2013); see also Shekhovtsov (2014); Shekhovtsov et al.
(2015). Some technical proofs are deferred to Appendix A.

1

Partial Optimality in the Linear Ordering Problem

In this article, we make the following contributions: Firstly,
we establish four conditions of partial optimality for the
linear ordering problem and define an algorithm for testing
these conditions efficiently. Secondly, we show empirically,
by quantitative experiments, that this algorithm is effective
in fixing some variables of benchmark instances (Martı́ et al.,
2012) of the linear ordering problem without compromising
optimality, even though the entire problem is NP-hard and
hard to approximate. Thirdly, we analyze quantitatively
how the fraction of fixed variables depends on a parameter
controlling the hardness of synthetic instances of the linear
ordering problem we contribute. Fourthly, we show that the
partial optimality we establish reduces the time for a branch-
and-cut algorithm to find and certify optimal solutions to
the entire problem to as little as 1/13 for the IO instances
and as little as 1/33 for the Spec instances of the LOLIB
benchmark.

2. Related Work
A common approach to learning and inferring orders is
to learn an embedding ξ : A → R, often called a scoring
or ranking, such that for any a, b ∈ A and zero loss, we
have a ≤ b if and only if ξ(a) ≤ ξ(b), and to infer an
order on a set A by sorting its elements a ∈ A by their
score ξ(a). Examples of this approach include Menon et al.
(2022); Chang et al. (2020); Köppel et al. (2020); Zhang
et al. (2022). A less common approach to learning and
inferring orders is to learn costs c : A2 → R such that for
any a, b ∈ A and zero loss, we have cab ≤ 0 if and only
if a ≤ b (Lim et al., 2020), and to infer an order on a set
A by solving the instance of the linear ordering problem
with respect to A and c, cf. Definition 1.1. This approach
is pursued by Tromble & Eisner (2009). An advantage of
the second approach is that costs can be estimated from
independent pairs whose order is known, e.g., by estimating
for any a, b ∈ A a probability pab ∈ (0, 1) of a ≤ b, as
discussed by Szczecinski & Sukheja (2023), and letting
cab = − log pab and cba = − log(1− pab). A disadvantage
of the second approach is that the linear ordering problem
is NP-hard (Garey & Johnson, 1979) and APX-complete
(Mishra & Sikdar, 2004).

Algorithms for the linear ordering problem fall into two
categories. First are exact but not necessarily efficient al-
gorithms such as branch-and-bound algorithms (Charon
& Hudry, 2006; Kaas, 1981), branch-and-cut algorithms
(Grötschel et al., 1984) and cutting plane algorithms
(Mitchell & Borchers, 2000; 1996). Second are efficient
but not necessarily exact heuristics (Ceberio et al. (2015);
Martı́ & Reinelt (2011, Chapters 2-3)). To this end, He et al.
(2022) learn a function χ : RPA → RA from the coeffi-
cients c ∈ RPA of an instance of the NP-hard linear ordering
problem to the coefficients ξ ∈ RA of an instance of the

efficiently solvable sorting problem, and take the sorting
of the elements a ∈ A by their scores ξ(a) as a feasible
solution to the linear ordering problem. Heuristics like these
are typically compared empirically in their application to
a collection of instances of the linear ordering problem by
Martı́ et al. (2012).

The algorithms we define here are different in that they solve
the linear ordering problem partially, exactly and efficiently,
e.g., by deciding for some pairs ab ∈ PA that a < b in an
optimal solution. Such partial optimality has been studied
for various problems (Adams et al., 1998; Billionnet & Sut-
ter, 1992; Hammer et al., 1984; Kappes et al., 2013; Kohli
et al., 2008; Shekhovtsov, 2014; Shekhovtsov et al., 2015;
Stein et al., 2023), notably for the correlation clustering
problem (Alush & Goldberger, 2012; Lange et al., 2018;
2019; Stein et al., 2023). Our study of partial optimality for
the linear ordering problem is analogous to prior work on
partial optimality for the correlation clustering problem in
two respects: Firstly, it is specific to a statement of the prob-
lem in the form of a binary linear program with transitivity
constraints. Secondly, we do not consider reformulations
in the form of an unconstrained optimization problem with
infinite costs instead of constraints. While partial optimality
for such reformulations might lead to different conditions on
the linear order than the partial optimality we establish, we
do not pursue this idea. Our study differs from prior work
on correlation clustering in that the strict linear orders we
consider are asymmetric whereas the equivalence relations
that characterize the solutions to the correlation clustering
problem are symmetric. Hence, the improving maps we
define and the partial optimality conditions we establish are
unrelated and novel.

3. Preliminaries
For clarity, we introduce basic notation and recall the def-
inition and elementary property of improving maps. For
any r ∈ R, let r± := max (0,±r). For any c ∈ RPA , let
c∆ ∈ RPA such that ∀ab ∈ PA: c∆ab = cab − cba.

Definition 3.1. For any φ : X → R and any σ : X → X ,
we call σ improving for the problem minx∈X φ(x) if and
only if ∀x ∈ X : φ(σ(x)) ≤ φ(x).

Proposition 3.2. Let φ : X → R and σ : X → X improv-
ing. Moreover, let X ′ ⊆ X . If σ(x) ∈ X ′ for every x ∈ X ,
there exists an optimal solution x∗ to minx∈X φ(x) such
that x∗ ∈ X ′.

Proof. Let x∗ be an optimal solution to minx∈X φ(x) such
that x∗ ̸∈ X ′. Then σ(x∗) is also an optimal solution to
minx∈X φ(x) and σ(x∗) ∈ X ′.

Corollary 3.3. Let J ̸= ∅, X ⊆ {0, 1}J , φ : X → R and
σ : X → X improving. Moreover, let j ∈ J and b ∈ {0, 1}.
If σ(x)j = b for every x ∈ X , there exists an optimal

2

Partial Optimality in the Linear Ordering Problem

solution x∗ to minx∈X φ(x) such that x∗
j = b. In this case,

the assignment of the value b to the variable xj is said to be
partially optimal by the improving map σ.

4. Partial Optimality Conditions
4.1. Transposition

In this section, we state a condition on the cost function of
the linear ordering problem under which a map is improving
that swaps two elements a, b ∈ A, as depicted in Figure 1a,
in all feasible solutions x ∈ XA where a <x b. We begin
by defining this map:

Definition 4.1. For any A ̸= ∅ and any {a, b} ∈
(
A
2

)
, define

the transposition map τ{a,b} : XA → XA such that for all
x ∈ XA and all a′b′ ∈ PA

τ{a,b}(x)a′b′ =



1− xa′b′ if {a′, b′} = {a, b}
xa′a if b′ = b ∧ a′ ̸= a

xab′ if a′ = b ∧ b′ ̸= a

xbb′ if a′ = a ∧ b′ ̸= b

xa′b if b′ = a ∧ a′ ̸= b

xa′b′ if {a, b} ∩ {a′, b′} = ∅

and the conditional transposition map τ1{a,b} : XA → XA

such that for all x ∈ XA

τ1ab(x) =

{
x if xab = 1

τ{a,b}(x) if xab = 0
.

We proceed by calculating (Lemma 4.2) and tightly bound-
ing (Lemma 4.3) the difference in cost incurred by this map:

Lemma 4.2. Let A ̸= ∅, c ∈ RPA and x ∈ XA. Moreover,
let {a, b} ∈

(
A
2

)
and x′ = τ{a,b}(x). Then:

φc(x
′)− φc(x)

= c∆ab (1− 2xab) +
∑

d∈A\{a,b}

(
c∆ad + c∆db

)
(xbd + xda − 1) .

Lemma 4.3. Let A ̸= ∅, {a, b} ∈
(
A
2

)
and e ∈ RA\{a,b}.

Then:

max
x∈XA
xab=0

∑
d∈A\{a,b}

(xbd + xda − 1) ed =
∑

d∈A\{a,b}

e+d . (3)

Based on this bound, we establish a (necessary and) suf-
ficient condition for a conditional transposition map to be
improving, and note the resulting partial optimality:

Proposition 4.4. Let A ̸= ∅, c ∈ RPA and ab ∈ PA. If
(4) holds, τ1ab is improving. Moreover, there is an optimal
solution x∗ to the linear ordering problem with x∗

ab = 1.

c∆ab +
∑

d∈A\{a,b}

(
c∆ad + c∆db

)+ ≤ 0 (4)

Proof. Let x′ = τ1ab(x). For all x ∈ XA with xab = 1, we
have φc(x

′) = φc(x). For all x ∈ XA with xab = 0, we
have by Lemma 4.2:

φc(x
′)− φc(x)

= c∆ab +
∑

d∈A\{a,b}

(xda + xbd − 1)
(
c∆ad + c∆db

)
≤ c∆ab + max

x∈XA
xab=0

∑
d∈A\{a,b}

(xda + xbd − 1)
(
c∆ad + c∆db

)
(3)
= c∆ab +

∑
d∈A\{a,b}

(
c∆ad + c∆db

)+
(4)
≤ 0

Thus, τ1ab is improving. Moreover, ∀x ∈ XA : x′
ab = 1.

Applying Proposition 4.4 with a and b swapped yields an
analogous partial optimality condition:

Corollary 4.5. Let A ̸= ∅, c ∈ RPA and ab ∈ PA. If (5)
holds, there is an optimal solution x∗ to the linear ordering
problem such that x∗

ab = 0.

c∆ba +
∑

d∈A\{a,b}

(
c∆bd + c∆da

)+ ≤ 0 (5)

4.2. Grouping

In this section, we state a condition on the cost function of
the linear ordering problem under which a map is improving
that moves a subset R ⊆ A to the front of the order, as de-
picted in Figure 1b, without changing the order of elements
in R or A \R. We begin by defining this map:

Definition 4.6. Let A ̸= ∅ and R ⊆ A. The grouping map
σR : XA → XA is such that for all x ∈ XA and ab ∈ PA:

σR(x)ab =


xab if ab ∈ PR ∨ ab ∈ PA\R

1 if a ∈ R ∧ b ∈ A \R
0 if a ∈ A \R ∧ b ∈ R

.

Lemma 4.7. Let A ̸= ∅, c ∈ RPA and x ∈ XA. Moreover,
let R ⊆ A and x′ = σR(x). Then:

φc(x
′)− φc(x) =

∑
a∈R

∑
b∈A\R

c∆ab xba .

Next, we note a sufficient condition for the grouping map to
be improving, and the resulting partial optimality:

Proposition 4.8. Let A ̸= ∅ and c ∈ RPA . If there exists
R ⊆ A such that (6) holds, there is an optimal solution
x∗ to the linear ordering problem such that ∀a ∈ R ∀b ∈
A \R : x∗

ab = 1.

∀a ∈ R ∀b ∈ A \R : c∆ab ≤ 0 (6)

3

Partial Optimality in the Linear Ordering Problem

Proof. Let x′ = σR(x). Firstly, by Lemma 4.7, ∀x ∈ XA:

φc(x
′)− φc(x) =

∑
a∈R

∑
b∈A\R

c∆ab xba

≤
∑
a∈R

∑
b∈A\R

c∆,+
ab

(6)
= 0 .

Secondly, ∀a ∈ R ∀b ∈ A \R : x′
ab = 1.

If Proposition 4.8 is satisfied for a set R, the linear or-
dering problem with respect to A and c decomposes into
two independent sub-problems. More specifically, with
X ′

AR := {x ∈ XA | ∀a ∈ R ∀b ∈ A \R : xab = 1}:

min
x∈X′

A,R

φc(x)

= min
x∈XR

φc|PR
(x) + min

x∈XA\R
φc|PA\R

(x) +
∑
a∈R

∑
b∈A\R

cab .

Moreover, given solutions

x′ ∈ argmin
x∈XR

φc|PR
(x) , x′′ ∈ argmin

x∈XA\R

φc|PA\R
(x) ,

an optimal solution to minx∈X′
A,R

φc(x) is given by the
x ∈ X ′

A,R such that

xa′b′ =


x′
a′b′ if a′b′ ∈ PR

x′′
a′b′ if a′b′ ∈ PA\R

1 if a′ ∈ R ∧ b′ ∈ A \R
0 if a′ ∈ A \R ∧ b′ ∈ R

.

Example 1. Let ϵ > δ > 0 and A = A1 ∪A2, A1 ∩A2 = ∅
such that c∆ab = −δ for all a ∈ A1 and b ∈ A2 and |c∆ab| ≤ ϵ
for all ab ∈ PA1

∪PA2
. Proposition 4.8 leads to the partially

optimal assignment xab = 1 for all a ∈ A1 and b ∈ A2,
since c∆ab = −δ < 0 for all a ∈ A1 and b ∈ A2. I.e.,
the problem decomposes into independent sub-problems
thanks to partial optimality. Note also that the same partially
optimal assignment can be found by Proposition 4.4 under
the additional condition δ ≥ |A|−2

|A|−1ϵ. This shows that partial
optimality due to Proposition 4.8 is not subsumed under
partial optimality due to Proposition 4.4.

4.3. Conditional Grouping

In this section, we generalize Proposition 4.8. More specifi-
cally, we state a condition on the cost function of the linear
ordering problem under which a map is improving that
moves a subset R ⊆ A to the front of the order, as depicted
in Figure 1b, without changing the order of elements in R or
A \R, but does so only for those feasible solutions x ∈ XA

where b <x a for given elements a ∈ R and b ∈ A \R. We
begin by defining this map:

Definition 4.9. For any R ⊆ A, any a ∈ R and any b ∈
A\R, define the conditional grouping map σab

R : XA → XA

such that

∀x ∈ XA : σab
R (x) =

{
x if xab = 1

σR(x) if xab = 0
.

Lemma 4.10. Let A ̸= ∅, c ∈ RPA , ab ∈ PA and R ⊆ A
such that a ∈ R and b ∈ A \ R. If x ∈ XA such that
xab = 0, and x′ = σR(x), then

φc(x
′)− φc(x) ≤ −c∆,−

ab +
∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′ .

We note a sufficient condition for the conditional grouping
map to be improving, and the resulting partial optimality:
Proposition 4.11. Let A ̸= ∅, c ∈ RPA , ab ∈ PA and
R ⊆ A such that a ∈ R and b ∈ A \ R. If (7) holds,
then there is an optimal solution x∗ to the linear ordering
problem such that x∗

ab = 1.

c∆,−
ab ≥

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′ (7)

Proof. Let σab
R : XA → XA and x′ = σab

R (x). For all
x ∈ XA with xab = 1: φc(x

′) = φc(x). And for all
x ∈ XA with xab = 0, by Lemma 4.10:

φc(x
′)− φc(x) = −c∆,−

ab +
∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′

(7)
≤ 0 .

Moreover, x′
ab = 1.

Corollary 4.12. Let A ̸= ∅, c ∈ RPA , ab ∈ PA and R ⊆ A
such that b ∈ R and a ∈ A \ R. If (8) holds, there is
an optimal solution x∗ to the linear ordering problem with
x∗
ab = 0.

c∆,−
ba ≥

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′ (8)

4.4. Shifting

In this section, we state conditions on the cost function of
the linear ordering problem under which a map is improving
that shifts all elements before an element a ∈ A to the end
of the order, as depicted in Figure 1c. We begin by defining
this map:
Definition 4.13. For any a ∈ A, define the shift map
sa : XA → XA such that for all x ∈ XA and all a′b′ ∈ PA:

sa(x)a′b′ =



1 if a′ = a

0 if b′ = a

0 if a′ <x a <x b′

1 if b′ <x a <x a′

xa′b′ otherwise

.

4

Partial Optimality in the Linear Ordering Problem

Lemma 4.14. Let c ∈ RPA , x ∈ XA, a ∈ A and x′ =
sa(x). Then

φc(x
′)− φc(x) =

∑
d<xa

∑
d′∈A\{d}

c∆d′d .

Next, we state a sufficient condition for the shift map to be
improving, along with the resulting partial optimality:

Proposition 4.15. Let a ∈ A and c ∈ RPA . If (9) holds,
then there exists an optimal solution x∗ to the linear order-
ing problem such that ∀b ∈ A \ {a} : x∗

ab = 1.

∀d ∈ A \ {a} :
∑

d′∈A\{d}

c∆d′d ≤ 0 (9)

Proof. Let x′ = sa(x). Firstly, by Lemma 4.14:

φc(x
′)− φc(x) =

∑
d<xa

∑
d′∈A\{d}

c∆d′d

≤
∑

d∈A\{a}

max

0,
∑

d′∈A\{d}

c∆d′d

 = 0 .

Secondly, for any b ∈ A \ {a}, we have x′
ab = 1.

Corollary 4.16. Let a ∈ A and c ∈ RPA . If (10) holds,
there is an optimal solution x∗ to the linear ordering prob-
lem such that ∀b ∈ A \ {a} : x∗

ab = 0.

∀d ∈ A \ {a} :
∑

d′∈A\{d}

c∆dd′ ≤ 0 (10)

4.5. Generalized Shifting

In this section, we state conditions on the cost function of
the linear ordering problem under which a map is improving
that shifts all elements before the maximum of two elements
a, b ∈ A to the end of the order, except the minimum of a
and b. An example is depicted in Figure 1d. We begin by
defining this map:

Definition 4.17. For any distinct a, b ∈ A, define the gen-
eralized shift map s{a,b} : XA → XA such that for all
x ∈ XA and all a′b′ ∈ PA:

s{a,b}(x)a′b′ =



1 if a′ ∈ {a, b} ∧ b′ ̸∈ {a, b}
0 if b′ ∈ {a, b} ∧ a′ ̸∈ {a, b}
1 if b′ <x maxx{a, b} <x a′

0 if a′ <x maxx{a, b} <x b′

xa′b′ otherwise

.

Lemma 4.18. Let A ̸= ∅, c ∈ RPA and x ∈ XA. Moreover,
let a, b ∈ A distinct and x′ = s{a,b}(x). If xab = 1 we have

φc(x
′)− φc(x) =

∑
d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>xminx{a,b}
d<xmaxx{a,b}

c∆bd

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′ .

If xab = 0 we have

φc(x
′)− φc(x) =

∑
d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>xminx{a,b}
d<xmaxx{a,b}

c∆ad

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′ .

Next, we state a sufficient condition for the generalized
shift map to be improving, along with the resulting partial
optimality:

Proposition 4.19. Let A ̸= ∅, c ∈ RPA and {a, b} ∈
(
A
2

)
.

If (11) and (12) hold, then there is an optimal solution x∗ to
the linear ordering problem such that x∗

ad = x∗
bd = 1,∀d ∈

A \ {a, b}.

∑
d∈A\{a,b}

max

c∆ad + c∆bd, c
∆
bd,

∑
d′∈A\{a,b,d}

c∆dd′

 ≤ 0 (11)

∑
d∈A\{a,b}

max

c∆ad + c∆bd, c
∆
ad,

∑
d′∈A\{a,b,d}

c∆dd′

 ≤ 0 (12)

Proof. Let x′ = s{a,b}(x). Firstly, by Lemma 4.18, for
x ∈ XA such that xab = 1:

φc(x
′)− φc(x)

=
∑

d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>xminx{a,b}
d<xmaxx{a,b}

c∆bd

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′

≤
∑

d∈A\{a,b}

max

c∆ad + c∆bd, c
∆
bd,

∑
d′∈A\{a,b,d}

c∆dd′


(11)
≤ 0 .

5

Partial Optimality in the Linear Ordering Problem

Secondly, for x such that xab = 0:

φc(x
′)− φc(x)

=
∑

d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>xminx{a,b}
d<xmaxx{a,b}

c∆ad

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′

≤
∑

d∈A\{a,b}

max

c∆ad + c∆bd, c
∆
ad,

∑
d′∈A\{a,b,d}

c∆dd′


(12)
≤ 0 .

Thirdly, ∀d ∈ A \ {a, b} : x′
ad = x′

bd = 1.

Corollary 4.20. Let A ̸= ∅, c ∈ RPA and a ∈ A. If (13)
and (14) hold, there is an optimal solution x∗ to the linear
ordering problem such that x∗

ad = x∗
bd = 0, ∀d ∈ A\{a, b}.

∑
d∈A\{a,b}

max

c∆da + c∆db, c
∆
db,

∑
d′∈A\{a,b,d}

c∆d′d

 ≤ 0 (13)

∑
d∈A\{a,b}

max

c∆da + c∆db, c
∆
da,

∑
d′∈A\{a,b,d}

c∆d′d

 ≤ 0 (14)

5. Efficient Algorithms
In this section, we define and discuss algorithms for testing
all partial optimality conditions introduced in Section 4.

Transposition and Shifting. Propositions 4.4, 4.15
and 4.19 as well as Corollaries 4.16 and 4.20 are tested
by enumeration: For Proposition 4.4, testing (4) for a fixed
pair ab takes time O(|A|). Thus, testing it for all pairs takes
time O(|A|3). Testing Proposition 4.4 is equivalent to test-
ing Corollary 4.5. Thus, testing one of these is sufficient.
For Proposition 4.15 and Corollary 4.16, we compute the
right-hand side of (9) for every d ∈ A in time O(|A|2).
Then, we test for every a ∈ A whether (9) is satisfied
for every d ∈ A \ {a}, also in time O(|A|2). Thus, test-
ing Proposition 4.15 and Corollary 4.16 for every a ∈ A
takes time O(|A|2) in total. Regarding Proposition 4.19
and Corollary 4.20, computing the left-hand sides of (11),
(12), (13) or (14) for a fixed pair {a, b} takes time O(|A|2).
Thus, testing Proposition 4.19 and Corollary 4.20 for all
pairs takes time O(|A|4).

Grouping. Regarding Proposition 4.8, we search for can-
didates R ⊆ A by introducing the set E+ = {ab ∈ PA |
c∆ab > 0} of positive-cost pairs. Then, a subset R ⊆ A
fulfills (6) if and only if

E+ ∩ (R× (A \R)) = ∅ . (15)

To find such R, we iterate over all initializations R = {a}
with a ∈ A. For each such initialization, we add elements b
to R with ab ∈ E+ ∩ (R× (A \R)). For any initialization,
the algorithm terminates with R fulfilling (15). If R ̸= A
we take R as a candidate and exploit the condition to obtain
two smaller problems. If R = A, we proceed with the
next initialization. See Algorithm 1. In practice, we add
elements to R by breadth-first search. Moreover, we sort
the initializations R = {a} by increasing out-degree in the
graph (A,E+). For each initialization, this algorithm takes
time O(|A|2). In total, it takes time O(|A|3).

Conditional Grouping. For Proposition 4.11 and a fixed
ab ∈ PA, we find candidates R ⊆ A that satisfy (7) with a
maximum margin by minimizing the right-hand side, i.e.,

min
R⊆A

a∈R,b ̸∈R

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′ .

For each pair ab, this problem can be cast in the form of a
min-ab-cut problem with non-negative costs (see Section 6
for details). Therefore, Proposition 4.11 can be tested by
solving O(|A|2) max-flow problems. In our code, we solve
these by means of a c++ implementation of the push-relabel
algorithm of Goldberg & Tarjan (1988).

6. Combining Partial Optimality
Partially optimal assignments of zeros and ones to the vari-
ables x due to Propositions 4.8, 4.15 and 4.19 and Corollar-
ies 4.16 and 4.20 hold simultaneously, as these assignments
are such that the linear ordering problem decomposes into
independent sub-problems that can be solved independently,
without compromising optimality. In this section, we show
that also assignments due to Proposition 4.4 can be applied
simultaneously (Proposition 6.3), and that assignments due
to Proposition 4.11 or Corollary 4.12 cannot be applied
simultaneously (Example 2). We then generalize Proposi-
tion 4.11 to arrive at a criterion that we can apply iteratively

Algorithm 1 Seeded Component Growing
1: input: A ̸= ∅, c : PA → R
2: initialize: E+ = {ab ∈ PA | c∆ab > 0}, queue Q = A
3: repeat
4: a := Q.pop
5: R := {a}
6: repeat
7: choose ab ∈ (R×A \R) ∩ E+

8: R := R ∪ {b}
9: until (R×A \R) ∩ E+ = ∅

10: if R ̸= A: then
11: return R
12: end if
13: until Q = ∅

6

Partial Optimality in the Linear Ordering Problem

(Proposition 6.5). Finally, we define an algorithm for itera-
tively testing all partial optimality conditions.

We now show that assignments due to Proposition 4.4 can
be applied simultaneously. For clarity, we introduce some
notation. If we decide for a subset P ⊂ PA of pairs ab ∈ P
that a < b, these decisions need not be consistent in the
sense that there exists a feasible solution x ∈ XA such
that for all ab ∈ P we have xab = 1. Those P ⊆ PA

that are consistent are the edge sets of an acyclic digraph
G = (A′, P) with A′ ⊆ A. We call any such digraph a
partial 1-assignment and let GA denote the set of all such
graphs. Moreover, we let XA′P = {x ∈ XA | ∀ab ∈
P : xab = 1} denote the set of those feasible solutions to
the linear ordering problem that are consistent with (A′, P).

Lemma 6.1. For any (A′, P) ∈ GA, we have XA′P ̸= ∅.

Lemma 6.2. For any (A′, P) ∈ GA and any x ∈ XA, there
exists a composition σ of functions {τ1ab}ab∈P , such that
σ(x)ab = 1 for all ab ∈ P .

Proposition 6.3. Let A ̸= ∅, c ∈ RPA and (A′, P) ∈ GA.
If (16) holds, then there exists an optimal solution x∗ to the
linear ordering problem such that ∀ab ∈ P : x∗

ab = 1.

∀ab ∈ P : c∆ab +
∑

d∈A\{a,b}

(
c∆ad + c∆db

)+ ≤ 0 (16)

Proof. By Lemma 6.2 there is a composition σ of functions
{τ1ab}ab∈P such that σ(x)ab = 1 for all ab ∈ P . Firstly,
each τ1ab is improving by (16), i.e., for all ab ∈ P and all x ∈
XA we have φc(τ

1
ab(x)) ≤ φc(x). Let (aibi | 1 ≤ i ≤ n)

be this sequence in P , such that ◦ni=1τ
1
aibi

= σ and
x(k) = ◦ki=1τ

1
aibi

(x) and x(0) = x. Then the differ-
ence in objective values is given by φc(x

(n)) − φc(x) =∑n−1
i=0

(
φc(x

(i+1))− φc(x
(i))

)
≤ 0.

Next, we show: Partially optimal assignments due to Propo-
sition 4.11 or Corollary 4.12 need not hold simultaneously.
I.e., if a1b1 ∈ PA and R1 ⊆ A such that (7) holds true
and a2b2 ∈ PA and R2 ⊆ A such that (7) holds true, there
need not exist an optimal solution x∗ to the linear ordering
problem such that x∗

a1b1
= 1 = x∗

a2b2
= 1:

Example 2. Let A = {1, 2, 3} and c12 = −2, c21 = −1,
c13 = 3, c31 = 1, c23 = −2 and c32 = −1.

1 < 2 < 3 φc(x) = c12 + c13 + c23 = −2 + 3− 2 = −1

2 < 1 < 3 φc(x) = c21 + c23 + c13 = −1− 2 + 3 = 0

2 < 3 < 1 φc(x) = c23 + c21 + c31 = −2− 1 + 1 = −2

1 < 3 < 2 φc(x) = c13 + c12 + c32 = 3− 2− 1 = 0

3 < 1 < 2 φc(x) = c31 + c32 + c12 = 1− 1− 2 = −2

3 < 2 < 1 φc(x) = c32 + c21 + c31 = −1− 1 + 1 = −1

Both 2 < 3 < 1 and 3 < 1 < 2 are optimal. Proposi-
tion 4.11 is true for a1 = 1, b1 = 2 and R1 = {1, 3}:

c∆,−
12 = 1 ≥

∑
a′∈{1,3}

∑
b′∈{2}

c∆,+
a′b′ = 0 + 1 = 1 .

Proposition 4.11 is true for a2 = 2, b2 = 3 and R1 = {2}:

c∆,−
23 = 1 ≥

∑
a′∈{2}

∑
b′∈{1,3}

c∆,+
a′b′ = 0 + 1 = 1 .

The two optimal solutions 3 < 1 < 2 and 2 < 3 < 1 satisfy
x∗
12 = 1 and x∗

23 = 1, respectively, but there is no optimal
solution x∗ satisfying both x∗

12 = 1 and x∗
23 = 1.

Next, we generalize Proposition 4.11 to arrive at a criterion
that we can apply iteratively.

Lemma 6.4. Let (A′, P) ∈ GA and R ⊆ A. If

∀ab ∈ P : a ∈ R ∨ b ̸∈ R

then σR(XA′P) ⊆ XA′P .

Proposition 6.5. Let A ̸= ∅, c ∈ RPA , (A′, P) ∈ GA,
ab ∈ PA \P and R ⊆ A such that a ∈ R and b ∈ A \R. If
(17) and (18) hold, there exists an optimal solution x∗ to the
linear ordering problem such that x∗

ab = 1 and x ∈ XA′P .

∀a′b′ ∈ P : a′ ∈ R ∨ b′ ̸∈ R (17)

c∆,−
ab ≥

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′ (18)

Proof. σab
R is improving by the same argument as in the

proof of Proposition 4.11. By Lemma 6.4 and (18), we have
∀a′b′ ∈ P : σab

R (x)a′b′ = 1.

Algorithmically, we search for subsets R ⊆ A that satisfy
(18) by setting the cost cb′a′ for every a′b′ ∈ P to a large
positive constant such that the edge b′a′ cannot be in a min-
imum ab-cut. See Algorithm 2. In order to test all partial
optimality conditions iteratively, we operate as follows. In
a first step, we test all conditions that potentially decom-
pose the linear ordering problem into sub-problems that can
be solved independently without compromising optimality,
namely Propositions 4.8, 4.15 and 4.19 and Corollaries 4.16
and 4.20, in this order. As soon as one of these conditions
can be applied, we decompose the problem and process
the sub-problems independently. If none of the aforemen-
tioned conditions can be verified, we proceed to a second
step in which we test Propositions 6.3 and 6.5 until no more
variables can be fixed.

7. Numerical Experiments
In this section, we analyze the algorithms defined in Sec-
tion 5 empirically on two collections of instances of the

7

Partial Optimality in the Linear Ordering Problem

linear ordering problem. We report the fraction of variables
fixed by partial optimality conditions as well as the runtime.
Additionally, we implement a branch-and-cut algorithm for
the linear ordering problem using the state-of-the-art integer
programming software Gurobi (Gurobi Optimization, LLC,
2023). In this algorithm, we separate violated inequalities
of the form (1) and (2). We compare the time until termina-
tion of this algorithm for the linear ordering problem and
the linear ordering problem with variables fixed according
to the partial optimality conditions we establish. We test
combinations of partial optimality conditions as described
in Section 6, and we also test each condition separately. The
complete c++ code for reproducing these experiments is
provided in Stein (2024). All experiments are conducted on
a single core of a Ryzen 9 7900X equipped with 64 GB of
RAM.

Synthetic Instances. For a systematic study, we synthesize
instances of the linear ordering problem with |A| between 5
and 200, w.r.t. a given order < on A, and w.r.t. a parameter
α ∈ [0, 1]. Costs cab of pairs ab are drawn from two normal
distributions with means −1 + α and 1 − α and standard
deviation σ = 0.2, depending on whether a < b or b < a.

In Figure 2, we report the percentage of variables fixed
by partial optimality (a,c) and the runtime (b,d), as a func-
tion of α (a,b) and as a function of n (c,d) when applying
combinations of partial optimality conditions as described
in Section 6. It can be seen from (a) that for α = 0.4 nearly
all variables are fixed by partial optimality, and for α = 1.0
nearly none are, for any n. It can be seen from (c) for
α = 0.65 and α = 0.7 that the percentage of fixed variables
drops with increasing n. It can be seen from (b) that for any
n, the runtime is a non-trivial function of α. It can be seen
from (d) that the runtime is approximately polynomial in n
and does not exceed four minutes for n = 200.

In Figure 3, we report the percentage of fixed variables and

Algorithm 2 Algorithm for Proposition 6.5
1: input: A ̸= ∅, c : PA → R, (A′, P) ∈ GA, ab ∈ PA

2: initialize:
3: E = {ab ∈ PA | c∆ab > 0 ∨ ba ∈ P}

4: c′ : E → R+ : ab 7→

{
∞ if ba ∈ P

c∆,+
ab if ba /∈ P

5: if ab /∈ P ∧ ba /∈ P then
6: (flow, cut) := min-ab-cut((A,E), c′)
7: for a′b′ ∈ cut do
8: if c∆,−

a′b′ ≥ flow ∧ a′b′ ̸∈ P ∧ b′a′ ̸∈ P then
9: (A′, P) := (A′ ∪ {a′, b′}, P ∪ {a′b′})

10: (A′, P) := transitiveClosure((A′, P))
11: end if
12: end for
13: end if

a)

0.4 0.6 0.8 1
0

20

40

60

80

100

α

V
ar

ia
bl

es
[%

]

n = 20
n = 40
n = 60
n = 80
n = 100
n = 140
n = 200

b)

0.4 0.6 0.8 1
10−5

10−2

101

α

R
un

tim
e

[s
]

c)

50 100 150 200
0

20

40

60

80

100

n

V
ar

ia
bl

es
[%

]

α = 0.40
α = 0.65
α = 0.70
α = 1.00

d)

101 102
10−6

10−2

102

n

R
un

tim
e

[s
]

Figure 2. We report above for the synthetic dataset the percentage
of fixed variables and runtime when applying a combination of
partial optimality conditions as described in Section 6.

runtime for Proposition 4.8, Proposition 4.4 and Proposi-
tion 4.11 separately. It can be seen from this figure that each
conditions can fix some variables. Propositions 4.8 and 4.11
are more effective empirically than Proposition 4.4. While
Proposition 4.11 fixes at least as many variables as Proposi-
tion 4.8, for all n, testing Proposition 4.11 takes three orders
of magnitude longer than testing Proposition 4.8.

In Appendix B (Figure B.1) we additionally show the results
when applying conditions separately as a function of n.

In Figure 4a we report the speed-up when solving the linear
ordering problem to optimality when applying our partial
optimality conditions to the instances of the synthetic dataset
for α ∈ {0.65, 0.7}. We observe a speed-up of about 3 to 4
for α = 0.65 and a speed-up of about 1 to 3 for α = 0.7.

LOLIB. Next, we consider the instances of the classes IO,
Spec and SGB from LOLIB (Martı́ et al., 2012). IO contains
instances from Grötschel et al. (1984). Spec contains diverse
instances from Christof & Reinelt (1996); Christof (1997);
Goemans & Hall (1996). SGB contains instances from the
Stanford GraphBase (Knuth, 1993) the costs of which are
drawn uniformly from [0, 25000].

Figure 5 shows the percentage of variables fixed by partial
optimality and runtime when applying combinations of par-
tial optimality conditions as described in Section 6, for IO
(a-b), Spec (c-d) and SGB (e-f). It can be seen form this
figure that between 10% and 90% of variables are fixed for
instances in IO, between 0% and 70% for instances in Spec,
and about 3% for instances in SGB. It can also be seen that
the runtime is less than 5 seconds for all but one instance
of Spec. This is explained by the fact that this instance

8

Partial Optimality in the Linear Ordering Problem

has a larger number of elements, |A| = 452, than all other
instances for which 11 ≤ |A| ≤ 163.

In Appendix B (Figures B.2 to B.4) we additionally show
these metrics when applying our conditions separately.

In Figure 4b, we report the speed-up in solving the linear
ordering problem to optimality when applying partial opti-
mality conditions. For the IO instances of the LOLIB bench-
mark, we observe a maximum speed-up factor of 13.18
(i.e. 1/13.18 the time) and a minimum speed-up factor of
0.77. For those Spec instances of the LOLIB benchmark
that can be solved to optimality within 60 minutes, we ob-
serve a maximum speed-up factor of 33.74 and a minimum
speed-up factor of 0.69.

8. Conclusion
We introduce partial optimality conditions for the APX-hard
linear ordering problem, along with efficient algorithms for
finding partial optimality. We examine the effectiveness and
efficiency of these conditions and algorithms numerically,

a)

0.4 0.6 0.8 1
0

20

40

60

80

100

α

V
ar

ia
bl

es
[%

]

n = 20
n = 40
n = 60
n = 80
n = 100
n = 140
n = 200

b)

0.4 0.6 0.8 1
0

2

4

6

·10−2

α

R
un

tim
e

[s
]

c)

0.4 0.6 0.8 1
0

20

40

60

80

100

α

V
ar

ia
bl

es
[%

]

n = 20
n = 40
n = 60
n = 80
n = 100
n = 140
n = 200

d)

0.4 0.6 0.8 1
0

0.5

1

1.5

·10−2

α

R
un

tim
e

[s
]

e)

0.4 0.6 0.8 1
0

20

40

60

80

100

α

V
ar

ia
bl

es
[%

]

n = 20
n = 40
n = 60
n = 80
n = 100
n = 140

f)

0.4 0.6 0.8 1
0

10

20

30

α

R
un

tim
e

[s
]

Figure 3. We report above for the synthetic dataset the percentage
of fixed variables and runtime when applying each partial opti-
mality condition separately. a)-b) shows these for Proposition 4.8,
c)-d) for Proposition 4.4 and e)-f) for Proposition 4.11 Conditions
that do not fix variables on the initial problem are not shown.

a)

60 80 100

100

101

102

n

Sp
ee

du
p

α = 0.65
α = 0.70

b)

IO Spec

100

101

102

Sp
ee

du
p

Figure 4. Above, we report the speed-up obtained by applying our
our partial optimality conditions when solving the linear ordering
ILP. In a) we show these for the synthetic instances as a function of
the number of elements and for α ∈ {0.65, 0.70}. In b) we show
these for the problem class IO of LOLIB and for those instances
of the class Spec of LOLIB that can be solved within 1h.

on two datasets. We find Propositions 4.4, 4.8 and 4.11 to be
effective while other conditions contribute only marginally
to the fraction of fixed variables. Prospects for future work
include the exploitation of sparsity of non-zero cost coeffi-
cients, and an extension to the partial ordering problem.

a)

0 20 40
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

b)

0 20 40
0

0.5

1

1.5

R
un

tim
e

[s
]

c)

0 10 20 30
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

d)

0 10 20 30
0

10

20

30

R
un

tim
e

[s
]

e)

0 10 20
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

f)

0 10 20
0

0.5

1

1.5

R
un

tim
e

[s
]

Figure 5. We report above for the instances IO (a-b), Spec (c-d)
and SGB (e-f) from the LOLIB data set the percentage of fixed
variables and runtime when applying a combination of partial
optimality conditions as described in Section 6.

9

Partial Optimality in the Linear Ordering Problem

Acknowledgements
The authors acknowledge funding by the Federal Min-
istry of Education and Research of Germany, from grant
16LW0079K.

Impact Statement
This theoretical paper presents work whose goal is to ad-
vance the field of Machine Learning, more specifically linear
ordering. As for all advances in this field, there are many
potential societal consequences of our work, regarding the
application of linear ordering algorithms for ranking, also
some with negative impact, e.g., social ranking.

References
Adams, W. P., Lassiter, J. B., and Sherali, H. D. Per-

sistency in 0-1 polynomial programming. Mathemat-
ics of Operations Research, 23(2):359–389, 1998. doi:
10.1287/moor.23.2.359.

Alush, A. and Goldberger, J. Ensemble segmentation using
efficient integer linear programming. Transactions on
Pattern Analysis and Machine Intelligence, 34(10):1966–
1977, 2012. doi: 10.1109/TPAMI.2011.280.

Billionnet, A. and Sutter, A. Persistency in quadratic 0–1
optimization. Mathematical Programming, 54(1):115–
119, 1992. doi: 10.1007/BF01586044.

Ceberio, J., Mendiburu, A., and Lozano, J. A. The
linear ordering problem revisited. European Journal
of Operational Research, 241(3):686–696, 2015. doi:
10.1016/j.ejor.2014.09.041.

Chang, W.-C., Yu, F. X., Chang, Y.-W., Yang, Y., and
Kumar, S. Pre-training tasks for embedding-based
large-scale retrieval. In ICLR, 2020. URL https:
//openreview.net/forum?id=rkg-mA4FDr.

Charon, I. and Hudry, O. A branch-and-bound algorithm
to solve the linear ordering problem for weighted tour-
naments. Discrete Applied Mathematics, 154(15):2097–
2116, 2006. doi: 10.1016/j.dam.2005.04.020.

Christof, T. Low-Dimensional 0/1-Polytopes and Branch-
and-Cut in Combinatorial Optimization. PhD thesis,
1997.

Christof, T. and Reinelt, G. Combinatorial optimization and
small polytopes. TOP: An Official Journal of the Spanish
Society of Statistics and Operations Research, 4(1):1–53,
1996. doi: 10.1007/BF02568602.

Garey, M. and Johnson, D. Computers and Intractability: A
Guide to the Theory of NP-completeness. Mathematical
Sciences Series. Freeman, 1979.

Goemans, M. X. and Hall, L. A. The strongest facets of the
acyclic subgraph polytope are unknown. In IPCO, 1996.
doi: 10.1007/3-540-61310-2 31.

Goldberg, A. V. and Tarjan, R. E. A new approach to the
maximum-flow problem. Journal of the ACM, 35(4):
921–940, 1988. doi: 10.1145/48014.61051.

Grötschel, M., Jünger, M., and Reinelt, G. A cutting
plane algorithm for the linear ordering problem. Opera-
tions Research, 32(6):1195–1220, 1984. doi: 10.1287/
opre.32.6.1195.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Hammer, P. L., Hansen, P., and Simeone, B. Roof duality,
complementation and persistency in quadratic 0–1 opti-
mization. Mathematical Programming, 28(2):121–155,
1984. doi: 10.1007/BF02612354.

He, Y., Gan, Q., Wipf, D., Reinert, G. D., Yan, J.,
and Cucuringu, M. GNNRank: Learning global rank-
ings from pairwise comparisons via directed graph neu-
ral networks. In ICML, 2022. URL https://
proceedings.mlr.press/v162/he22b.html.

Kaas, R. A branch and bound algorithm for the acyclic
subgraph problem. European Journal of Operational
Research, 8(4):355–362, 1981. doi: 10.1016/0377-
2217(81)90005-9.

Kappes, J. H., Speth, M., Reinelt, G., and Schnörr, C. To-
wards efficient and exact map-inference for large scale
discrete computer vision problems via combinatorial opti-
mization. In CVPR, 2013. doi: 10.1109/CVPR.2013.229.

Knuth, D. E. The Stanford GraphBase: a platform for
combinatorial computing. Association for Computing
Machinery, New York, NY, USA, 1993.

Kohli, P., Shekhovtsov, A., Rother, C., Kolmogorov, V., and
Torr, P. On partial optimality in multi-label mrfs. In
ICML, 2008. doi: 10.1145/1390156.1390217.

Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath,
A., and Kramer, S. Pairwise learning to rank by neural
networks revisited: Reconstruction, theoretical analysis
and practical performance. In Machine Learning and
Knowledge Discovery in Databases, 2020. doi: 10.1007/
978-3-030-46133-1 15.

Lange, J., Andres, B., and Swoboda, P. Combinatorial
persistency criteria for multicut and max-cut. In CVPR,
2019. doi: 10.1109/CVPR.2019.00625.

Lange, J.-H., Karrenbauer, A., and Andres, B. Par-
tial optimality and fast lower bounds for weighted

10

https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkg-mA4FDr
https://www.gurobi.com
https://proceedings.mlr.press/v162/he22b.html
https://proceedings.mlr.press/v162/he22b.html

Partial Optimality in the Linear Ordering Problem

correlation clustering. In ICML, 2018. URL
https://proceedings.mlr.press/v80/
lange18a.html.

Lim, K., Shin, N.-H., Lee, Y.-Y., and Kim, C.-S. Or-
der learning and its application to age estimation. In
ICLR, 2020. URL https://openreview.net/
forum?id=HygsuaNFwr.

Martı́, R. and Reinelt, G. The Linear Ordering Problem.
Exact and Heuristic Methods in Combinatorial Optimiza-
tion. Springer, 2011. doi: 10.1007/978-3-642-16729-4.

Martı́, R., Reinelt, G., and Duarte, A. A benchmark library
and a comparison of heuristic methods for the linear or-
dering problem. Computational Optimization and Appli-
cations, 51(3):1297–1317, 2012. doi: 10.1007/s10589-
010-9384-9.

Menon, A., Jayasumana, S., Rawat, A. S., Kim,
S., Reddi, S., and Kumar, S. In defense of
dual-encoders for neural ranking. In ICML, 2022.
URL https://proceedings.mlr.press/v162/
menon22a.html.

Mishra, S. and Sikdar, K. On approximability of linear
ordering and related np-optimization problems on graphs.
Discrete Applied Mathematics, 136(2-3):249–269, 2004.
doi: 10.1016/S0166-218X(03)00444-X.

Mitchell, J. E. and Borchers, B. Solving real-world linear
ordering problems using a primal-dual interior point cut-
ting plane method. Annals of Operations Research, 62
(1):253–276, 1996. doi: 10.1007/BF02206819.

Mitchell, J. E. and Borchers, B. Solving linear ordering
problems with a combined interior point/simplex cutting
plane algorithm. In Frenk, H., Roos, K., Terlaky, T., and
Zhang, S. (eds.), High Performance Optimization, pp.
349–366. 2000. doi: 10.1007/978-1-4757-3216-0 14.

Shekhovtsov, A. Exact and Partial Energy Minimization
in Computer Vision. PhD thesis, Center for Machine
Perception, Czech Technical University, Prague, 2013.

Shekhovtsov, A. Maximum persistency in energy minimiza-
tion. In CVPR, 2014. doi: 10.1109/CVPR.2014.152.

Shekhovtsov, A., Swoboda, P., and Savchynskyy, B. Max-
imum persistency via iterative relaxed inference with
graphical models. In CVPR, 2015. doi: 10.1109/
CVPR.2015.7298650.

Stein, D. Partial optimality in the linear ordering prob-
lem - code, 2024. URL https://github.com/
dsteindd/partial-optimality-in-the-
linear-ordering-problem.

Stein, D., Di Gregorio, S., and Andres, B. Partial opti-
mality in cubic correlation clustering. In ICML, 2023.
URL https://proceedings.mlr.press/v202/
stein23a.html.

Szczecinski, L. and Sukheja, H. Rankability and linear
ordering problem: Probabilistic insight and algorithms.
Computers & Operations Research, 159:106347, 2023.
doi: 10.1016/j.cor.2023.106347.

Tromble, R. and Eisner, J. Learning linear ordering prob-
lems for better translation. In Empirical Methods in
Natural Language Processing (EMNLP), 2009. doi:
10.3115/1699571.1699644.

Zhang, H., Gong, Y., Shen, Y., Lv, J., Duan, N., and Chen,
W. Adversarial retriever-ranker for dense text retrieval.
In ICLR, 2022. URL https://openreview.net/
forum?id=MR7XubKUFB.

11

https://proceedings.mlr.press/v80/lange18a.html
https://proceedings.mlr.press/v80/lange18a.html
https://openreview.net/forum?id=HygsuaNFwr
https://openreview.net/forum?id=HygsuaNFwr
https://proceedings.mlr.press/v162/menon22a.html
https://proceedings.mlr.press/v162/menon22a.html
https://github.com/dsteindd/partial-optimality-in-the-linear-ordering-problem
https://github.com/dsteindd/partial-optimality-in-the-linear-ordering-problem
https://github.com/dsteindd/partial-optimality-in-the-linear-ordering-problem
https://proceedings.mlr.press/v202/stein23a.html
https://proceedings.mlr.press/v202/stein23a.html
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB

Partial Optimality in the Linear Ordering Problem

A. Proofs
Proof of Lemma 4.2. By plugging in we obtain

φc(x
′)− φc(x)

=
∑

a′b′∈PA

ca′b′ (x
′
a′b′ − xa′b′)

=
∑

a′b′∈PA

{a′,b′}∩{a,b}̸=∅

ca′b′ (x
′
a′b′ − xa′b′)

=cab (x
′
ab − xab) + cba (x

′
ba − xba)

+
∑

b′∈A\{a,b}

cab′ (x
′
ab′ − xab′) +

∑
a′∈A\{a,b}

ca′a (x
′
a′a − xa′a)

+
∑

b′∈A\{a,b}

cbb′ (x
′
bb′ − xbb′) +

∑
a′∈A\{a,b}

ca′b (x
′
a′b − xa′b)

=cab (1− 2xab) + cba (1− 2xba)

+
∑

d∈A\{a,b}

cad (xbd − xad) +
∑

d∈A\{a,b}

cda (xdb − xda)

+
∑

d∈A\{a,b}

cbd (xad − xbd) +
∑

d∈A\{a,b}

cdb (xda − xdb)

= (cab − cba) (1− 2xab)

+
∑

d∈A\{a,b}

(xda + xbd − 1) (cad − cda − cbd + cdb)

=c∆ab (1− 2xab) +
∑

d∈A\{a,b}

(xda + xbd − 1)
(
c∆ad + c∆db

)
This concludes the proof.

Proof of Lemma 4.3. First, let g1 : {x ∈ XA | xab =
0} → {0, 1}A\{a,b} be such that g1(x)d = xad + xdb,
∀d ∈ A\{a, b}. On the one hand, we have g1(x)d ∈ {0, 1}.
On the other hand, g1 is surjective. To see the latter, let
y ∈ {0, 1}A\{a,b}. Then, let x′ be a feasible vector such
that ¬(b <x′ d <x′ a), ∀d ∈ y−1(1) and b <x′ d <x′ a,
∀d ∈ y−1(0). Then, we have that g1(x′) = y. Therefore,

max
x∈XA
xab=0

∑
d∈A\{a,b}

(xbd + xda − 1) ed

= max
y∈{0,1}A\{a,b}

∑
d∈A\{a,b}

ed(1− yd) =
∑

d∈A\{a,b}

e+d

This concludes the proof.

Proof of Corollary 4.5. By Proposition 4.4 there is an op-
timal solution x∗ to the linear ordering problem such that
x∗
ba = 1 since (5) is fulfilled. Moreover, we have that

x∗
ab = 1− x∗

ba = 0.

Proof of Lemma 4.7. By plugging in we obtain

φc(x
′)− φc(x)

=
∑

ab∈PR

cab (x
′
ab − xab) +

∑
ab∈PA\R

cab (x
′
ab − xab)

+
∑
a∈R

∑
b∈A\R

cab (x
′
ab − xab) +

∑
a∈A\R

∑
b∈R

cab (x
′
ab − xab)

=
∑
a∈R

∑
b∈A\R

cab (1− xab) +
∑

b∈A\R

∑
a∈R

cba (0− xba)

=
∑
a∈R

∑
b∈A\R

c∆abxba .

This concludes the proof.

Proof of Lemma 4.10. We have by Lemma 4.7 that

φc(x
′)− φc(x)

=
∑
a′∈R

∑
b′∈A\R

c∆a′b′xb′a′

=c∆abxba +
∑
a′∈R

∑
b′∈A\R
a′b′ ̸=ab

c∆a′b′xb′a′

=c∆ab +
∑
a′∈R

∑
b′∈A\R
a′b′ ̸=ab

c∆a′b′xb′a′

≤c∆ab +
∑
a′∈R

∑
b′∈A\R
a′b′ ̸=ab

c∆,+
a′b′

=c∆ab − c∆,+
ab +

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′

=− c∆,−
ab +

∑
a′∈R

∑
b′∈A\R

c∆,+
a′b′

This concludes the proof.

Proof of Corollary 4.12. By Proposition 4.11 there is an
optimal solution x∗ to the linear ordering problem such
that x∗

ba = 1 since (7) is fulfilled. Moreover, we have that
x∗
ab = 1− x∗

ba = 0.

Proof of Lemma 4.14. We have that

φc(x
′)− φc(x)

=
∑

b′∈A\{a}

cab′ (1− xab′) +
∑

a′∈A\{a}

ca′a(0− xa′a)

+
∑

a′<xa

∑
b′>xa

ca′b′(0− xa′b′)

+
∑

a′>xa

∑
b′<xa

ca′b′(1− xa′b′)

=
∑

d∈A\{a}

c∆adxda +
∑

a′<xa

∑
b′>xa

c∆b′a′xa′b′

=
∑
d<xa

c∆ad +
∑

a′<xa

∑
b′>xa

c∆b′a′

12

Partial Optimality in the Linear Ordering Problem

=
∑
d<xa

c∆ad +
∑

a′<xa

∑
b′>xa

c∆b′a′ +
∑

a′<xa

∑
b′<xa
b′ ̸=a′

c∆b′a′

︸ ︷︷ ︸
=0

=
∑
d<xa

c∆ad +
∑
d<xa

∑
d′∈A\{a,d}

c∆d′d

=
∑
d<xa

∑
d′∈A\{d}

c∆d′d

This concludes the proof.

Proof of Corollary 4.16. By Proposition 4.15 and (10),
there is an optimal solution x̂∗ to the linear ordering problem
with respect to A and −c such that x̂∗

ab = 1, ∀b ∈ A \ {a}.
Then, x∗ = 1 − x̂∗ is an optimal solution to the linear or-
dering problem with respect to A and c such hat x∗

ab = 0,
∀b ∈ A \ {a}.

Proof of Lemma 4.18. If xab = 1 we have that

φc(x
′)− φc(x)

=
∑

d<xminx{a,b}

c∆ad +
∑

d<xmaxx{a,b}
d ̸∈{a,b}

c∆bd

+
∑

d>xmaxx{a,b}

∑
d′<xmaxx{a,b}

d′ ̸∈{a,b}

c∆dd′

=
∑

d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>xminx{a,b}
d<xmaxx{a,b}

c∆bd

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′

Analogously, for x such that xab = 0, we arrive at

φc(x
′)− φc(x) =

=
∑

d<xminx{a,b}

(
c∆ad + c∆bd

)
+

∑
d>minx{a,b}
d<maxx{a,b}

c∆ad

+
∑

d>xmaxx{a,b}

∑
d′∈A\{a,b,d}

c∆dd′

This concludes the proof.

Proof of Corollary 4.20. If (13) and (14) hold, then
by Proposition 4.19 there is an optimal solution x̂∗ to the
linear ordering problem with respect to A and −c such that
x̂∗
ad = x̂∗

bd = 1, ∀d ∈ A \ {a, b}. Then, x∗ = 1− x̂∗ is an
optimal solution to the linear ordering problem with respect
to A and c such that x∗

ad = x∗
bd = 0, ∀d ∈ A \ {a, b}.

Proof of Lemma 6.1. Let G = (A′, P) ∈ GA be any par-
tial 1-assignment. We prove, that there is at least one exten-
sion x ∈ XA such that ∀ab ∈ P : xab = 1. Let us define
G′ = (A,P). Because G and thus G′ is cycle-free there ex-
ists a topological order on G′. Let ξ : {0, 1, ..., |A| − 1} →
A be any such topological order on G′. Moreover, let
x ∈ {0, 1}PA be defined such that

∀ab ∈ PA : xab = 1 ⇔ ξ−1(a) < ξ−1(b) .

First, we show that x ∈ XA. Suppose, there is a transitivity
constraint (2) which is violated, i.e., for a ∈ A, b ∈ A \ {a}
and c ∈ A \ {a, b} we have that

xab + xbc − xac > 1

⇔ xab = 1 ∧ xbc = 1 ∧ xac = 0

⇔
(
ξ−1(a) < ξ−1(b)

)
∧
(
ξ−1(b) < ξ−1(c)

)
∧
(
ξ−1(a) > ξ−1(c)

)
⇒

(
ξ−1(a) < ξ−1(c)

)
∧
(
ξ−1(a) > ξ−1(c)

)
.

This is a contradiction. Therefore, all transitivity constraints
must be fulfilled. Moreover, we have xab + xba = 1 for
all ab ∈ PA by definition of x ∈ {0, 1}A. In total we
have that x ∈ XA. Second, for any ab ∈ P we have that
ξ−1(a) < ξ−1(b) by definition of a topological order and
hence xab = 1 by definition of x.

Lemma A.1. Let A ̸= ∅, (A′, P) ∈ GA is a path and
d ∈ A′ be the unique element, which has no predecessors in
(A′, P). Then, for any x ∈ XA there exists a composition
σ of functions {τ1ab}ab∈P , such that σ(x)da = 1 for all
a ∈ A′ \ {d}.

Proof of Lemma A.1. We prove this by induction over |A′|.
If |A′| = 2, i.e., A′ = {a, b} and P = {ab}, then τ1ab
is such that the statement holds. Now, let |A′| = n + 1
and the statement be true for all |A′| ≤ n. Let x ∈ XA,
a ∈ A′ such that xab = 1 for all b ∈ A′ \ {a}. We denote
by PG(a, b) the set of paths in (A′, P) from a to b. Let
A′′ = {b ∈ A′ | PG(b, a) ̸= ∅} and P ′ = P ∩ (A′′ ×A′′).
Then (A′′, P ′) ∈ GA is a path as well and we have that
d ∈ A′′.

If A′′ ̸= A′, then |A′′| ≤ n. By induction hypothesis, there
is a composition σ of functions {τ1ab}ab∈P ′ ⊂ {τ1ab}ab∈P

such that σ(x)db = 1 for all b ∈ A′′. Moreover, we can
describe the composition σ by a bijection ξ : A → A with
ξ|A\A′′ = id|A\A′′ such that x′

a′b′ = xξ−1(a′)ξ−1(b′) for all
a′b′ ∈ SA. Thus ξ(a) = d, and x′

db = xξ−1(d)ξ−1(b) =
xab = 1 for all b ∈ A′ \A′′.

If A′′ = A′, then a has no successors in (A′, P). Let ba ∈ P
be the single in-edge of a in (A′′, P ′). Then, we have that
xba = 0 by definition of a ∈ A′. We first apply τ1ba, i.e.,

13

Partial Optimality in the Linear Ordering Problem

x′ = τ1ba(x). Subsequently, we have that x′
bc = xac = 1

for all c ∈ A′′ \ {a, b} and, moreover, x′
ba = xab = 1. By

the same argument as before, let P ′′ = P ′ \ {ba}, A′′′ =
A′ \ {a} and (A′′′, P ′′) ∈ GA is a path. Thus, we can find
by the induction hypothesis a composition σ′ of functions
{τ1ab}ab∈P ′′ ⊂ {τ1ab}ab∈P such that x′′

dc = σ′(x′)dc = 1
for all c ∈ A′ \ {d}.

Proof of Lemma 6.2. We prove this statement by induction
over |A′|. For A′ = {a, b} and P = {ab} the statement is
fulfilled by τ1ab. Now, let |A′| = n+ 1 and the statement be
true for all |A′| ≤ n. Let x ∈ XA, a ∈ A′ such that xab = 1
for all b ∈ A′ \ {a}. Moreover, let b ∈ A′ be any element in
A′ with no predecessors in (A′, P) and PG(b, a) ̸= ∅. Let
(A′′, P ′) ∈ PG(b, a) be any such path. By Lemma A.1 there
is a composition σ′ of functions {τ1ab}ab∈P ′ ⊂ {τ1ab}ab∈P

such that x′ = σ′(x)bc = 1 for all c ∈ A′′ \ {b} and,
moreover, for all c ∈ A′ \ {b}. Now, we can apply the
induction hypothesis on A′′′ = A′ \ {b} and P ′′ = P \
{a′b′ ∈ P | a′ = b}, which concludes the proof.

Proof of Lemma 6.4. Let x ∈ XA′P and x′ = σR(x). For
every ab ∈ E:

x′
ab = 1

⇔
(
xab = 1 ∧ ab ∈ PR ∪ PA\R

)
∨ (a ∈ R ∧ b ∈ A \R)

⇔ ab ∈ PR ∪ PA\R ∨ (a ∈ R ∧ b ∈ A \R)

⇔ ¬ (a /∈ R ∧ b ∈ R)

⇔ a ∈ R ∨ b /∈ R

Therefore, we have that x′ ∈ XA′P .

B. Additional Experiments
In the following figures, we report the percentage of fixed
variables, as well as corresponding runtimes, for applying
partial optimality conditions separately. Conditions not
shown in the respective figure do not fix any variables on
the initial instances.

Synthetic Dataset. Figure B.1 shows these after apply-
ing Proposition 4.8, Proposition 4.4 and Proposition 4.11
separately and for varying instance size n.

LOLIB Dataset. Figure B.2 shows these for applying
Proposition 4.8, Proposition 4.4, and Proposition 4.11 to
instances of IO.

Figure B.3 shows these for applying Proposition 4.15 and
Corollary 4.16 to instances of SGB.

Figure B.4 shows these for applying Proposition 4.8, Propo-
sition 4.15, Proposition 4.4, Corollary 4.16 and Proposi-
tion 4.11 to instances of Spec.

a)

50 100 150 200
0

20

40

60

80

100

n

V
ar

ia
bl

es
[%

]
α = 0.4
α = 0.65
α = 0.7
α = 1.0

b)

101 102
10−6

10−4

10−2

n

R
un

tim
e

[s
]

α = 0.4
α = 0.65
α = 0.7
α = 1.0

c)

50 100 150 200
0

20

40

60

80

100

n

V
ar

ia
bl

es
[%

]

α = 0.4
α = 0.65
α = 0.7
α = 1.0

d)

101 102

10−6

10−4

10−2

n

R
un

tim
e

[s
]

α = 0.4
α = 0.65
α = 0.7
α = 1.0

e)

50 100 150 200
0

20

40

60

80

100

n

V
ar

ia
bl

es
[%

]

α = 0.4
α = 0.65
α = 0.7
α = 1.0

f)

101 102
10−6

10−2

102

n

R
un

tim
e

[s
]

α = 0.4
α = 0.65
α = 0.7
α = 1.0

Figure B.1. We report above for the synthetic dataset the percent-
age of fixed variables and runtime as a function of the instance size
when applying each partial optimality condition separately. a-b)
shows these for Proposition 4.8, c-d) for Proposition 4.4 and e) -f)
for Proposition 4.11. Conditions that do not fix variables are not
shown.

14

Partial Optimality in the Linear Ordering Problem

a1)

0 20 40
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

a2)

0 20 40
0

0.2

0.4

0.6

0.8

1

R
un

tim
es

[m
s]

b1)

0 20 40
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

b2)

0 20 40
0

0.5

1

R
un

tim
es

[m
s]

c1)

0 20 40
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

c2)

0 20 40
0

500

1,000

1,500

R
un

tim
es

[m
s]

Figure B.2. We report above the percentage of fixed variables after
applying each condition separately, as well as the corresponding
runtimes, for the problem class IO of LOLIB. a1)-a2) show these
for Proposition 4.8, b1)-b2) show these for Proposition 4.4 and
c1)-c2) show these for Proposition 4.11. Conditions, which yield
zero fixed variables are not shown.

a1)

0 10 20
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

a2)

0 10 20
0

10

20

30

R
un

tim
e

[µ
s]

b1)

0 10 20
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

b2)

0 10 20
0

10

20

30

40

R
un

tim
e

[µ
s]

Figure B.3. We report above the percentage of fixed variables after
applying each condition separately, as well as the corresponding
runtimes, for the problem class SGB of LOLIB. a1)-a2) show these
for Proposition 4.15 and b1)-b2) for Corollary 4.16. Conditions,
which fix zero variables are not shown.

a1)

0 10 20 30
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

a2)

0 10 20 30
0

50

100

R
un

tim
e

[m
s]

b1)

0 10 20 30
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

b2)

0 10 20 30
0

1

2

3

R
un

tim
e

[m
s]

c1)

0 10 20 30
0

20

40

60

80

100
V

ar
ia

bl
es

[%
]

c2)

0 10 20 30
0

200

400

R
un

tim
e

[m
s]

d1)

0 10 20 30
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

d2)

0 10 20 30
0

1

2

R
un

tim
e

[m
s]

e1)

0 10 20 30
0

20

40

60

80

100

V
ar

ia
bl

es
[%

]

e2)

0 10 20 30
0

1

2

3

·106

R
un

tim
e

[m
s]

Figure B.4. We report above the percentage of fixed variables after
applying each condition separately, as well as the corresponding
runtimes, for Spec from LOLIB. a1)-a2) show these for Propo-
sition 4.8, b1)-b2) for Proposition 4.15, c1)-c2) show these for
Proposition 4.4, d1)-d2) for Corollary 4.16 and e1)-e2) for Propo-
sition 4.11. Conditions, which fix variables are not shown.

15

Partial Optimality in the Linear Ordering Problem

C. LOLIB Data

j IO |A| Spec |A| SGB |A|

0 N-be75eec 50 N-EX1 50 N-sgb75.01 75
1 N-be75np 50 N-EX2 50 N-sgb75.02 75
2 N-be75oi 50 N-EX3 50 N-sgb75.03 75
3 N-be75tot 50 N-EX4 50 N-sgb75.04 75
4 N-stabu70 60 N-EX5 50 N-sgb75.05 75
5 N-stabu74 60 N-EX6 50 N-sgb75.06 75
6 N-stabu75 60 N-atp111 111 N-sgb75.07 75
7 N-t59b11xx 44 N-atp134 134 N-sgb75.08 75
8 N-t59d11xx 44 N-atp163 163 N-sgb75.09 75
9 N-t59f11xx 44 N-atp24 24 N-sgb75.10 75
10 N-t59i11xx 44 N-atp452 452 N-sgb75.11 75
11 N-t59n11xx 44 N-atp48 48 N-sgb75.12 75
12 N-t65b11xx 44 N-atp66 66 N-sgb75.13 75
13 N-t65d11xx 44 N-atp76 76 N-sgb75.14 75
14 N-t65f11xx 44 N-econ36 36 N-sgb75.15 75
15 N-t65i11xx 44 N-econ43 43 N-sgb75.16 75
16 N-t65l11xx 44 N-econ47 47 N-sgb75.17 75
17 N-t65n11xx 44 N-econ58 58 N-sgb75.18 75
18 N-t65w11xx 44 N-econ59 59 N-sgb75.19 75
19 N-t69r11xx 44 N-econ61 61 N-sgb75.20 75
20 N-t70b11xx 44 N-econ62 62 N-sgb75.21 75
21 N-t70d11xx 44 N-econ64 64 N-sgb75.22 75
22 N-t70d11xxb 44 N-econ67 67 N-sgb75.23 75
23 N-t70f11xx 44 N-econ68 68 N-sgb75.24 75
24 N-t70i11xx 44 N-econ71 71 N-sgb75.25 75
25 N-t70k11xx 44 N-econ72 72
26 N-t70l11xx 44 N-econ73 73
27 N-t70n11xx 44 N-econ76 76
28 N-t70u11xx 44 N-econ77 77
29 N-t70w11xx 44 N-pal11 11
30 N-t70x11xx 44 N-pal13 13
31 N-t74d11xx 44 N-pal19 19
32 N-t75d11xx 44 N-pal23 23
33 N-t75e11xx 44 N-pal27 27
34 N-t75i11xx 44 N-pal31 31
35 N-t75k11xx 44 N-pal43 43
36 N-t75n11xx 44 N-pal55 55
37 N-t75u11xx 44
38 N-tiw56n54 56
39 N-tiw56n58 56
40 N-tiw56n62 56
41 N-tiw56n66 56
42 N-tiw56n67 56
43 N-tiw56n72 56
44 N-tiw56r54 56
45 N-tiw56r58 56
46 N-tiw56r66 56
47 N-tiw56r67 56
48 N-tiw56r72 56
49 N-usa79 79

Table C.1. Above, we report for each index j in Figures 5 and B.2
to B.4 the corresponding LOLIB problem and instance size |A| for
IO (left), Spec (middle) and SGB (right).

16

