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ABSTRACT

The resistance diameter of a graph is the maximum resistance dis-
tance among all pairs of nodes in the graph, which has found various
applications in many scenarios. However, direct computation of
resistance diameter involves the pseudoinverse of graph Laplacian,
which takes cubic time and is thus infeasible for huge networks
with millions of nodes. In this paper, we consider the computation
and optimization problems for resistance diameter of a graph. First,
we develop a nearly linear time algorithm to approximate the resis-
tance diameter, which has a theoretically guaranteed error. Then,
we propose and study an optimization problem of adding a fixed
number of edges to a graph, such that the resistance diameter of the
resulting graph is minimized. We show that this optimization prob-
lem is NP-hard, and that the objective function is non-supermodular
but monotone. Moreover, we propose two fast heuristic algorithms
to approximately solve this problem. Finally, we conduct extensive
experiments on different networks with sizes up to one million
nodes, demonstrating the superiority of our algorithms in terms of
efficiency and effectiveness.

KEYWORDS

Resistance distance, Resistance diameter, Combinatorial optimiza-
tion, Graph mining, Linear algorithm, Convex hull, Laplacian solver

1 INTRODUCTION

Effective resistance, as a fundamental graph metric, has found wide-
ranging theoretical and practical applications. In theory, resistance
distance has become a cornerstone of algorithmic graph theory,
leading to breakthroughs in fast algorithms for problems such
as spectral graph sparsification [57], maximum flow approxima-
tion [16], random spanning trees generation [41], maximizing the
number of spanning trees [36], and solving traveling salesman prob-
lems [4]. In practical scenarios, resistance distance has been applied
to diverse fields like collaborative recommendation [21], graph em-
bedding [11], image segmentation [7], mining important nodes and
edges [10, 37, 55], and link prediction [42]. In data management, it
has been used in graph processing systems [52], density-based clus-
tering [56], and localizing anomalous changes [58]. Recently, new
methods for evaluating resistance distance have emerged [39, 65],
underscoring its significance in both theory and application [19].

Alongside resistance distance, shortest path distance is another
key graph metric, defined as the length of the shortest path be-
tween two nodes. The diameter of a graph, which is the maximum
shortest-path distance, is an important measure with applications
in graph analytics [70], privacy preservation [47], CPU cache effi-
ciency [62], community search [40], and community discovery [17].
While shortest path distance focuses on a single path, resistance
distance accounts for all paths between two nodes, often leading
to more effective applications [10, 23]. For instance, current flow
closeness centrality based on resistance distance shows greater

discrimination power than its shortest-path counterpart [37]. A key
measure based on resistance distance is resistance diameter, which
has numerous applications, including clustering in graphs [3] and
hypergraphs [2], distributed clock synchronization over wireless
networks [28], and minimizing the Kirchhoff index [30]. However,
computing resistance diameter for large graphs is computationally
expensive, and efficient algorithms for this task are still lacking.
Moreover, reducing resistance diameter, for example by adding
edges, is of significant interest in many applications where a smaller
resistance diameter is desirable.

In this paper, we study the computation and optimization prob-
lems for the resistance diameter 𝑅(G). The main contributions and
work of this paper are summarized as follows.

• We propose a fast 𝜖-approximation algorithm FastRD to
evaluate the resistance diameter 𝑅(G) of a graph G, which
is based on the Johnson-Lindenstrauss Lemma, Laplacian
solvers and convex hull. The algorithm has a nearly linear
time complexity 𝑂

(
(𝑚 + 𝑛𝑙)/𝜖2) , where the �̃� (·) notation

suppresses the poly(log𝑛) factors, 𝜖 > 0 is the error param-
eter, and 𝑙 is the number of nodes in the boundary of the
approximated convex hull.
• We propose and study the following optimization problem:
Given a graph G and an integer 𝑘 ≪ 𝑛, how to select a set 𝑃
of 𝑘 edges in set 𝑄 = (𝑉 ×𝑉 )\𝐸 to add to G such that the
resistance diameter of the resulting graph is minimized. We
show that this problem is NP-hard, and that the objective
function is not supermodular.
• We propose two efficient greedy heuristic algorithmsMinDi-
aEi andMinDiaCH to approximately solve the combinato-
rial optimization problem. The former has time complexity
𝑂 (𝑘𝑚), while the latter has complexity𝑂

(
𝑘 (𝑚 + 𝑛𝑙)/𝜖2) for

a given error parameter 𝜖 > 0.
• We execute extensive numerical experiments on a large vari-
ety of real and model networks to evaluate the performance
of our proposed algorithms: FastRD for computing resis-
tance diameter, and MinDiaEi and MinDiaCH for mini-
mizing resistance diameter by edge addition. The obtained
experimental results demonstrate that our three approxima-
tion algorithms are efficient and accurate. Particularly, they
are scalable to large graphs with over one million nodes.
Moreover, MinDiaEi and MinDiaCH outperform several
baseline strategies for edge selection.

2 RELATEDWORK

In this section, we briefly review the literature related to our work.
The resistance diameter can be seen as an extension of the shortest-
path-based diameter, as they are equivalent in tree-like graphs. The
diameter of a graph represents the greatest distance between any
two nodes, reflecting the maximum time needed for information
or matter to propagate. Graph diameter has found applications in
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data management and mining, including route recommendation on
road networks [66] and reachability querying in large graphs [15].
Significant efforts have been made to design efficient algorithms
for computing graph diameter [38, 61], as well as strategies for
optimizing it, such as reducing graph diameter by adding edges [1,
18, 22]. However, since resistance diameter accounts for all paths
between nodes, methods for computing or optimizing shortest-path
diameter do not directly apply to resistance diameter.

Fast computation of resistance distance is essential for many
applications, prompting the development of various algorithms,
such as random projection methods [43, 57], accelerated by Wil-
son’s algorithm [29]. Local algorithms using random walks and
spanning trees [48], as well as Monte Carlo approaches [39, 65],
have been proposed to improve performance. While these methods
are efficient for computing node-to-node resistance distances, com-
puting resistance diameter, which involves calculating distances for
𝑂 (𝑛2) node pairs, remains impractical for large graphs. Although
there is no closed-form expression for the resistance diameter of
general graphs, explicit formulas have been derived for special
structures like hierarchical graphs [50], Hanoi graphs [54], Sier-
piński gaskets [31], and Koch networks [69, 73]. Additionally, the
scaling behavior of resistance diameter has been studied across
various graph topologies, showing linear growth in path and cycle
graphs [67], sub-linear growth in hierarchical graphs [54], and
logarithmic growth in complete trees and torus graphs [8, 75].
Interestingly, for most real-world networks, resistance diameter
and average resistance distance do not depend on the number of
nodes [64, 68].

In terms of optimization, prior work has focused on minimizing
resistance distance or the Kirchhoff index by edge addition [27].
Researchers have developed algorithms to minimize resistance dis-
tance between specific node pairs [13] and to optimize the Kirchhoff
index [51, 59]. However, no previous methods directly address min-
imizing resistance diameter by adding edges, despite edge addition
being widely used in other graph editing applications, such as
improving node centrality [55] or maximizing overall opinion dy-
namics [74]. Thus, minimizing resistance diameter through graph
edits remains an open and challenging problem.

3 PRELIMINARIES

3.1 Graph and Related Matrices

Let G = (𝑉 , 𝐸) denote a connected undirected unweighted graph
with node/vertex set 𝑉 and edge set 𝐸. The numbers of nodes and
edges in G are 𝑛 = |𝑉 | and𝑚 = |𝐸 |, respectively. For graph G =

(𝑉 , 𝐸), let 𝑄 = (𝑉 ×𝑉 )\𝐸 be the set of edges that are nonexistent
in G. For a nonempty edge set 𝐴 ⊂ 𝑄 , we use G(𝐴) = (𝑉 , 𝐸 ∪ 𝐴)
to denote the augmented graph of G = (𝑉 , 𝐸) with the same node
set 𝑉 as G but more edges than G.

All the eigenvalues of Laplacian matrix L are non-negative, with
zero being the unique eigenvalue. Let 0 = 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆𝑛
denote its 𝑛 eigenvalues, and let u𝑘 , 𝑘 = 1, 2, . . . , 𝑛, stand for their
corresponding mutually orthogonal unit eigenvectors. The second
smallest eigenvalue 𝜆2 of matrix L is often called the algebraic
connectivity of the graph G and denoted as 𝜆2 (G), and its corre-
sponding normalized eigenvector is called the Fiedler vector of
G. Laplacian matrix L can be decomposed as L =

∑𝑛
𝑘=1 𝜆𝑘u𝑘u

⊤
𝑘
.

Note that L is singular, since it has a eigenvalue 0. Thus, L cannot
be inverted. Alternatively, we use the Moore-Penrose generalized
inverse of L, which is simply called pseudo-inverse of L [9]. Let
L† denote the pseudo-inverse of L, which can be expressed as
L† =

∑𝑛
𝑘=2

1
𝜆𝑘

u𝑘u⊤𝑘 .
The symmetry of both matrices L and its pseudo-inverse L†

implies that L and L† share identical null space [9], obeying L1 = 0
and L†1 = 0. Consider the relation J = 11⊤, we obtain LJ = JL =

L†J = JL† = O. Applying the the spectral decompositions for
matrices L and L†, the pseudoinverse L† of L can be obtained to
be [27]

L† =
(
L + 1

𝑛
J
)−1
− 1
𝑛
J . (1)

3.2 Electrical Networks, Resistance Distance

and Resistance Diameter

By replacing every edge in graph G with a unit resistance, we
obtain an electrical network [20] associated with graph G. In the
case incurring no confusion, for a graph G, we also use G to denote
its corresponding electrical network. The resistance distance 𝑟 (𝑢, 𝑣)
between two nodes 𝑢 and 𝑣 in graph G = (𝑉 , 𝐸) is defined as the
effective resistance between 𝑢 and 𝑣 in the corresponding electrical
network [33], which can be expressed in terms of the entries of
matrix L† as

𝑟 (𝑢, 𝑣) = L†𝑢𝑢 + L†𝑣𝑣 − 2L†𝑢𝑣 . (2)

For a graph G = (𝑉 , 𝐸), the maximum value of resistance distances
over all its node pairs is called the resistance diameter and is denoted
by 𝑅(G). That is,

𝑅(G) = max
𝑢,𝑣∈𝑉

𝑟 (𝑢, 𝑣). (3)

4 ALGORITHMS FOR COMPUTING

RESISTANCE DIAMETER

In this section, we introduce three algorithms for computing resis-
tance diameter.

4.1 Exact Computation by Matrix Inverse

By using (1), (2), and (3), we can compute the exact resistance diam-
eter for any graph G. First, using (1) we obtain the pseudoinverse
L† of matrix L by inverting the matrix L + 1

𝑛 J in𝑂 (𝑛3) time. Then,
according to (2), we compute the resistance distance 𝑟 (𝑢, 𝑣) for all
the 𝑂 (𝑛2) pairs of nodes 𝑢 and 𝑣 in G, which takes time 𝑂 (𝑛2).
Finally, we use (3) to find the resistance diameter 𝑅(G) of graph
G, which runs in 𝑂 (𝑛2) time. The rigorous algorithm is called Ex-
act, which is described in Algorithm 1. It is obvious that the total
running time of Exact is 𝑂 (𝑛3).

4.2 Algorithm Based on JL Lemma and

Laplacian Solver

As shown above, the most time-consuming step in the Algorithm 1
for computing resistance diameter is inverting the matrix L + 1

𝑛 J ,
which requires 𝑂 (𝑛3) time. To avoid this time-consuming matrix
inverse operation, here we describe a randomized algorithm, which
approximates the resistance diameter in 𝑂 (𝑛2) time.
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Algorithm 1: Exact(G)
Input :A connected graph G = (𝑉 , 𝐸) with Laplacian

matrix L
Output :𝑅(G) : The resistance diameter of graph G

1 Compute the pseudoinverse L† of L by

L† =
(
L + 1

𝑛 J
)−1
− 1

𝑛 J

2 Compute 𝑟 (𝑢, 𝑣) for all node pairs in G by
𝑟 (𝑢, 𝑣) = L†𝑢𝑢 + L†𝑣𝑣 − 2L†𝑢𝑣

3 𝑅(G) = max𝑢,𝑣∈𝑉 𝑟 (𝑢, 𝑣)
4 return 𝑅(G)

Before introducing our algorithm, we first recast the resistance
distance 𝑟 (𝑢, 𝑣) as [57]

𝑟 (𝑢, 𝑣) =
BL† (e𝑢 − e𝑣)2

2
. (4)

In other words, we can embed the 𝑛 nodes in graph G to 𝑛 points
corresponding to 𝑛 𝑚-dimension vectors BL†e𝑖 , 𝑖 = 1, 2, . . . , 𝑛, in
Euclidean space R𝑚 , which preserve the resistance distances. For
two vectors BL†e𝑢 and BL†e𝑣 in R𝑚 , let 𝑑 (𝑢, 𝑣) denote their Eu-
clidean distance. Then, we have 𝑟 (𝑢, 𝑣) = 𝑑 (𝑢, 𝑣)2.

Equation (4) reduces the computation of resistance distance
𝑟 (𝑢, 𝑣) to the calculation of the ℓ2 norms

BL† (e𝑢 − e𝑣)2
2 of two

vectors in R𝑚 . However, the complexity for exactly computing
this ℓ2 norms is still high, since the dimension𝑚 of vectors BL†e𝑖
(𝑖 = 1, 2, . . . , 𝑛) is high and it still needs inverting matrix L + 1

𝑛 J to
obtain L†.

We first alleviate the computation burden by reducing the dimen-
sion of vectors. For this purpose, we apply the Johnson-Lindenstrauss
(JL) Lemma [32] to approximate the ℓ2 norms. For

BL† (e𝑢 − e𝑣)2
2,

if we project the set of 𝑛 𝑚-dimension vectors, i.e., the 𝑛 column
vectors of matrix BL†, onto a low 𝑑-dimension subspace spanned
by the columns of a random matrix Q ∈ R𝑑×𝑚 with entries be-
ing ±1/

√
𝑑 , where 𝑑 =

⌈
24 log(𝑛)/𝜖2⌉ for given 𝜖 , then we get

an 𝜖-approximation of
BL† (e𝑢 − e𝑣)2

2 with high probability. For
consistency, we introduce the JL Lemma [32].

Lemma 4.1. (JL Lemma) Given fixed vectors 𝒗1, 𝒗2, . . . , 𝒗𝑛 ∈ R𝑚
and 𝜖 > 0, let Q𝑑×𝑚 , 𝑑 ≥ 24 log𝑛/𝜖2

, be a matrix, each entry of

which is equal to 1/
√
𝑑 or −1/

√
𝑑 with the same probability 1/2. Then

with probability at least 1 − 1/𝑛,

(1 − 𝜖)
𝒗𝑖 − 𝒗 𝑗 2

2 ≤
𝑸𝒗𝑖 − 𝑸𝒗 𝑗 2

2 ≤ (1 + 𝜖)
𝒗𝑖 − 𝒗 𝑗 2

2

for all pairs 𝑖, 𝑗 ≤ 𝑛.

Let Q𝑑×𝑚 be a random ±1/
√
𝑑 matrix where 𝑑 =

⌈
24 log(𝑛)/𝜖2⌉.

By Lemma 4.1, for any 𝑢, 𝑣 ∈ 𝑉 we have

𝑟 (𝑢, 𝑣) 𝜖≈
QBL† (e𝑢 − e𝑣)

2

2
. (5)

Thus, if we embed the 𝑛 vertices in graph G to 𝑛 vectors QBL†e𝑖 ,
𝑖 = 1, 2, . . . , 𝑛, in a low-dimension space R𝑑 , the resistance distance
for any node pair is approximately preserved.

However, the computation of the𝑛 vectorsQBL†e𝑖 (𝑖 = 1, 2, . . . , 𝑛)
still requires the pseudoinverse L†, which involves inverting matrix

Algorithm 2: ApproxRD(G, 𝜖)
Input :A connected graph G = (𝑉 , 𝐸), a parameter 𝜖
Output :𝑅(G) : The approximate resistance diameter of

graph G
1 𝑑 = ⌈24 log𝑛/𝜖2⌉
2 X̃𝑑×𝑛 ← ApproxER(G, 𝜖)
3 Compute 𝑟 (𝑢, 𝑣) for all node pairs in G by

𝑟 (𝑢, 𝑣) = | |X̃ (e𝑢 − e𝑣) | |22
4 𝑅(G) ← max𝑢,𝑣∈𝑉 | |X̃ (e𝑢 − e𝑣) | |22
5 return 𝑅(G)

L+ 1
𝑛 J . In order to avoid matrix inversion, one can resort to the fast

symmetric, diagonally-dominant (SDD) linear system solver [35]
to evaluate QBL†e𝑖 , since L is an SDDM matrix. In the sequel, for
the convenience of description, we use the notation �̃� (·) to hide
poly log factors.

Lemma 4.2. There is an algorithm 𝒙 = LaplSolve (L, z, 𝛿) which
takes a Laplacian matrix L, a column vector z, and an error parameter

𝛿 > 0, and returns a column vector x satisfying 1⊤x = 0 andx − L†z
L
≤ 𝛿

L†z
L
.

The algorithm runs in expected time 𝑂 (𝑚 log(1/𝛿)).

Based on the Laplacian solvers and the JL Lemma, an approx-
imation algorithm ApproxER was proposed in [57] to estimated
resistance distance in nearly linear time with respect to the number
of edges, as stated in Lemma 4.3.

Lemma 4.3. There is an 𝑂
(
𝑚 log(1/𝛿)/𝜖2)

-time algorithm which

on input 𝜖 > 0, 𝛿 ≤ 𝜖
3

√︃
2(1−𝜖 )
(1+𝜖 )𝑛3 and G = (𝑉 , 𝐸) computes a

⌈24 log𝑛/𝜖2⌉ ×𝑛 matrix X̃ such that with probability at least 1−1/𝑛,

𝑟 (𝑢, 𝑣) 𝜖≈ ||X̃ (e𝑢 − e𝑣) | |22
for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 .

By using Lemma 4.3, we develop an approximation algorithm
ApproxRD estimating the resistance diameter 𝑅(G) for graph G
in 𝑂 (𝑛2) time. The pseudocode of ApproxRD is provided in Algo-
rithm 2.

4.3 Fast Algorithm Based on Convex Hull

The above approximation algorithm ApproxER based on the Lapla-
cian solvers and the JL Lemma is still infeasible for large networks,
since it runs in 𝑂 (𝑛2) time. This is caused by the computation of
the resistance distances for all the 𝑂 (𝑛2) pairs of nodes in G. In
this subsection, we will show that one only need to compute the
resistance distances for a small number of node pairs, since we
are only concerned with the resistance diameter 𝑅(G). We then
develop a fast algorithm, which approximates 𝑅(G) of an arbitrary
graph G. Our algorithm has a nearly linear time and space cost with
respect to the number of edges. Furthermore, it has a guaranteed
theoretical error with high probability.

Equation (5) reduces the approximation estimation of resistance
distances to the calculation of the distances between the 𝑂 (𝑛2)
pairs of 𝑛 points QBL†e𝑖 (𝑖 = 1, 2, . . . , 𝑛) in Euclidean space R𝑑 . To
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calculate the resistance diameter 𝑅(G), we need to find the pair
of nodes with the largest resistance distance. Equation (5) shows
that we only to find the distance of the pair of farthest points in
𝑑-dimensional Euclidean space, which can be solved by the convex
hull technique.

Definition 4.4. [49] Given a set of 𝑛 points 𝑆 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} in
R𝑑 , its convex hull is the (unique) minimal convex polytope containing

𝑆 .

For a given convex hull of point set 𝑆 , its boundary is denoted by
𝐶 (𝑆), and the subset of points in 𝑆 , which lie on the boundary of the
convex hull is denoted by 𝑆 . By Definition 4.4, it can be observed
that in an Euclidean space the pair of nodes with the maximum
distance in a point set must lie on the boundary of the convex hull
corresponding to that point set.

There are many methods to find the convex hull of a point set
of 𝑛 points in a low-dimensional Euclidean space. However, the
determination of the samples in the convex hull of a point set of
high dimensions is a time-complex task. For dimensions 𝑑 > 3,
the time for computing the convex hull is 𝑂 (𝑛⌊𝑑/2⌋ ), matching
the worst-case output complexity of the problem [14]. Therefore,
computing the convex hull of 𝑛 points in 𝑑-dimension space is
time-consuming. Fortunately, there is a fast algorithm ApproxCH
approximating the convex hull [5]. Before introducing the algorithm
ApproxCH, we provide some more definitions. For any given set
𝑆 = {𝑣𝑖 ∈ R𝑑 : 𝑖 = 1, 2, . . . , 𝑛}, let 𝐷 (𝑆) denote the diameter of
𝑆 . That is, 𝐷 (𝑆) = max𝑣𝑖 ,𝑣𝑗 ∈𝑆 | |𝑣𝑖 − 𝑣 𝑗 | |2, which is the maximum
distance between all pairs of points 𝑣𝑖 and 𝑣 𝑗 , obeying relation
𝐷 (𝑆) = 𝐷 (𝑆).

Lemma 4.5. [5] There is an algorithm 𝑆 = ApproxCH(𝑆, 𝜃 ) which
takes a set 𝑆 = {𝑣𝑖 ∈ R𝑑 : 𝑖 = 1, 2, . . . , 𝑛} and an error parameter

𝜃 ∈ (0, 1), and returns an 𝑙-node subset 𝑆 of 𝑆 . The algorithm runs

in 𝑂 (𝑛𝑙 (𝑑 + 𝜃−2)) time, and the Euclidean distance for any 𝑝 ∈ 𝑆 to

𝐶 (𝑆) is at most 𝜃𝐷 (𝑆), where 𝐶 (𝑆) is the boundary of convex hull of

𝑆 .

Lemma 4.5 shows that using the ApproxCH algorithm, we can
obtain an approximate point set 𝑆 for 𝑆 , the boundary of convex hull
𝐶 (𝑆) in a 𝑑-dimensional Euclidean space. Moreover, ApproxCH
provides an upper bound for the distance between any point in 𝑆

and any point in𝐶 (𝑆). Based on Lemma 4.5, we can show that 𝐷 (𝑆)
is a good approximation for 𝐷 (𝑆), as stated in Lemma 4.6.

Lemma 4.6. Given a point set 𝑆 = {𝑣𝑖 ∈ R𝑑 : 𝑖 = 1, 2, . . . , 𝑛}, a
parameter 𝜃 = 𝜖

12 , a subset 𝑆 ⊆ 𝑆 , whose points lie on the boundary

of the convex hull 𝐶 (𝑆) of set 𝑆 , and 𝑆 = ApproxCH(𝑆, 𝜃 ) that is
a 𝑙-node subset of 𝑆 . Let 𝑥,𝑦 ∈ 𝑆 , 𝑢, 𝑣 ∈ 𝑆 , 𝑑 (𝑥,𝑦) = 𝐷 (𝑆), and
𝑑 (𝑢, 𝑣) = 𝐷 (𝑆). Then, we have

𝑑 (𝑥,𝑦)
𝜖
6≈ 𝑑 (𝑢, 𝑣). (6)

Making use of Eq. (4), Lemma 4.3, and Lemma 4.6, we obtain the
following result.

Lemma 4.7. Given a graph G = (𝑉 , 𝐸), a set 𝑆 = {𝑣𝑖 ∈ R𝑚 :
𝑖 = 1, 2, . . . , 𝑛}, where 𝑣𝑖 = QBL†e𝑖 , a parameter 𝜖 > 0, and 𝜃 =
𝜖
12 . Suppose that 𝑆 = ApproxCH(𝑆, 𝜃 ) is an 𝑙-point subset of 𝑆 and

Algorithm 3: FastRD(G, 𝜖)
Input :A connected graph G = (𝑉 , 𝐸), a parameter 𝜖
Output :𝑅(G): Approximation of resistance diameter

𝑅(G)of graph G
1 𝑑 = ⌈24 log𝑛/𝜖2⌉, 𝜃 = 𝜖

12
2 X̃𝑑×𝑛 ← ApproxER(G, 𝜖)
3 𝑆 ← {𝑠𝑖 ∈ R𝑑 |𝑠𝑖 = X̃ [:,𝑖 ] , 𝑖 = 1, 2, . . . , 𝑛}
4 𝑆 ← ApproxCH(𝑆, 𝜃 )
5 Compute 𝑟 (𝑢, 𝑣) for all node pairs in 𝑆 by

𝑟 (𝑢, 𝑣) = | |X̃ (e𝑢 − e𝑣) | |22
6 𝑅(G) ← max

𝑢,𝑣∈𝑆 𝑟 (𝑢, 𝑣)
7 return 𝑅(G)

𝑅(G) = ApproxRD(G, 𝜖). Let 𝑅(G) = 𝐷 (𝑆)2 = max
𝑢,𝑣∈𝑆 𝑑 (𝑢, 𝑣)

2
.

Then, we have

𝑅(G)
𝜖/3
≈ 𝑅(G). (7)

Since 𝑆 contains 𝑙 points, we can obtain 𝑅(G) by computing
the distances between 𝑙2 pairs of points, instead of 𝑂 (𝑛2) pairs of
points. In general, 𝑙 is much smaller than 𝑛, using Lemma 4.7 to
evaluate the resistance diameter of a graph significantly reduces
the computation time.

Based on the above results, we are now in position to propose a
fast algorithm FastRD approximating the resistance diameter of G,
the pseudocode of which is presented in Algorithm 3. In FastRD,
X̃ is a ⌈24 log𝑛/𝜖2⌉ × 𝑛 matrix, 𝑆 is a set of points, which are the
column vectors of matrix X̃ . Set 𝑆 is an approximation of 𝑆 , which
is the set of points on the boundary of the convex hull 𝐶 (𝑆). The
performance of the algorithm FastRD is given in Theorem 4.8.

Theorem 4.8. The algorithm FastRD(G, 𝜖) runs in𝑂
(
(𝑚 + 𝑛𝑙)/𝜖2)

time, and outputs an approximation value𝑅(G) of resistance diameter

𝑅(G) for graph G, satisfying

(1 − 𝜖)𝑅(G) ≤ 𝑅(G) ≤ (1 + 𝜖)𝑅(G).

5 MINIMIZING RESISTANCE DIAMETER BY

EDGE ADDITION

In this section, we formulate and study the problem of adding a
fixed number edges in order to minimize the resistance diameter of
a graph.

5.1 Problem Statement, Optimal Solution, and

Simple Greedy Algorithm

It is well-known that [13], adding an edge to a graph does not in-
crease the resistance distance between any pair of nodes, including
the resistance diameter. This motivates us to study the problem of
how to choose a fixed number 𝑘 of nonexistent edges to a graph
in order to minimize the resistance diameter of the resultant new
graph. The problem is mathematically formulated as follows.

Problem 1. (Resistance Diameter Minimization) Given a graph

G = (𝑉 , 𝐸) with 𝑛 nodes and 𝑚 edges and a candidate edge set

𝑄 = (𝑉 × 𝑉 )\𝐸, for any integer 1 ≤ 𝑘 ≤ |𝑄 |, find an edge subset
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Algorithm 4: Simple(G, 𝑄, 𝑘)
Input :A connected graph G = (𝑉 , 𝐸), a candidate edge

set 𝑄 , an integer 1 ≤ 𝑘 ≤ |𝑄 |
Output :𝑃 : A subset of 𝑄 with |𝑃 | = 𝑘 edges

1 Initialize solution 𝑃 = ∅
2 for 𝑖 = 1 to 𝑘 do

3 Select 𝑒𝑖 s.t. 𝑒𝑖 ← arg min𝑒∈𝑄\𝑃 Exact (G({𝑒}))
4 Update solution 𝑃 ← 𝑃 ∪ {𝑒𝑖 }
5 Update the graph G ← G({𝑒𝑖 })
6 return 𝑃

𝑃∗ ⊆ 𝑄 such that the resistance diameter of G(𝑃∗) = (𝑉 , 𝐸 ∪ 𝑃∗) is
minimized, that is,

𝑃∗ ∈ arg min
𝑃⊆𝑄, |𝑃 |=𝑘

𝑅(G(𝑃)).

Problem 1 is a intrinsically combinatorial one subject to a cardi-
nality constraint. We can obtain its optimal solutions by exhausting
all the

( |𝑄 |
𝑘

)
subsets 𝑃 with 𝑘 edges. For each subset, we calcu-

late the resistance diameter of the resultant graph, which requires
𝑂 (𝑛3) time. Then, output the optimal solution, which minimizes
the resistance diameter. Although this method is simple, it is com-
putationally impossible even for small networks, since its has an
exponential complexity 𝑂

( ( |𝑄 |
𝑘

)
𝑛3) .

To tackle the exponential complexity of brute-force search, one
often resorts to greedy heuristics. Belowwe present a simple greedy
algorithm for Problem 1, which is outlined in Algorithm 4 and
described as follows. Initially, we set the set 𝑃 of added edges to
be empty, then 𝑘 edges are added from set 𝑄\𝑃 iteratively. In each
iteration step 𝑖 , edge 𝑒𝑖 in set 𝑄\𝑃 of candidate edges is selected,
which minimizes the resistance diameter of the new graph. The
algorithm terminates when 𝑘 edges are selected to be added to 𝑃 .
For every candidate edge, it needs computing resistance diameter
of a resultant graph. A direct calculation of resistance diameter
requires 𝑂 (𝑛3) time, leading to a total computation complexity
𝑂 (𝑘 |𝑄 |𝑛3).

We also address the hardness of the resistance diameter mini-
mization problem and the non-supermodular property of the objec-
tive function, with additional details provided in the appendix.

5.2 Two Fast Approximation Algorithms

Although the simple greedy algorithm in Algorithm 4 is much faster
than the brute-force algorithm, it is not applicable to large-scale net-
works since it takes too much time to calculate 𝑅(G({𝑒})) for each
edge 𝑒 ∈ 𝑄\𝑃 in cubic time 𝑂 (𝑛3) in each iteration. Then, it take
quadratic time 𝑂 (𝑛2) to obtain the edge 𝑄\𝑃 that minimizes the
resistance diameter of resultant graph. To reduce the computational
complexity, we propose two nearly linear time approximation algo-
rithms. The former iteratively find 𝑘 edges to minimize an upper
bound of the resistance diameter, while the latter finds the furthest
𝑘 pairs of nodes and add edges among them.

5.2.1 Fast Alternative Algorithm Minimizing an Upper Bound of
Resistance Diameter. We first approximately solves Problem 1 from
the perspective of spectral graph theory. To this end, we propose a

Algorithm 5:MinDiaEi(G, 𝑄, 𝑘, 𝛿)
Input :A connected graph G = (𝑉 , 𝐸), a candidate edge

set 𝑄 , an integer 1 ≤ 𝑘 ≤ |𝑄 |, a parameter 𝛿
Output :𝑃 : A subset of 𝑄 with |𝑃 | = 𝑘 edges

1 Initialize solution 𝑃 = ∅
2 for 𝑖 = 1 to 𝑘 do

3 Let L be the Laplacian matrix of graph G
4 Compute (𝜆, u) = Eigenpair(L, 𝛿)
5 Select 𝑒𝑖 s.t. 𝑒𝑖 ← arg max( 𝑗,𝑡 ) ∈𝑄\𝑃 (u 𝑗 − u𝑡 )2

6 Update solution 𝑃 ← 𝑃 ∪ {𝑒𝑖 }
7 Update the graph G ← G({𝑒𝑖 })
8 return 𝑃

fast approximation algorithm to minimize an upper bound of the
resistance diameter, as an alternative way to address Problem 1.
Note that the approach of optimizing bounds of a quantity, rather
than the quantity itself, has been previously explored in the lit-
erature [44, 60]. Since 2/𝜆2 is an upper bound for the resistance
diameter 𝑅(G)[63], Problem 1 can be reduced to maximizing 𝜆2 by
adding 𝑘 nonexistent edges to graph G.

Note that the problem of maximizing 𝜆2 by adding 𝑘 edges is
combinatorial and can be solved exactly by exhaustive search. It is
easy to see that there are

( |𝑄 |
𝑘

)
choices for edge selection. For each

of
( |𝑄 |
𝑘

)
cases, we compute 𝜆2 of the corresponding Laplacian matrix

and return the set of 𝑘 edges maximizing 𝜆2. However, this is not
practical for large |𝑄 | and 𝑘 . Therefore, we use the efficient heuristic
algorithm proposed in [26]. Concretely, this heuristic method adds
the 𝑘 edges one at a time. At each time, it chooses the edge (𝑖, 𝑗)
which has the largest value of

(
u𝑖 − u 𝑗

)2, where u is a Fiedler vector
of the current graph. Since directly computing the Fiedler vector
requires 𝑂 (𝑛3) time, we need to explore an efficient method for
computing Fiedler vector quickly. Fortunately, this can be solved
by the method in [6], as given in the following lemma.

Lemma 5.1. [6] For a connected graph G with the Laplacian ma-

trix L, there exists a nearly-linear time 𝑂 (𝑚) algorithm (𝜆, u) =

Eigenpair(L, 𝛿), whose outputs 𝜆 and u are, respectively, approx-

imations for algebra connectivity and Fiedler vector for graph G,
satisfying 𝜆 = u⊤Lu ≤ (1 + 𝛿)𝜆2.

Based on Lemma 5.1, we propose a fast algorithm called MinDi-
aEi to approximately solve Problem 1. The outline of MinDiaEi is
presented in Algorithm 5, which has a total running time 𝑂 (𝑘𝑚).

5.2.2 Convex Hull Based Fast Iterative Algorithm . By definition,
the resistance diameter of a graph is the largest value of resistance
distances between all pairs of nodes in the graph. This enlightens
us to minimize the resistance diameter by iteratively adding edges
between the pair of nodes with the maximum resistance distance.
Specifically, in each iteration step 𝑖 , we only need to find the pair
of nodes with the maximum resistance distance in the graph and
establish a link between them. Actually, as shown in (4), the re-
sistance distance is equivalent to Euclidean distance between two
corresponding points in an Euclidean space. Then, Problem 1 can
be approximately solved by finding the pair of points with the max-
imum distance in an Euclidean space at each iteration step. Based
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Algorithm 6:MinDiaCH(G, 𝑄, 𝑘, 𝜖)
Input :A connected graph G = (𝑉 , 𝐸), a candidate edge

set 𝑄 , an integer 1 ≤ 𝑘 ≤ |𝑄 |, a parameter 𝜖
Output :𝑃 : A subset of 𝑄 with |𝑃 | = 𝑘 edges

1 Initialize solution 𝑃 = ∅
2 𝑑 = ⌈24 log𝑛/𝜖2⌉, 𝜃 = 𝜖

12
3 for 𝑖 = 1 to 𝑘 do

4 X̃𝑑×𝑛 ← ApproxER(G, 𝜖)
5 𝑆 ← {𝑠 𝑗 ∈ R𝑑 |𝑠 𝑗 = X̃ [:, 𝑗 ] , 𝑗 = 1, 2, . . . , 𝑛}
6 𝑆 ← ApproxCH(𝑆, 𝜃 )
7 Select 𝑒𝑖 s.t. 𝑒𝑖 ← arg max

𝑢,𝑣∈𝑆,(𝑢,𝑣) ∈𝑄\𝑃 | |X̃ (e𝑢 − e𝑣) | |
2
2

8 Update solution 𝑃 ← 𝑃 ∪ {𝑒𝑖 }
9 Update the graph G ← G({𝑒𝑖 })

10 return 𝑃

on this idea, we propose a fast algorithmMinDiaCH for Problem 1,
the pseudocode of which is illustrated in Algorithm 6.

The algorithm MinDiaCH is based on the ApproxCH algorithm
in Lemma 4.5. For 𝑛 points in a Euclidean space, the points that
lie on the boundary of the convex hull of this point set are the
farthest from one another. Using ApproxCH, we can obtain a set 𝑆
of 𝑙 nodes, all of which lie on the boundary of the convex hull. Our
algorithm,MinDiaCH, selects the pair of nodes of 𝑆 that are farthest
apart at each step, which allows us to identify the pair of nodes in
the original graph with the greatest resistance distance. With this
approach, we achieve a fast and efficient solution to Problem 1. The
total running time of MinDiaCH is 𝑂

(
𝑘 (𝑚 + 𝑛𝑙)/𝜖2) .

6 EXPERIMENTS

In this section, we present experimental results to evaluate the
performance of the proposed FastRD algorithm for computing the
resistance diameter, and MinDiaCH and MinDiaEi for minimizing
it by adding a specified number of edges. The source code is publicly
available on https://anonymous.4open.science/r/ERdiam-612E.

6.1 Experimental Setup

Datasets and Equipment. To evaluate the performance of our
proposed approximation algorithms, we perform experiments on
different realistic networks representatively selected from various
domains, which are from Koblenz Network Collection [34] and
Network Repository [53]. Table 1 reports the related information
for the considered real networks. All our experiments are conducted
on a Linux box with an Intel i7-7700K @ 4.2-GHz (4 Cores) and
with 128-GB RAM. All algorithms are implemented in Julia v1.0.3,
where the Laplace Solver is from [35].

6.2 Performance of Algorithm FastRD

Computing for Resistance Diameter

6.2.1 Results on Realistic Networks. We now evaluate the perfor-
mance of the FastRD algorithm in terms of efficiency and accuracy
on real-world networks. For this purpose, we compare our algo-
rithm FastRD with two methods: Exact and GEER [65] that is

the state-of-the-art algorithm for querying resistance distances be-
tween node pairs. In [65], the error threshold for the algorithm
GEER is set between 0.01 and 0.5. In our experiments, the error
threshold of algorithm GEER is set to be 0.1.

We first evaluate the efficiency of the algorithm FastRD. In Ta-
ble 1, we report the running times of Exact, GEER, and FastRD
on several real-world networks. To objectively assess the execution
time for the three algorithms on all considered networks, we en-
forced the program to run on a single thread. From Table 1, it is
evident that both Exact and FastRD are faster than GEER. The
main reasons are as follows: although GEER is adept at quickly
querying the resistance distance between a single node pair, it re-
quires running GEER𝑂 (𝑛2) times to obtain the resistance diameter.
Therefore, GEER is only suitable for small networks with fewer
than 30,000 nodes. For larger networks, it cannot return results
within 24 hours.

From Table 1, we can also observe that for small networks with
fewer than 10,000 nodes, Exact is more efficient than FastRD. How-
ever, for larger networks and various approximation parameters
𝜖 , the computational time for FastRD is significantly smaller than
that for Exact. For the last seven networks in Table 1, with node
counts ranging from 106 to 107, we cannot run the Exact algorithm
on our system due to memory and computational constraints. The
Exact algorithm requires directly inverting the Laplacian matrix of
the graph, which is computationally infeasible for large networks.
In contrast, for these networks, we can approximately compute
their resistance diameter by applying the FastRD algorithm, fur-
ther demonstrating that FastRD is efficient and scalable to very
large networks.

Except for the high efficiency, algorithm FastRD also provides
a good approximation 𝑅(G) for the resistance diameter 𝑅(G). To
show the accuracy of FastRD, we compare the approximate val-
ues 𝑅(G) returned by FastRD with the rigorous results of 𝑅(G)
returned by Exact. In Table 1, we report the relative errors 𝜎 of al-
gorithm FastRD, where 𝜎 is defined as 𝜎 = ( |𝑅(G) −𝑅(G)|/𝑅(G)).
From Table 1 we can see that the actual relative errors for all 𝜖 and
all networks are very small, and are almost negligible for smaller
𝜖 . More interestingly, for all networks tested, 𝜎 are magnitudes
smaller than the theoretical guarantee. Therefore, the approxima-
tion algorithm FastRD provides a very accurate result for resistance
diameter in practice.

6.2.2 Results on Model Networks. For a general graph G, to obtain
an exact expression for the resistance diameter 𝑅(G) is very dif-
ficult and even impossible. However, we can obtain closed-form
solution to this quantity for some deterministic model networks,
such as the hierarchical graphs [50], the Hanoi graphs [54], the
Sierpiński gaskets [31], as well as and the Koch networks [73]. The
detailed descriptions of the four model networks, along with their
corresponding expressions for resistance diameter, are provided in
the appendix.

To further demonstrate the performance of our algorithm Fas-
tRD approximating resistance diameter, we apply it to estimate
the resistance diameter for the aforementioned four determinis-
tic model networks: hierarchical graphs, Hanoi graphs, Sierpiński
Gasket graphs and Koch networks. In Table 2, we report the exact
resistance diameter 𝑅(G), the approximation 𝑅(G), relative error
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Table 1: The running time (seconds, 𝑠) of Exact, GEER and FastRDwith various 𝜖, as well the relative error 𝜎 (×10−2
) on various

networks. For each network G, we indicate the number of nodes 𝑛, the number of edges𝑚 and the resistance diameter 𝑅(G).

Network 𝑛 𝑚 𝑅 (G)
Running time (𝑠) Relative error 𝜎

Exact GEER FastRD GEER FastRD
0.2 0.1 0.2 0.1

EmailUN 1,133 5,451 4.278 0.418 129.311 4.273 7.215 0.02 0.82 0.18
USGrid 4,941 6,594 18.283 9.357 1412.265 10.014 16.528 0.03 0.17 0.02
Government 7,057 89,429 6.207 20.331 5433.781 13.792 31.445 0.08 0.66 0.16
Hep-th 8,361 15,751 12.154 13.112 8834.422 30.776 94.534 0.11 0.26 0.14
Athletes 13,866 86,811 6.872 89.722 31521.387 32.452 66.587 0.55 0.87 0.56
Musae-facebook 22,470 170,823 8.956 261.931 74842.871 113.449 150.819 0.07 0.88 0.02
New-sites 27,917 205,964 10.016 426.714 – 96.414 159.973 – 0.34 0.07
Musae-git 37,700 289,003 7.522 890.925 – 182.239 220.131 – 0.91 0.26
HU 47,538 222,887 8.018 2024.661 – 219.461 370.527 – 0.49 0.23
HR 54,573 498,202 6.446 2334.059 – 209.618 431.59 – 0.74 0.55
Epinions 75,877 508,836 10.868 5555.885 – 318.196 416.280 – 1.05 0.87
Slashdot 77,360 828,161 5.009 5854.217 – 386.418 574.755 – 0.77 0.61
Delicious∗ 536,108 1,365,961 9.524 – – 1095.641 2062.206 – – –
FourSquare∗ 639,014 3,214,986 3.018 – – 1236.412 2667.382 – – –
Lastfm-song∗ 1,085,612 19,150,868 4.005 – – 3937.847 5887.932 – – –
Edit∗ 1,347,094 5,276,371 6.31 – – 2343.134 3811.039 – – –
Wikipedia-growth∗ 1,870,709 39,953,145 6.77 – – 5441.601 6891.479 – – –
Flixster∗ 2,523,386 7,918,801 8.31 – – 3617.261 8587.502 – – –

Table 2: Exact resistance diameters 𝑅(G), their approxima-

tions 𝑅(G), relative error 𝜌 = ( |𝑅(G) − 𝑅(G)|/𝑅(G)), and run-

ning time (seconds, 𝑠) for 𝑅(G) on four different networks.

Network Vertices Edges 𝑅 (G) �̂� (G) 𝜌 Time

H(13) 1,594,323 2,391,483 16.667 16.498 0.0101 1472

T(12) 1,594,323 2,391,483 764.656 766.947 0.0029 1521

S(13) 2,391,486 4,782,969 510.437 514.247 0.0075 2303

K(10) 2,097,153 3,145,728 14 13.89 0.0078 2256

𝜌 = ( |𝑅(G) −𝑅(G)|/𝑅(G)), and running time (seconds, 𝑠) for 𝑅(G)
on four deterministic graphs. The corresponding approximation
𝑅(G) is obtained via our algorithm FastRD with 𝜖 = 0.1. Table 2
shows that FastRD works effectively and efficiently for all the four
studied deterministic networks. This again demonstrates the supe-
riority of the algorithm FastRD in approximating the resistance
diameter of huge networks with millions of nodes.

6.3 Performance of Algorithms for Minimizing

Resistance Diameter

6.3.1 Baseline Methods. To evaluate the performance of our pro-
posed algorithms, Simple,MinDiaEi, andMinDiaCH, we compared
them against six baseline edge selection methods: Optimum, Ran-
dom, Closeness, PageRank, Diameter, and Wspd, with details
provided in the appendix.

6.3.2 Effectiveness. We first study the effectiveness of our algo-
rithms Simple,MinDiaEi andMinDiaCH, by comparing them with
Optimum, Random and Wspd. We execute experiments on four
small real networks: Kangaroo with 17 nodes and 91 edges, Rhesus

Figure 1: Resistance diameters of the augmented graphs re-

turned by our algorithms, as well as three baseline strategies

on four networks: (a) Kangaroo, (b) Rhesus, (c) Cloister, and

(d) Tribes.

with 16 nodes and 111 edges, Cloister with 18 nodes and 189 edges
and Tribes with 16 nodes and 58 edges. Their small size allows
us to compute the optimal set of added edges. Since computing
the optimal solution requires exponential time, we only consider
𝑘 = 0, 1, 2, 3, 4. The results are shown in Figure 1, which shows
that the resistance diameters of the augmented graphs returned by
our three greedy algorithms and the optimum solutions are almost
the same, all of which are much better than those returned by the
Random andWspd schemes.

In order to further demonstrate the effectiveness MinDiaEi and
MinDiaCH, we also compare their returned results with five base-
line schemes: Random, Diameter, Closeness, PageRank, and

2024-10-09 07:32. Page 7 of 1–12.
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Figure 2: Resistance diameters for the augmented graphs re-

turned by our two algorithms, and five baseline heuristics on

four real netowrks: (a) Government, (b) Hep-th, (c) EmailUN,

and (d) USGrid.

Wspd, on four large real networks. For each network, we calculate
the resistance diameter in the original graph. Then we decrease the
resistance diameter by adding up to 𝑘 = 1, 2, . . . , 100 new edges,
applying our greedy algorithms and the five baseline strategies of
edge addition. After adding each edge by different methods, we
compute and record the resistance diameters. The results are shown
in Figure 2, which indicates that for each network, our two greedy
algorithms outperform the baseline strategies.

Finally, we execute experiments on four much larger networks
to display the effectiveness of MinDiaEi andMinDiaCH. For these
networks, we cannot run baselines Diameter, Closeness, PageR-
ank, due to their high complexity, but only run Random andWspd.
The results are reported in Figure 3, which shows thatMinDiaEi
and MinDiaCH return significantly better results than Random
andWspd.

6.3.3 Efficiency. As demonstrated above, in comparison with the
baseline strategies of edge addition, both of our algorithms MinDi-
aCH andMinDiaEi exhibit good effectiveness. Here we study the
efficiency of our algorithms MinDiaCH and MinDiaEi. For this
purpose, we run these two algorithms on four large-scale networks,
with the largest one having over a million nodes. For each network,
we select 𝑘 = 100 and record the running time of both algorithms
in Table 3. The results show that bothMinDiaCH andMinDiaEi
are efficient, and are scalable to networks with millions of nodes.
However, there is some difference for the performance between
MinDiaCH andMinDiaEi. As shown in Table 3,MinDiaEi runs
faster thanMinDiaCH. For example,MinDiaCH does not termi-
nate in one day for the network Edit, while MinDiaEi outputs
the solution within 2 hours. AlthoughMinDiaEi is more efficient

Figure 3: Resistance diameters for the augmented graphs

returned by our algorithms, and two baseline schemes on

four large networks: (a) HR, (b) Epinions, (c) Delicious, and

(d) Edit.

thanMinDiaCH, Figures 2 and 3 illustrate thatMinDiaCH is more
effective thanMinDiaEi.

Table 3: The running time (seconds, 𝑠) of MinDiaCH and

MinDiaEi on some large-scale networks.

Network Vertices Edges Running time (𝑠)
MinDiaCH MinDiaEi

HR 54,573 498,202 9700 335
Epinions 75,877 508,836 9800 490
Delicious 536,108 1,365,961 71080 1491
Edit 1,347,094 5,276,371 168900 4930

7 CONCLUSION

In this paper, we present FastRD, a fast approximation algorithm
for efficiently computing the resistance diameter of a graph with
a guaranteed error. Direct computation of resistance diameter is
computationally expensive, requiring matrix inversion and pair-
wise distance calculations for all nodes. To address this, FastRD
employs the Johnson-Lindenstrauss Lemma, Laplacian solvers, and
convex hull techniques, significantly reducing the computational
complexity by focusing on estimating resistance distances for a
smaller subset of node pairs. This allows the algorithm to scale
effectively to large graphs with millions of nodes.

We also introduce the problem of minimizing the resistance di-
ameter by adding 𝑘 edges to the graph. We proved that the problem
is NP-hard and that its objective function is non-supermodular but
monotone. To solve this, we propose three heuristic algorithms: Sim-
ple,MinDiaEi, andMinDiaCH, with varying trade-offs between
speed and effectiveness. Extensive experiments demonstrate that
all algorithms are efficient and scalable, withMinDiaEi being faster
andMinDiaCH offering better results in terms of resistance diame-
ter reduction. Future work will focus on extending these techniques
to optimize other graph metrics, such as biharmonic distance.
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A PROOF OF LEMMA 4.6

Proof. Let 𝑢′ ∈ 𝐶 (𝑆) and 𝑣 ′ ∈ 𝐶 (𝑆) be two points, which are
the closest ones to 𝑢 and 𝑣 , respectively. By Lemma 4.5 and the
fact 𝐷 (𝑆) = 𝐷 (𝑆), we have 𝑑 (𝑢,𝑢′) ≤ 𝜃𝐷 (𝑆) and 𝑑 (𝑣, 𝑣 ′) ≤ 𝜃𝐷 (𝑆).
Considering 𝑑 (𝑥,𝑦) = 𝐷 (𝑆) and the condition that 𝑢′ and 𝑣 ′ belong
to the convex hull𝐶 (𝑆), we have 𝑑 (𝑥,𝑦) ≥ 𝑑 (𝑢′, 𝑣 ′). Making use of
the triangle inequality twice, it follows that 𝑑 (𝑥,𝑦) ≥ 𝑑 (𝑢′, 𝑣 ′) ≥(
𝑑 (𝑢, 𝑣) − 2𝜃𝐷 (𝑆)

)
. Note that 𝑑 (𝑢, 𝑣) = 𝐷 (𝑆) and 𝜃 = 𝜖

12 , we obtain
𝐷 (𝑆) ≥ 𝑑 (𝑥,𝑦) ≥ (1 − 𝜖

6 )𝐷 (𝑆), which directly leads to (6). □

B PROOF OF LEMMA 4.7

Proof. Let 𝐷 (𝑆)2 = max𝑢,𝑣∈𝑆 𝑑 (𝑢, 𝑣)2. By Lemma 4.6, we have
𝐷 (𝑆) ≥ 𝐷 (𝑆) ≥ (1 − 𝜀

6 )𝐷 (𝑆). Then we obtain

𝐷 (𝑆)2 ≥ 𝐷 (𝑆)2 ≥ (1 − 𝜖

6
)2𝐷 (𝑆)2

= (1 − 𝜖

3
+ 𝜖2

36
)𝐷 (𝑆)2

≥ (1 − 𝜖

3
)𝐷 (𝑆)2

On the other hand, we have 𝑅(G) = 𝐷 (𝑆)2 = 𝐷 (𝑆)2. Combining
the above-obtained results, we have 𝑅(G) ≥ 𝑅(G) ≥ (1 − 𝜖

3 )𝑅(G)
which leads to (7). □

C PROOF OF THEOREM 4.8

Proof. We first analyze the time complexity of algorithm Fas-
tRD(G, 𝜖), which includes two main operations: constructing ma-
trix X̃ and determining set 𝑆 . The construction of X̃ takes𝑂

(
𝑚/𝜖2)

time, while finding the set 𝑆 of points needs 𝑂 (𝑛𝑙/𝜖2) time. Thus,
the total running time of algorithm FastRD is 𝑂

(
(𝑚 + 𝑛𝑙)/𝜖2) .

We proceed to prove the correctness of the approximation error.
Let𝑅(G) = max𝑢,𝑣∈𝑉 | |X̃ (e𝑢−e𝑣) | |22, and let𝑅(G) = max

𝑢,𝑣∈𝑆 | |X̃ (e𝑢−

e𝑣) | |22. Then, we have 𝑅(G)
𝜖≈ 𝑅(G) and 𝑅(G)

𝜖/3
≈ 𝑅(G), both of

which result in (1 − 𝜖)𝑅(G) ≤ 𝑅(G) ≤ (1 + 𝜖)𝑅(G), completing
the proof. □

D HARDNESS OF RESISTANCE DIAMETER

MINIMIZATION PROBLEM

The objective function of Problem 1 is not explicit, suggesting that
Problem 1 seems to be difficult. In this subsection, we confirm
this intuition by proving that Problem 1 is NP-hard. We will give a
reduction from the 3-colorability problem, which has been shown to
be NP-hard [24]. First, we introduce a minimum resistance diameter
augmentation problem.

Problem 2. (Minimum Resistance Diameter Augmentation Prob-

lem) Given an undirected, connected, simple graph G = (𝑉 , 𝐸), a
non-negative integer 𝑘 and a non-negative threshold 𝑅0, is there a
subset 𝑃 ⊆ 𝑄 of size |𝑃 | ≤ 𝑘 with 𝑄 = (𝑉 × 𝑉 )\𝐸, such that the

graphH = (𝑉 , 𝐸 ∪ 𝑃) satisfies 𝑅(H) ≤ 𝑅0 ?

We now show that Problem 2 is in NP. For any given graph G
and the set 𝑃 of added edges, the correctness of a given solution for
Problem 2 can be verified by computing the resistance distances
for all 𝑂 (𝑛2) pairs of nodes, which can be obtained by inverting an
associated matrix in𝑂 (𝑛3) time. Then using (3) to get the resistance
diameter and comparing the outcome with the given threshold 𝑅0
verifies the solution. Therefore, the minimum resistance diameter
augmentation problem is in NP.

In fact, Problem 2 is the decision version of the following opti-
mization problem: Given an undirected, connected, simple graph
G = (𝑉 , 𝐸) and a non-negative threshold 𝑅0, find a set of currently
non-existent edges of minimum size to add to G such that the resis-
tance diameter of the resultant augmented graph is at most 𝑅0. The
main work of this section is to prove that Problem 2 is NP-hard,
which immediately implies that the corresponding optimization

2024-10-09 07:32. Page 10 of 1–12.
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problem is also NP-hard. Thus, the problem of creating a fixed num-
ber of edges to a graph to minimize the resistance diameter of the
augmented graph is also NP-hard.

Our proof of the NP-hardness for Problem 2 is inspired by the
proof of the NP-hardness of the maximum algebraic connectivity
augmentation problem [45]. For a graph G = (𝑉 , 𝐸) with 𝑛 nodes
and𝑚 edges, we construct a new G′ = (𝑉 ′, 𝐸′) as in [45]. Graph
G′ = (𝑉 ′𝐸′) consists of three disjoint copiesG0,G1 andG2 of graph
G. For every node 𝑣 ∈ 𝑉 , there is a corresponding node 𝑣𝑖 ∈ G𝑖
(𝑖 = 0, 1, 2); and for each edge (𝑢, 𝑣) ∈ 𝐸, there is a corresponding
edge (𝑢𝑖 , 𝑣𝑖 ) ∈ G𝑖 (𝑖 = 0, 1, 2). By construction the graph G′ has 3𝑛
vertices and 3𝑚 edges. We now consider the minimum resistance
diameter augmentation problem on G′ with 𝑘 = 3𝑛2 − 3𝑚, such
that the augmented graphH has at most 3𝑛2 edges and 𝑅0 = 1

𝑛 .
For our proof, we introduce a class of graphs. Let K𝑛,𝑛,𝑛 denote

the complete tripartite graph, consisting of three disjoint groups of
nodes, with each having exact 𝑛 nodes. In K𝑛,𝑛,𝑛 , there is no edge
linking any two nodes within the same group, while every node in
one group is adjacent to every node in the other two groups. Thus,
the graph K𝑛,𝑛,𝑛 has 3𝑛 vertices and 3𝑛2 edges. Using the previous
result in [25], it is straightforward to obtain the resistance diameter
for K𝑛,𝑛,𝑛 .

Lemma D.1. For the complete tripartite graph K𝑛,𝑛,𝑛 with 3𝑛
nodes and 3𝑛2

edges, let 𝑅(K𝑛,𝑛,𝑛) be its resistance diameter. Then,

𝑅(K𝑛,𝑛,𝑛) = 1
𝑛 .

Proof. In the complete tripartite graph K𝑛,𝑛,𝑛 , the resistance
distance 𝑟 (𝑖, 𝑗) between any pair of nodes 𝑖 and 𝑗 can be determined
explicitly [25]. If 𝑖 and 𝑗 are in the same group, 𝑟 (𝑖, 𝑗) = 1

𝑛 ; If 𝑖 and
𝑗 are in different groups, 𝑟 (𝑖, 𝑗) = 3𝑛−1

3𝑛2 . Thus, according to (3), we
obtain 𝑅(K𝑛,𝑛,𝑛) = max{ 1

𝑛 ,
3𝑛−1
3𝑛2 } = 1

𝑛 . □
In order to prove that the minimum resistance diameter augmen-

tation problem can be reduced to the 3-colorability problem, we
need the following lemmas.

Lemma D.2. [45] There exists a subset 𝑃 ⊆ 𝑄 of size |𝑃 | ≤ 𝑘 , where

𝑄 = (𝑉 ×𝑉 )\𝐸, such thatH = (𝑉 ′, 𝐸′ ∪ 𝑃) is isomorphic to K𝑛,𝑛,𝑛
if and only if G is 3-colorable.

Lemma D.3. [45] For any graphH = (𝑉 , 𝐸) with |𝑉 | = 3𝑛 nodes

and |𝐸 | ≤ 3𝑛2
edges for 𝑛 > 1 satisfies 𝜆2 (H) ≥ 2𝑛 if and only ifH

is isomorphic to K𝑛,𝑛,𝑛 .
Lemma D.4. [63] For a connected graph G with Laplacian matrix

L, let 𝑅(G) be the resistance diameter of G, and let 𝜆2 be the smallest

non-zero eigenvalue of L. Then, 𝑅(G) ≤ 2
𝜆2
.

Lemma D.5. For any graphH = (𝑉 , 𝐸) with |𝑉 | = 3𝑛 nodes and

|𝐸 | ≤ 3𝑛2
edges for 𝑛 > 1 satisfies its resistance diameter 𝑅(H) ≤ 1

𝑛
if and only ifH is isomorphic to K𝑛,𝑛,𝑛 .

Proof. Based on Lemma D.4, we have 𝑅(H) ≤ 2
𝜆2 (H) . Us-

ing Lemma D.1 and Lemma D.3, ifH is isomorphic to K𝑛,𝑛,𝑛 , we
have 𝑅(H) = 𝑅(K𝑛,𝑛,𝑛) = 1

𝑛 . On the other hand, Lemma D.3 indi-
cates that 𝜆2 (H) ≥ 2𝑛, which, together with Lemma D.4, leads to
𝑅(H) ≤ 2

𝜆2 (H) ≤
1
𝑛 . Combining the above results, 𝑅(H) = 1

𝑛 ifH
is isomorphic to K𝑛,𝑛,𝑛 , and 𝑅(H) > 1

𝑛 otherwise. □
Lemma D.2 and Lemma D.5 directly lead to our main result of

this section.

Figure 4: A line graph with 6 nodes and 5 edges. The colored

lines represent newly added edges.

Theorem D.6. The minimum resistance diameter augmentation

problem is NP-hard.

E NON-SUPERMODULAR PROPERTY OF THE

OBJECTIVE FUNCTION

Two typical concepts related to an optimization problem with a car-
dinality constrain are monotone non-decreasing and supermodular
set functions.

Definition E.1. (Monotonicity) A set function 𝑓 : 2𝑄 → R is

monotone non-decreasing if 𝑓 (𝑆) ≤ 𝑓 (𝑇 ) holds for all 𝑆 ⊆ 𝑇 ⊆ 𝑄

Definition E.2. (Supermodularity) A set function 𝑓 : 2𝑄 → R is

supermodular if

𝑓 (𝑆) − 𝑓 (𝑆 ∪ {𝑒}) ≥ 𝑓 (𝑇 ) − 𝑓 (𝑇 ∪ {𝑒})

holds for all 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑒 ∈ 𝑄 .

For a combinatorial optimization problem, when its objective
function is monotone and supermodular, a simple greedy algorithm
by selecting one element with the maximum marginal benefit in
each iteration yields a solution with (1 − 𝑒−1) approximation ra-
tio [46]. However, there are still many combinatorial optimization
problemswhose objective functions are not supermodular. For these
problems, a heuristic cannot guarantee a (1 − 𝑒−1) approximation
solution. Unfortunately, Problem 1 belongs to this problem class.
Although the objective function for Problem 1 is monotone decreas-
ing, next we show that it is non-supermodular. To this end, we
give an example of the path graph G with 6 nodes and 5 edges
in Figure 4. Let set 𝐴 = {(1, 6)}, set 𝐵 = {(1, 6), (1, 3)} and edge
𝑒 = (3, 5). Simple computation leads to

𝑅(G(𝐴)) = 1.5, 𝑅(G(𝐴 ∪ {𝑒})) = 1.5,
𝑅(G(𝐵)) = 1.5, 𝑅(G(𝐵 ∪ {𝑒})) = 1.2,

which means

𝑅(G(𝐴)) − 𝑅(G(𝐴 ∪ {𝑒})) < 𝑅(G(𝐵)) − 𝑅(G(𝐵 ∪ {𝑒})),

violating the definition of supermodularity. Therefore, the objective
function of Problem 1 is non-supermodular.

F MODEL NETWORKS AND THEIR

RESISTANCE DIAMETERS

Hierarchical Graphs. Hierarchical graphs are constructed iter-
atively [50]. Starting with the complete graph K3 for 𝑔 = 1, for
𝑔 ≥ 2,H(𝑔) is created by generating three copies ofH(𝑔− 1), then
identifying the three vertices of a new complete graph K3 with the
three hub nodes of each copy. Figure 5(a) illustrates the hierarchical
graph H(3). In the hierarchical graph H(𝑔), there are 3𝑔 nodes

2024-10-09 07:32. Page 11 of 1–12.
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Figure 5: Illustration of the first several iterations of four

deterministic graphs: (a) the hierarchical graphH(3), (b) the
Towers of Hanoi graph T (3), (c) the Sierpiński gasket S(2),
and (d) the Koch network K(2).

and 3𝑔+1−3
2 edges. The resistance diameter ofH(𝑔) is [50]

𝑅(H (𝑔)) = 4(𝑔 − 1)
3

+ 2
3
. (8)

Hanoi Graphs. The Hanoi graphs T (𝑔) are based on the Tower
of Hanoi puzzle with 𝑔 discs [72]. Each legal state of the puzzle
corresponds to a node in T (𝑔), with edges linking nodes whose
states can be transformed by moving one disc; T (𝑔) has 3𝑔 nodes
and 3(3𝑔−1)

2 edges. Figure 5(b) illustrates the Hanoi graph T (3).
The resistance diameter of T (𝑔) has been obtained to be [54]

𝑅(T (𝑔)) =
(

5
3

)𝑔
− 1. (9)

Sierpiński Gaskets. The Sierpiński gaskets are constructed iter-
atively. Starting with an equilateral triangle S(0), each iteration
𝑔 ≥ 1 involves bisecting the edges of all upward-pointing triangles
in S(𝑔 − 1) and removing the central triangle, resulting in S(𝑔)
with three copies of the previous iteration’s triangles. Figure 5(c) il-
lustrates the first three generations of Sierpiński gaskets. There are
3(3𝑔+1)

2 nodes and 3𝑔+1 edges in graph S(𝑔). In [31], the resistance
diameter of S(𝑔) is obtained to be

𝑅(S(𝑔)) = 2
3

(
5
3

)𝑔
. (10)

KochNetworks. TheKoch networks are constructed iteratively [73].
Starting with a triangle K(0), each iteration 𝑔 ≥ 1 involves gen-
erating two new nodes for each node in K(𝑔 − 1), which are then
connected to their "mother" nodes to form new triangles, resulting
in K(𝑔). Figure 5(d) illustrates the construction of the Koch net-
work K(2). In network K(𝑔), there are 2 · 4𝑔 + 1 nodes and 3 · 4𝑔
edges. It has been shown [71] that the resistance diameter of the
Koch network K(𝑔) is

𝑅(K(𝑔)) = 2
3
(2𝑔 + 1). (11)

G OVERVIEW OF BASELINE METHODS

• Optimum: choose 𝑘 edges from 𝑄 by exhaustive search to
form the set 𝑃 that minimize the resistance diameter of
G(𝑃) = (𝑉 , 𝐸 ∪ 𝑃) .
• Random: randomly choose one edge from 𝑄 of the updated
graph each time. Repeating this process 𝑘 times, until𝑘 edges
are added.
• Closeness: choose an edge from 𝑄 of the updated graph
each time, the two endpoints of which have the lowest values
of closeness centrality. Repeating this process 𝑘 times, until
𝑘 edges are selected.
• PageRank: choose an edge from 𝑄 of the updated graph
each time, two endpoints of which have the lowest values of
PageRank centrality. Repeating this process 𝑘 times, until 𝑘
edges are selected.
• Diameter: choose two farthest nodes of the updated graph
and establish a link between them. Repeating this process 𝑘
times, until 𝑘 edges are selected.
• Wspd: First obtain 𝑘 pairs of well-separated point sets in
an Euclidean space generated by ApproxER, by using the
well-separated pair decomposition in [12]. Let {{𝐴1, 𝐵1} , . . . ,
{𝐴𝑘 , 𝐵𝑘 }} be the output of WSPD. Then, choose two nodes
𝑢𝑖 and 𝑣𝑖 from each set 𝐴𝑖 and 𝐵𝑖 . The 𝑘 edges {(𝑢1, 𝑣1), . . . ,
(𝑢𝑘 , 𝑣𝑘 )} are those to be added to the graph.
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