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ABSTRACT

To reduce open space risk of hypotheses, we reexamine the ‘simplest’ hypothesis
class, binary linear classifiers, geometrically. Generalizing linear classification,
we establish a surprising fact: linear classifiers can have arbitrarily high VC
dimension, stemming from increasing the number of partitions in input space.
Hence, linear classifiers with multiple margins are more expressive than single-
margin classifiers. Despite a higher VC dimension, such classifiers have less open
space risk than halfspace separators. These geometric insights are useful to detect
unseen classes, while probabilistic modeling of risk minimization helps with seen
classes. In supervised anomaly detection, we show that a classifier that combines
a probabilistic and geometric lens can detect both seen and unseen anomalies well.

1 INTRODUCTION

For a machine learning model to be safe, it must be able to reject anomalous data. Conventional
halfspace separation, modeled in sigmoid and rectified linear units (ReLU), is limited in open-world
settings. Scheirer et al. (2013) uses a margin instead to reduce open space risk (OSR). Lau
et al. (2023) provides a linear formulation of this margin from a geometric perspective and closing
numbers metric for OSR in neural networks (NNs). We generalize their linear formulation to the full
extent, which includes allowing for multiple margins. We gain two geometric insights. First, having
more margins is more expressive than one margin. In fact, we challenge the simplicity of linear clas-
sifiers, showing an arbitrarily high VC dimension (stemming from the number of margins/partitions
in input space). Second, such classifiers with margins have a smaller closing number (lower OSR)
than halfspace separators. These two insights guide our experiments on supervised anomaly detec-
tion (AD), where we use a small number of margins. In supervised AD, we need to optimize over two
objectives. The first is detecting seen anomalies, which can be done through a standard probabilistic
approach of empirical risk minimization (ERM). The second is detecting unseen anomalies, usually
done by reducing OSR. However, probabilistically modeling unknown data requires assumptions.
For instance, Sipple (2020) generates anomalies uniformly in raw data space while Tao et al. (2023)
samples in feature space but requires a multi-class classification task. Instead of a probabilistic
approach, we construct the hypothesis class of NNs to implicitly control the OSR through geometry.
Our combined probabilistic and geometric approach detects both seen and unseen anomalies well.

2 GEOMETRIC THINKING TO COMPLEMENT PROBABILISTIC THINKING

Classification On a joint distribution DXY of data and binary labels, we aim to minimize the
risk Px,y∼DXY

(h(x) ̸= y) with respect to hypothesis h in a given hypothesis class H. The simplest
hypothesis class is commonly thought to be linear classifiers (Shalev-Shwartz & Ben-David, 2014)

H := ϕ ◦An = {x 7→ ϕ(hw,b(x)) : hw,b ∈ An}, An = {x 7→ wTx+ b : w ∈ Rn, b ∈ R} (1)

where An is the set of affine functions in Rn and ϕ : R → {0, 1} is the labeling function. To
formalize the labeling function, we denote it as the indicator function ϕ := IS , where set S ⊆ R
denotes the region where one class lives in while the other class lives in the complement R\S. The
linearity of the classifier relies on one weight vector (and one bias term) to determine if a datum
belongs to S or R\S. Halfspace separation is common, where S = R+. This approach conveniently
models the region where it is more likely for a datum to be the positive class. Halfspaces are
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Table 1: AUPR for NSL-KDD. DoS attacks (anomalies) are seen while other types of attacks are un-
seen. Overall AUPR against all attacks is also reported. We compare halfspace separators (HS) and
our geometric separator (GS) with baselines. The suffix (-s) denotes the number of margins used.

Model\Attack DoS Probe Privilege Access Overall
Random 0.435 0.200 0.007 0.220 0.569
SVM 0.959±0.000 0.787±0.000 0.037±0.000 0.524±0.000 0.948±0.000
OCSVM 0.779±0.000 0.827±0.000 0.405±0.000 0.760±0.000 0.897±0.000
HS MLP 0.960±0.022 0.842±0.023 0.024±0.009 0.240±0.039 0.909±0.019
GS-1 (ours) 0.918±0.010 0.798±0.034 0.399±0.006 0.709±0.010 0.929±0.010
GS-2 (ours) 0.936±0.010 0.853±0.026 0.407±0.013 0.778±0.014 0.953±0.005

symmetrical, so the 0/1 labels are arbitrary. Since this symmetry does not hold for general S (e.g.
S = {0} (Lau et al., 2023)), we propose generalizing linear classification to allow label flipping,
which we denote as S-membership separation (e.g. Figure 1):

HS = {IS(hw,b(·)) : hw,b ∈ An} ∪ {IR\S(hw,b(·)) : hw,b ∈ An}. (2)

Expressivity The VC dimension (Vapnik & Chervonenkis, 1971) of classical halfspace separators
is n+1 in Rn. We claim that S-membership separators can have arbitrarily high VC dimension. We
prove this in the specific case where S is a countable set (i.e. membership to multiple hyperplanes):
Theorem 2.1. Let x ∈ Rn for n ∈ N, S ⊆ R be a countable set with size s := |S| ∈ {1, 2, ...,∞}.
Denote this HS as hyperplane separators. Then, 2n+ s ≤ V Cdim(HS) ≤ 2sn+ 2s− 1.

To generalize these zero-measure hyperplanes, we allow a margin of error between each hyperplane:
Corollary 2.2. Let x ∈ Rn for n ∈ N, S ⊆ R and s be the minimum number of finite-length
closed intervals needed to partition S. Denote this HS as margin separators. Then, 2n + 2 + s ≤
V Cdim(HS) ≤ 2sn+ 4s+ 1.

Infinite sized S can be induced by familiar operators. An example of s = ∞ hyperplane separators
is identifying if adding n numbers is zero modulo k for k ∈ N. Here, S = kZ. An example
of s = ∞ margin separators is sinusodial classifiers with infinite VC dimension (Shalev-Shwartz
& Ben-David, 2014). We show that the expressivity of the sine function emerges from its ability to
partition the input space into infinite parts. This classifier is, in fact, linear – the sine function merely
acts as a labeling function. Conversely, margin separators with finite s have a closing number of
n. This is unlike halfspace separators which have a higher closing number of n + 1 with stricter
constraints required to attain this (Lau et al., 2023). In other words, by increasing the number of
margins s, we can increase expressivity while maintaining a lower OSR than halfspace separators.

Experiments We calculated area under the precision-recall curve (AUPR) for a supervised AD
task on NSL-KDD cyber-attack dataset (Tavallaee et al., 2009) to measure the separation between
normal and anomalous (attack) data. To geometrically control OSR, we aim to enclose normal
data within a region (Figure 2). To form closed decision regions, we use a multi-layer perceptron
(MLP) with Gaussian bump activations (Eq. 3) in the penultimate layer for s = 1, 2 and an RBF
activation centered at 1 in the output layer. To ensure that the decision region encloses normal
data, we disallow label flipping, restricting normal data within the margin(s). Coupling geometric
modeling with a standard probabilistic ERM approach, we do not explicitly minimize OSR in the
loss function. Table 1 presents key comparisons of our method, denoted as geometric separator (GS),
with supervised (SVM and halfspace MLP) and unsupervised baselines (OCSVM). More details can
be found in Appendix D.2 and E. GS’s detection of unseen and seen anomalies is competitive with
unsupervised and supervised methods respectively.

3 CONCLUSION

In this paper, we viewed linear classification from a geometric lens to generalize it to S-membership
separators. We showed an arbitrary high VC dimension coming from the number of margins s the
hypothesis class induces. Margin separators are one such type of linear classifiers that control open
space risk better than halfspace separators, which is useful for rejecting unseen data. Combining this
geometric lens with standard probabilistic modeling (via risk minimization) for supervised anomaly
detection, our approach detects both seen and unseen anomalies well.
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A BACKGROUND ON OPEN SPACE RISK

We refer to Scheirer et al. (2013) for their introduction on open space risk for open set recognition,
summarizing key ideas here. We note that, in the one-class case, open set recognition reduces to
supervised anomaly detection. In general, the security-related fields of machine learning (novelty,
anomaly, out-of distribution detection and open set recognition) have many common ideas (Salehi
et al., 2022). Hence, our ideas in supervised anomaly detection are directly applicable to these other
fields.

Scheirer et al. (2013) recognizes that in classification, the closed-world assumption may be violated.
In other words, inputs to a classifier (e.g. machine learning model) may be unexpected and follow
a different distribution that is not captured in the training data, such as inputs that do not belong
to any of the classes. In these cases, a classifier that outputs the closest class for a given input
is insufficient – the classifier must also indicate if the input belongs to that class. To avoid such
cases, a classifier should not label unknown regions of the input space, which Scheirer et al. (2013)
refers to as open space. We would like to minimize the volume of open space that is labeled by the
classifier as a particular class (denoted as O) across all classes, which is referred to as open space risk
minimization. Thus, Scheirer et al. (2013) defines the open space risk for classifier f : X → {0, 1}
that (classifies the input as 1 for the class of interest and 0 otherwise) as

RO(f) :=
V ol(Positively labeled open space)

V ol(Large ball SO)
=

∫
O f(x)dx∫
SO

f(x)dx

where SO ⊆ X covers all possible inputs (training examples from the class of interest and the
positively labeled open space i.e. inputs that are misclassified as the class of interest). Note that SO

is usually a (bounded) ball rather than the whole of X to prevent both the numerator and denominator
from being infinite. For instance, if SO = X = Rn, the denominator is infinity and the numerator is
potentially infinity too (because O may be unbounded).

However, it is not clear how to properly define O (for a particular class) and SO because it may not
be straightforward to define what open space we are concerned with – if we have apriori knowledge
of the unknowns, such a problem would not appear to violate the closed-world assumption in the
first place (and we can just perform regular classification). Hence, our work considers that SO is
potentially unbounded (e.g. S0 = X = Rn) and ensures that O is bounded (through mandating that
the whole decision region, i.e. the positively labeled region, is bounded). In our paper, we show
that reducing the open space risk by reducing the volume of O from infinite to finite is empirically
effective. This geometric approach of controlling the open space risk differs from other works that
probabilistically control the open space risk such as by sampling outliers to perform empirical risk
minimization (e.g. Sipple (2020); Tao et al. (2023)).

B PROOF OF VC DIMENSION OF HS

We provide proofs for the VC dimension claims in Section 2.

B.1 COUNTABLE S

We prove Theorem 2.1 by induction, referring to HSs
as S-membership separators with |S| = s.

The base case of s = 1 where VC dimension is 2n+ 1 is proved in Lau et al. (2023). For induction
from s to s+ 1, we provide upper and lower bounds:

1 ≤ V Cdim(HSs+1
)− V Cdim(HSs

) ≤ 2n+ 2.

The upper bound holds because of the union property (Shalev-Shwartz & Ben-David, 2014): all
hyperplanes of the S-membership separator are parallel, so having another hyperplane will increase
the VC dimension by at most (2n + 1) + 1 = 2n + 1. Hence, the upper bound is 2n + 1 + (s −
1)(2n+ 2) = 2sn+ 2s− 1.

To prove the lower bound, we show that the VC dimension of HS is monotonically increasing
with the number of hyperplanes s. We consider a set of points that can be shattered with s − 1
hyperplanes. Adding an additional point to this set that is not coplanar with any other subset of n
points from the original set, we shatter this new set with an additional hyperplane by either letting
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the added hyperplane pass through the point or not (depending on the added point’s label). We can
shatter the new set because, by design, this added hyperplane does not have to pass through any
points from the original set.

B.2 S IS A COLLECTION OF INTERVALS

Figure 1: Example of mar-
gin separation in 2 dimen-
sions, where w = [1,−1]T ,
b = 0 and S = [−6,−4.5]∪
[−3,−2] ∪ [−1, 2].

To prove Corollary 2.2, we use the same technique to show that for s
intervals,

1 ≤ V Cdim(HSs+1
)− V Cdim(HSs

) ≤ 2n+ 4,

with the base case of s = 1 of VC dimension 2n + 3 proved in Lau
et al. (2023). By increasing the VC dimension by at most (2n+3)+
1 = 2n+4 from s to s+1, the upper bound is 2n+3+(s−1)(2n+
4) = 2sn+ 4s+ 1. The lower bound is from Theorem 2.1, since we
can make the margin width arbitrarily small.

A sample visualization of margins separators is shown in Figure 1,
where points in the shaded region are classified as one class (e.g. pos-
itive) while other points are classified as the other class (e.g. nega-
tive). Figure 1 visually demonstrates the linear property – the weight
vector is constant, inducing parallel lines or regions for classification.

C CLOSING NUMBER OF S-MEMBERSHIP SEPARATORS

As proposed in Lau et al. (2023), the closing number of a hypothesis class is the minumum number
of hypotheses from the class such that the volume (Lebesgue measure) of their intersection is finite
and non-zero. This is especially useful in describing how neurons work together in a neural network
to form closed decision regions. Forming closed decisions is beneficial for anomaly detection and
controlling the open space risk.

In Section 2, we claimed that margin separators HS with finite number of intervals s have a closing
number of n. Similar to the proof in Lau et al. (2023), one can prove that a positive-(non-zero) and
finite-volumed decision region can be induced by the intersection of n hypotheses from HS . As
with Lau et al. (2023), the only constraint is that the weight vectors from these n hypotheses are a
linearly independent set of vectors.

D GEOMETRIC INTERPRETATION

D.1 RELATED WORKS

Geometric modeling is probably the default approach for unsupervised anomaly detection to de-
tect unseen anomalies. Some works aim to embed the normal data into a hypersphere, such as
support vector data description (Tax & Duin, 2004) / one-class support vector machines (OCSVM)
(Schölkopf et al., 1999) with radial basis function (RBF) kernel and deep semi-supervised anomaly
detection (Ruff et al., 2020). Others measure distance, such as LOF (Breunig et al., 2000).

Probabilistic modeling is convenient because of the ERM paradigm. A preference for probabilistic
modeling is even suggested in the terminology “open space risk” to quantify incorrectly labeled
unknown data (Scheirer et al., 2013). Some works that already have a probabilistic formulation of
seen data (via ERM) opt to cast open space risk minimization into an ERM problem by sampling
data that are assumed to be (mostly) outliers, such as in out-of-distribution (OOD) detection (Tao
et al., 2023). Note that these probabilistic formulations of open space risk complement and can be
used with our geometric approach.

D.2 OUR PROPOSED METHOD

Our work aims to combine both probabilistic approach for seen anomalies and geometric approach
for unseen anomalies. We refer to Figure 2 to visualize the geometry in our proposed neural network
architecture. First, we feed the raw data into a feature extractor f : X → Rd. In simple cases such
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Figure 2: Geometric approach to anomaly detection. Data shown is for visualization purposes.

as when the raw data are sampled from a Gaussian, f may be just the identity. The goal of f is
to embed the raw data into a feature space such that we can enclose the normal data. Ideally, to
ensure that the eventual network is activated only on a finite volume in input space (to induce closed
decision regions in input space), we want to design f such that any set of finite volume in feature
space has a finite-volumed pre-image under f as well.

In the following hidden layer, we follow principles from closing numbers by taking the intersection
of d margin separators to induce the closed decision region. This is modeled by choosing d neurons
in this hidden layer with bump activations, followed by an RBF unit centered at 1. We use the
Gaussian bump function

B(z;µ, σ) = exp

[
−1

2

(
z − µ

σ

)2
]

(3)

for fixed µ, σ. We also tried another bump function tanh(σ2/z2) (Flake, 1993) and had similar
results in our experiments. Note that RBF activations can also be used here, but they can only model
norm balls, while margin separators are flexible and do not depend on the features having identity
covariance matrix. To have the effect of having multiple closed decision regions (similar to having
multiple RBF units), the margin separator can have more than 1 margin (i.e. s > 1), such as adding
multiple bump functions with a learnable µ for each (and then normalizing it so the maximum of the
function is 1).

As another geometric design, we disallow label flipping, assigning normal data to the positive class
within the margin(s). Lau et al. (2023) observes that such a structure can improve the estimation
error bound by reducing the VC dimension of the classifier while reducing approximation error with
domain knowledge that normal data has more structure than anomalies. Note that both seen and
unseen anomalies are assigned to the negative class.

E EXPERIMENTAL DETAILS

To simulate supervised anomaly detection, we follow the set-up from Lau
et al. (2023) and share code in https://github.com/mattlaued/
Geometric-Implications-Classification-OSR. We treat denial of service (DoS)
attacks as seen anomalies, including them with normal data during training (with labels). Other
attacks (probe, privilege escalation and remote access) are removed from the training data to be
treated as zero-day attacks (unseen anomalies) during inference. The aim is to detect if a particular
datum is normal or anomalous, with the expectation that unseen anomalous data will be present
during inference.

We also note that DoS attacks have some similarities with probe attacks, so some generalization
in detecting probe attacks is expected. We report detailed results in Table 3, with shallow models
(i.e. non-neural network approaches) taken from Lau et al. (2023). These shallow models are (1)
the random baseline (calculated in expectation), (2) supervised approach: support vector machine
(SVM) (Cortes & Vapnik, 1995) and (3) unsupervised approaches: OCSVM (Schölkopf et al., 1999),
isolation forest (IsoF) (Liu et al., 2008) and local outlier factor (LOF) (Breunig et al., 2000).
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Table 2: Detailed AUPR results for NSL-KDD. DoS attacks (anomalies) are seen while other types
of attacks are unseen. Overall AUPR against all attacks is also reported. We compare shallow
baselines (provided in Lau et al. (2023)) with neural networks: halfspace separators (HS), equality
separators (Lau et al., 2023) and our geometric separator (GS). The suffix (-s) denotes the number
of margins used.

Model\Attack DoS Probe Privilege Access Overall

Random 0.435 0.200 0.007 0.220 0.569

Sh
al

lo
w

SVM 0.959±0.000 0.787±0.000 0.037±0.000 0.524±0.000 0.948±0.000
OCSVM-N 0.835±0.000 0.849±0.000 0.382±0.000 0.745±0.000 0.920±0.000
OCSVM-A 0.779±0.000 0.827±0.000 0.405±0.000 0.760±0.000 0.897±0.000
IsoF-N 0.964±0.006 0.960±0.003 0.039±0.007 0.438±0.015 0.957±0.002
IsoF-A 0.765±0.073 0.850±0.066 0.089±0.044 0.392±0.029 0.865±0.031
LOF-N 0.759±0.000 0.501±0.000 0.046±0.000 0.451±0.000 0.824±0.000
LOF-A 0.495±0.000 0.567±0.000 0.039±0.000 0.455±0.000 0.718±0.000

M
L

Ps

HS 0.960±0.022 0.842±0.023 0.024±0.009 0.240±0.039 0.909±0.019
ES 0.953±0.011 0.772±0.029 0.114±0.029 0.625±0.098 0.943±0.015
GS-1 (ours) 0.918±0.010 0.798±0.034 0.399±0.006 0.709±0.010 0.929±0.010
GS-2 (ours) 0.936±0.010 0.853±0.026 0.407±0.013 0.778±0.014 0.953±0.005

During training, supervised approaches (including our geometric separator) perform binary classifi-
cation with standard empirical risk minimization (ERM)1. We train halfspace separators and equality
separators (Lau et al., 2023) as neural network baselines, while SVM is the shallow baseline. We
also perform ablations of our geometric separator for s = 1, 2, 3, 4, 5. Our geometric separator is
a 3-layer multi-layer perceptron (MLP), where activation functions in f (i.e. first hidden layer) are
leaky rectified linear units (ReLU) and activation functions in the penultimate layer are bump acti-
vations to model the margin separator. To model more than 1 margin, we space the peak of each
bump equidistant from each other (i.e. the µ parameters are fixed distance away from each other
across consecutive bump functions). To more accurately model arbitrary placement of the margin,
one can implement a linear layer with shared weights but separate bias terms or learnable µ param-
eters. We opt for equidistant bumps for simplicity and to prevent separate bumps from getting too
close together and possibly collapsing into themselves.

The common hyperparameters for all neural networks are stated below:

1. Models are trained with logistic loss with the Adam optimizer under an exponentially de-
caying learning rate.

2. Models are trained for 500 epochs under an early stopping patience of 10 epochs with
validation loss. Validation split is 0.1.

3. All layers have the same width (122 neurons2) less the output layer with 1 neuron.

4. Halfspace separators have leaky ReLU in hidden layers and sigmoid in the output layer,
while equality separators have bump activations in all layers. Our geometric separator
activations are detailed above.

5. Bump activations are initialized with variance parameter σ = 0.5, while RBF scale param-
eter β (as in Figure 2) is set to 1. Bump activations with multiple margins are of a distance
of σ away from each other.

6. Weight initializer is a seeded Glorot initializer for reproducibility.

7. All other hyperparameters are set to default Tensorflow parameters.

1Note that SVMs have a more geometric interpretation of finding the maximum margin, but our main
comparisons are with neural networks, so we ignore this exception.

2In our geometric separator, the benefit of designing f to be a leaky ReLU under a linear transformation is
that, if the linear transform is not a projection, then f maintains the good property that a finite-volumed set in
feature space has a finite-volumed pre-image under f .
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Table 3: AUPR results for NSL-KDD on our geometric separators (GS). The suffix (-s) denotes the
number of margins used, and we perform ablations for s = 1, 2, 3, 4, 5.

Model\Attack DoS Probe Privilege Access Overall

GS-1 (ours) 0.918±0.010 0.798±0.034 0.399±0.006 0.709±0.010 0.929±0.010
GS-2 (ours) 0.936±0.010 0.853±0.026 0.407±0.013 0.778±0.014 0.953±0.005
GS-3 (ours) 0.817±0.024 0.709±0.021 0.500±0.022 0.692±0.049 0.880±0.019
GS-4 (ours) 0.785±0.043 0.668±0.038 0.507±0.002 0.666±0.061 0.851±0.037
GS-5 (ours) 0.724±0.010 0.607±0.012 0.504±0.001 0.618±0.012 0.793±0.013

In contrast, unsupervised approaches cannot capitalize on labeled anomalies. To test them, we
consider 2 approaches and report them both with a suffix of “-N” and “-A”. The former only uses
normal data, while the latter uses all data. The unsupervised baselines are OCSVM, IsoF and LOF.

From our results, we notice that shallow baselines typically trade-off detecting seen anomalies and
detecting unseen anomalies – a high AUPR in one column is balanced with a low AUPR in another.
For neural networks, we corroborate with Lau et al. (2023) that equality separators perform better
than halfspace separation in detecting the unseen privilege escalation and remote access attacks,
while halfspace separation performs well on seen attacks. Nevertheless, our geometric separator
for s = 1, 2 clearly outperforms the equality separation, achieving supervised-level performances
on seen anomalies (i.e. DoS attacks and, to some extent, probe attacks) and unsupervised-level
performance on unseen anomalies (i.e. privilege escalation and remote access attacks). Here, we
see the benefits of combining an ERM approach with geometric intuitions to control open space risk
– we minimize empirical risk through standard optimization, while we control open space risk by
carefully choosing our hypothesis class. In this case, the hypothesis class is a neural network with
edited activation functions in the penultimate and last layer. In addition, choosing the width of a
hidden layer has a geometric interpretation with closing numbers (Lau et al., 2023) which we use to
our advantage to control the open space risk.

We note that training s ≥ 3 for our geometric separator incurs a training loss of more than a mag-
nitude higher than s ≤ 2 and does not converge. With a higher empirical risk and higher VC
dimension for s ≥ 3, we chose s ≤ 2 for our experiments for a better generalization bound. By ob-
serving training loss, we can perform structural risk minimization and reject models with high losses
without needing to observe test set performance. High loss without convergence also suggests that
the model is stuck in a bad local minimum. An interesting way forward would be to understand how
to initialize such networks better and get out of local minima. Nevertheless, our finite s geometric
separators still err on the more conservative side, preferring to reject unseen data more than halfspace
separators despite a higher loss, as seen in the significantly higher AUPR on unseen attacks.
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