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Abstract

Popular approach in entity linking is a two-001
step reranking process where bi-encoder first002
retrieves top-K candidates and more power-003
ful cross-encoder reranks them. While show-004
ing performance boosts beyond entity link-005
ing across multiple domains, such as open-006
domain question answering and dialogue se-007
lection, this two-step architecture suffers from008
cross-encoder’s slow runtime and lack of scala-009
bility making it impractical in real-time service.010
To overcome this challenge, we propose com-011
paring multiple entities (CME) framework which012
compares multiple pre-computed entity embed-013
dings jointly with the mention embedidng over014
small layers of bi-directional transformer lay-015
ers. CME shows that it is efficient, 29.3x faster016
than cross-encoder, and effective reranker, 10%017
improvement over bi-encoder. We additionally018
show the effect of CME as second-stage retriever019
which surpasses the performance of state-of-020
the-art retrievers on various K. This in turn021
shows that use of CME can make cross-encoder022
reranking system faster (1.6x-2x) while main-023
taining the performance. Lastly, we conduct024
extensive comparison of CME to other reranker025
and retrieval models including newly proposed026
methods in the ablation study.027

1 Introduction028

The predominant approach for entity linking (EL)029

consists of two stages: retrieval and reranking. Typ-030

ically, a bi-encoder model is used to efficiently re-031

trieve K relevant entities as candidates and then an032

expressive cross-encoder model effectively reranks033

the retrieved candidates, where K is significantly034

smaller than the total number of entities (N ), i.e.,035

K ≪ N (Wu et al., 2020; Zhang and Stratos, 2021).036

This framework emerges from the efficiency of bi-037

encoder in searching over a large space, and the038

superior performance of a cross-encoder(Nogueira039

and Cho, 2019), at an expense of higher computa-040

tional cost.041

Cross-encoder captures fine-grained interactions 042

between mention and entity texts by jointly encod- 043

ing both pieces of text into a single embedding 044

using bi-directional tranformer and eventually pro- 045

duces a single compatibility score. However, this 046

deep interaction between tokens is computationally 047

expensive. In contrast, bi-encoder independently 048

encodes mentions and entities, then evaluates the 049

proximity of an entity to a mention via dot prod- 050

uct. This allows for the fast retrieval of the most 051

appropriate entitities, with the help of maximum 052

inner-product search (Malkov and Yashunin, 2018; 053

Johnson et al., 2019; Guo et al., 2020), for a men- 054

tion by storing large entity encodings in databases. 055

The typical reranking system with bi- and cross- 056

encoder faces two primary challenges. First, 057

the cross-encoder lacks the scalability to manage 058

a large number of K candidates, rendering the 059

reranking process vulnerable to error propagation. 060

Specifically, this occurs when the bi-encoder fails 061

to capture a true entity within a limited pool of re- 062

trieved candidates, leading to the inevitable failure 063

of the whole reranking system. The lack of scala- 064

bility of cross encoder stems from its requirement 065

to access the raw texts of both mention and entity. 066

Second, when considering serving times of appli- 067

cations that implement entity linking, the runtime 068

of cross-encoder makes it impractical as its speed 069

is two ordrers of magnitude slower than bi-encoder 070

(Humeau et al., 2019). 071

In this work, we propose a second-stage reranker 072

CME (Comparing Multiple Entities) which compares 073

mention embeding and pre-computed multiple en- 074

tity embeddings at once through a few layers of 075

bi-directional transformer layers. The idea is to 076

build a model that is scalable under incresing size 077

of K. To do so, we chose the strategy of comparing 078

multiple entities all together and actively utilizing 079

the precomputed entity embeddings as bi-encoder 080

does. 081

In order to investigate effectiveness of CME, we 082
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Figure 1: Overview of Models in the Entity Linking Framework: This figure illustrates the existing approaches (a, b,
and c) alongside the proposed ’Comparing Multiple Entities’ model. Areas shaded in blue indicate embeddings that
are available for offline indexing.

also investigated other strategies that can utilize083

precomputed entity embeddings as well as revisit-084

ing previous methods. We find that it is nontrival085

to perform significantly better than bi-encoder in086

the context of zero-shot entity linking. On the087

other hand, the proposed CME framework shows088

11% performance improvement at a marginal extra089

latency, 0.22x of that bi-encoder and 0.03x of cross-090

encoder’s latency (Table 1). In addition, we show091

that CME can act as a second-stage retriever that092

can provide higher recall than existing state-of-the-093

art retrievers (Table 3). We further show that this094

can reduce overall latency of cross-encdoer rerank-095

ing system by 0.5-6x by reducing the number of096

K candidates that cross-encoder examines while097

performing similarly (Table 4).098

The main contribution of the paper is as follows:099

• We propose a novel CME framework that is100

both effective in performance and effcient101

by utilizing pre-computed entity embeddings102

(§3). Additionally, we show that CME can ben-103

efit from domain transfers of sentence encoder104

while standard bi-encoder did not (§4.5).105

• We provide an in-depth analysis of various106

ways of utilizing pre-computed entity em-107

beddings and show non-trivial to utilize pre-108

computed entity embeddings (§4.5).109

• We show that CME can act as a second-stage110

retriever which can increase the recall of the111

retriever at a marginal cost (0.2x runtime of bi-112

encoder) and thus improve the cross-encoder113

reranking performance as well.114

• By presenting that CME can act as both115

reranker and enhanced retriever, we provide116

flexible options to users depending on their117

need. For higher accuracy, one can utilize118

CME as second-stage retriever, while for sce-119

narios with a restricted time budget, CME can 120

be utilized as an efficient reranker. 121

2 Background and Related Work 122

2.1 Task Description 123

Entity linking Entity linking (EL), also known as 124

named entity disambiguation, refers to the process 125

of associating named entity mentions with unique 126

entities in a knowledge base, such as, Wikipedia 127

(Sevgili et al., 2022). Formally, given a mention 128

m in a context, an entity linking system predicts a 129

unique entity ei from an entity set E = {ei}i=1,...,N 130

that matches the identity of mention m. It is as- 131

sumed that there exists an entity ei ∈ E where each 132

mention can be correctly mapped. The size of the 133

entity set, N , is typically large. The entity linking 134

system is required to both efficiently search for rel- 135

evant entities in the large entity set and effectively 136

identify the correct entities. 137

Zero-shot entity linking We focus on a general 138

and challenging setting of the task, zero-shot en- 139

tity linking (zeshel) (Logeswaran et al., 2019). In 140

zeshel, training and testing sets are from separate 141

domains that are characterized by non-overlapping 142

entity sets Etrain and Etest where Etrain ∩ Etest = ∅. 143

The entities are defined by short textual descrip- 144

tions. Zeshel systems thus need to comprehend 145

the semantics of unseen entity descriptions in order 146

to match entities with the contextualized mention 147

representations. 148

2.2 Existing Methods 149

Retrieve and rerank Entity linking systems 150

commonly comprises two stages: efficient retrieval 151

and effective reranking. Given a mention m in a 152

context sentence ctxt, a fast retriever will score 153
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Figure 2: Overview the proposed CME system that compares multiple entities at once for efficient and effective
entity linking.

the mention m with each entity e ∈ E . Although154

the retriever is designed to be fast, its top-1 accu-155

racy tends to be suboptimal. Practitioners therefore156

identify a candidate entity set157

Em = {em,1, em,2, . . . , em,K} ⊆ E , (1)158

whose elements are K most relevant entities in en-159

tity set E according to the retriever, to be reranked.160

A reranker sθ(m, ctxt, em,j) is a model learned161

to assign fine-grained matching scores between162

a mention m and each candidate em,j from the163

relatively small set of entities Em predicted by the164

retriever. It is an expressive model that is generally165

slower but more accurate than the retriever. The166

entity with the highest score,167

êm = argmax
em,j∈Em

sθ(m, ctxt, em,j), (2)168

is finally output as the entity where mention m169

should be linked.170

Score functions Given a mention in a context171

and an entity description, their matching score can172

be computed by diverse functions. The retrieval173

step requires fast functions while the reranking174

step focuses more on accuracy. Logeswaran et al.175

(2019) first retrieve candidate entities for a mention176

using the bag-of-words BM25 retrieval function177

and then use an expressive cross-encoder model to178

score the retrieved candidates. The cross-encoder 179

is a transformer encoder model that inputs the men- 180

tion context tokens and entity description tokens 181

simultaneously to produce a matching score. 182

Gillick et al. (2019) concurrently uses a bi- 183

encoder architecture to embed mention context to- 184

kens and entity description tokens separately and 185

compute the dot point of the embeddings. The men- 186

tion embedding only needs to be calculated once 187

when compared to all the entities and vice versa. 188

The bi-encoder allows fast maximum inner-product 189

search (MIPS) but is less expressive than the cross- 190

encoder (Figure 1(a-b)). BLINK (Wu et al., 2020) 191

combines the advantages of both types of scores 192

functions, first using a bi-encoder for retrieving 193

relevant entities and then using a cross-encoder to 194

rerank them. 195

Humeau et al. (2019) proposes a poly-encoder 196

that learns global rather than token level self- 197

attention features to be faster than the cross- 198

encoder and more accurate than the bi-encoder. 199

Zhang and Stratos (2021) proposes negative sam- 200

pling strategies to improve the bi-encoder training 201

and proposes a sum-of-max late fusion model as 202

a reranker that is both faster and more accurate 203

than the poly-encoder. We adopt their sampling 204

strategies and explore a previously overlooked op- 205

portunity to achieve a reranker that is more accurate 206

than the sum-of-max model while remaining much 207
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more efficient than the cross-encoder. In particular,208

we proposes to process multiple candidate entities209

(CME) at once to rerank them.210

Other entity linking systems We also compare211

our method with the following methods for com-212

pleteness. Barba et al. (2022) revisits entity linking213

as a text extraction task. De Cao et al. (2020) is214

an autoregressive model which generates the title215

of the corresponding entity with constrained beam216

search. Our proposed CME is more accurate than217

both. Xu et al. (2023) proposes a reranker that con-218

sists of a cross-encoder reader module and a selec-219

tion module that extracts candidate tokens based on220

embeddings from the reading module. While this221

method is more accurate than the cross-encoder,222

it is even slower than the cross-encoder, which al-223

ready has almost 30× more extra latency than our224

CME.225

3 Proposed Method226

We propose an entity linking system consisting of227

a bi-encoder retriever and a CME reranker.228

3.1 Model Architectures229

Sentence Encoder After identifying the candi-230

date entity set Em, our model begins from obtain-231

ing embeddings for the context sentence tokens232

xm, which contains the mention m, and for the233

entity description sentence tokens xem,j . Similar234

to bi-encoder, embeddings are derived for both the235

context sentence (hsent
m ) encompassing the mention236

and the entity description sentence (hsent
em,j

) using237

respective context and entity encoders, Encctxt and238

Encent. The embeddings are calculated as follows:239

hsent
m = aggregator (Encctxt (xm)) , (3)240

hsent
em,j

= aggregator
(
Encent

(
xem,j

))
(4)241

Following the approach in Wu et al. (2020), the242

embeddings for both the context sentence and the243

entity description are limited to a maximum of244

128 word-piece tokens. This includes the use of245

special tokens such as [CLS], [SEP], and custom246

tokens that denote the locations of mentions and247

entities1. The aggregator function extracts the248

[CLS] token embedding from the last layer of the249

transformer encoder.250

1These include [mention_start], [mention_end],
and [ENT] tokens

Comparing Multiple Entities (CME)[
hCME
m ;hCME

em,1
; . . . ;hCME

em,K

]
=

EncCME(
[
hsent
m ;hsent

em,1
; . . . ;hsent

em,K

]
)

(5) 251

Analogous to the bi-encoder retrieval, the final pre- 252

diction e∗m is determined by computing the dot 253

product score between the mention and entity em- 254

beddings: 255

e∗m = argmax
em,j∈Em

hCME
m ·

(
hCME
em,j

)⊤
(6) 256

3.2 Training 257

Optimization Given an entity set for training 258

Ẽm = {ẽm,1, ẽm,2, . . . , ẽm,K}, score function sθ 259

that assigns a score to each entity in the set. The 260

score function outputs a probability distribution 261

over the entities, representing the likelihood of each 262

entity being the correct one. The loss function for 263

our model is a combination of multi-class cross- 264

entropy, which is regularized by Kullback-Leibler 265

(KL) divergence between the reranker’s scores and 266

the retriever’s scores. The loss function is formu- 267

lated as follows: 268

L(m,Em) = −λ1

K∑
i=1

yi log(pi)+

λ2

K∑
i=1

pi log

(
pi
qi

) (7) 269

where yi represents the ground truth label for each 270

entity em,i, pi is the predicted probability for entity 271

em,i from the score function sθ, qi is the probability 272

of the same entity from the retriever’s distribution, 273

and λ1 and λ2 are coefficients forming a convex 274

combination of the two losses. 275

Negative Sampling In contrast to previous stud- 276

ies (Wu et al. (2020); Xu et al. (2023)), which train 277

a reranker using a fixed set of top-k candidates 278

from the retriever, our approach adopts a technique 279

similar to hard negative sampling for training re- 280

triever (Zhang and Stratos (2021)). Some negative 281

entities are sampled based on the retriever’s scoring 282

for mention-entity pairs: 283

∀j ∈ {1, . . . ,K} \ {gold index},

em,j ∼
exp(sretriever(m, ẽm,j))∑K

k=1,k ̸=gold index exp(sretriever(m, ẽm,k))

(8)

284
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To provide competitive and diverse negatives285

for the reranker, p% of the negatives are fixed as286

the top-k negatives, while the others are sampled287

following the score distribution.288

Sentence Encoder Initialization The initial289

starting point of the sentence encoder can signif-290

icantly impact performance. The transformer en-291

coder may be initialized with BERT (Devlin et al.292

(2018)) or with other BERT-based fine-tuned mod-293

els. These include models fine-tuned on the Zeshel294

dataset (Yadav et al. (2022)) or other datasets (Gao295

and Callan (2022) ; Wu et al. (2020)).296

3.3 Inference297

In contrast to cross-encoders where entity embed-298

dings are not saved in advance (Logeswaran et al.,299

2019; Wu et al., 2020), our model can compute and300

index entity sentence embeddings as it is processed301

independently to context information (see Figure 2).302

During inference, it is only required to compute the303

context sentence embedding, obtain embeddings304

for each mention and entity via the CME module,305

and then identify the candidate with the highest306

scores through an inner-product calculation.307

4 Experiments308

4.1 Dataset309

We use the zero-shot entity linking dataset (zeshel)310

created by Logeswaran et al. (2019) from Wikia2.311

The dataset consists of 16 domains, divided into 8312

for training, 4 for validation and testing. It includes313

49,275 labeled mentions in training and 10,000314

unseen mentions each in validation and test sets.315

This dataset challenges linking entity mentions to316

unseen entities based on their descriptions, empha-317

sizing zero-shot inference. The entity domain, also318

called “world”, varying from 10K to 100K enti-319

ties, is unique to each domain, testing the model’s320

ability to generalize to new entities, with detailed321

statistics presented in Table 7 in appendix.322

4.2 Training Details323

All CME models are trained for 5 epochs using the324

AdamW optimizer. The learning rate is tuned over325

the set {1e-5, 2e-5, 5e-5}, the ratio of fixed nega-326

tives, denoted as p, is chosen from the set {0, 50}.327

The best model is selected based on its performance328

on the development set. The number of negatives329

2Now known as Fandom: https://www.fandom.com

is 63 and sampled from top-1024 candidates re- 330

trieved from bi-encoder. The effective batch size 331

is 8, with batch size 2 and gradient accumulation 332

steps 4. The training process takes 4̃ hours on a 333

single NVIDIA A100 GPU. The loss coefficients 334

are set as λ1 = 0.2 and λ2 = 0.8. The number of 335

layers and multi-head attention for CME module is 336

two and four, respectively. 337

4.3 Evaluation Metric 338

In the evaluation of a retriever, we measure its ef- 339

fectiveness using recall@k, which represents the 340

percentage of the gold entity found within the top-k 341

retrieved entities. For evaluating a reranker, the pri- 342

mary metric is top-1 accuracy, since there is only 343

one correct entity corresponding to each mention. 344

The accuracy is categorized into unnormalized and 345

normalized accuracy. Unnormalized accuracy is 346

computed across all mention instances, while nor- 347

malized accuracy is calculated for those mention 348

sets that are successfully retrieved by the retriever. 349

Our model was tested on each domain in validation 350

and test sets. Performance metrics over each set 351

were then calculated using either macro- or micro- 352

averaging across different domains. 353

4.4 Results 354

4.4.1 CME as a reranker 355

We evaluated our model’s reranking performance 356

using the top-64 candidates generated by bi- 357

encoder retrievers (Yadav et al. (2022)) and BM25 358

(Logeswaran et al. (2019)). 359

Baselines We conducted a comparative analy- 360

sis of our model with several reranking methods. 361

Cross-encoder (Logeswaran et al. (2019); Wu et al. 362

(2020); Yadav et al. (2022)) is recognized as one 363

of the most powerful baselines but is resource- 364

intensive, as it jointly encodes context and entity to- 365

kens. The sum-of-max method (Zhang and Stratos 366

(2021)), calculates the relevance score utilizing 367

the entirety of mention and entity tokens (Khattab 368

and Zaharia (2020)). Poly-encoder (Humeau et al. 369

(2019)) is the model that utilizes attention mecha- 370

nism between entity embedding and multiple con- 371

text representation. Bi-encoder, a simpler approach, 372

determines relevance scores by the dot product of 373

individual mention and entity embeddings. Ex- 374

tEND (Barba et al. (2022)) utilizes self-attention 375

between mentions and entities, while making use 376

of longformer Beltagy et al. (2020) to carry out self- 377

attention between all tokens from each mention and 378
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Table 1: Macro-Averaged accuracy (%), reranking latency, and index sizes from candidates from Bi-encoder (Yadav
et al. (2022)) To elucidate the relative latency associated with the reranking process, we express the reranking
latency as extra relative latency to the bi-encoder runtime (36.3 ms)under the same experiment setup. The best
result is denoted in bold and the second-best result is underlined † is reported at Zhang and Stratos (2021), which
is evaluated over candidate set with recall@64 91.93% for validation set and 83.48% for test set. base means
BERT-base based model and large means BERT-large based model.

Unnormalized acc. Normalized acc. Extra Relative
Method Valid Test Valid Test latency index size

Cross-encoder 66.86 65.76 72.64 74.46 +6.46x -
Sum-of-max† (Zhang and Stratos (2021)) 59.35 57.04 65.38 65.24 +0.02x 10.9x
Sum-of-max† (w/o indexing) 59.35 57.04 65.38 65.24 +4.70x -
Poly-encoder 16† (Zhang and Stratos (2021)) 55.90 54.87 61.56 62.65 +0.03x 1x
Poly-encoder 128† (Zhang and Stratos (2021)) 55.98 55.17 61.67 62.95 +0.03x 1x
Bi-encoder 55.45 52.95 59.71 60.32 - 1x
Comparing Multiple Entities (large) 60.65 59.48 65.99 67.15 +0.28x 1.4x
Comparing Multiple Entities (base) 60.01 58.98 65.06 66.69 +0.22x 1.0x

Table 2: Test Normalized accuracy of CME model over retrieved candidates from BM25.

Method Forgotten Realms Lego Star Trek Yugioh Macro Acc. Micro Acc.
Low Latency Methods
ExtEnD (Barba et al. (2022)) 79.62 65.20 73.21 60.01 69.51 68.57
GENRE (De Cao et al. (2020)) 55.20 42.71 55.76 34.68 47.09 47.06
Comparing Multiple Entities (large; Ours) 84.30 70.43 75.08 62.54 73.08 71.99
Comparing Multiple Entities (base; Ours) 83.20 70.63 75.75 64.83 73.35 72.41
High Latency Methods
Cross-encoder (Wu et al. (2020)) 87.20 75.26 79.61 69.56 77.90 77.07
ReS (Xu et al. (2023)) 88.10 78.44 81.69 75.84 81.02 80.40

candidate. GENRE (De Cao et al. (2020)) operates379

entity linking using a language model, generating380

entity titles corresponding to each mention. Fi-381

nally, ReS (Xu et al. (2023)) uses a reading module382

and a selecting module, where the reading mod-383

ule functions as a cross-encoder and the selecting384

module predicts the entity on top of concatenated385

cross-encoder embeddings.386

For candidates from bi-encoder we evaluated387

the CME against various baseline models, includ-388

ing the cross-encoder, sum-of-max, and bi-encoder.389

The bi-encoder checkpoint from Yadav et al. (2022)390

performed macro-averaged recall@64 92.04% on391

the validation set and 86.8% on the test set. Also,392

we’ve loaded cross-encoder from the same check-393

point. CME exhibited a significant improvement in394

unnormalized accuracy compared to the bi-encoder.395

This increase attributed to the integration of sen-396

tence encoder embeddings enhanced by a self-397

attention mechanism, leading to an accuracy in-398

crease of approximately 5-6 points.399

Additionally, our model surpassed the performance400

of multi-vector models such as the sum-of-max and401

poly-encoder. In contrast to the sum-of-max, which402

either requires an index size 7-10 times larger or op- 403

erates 16-21 times slower without indexing, CME 404

demonstrated superior efficiency and effectiveness 405

in reranking tasks while saving computation and 406

memory resources. Although the poly-encoder 407

showed lower latency compared to our model, its 408

performance was relatively inferior, almost compa- 409

rable with the bi-encoder. 410

When compared to the cross-encoder, CME was 411

found to be less accurate, with a difference of about 412

6 points in unnormalized accuracy. However, it 413

offered a considerable reduction in latency. This 414

decrease in time complexity renders CME a more 415

practical choice, especially considering it only ne- 416

cessitates 3-4% of the time required by the cross- 417

encoder to run. The accuracy, additional latency, 418

and index size are reported in Table 1. 419

For candidates from BM25 we also conduct 420

reranking on candidates from BM25, which was 421

released by Logeswaran et al. (2019). We reported 422

accuracy on each world of test set in Table 2. In the 423

comparison between CME and other models such 424

as ExtEND and GENRE, it has been observed that 425

CME exhibits superior performance. Besides this 426
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Table 3: Recall@k on the Zeshel test set. The best
result is denoted in bold and the second-best result is
underlined. Numbers in parentheses (e.g., CME(128))
indicate the number of candidates from which CME
selects, initially retrieved by the bi-encoder. * is re-
implemented bi-encoder from Yadav et al. (2022) which
is used for generating candidates for CME

Retriever R@1 R@4 R@8 R@16 R@32 R@64
BM25 - - - - - 69.26
BLINK - - - - - 82.06
Bi-encoder* 51.41 70.49 76.34 80.44 83.81 86.8
SOM - - - - - 89.62
MuVER 43.49 68.78 75.87 77.65 85.86 89.52
Arbo-EL 50.31 68.34 74.26 78.40 82.02 85.11
MVD 52.51 73.43 79.74 84.35 88.17 91.55
CME (128) 59.18 76.70 81.35 85.25 87.74 89.52
CME (256) 59.13 76.60 81.06 85.35 88.13 90.40
CME (512) 59.01 76.48 81.00 85.07 88.25 90.75

advantage, our model comes with another advan-427

tage of a reduced computational burden. The effi-428

ciency of CME can be attributed to its utilization of429

a singular vector embedding strategy, which stands430

in contrast to ExtEND and GENRE, where there is431

a need to process the entire tokens for reranking.432

In comparing CME with the Cross-encoder and433

the Read-and-Select (ReS), it is evident that al-434

though CME may not achieve the same level of435

performance as these models, it significantly bene-436

fits from lower computational requirements. The437

Cross-encoder and ReS models necessitate a more438

intensive computational process, as they concur-439

rently encode each token from both the mention440

and the entity. In contrast, CME operates under a441

comparatively lighter computational burden.442

4.4.2 CME as a Second-Stage Retriever443

CME can be also used as a second-stage retriever,444

which can enhance recall over base retriever.445

Baselines Our baseline for comparison is the bi-446

encoder (Yadav et al. (2022)), upon which CME447

conduct the retrieval process. BM25 (Logeswaran448

et al. (2019)) is a variant of the traditional TF-IDF449

designed to measure the similarity between men-450

tions and entity descriptions. BLINK is a standard451

bi-encoder fine-tuned with the Zeshel dataset, as452

presented by Wu et al. (2020). SOM (Zhang and453

Stratos (2021)) can also function as a retriever as454

well as reranker. ArboEL, which depends on graph455

structures to derive fine-grained entity represen-456

tations (Agarwal et al. (2022)). Finally, we con-457

sider MVD as state-of-the-art, a multi-view entity458

retrieval system that necessitates the use of multi-459

ple embeddings for representing entities (Liu et al.460

(2023)). 461

Results In our two-stage retrieval framework, the 462

process begins with the bi-encoder retrieving a 463

larger candidate set from the entire entity set. Fol- 464

lowing this, CME takes over, narrowing down these 465

candidates to 64 or fewer. This approach is essen- 466

tial for effective retrieval: from the result in Table 3. 467

while the bi-encoder has a recall@64 of 87.95% on 468

the test set, the subsequent use of CME in this two- 469

stage process leads to a significant enhancement. 470

Specifically, applying CME as a retriever results 471

in a 2.8-point increase in recall@64, showing per- 472

formance that is on par with MVD. Notably, CME 473

outperforms other state-of-the-art (SOTA) models 474

in recall@k for all k except 64. Results show that 475

utilizing the model as a second-stage retriever, as 476

opposed to merely a CME reranker, thereby pro- 477

viding a more refined selection of candidates for 478

further reranking. 479

To assess the effectiveness of candidates generated 480

by CME, we analyzed the cross-encoder’s perfor- 481

mance with varying numbers of candidates: 8, 16, 482

and 64 from the bi-encoder, and 16 and 8 candi- 483

dates from CME, derived from the initial 64 can- 484

didates from the bi-encoder. As demonstrated in 485

Table 4, the cross-encoder showed optimal perfor- 486

mance with 16 candidates from CME. This find- 487

ing underscores CME’s role in not only improving 488

end-to-end accuracy by filtering out less relevant 489

candidates but also in its ability to provide can- 490

didates that are more accurately identified by the 491

cross-encoder. Moreover, this method significantly 492

reduces time complexity, as the cross-encoder pro- 493

cesses a smaller candidate set. 494

4.5 Ablation Study 495

Initialization of CME We conduct a systematic 496

investigation of different initialization methods for 497

our sentence encoder, as illustrated in Table 5. Ini- 498

tially, we employed the pre-trained BERT model 499

(Devlin et al., 2018) as a baseline. To test domain 500

adaptation capability of CME, we experimented 501

with other pre-trained models, such as utilizing a 502

bi-encoder fine-tuned for the Zeshel dataset (Yadav 503

et al., 2022) and Cocondenser (Guo et al., 2020), 504

a BERT-base-cased model further adapted for the 505

MS-MARCO dataset. Additionally, for the BERT- 506

large variant, we incorporated a bi-encoder fine- 507

tuned on the Wikipedia entity linking dataset (Wu 508

et al., 2020). The results, as shown in Table 5, in- 509

dicate that the fine-tuning of pre-trained models 510
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Table 4: Unnormalized accuracy of the Cross-encoder across various retriever configurations is presented. Instances
where the Cross-encoder showed superior performance with candidates generated by CME compared to those from
the Bi-encoder are underlined. The top-performing scenarios in each category are highlighted in bold. We measure
extra latency to the bi-encoder runtime.

# of Candidates Recall Unnormalized accuracy Extra
Bi-encoder CME Forgotten Realms Lego Star Trek Yugioh Macro latency
64 - 87.91 80.83 67.47 64.18 50.56 65.76 234ms
16 - 81.52 80.17 66.14 63.69 49.64 64.91 100ms
64 16 84.96 81.00 67.15 64.70 51.04 65.97 146ms
8 - 77.71 78.92 65.14 62.76 48.64 63.87 67ms
64 8 81.25 80.58 66.06 64.75 50.50 65.48 113ms

on domain-specific datasets significantly improves511

their performance. Also, freezing sentence encoder512

did not yield high performance, which yields fur-513

ther fine-tuning is required for domain adaptation.514

This highlights the effective domain adaptation ca-515

pabilities of language models when fine-tuned for516

new tasks, evidenced by the marked increase in un-517

normalized accuracy (U.Acc.) on both validation518

and test sets across different initialization meth-519

ods. The Cocondenser model, in particular, demon-520

strated the highest gains in performance, underscor-521

ing the benefits of targeted fine-tuning for specific522

language understanding tasks.523

Effect of CME Module We also examine the524

impact of the scale of BERT on the performance525

of our models, as detailed in Table 6. We initial-526

ized both the bi-encoder and the CME model with527

two variants: Cocondenser and BLINK-Wiki. Our528

findings reveal that simply training the bi-encoder,529

irrespective of the scale, did not lead to perfor-530

mance improvements. This outcome underscores531

the importance of the CME module in effectively532

adapting these models to the domain-specific tasks.533

Furthermore, an intriguing observation was534

made when the bi-encoder was scaled up to BERT-535

large. Contrary to expectations, this upscaling re-536

sulted in diminished performance. This suggests537

that increasing the parameter count of BERT does538

not inherently guarantee enhanced performance.539

On the other hand, the incorporation of the CME540

module with both BERT-base and BLINK-Wiki541

significantly improved performance, as evidenced542

by the higher unnormalized accuracy (U.Acc.) on543

both validation and test sets. This indicates the544

crucial role of the CME module in leveraging the545

capabilities of BERT for effective domain adapta-546

tion, transcending the mere increase in model size.547

Table 5: Comparison of unnormalized accuracy
(U.Acc.) over different initialization methods.

Sentence Encoder U.Acc.
Valid Test

BERT-base
BERT (Devlin et al. (2018)) 56.15 55.34
Bi-encoder (Yadav et al. (2022)) 58.04 56.20
Bi-encoder (w/o BERT fine-tuning) 56.35 51.32
Cocondenser (Guo et al. (2020)) 60.01 58.98

BERT-large
BERT (Devlin et al. (2018)) 58.61 58.07
BLINK-Wiki (Wu et al. (2020)) 60.65 59.48

Table 6: Unnormalized accuracy (U.Acc.) of bi-encoder
and CME for different sentence encoder

U.Acc.
Model Sentence Encoder Valid Test
Bi-encoder Cocondenser 49.32 44.01

BLINK-Wiki 49.12 46.10
CME BERT-base 60.01 58.98

BLINK-Wiki 60.65 59.48

5 Conclusion 548

Our study introduces the Comparing Multiple En- 549

tities (CME) model which can serve as both a re- 550

triever and a reranker for entity linking. By lever- 551

aging pre-computed entity embeddings, CME of- 552

fers scalability under an increasing size of candi- 553

dates. It acts as both an efficient reranker and an 554

enhanced retriever, improving recall and reranking 555

performance with minimal computational overhead. 556

This dual capability provides flexibility based on 557

user needs: higher accuracy through second-stage 558

retrieval or time-efficient reranking. CME’s effi- 559

ciency in processing, with notable improvements 560

in latency and computational burden, will make it a 561

practical choice for real-world applications. The ab- 562

lation studies further reveal the impact of different 563

sentence encoder initializations on the model’s per- 564

formance. Overall, the findings underscore CME’s 565

capability to improve retrieval accuracy and effi- 566

ciency in entity-linking tasks, offering valuable 567

insights for future model optimizations. 568
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Table 7: Staistics of Zero-shot Entity Linking (Zeshel)
dataset.

Domain # of Mentions # of Entities
American Football 3898 31929
Doctor Who 8334 40281
Fallout 3286 16992
Final Fantasy 6041 14044
Military 13063 104520
Pro Wrestling 1392 10133
Star Wars 11824 87056
World of Warcraft 1437 27677
Training 49275 332632
Coronation Street 1464 17809
Mupptes 2028 21344
Ice Hockey 2233 28684
Elder Scrolls 4275 21712
Validation 10000 89549
Forgotten Realms 1200 15603
Lego 1199 10076
Star Trek 4227 34430
Yugioh 3374 10031
Test 10000 70140
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