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Abstract

Popular approach in entity linking is a two-
step reranking process where bi-encoder first
retrieves top-K candidates and more power-
ful cross-encoder reranks them. While show-
ing performance boosts beyond entity link-
ing across multiple domains, such as open-
domain question answering and dialogue se-
lection, this two-step architecture suffers from
cross-encoder’s slow runtime and lack of scala-
bility making it impractical in real-time service.
To overcome this challenge, we propose com-
paring multiple entities (CME) framework which
compares multiple pre-computed entity embed-
dings jointly with the mention embedidng over
small layers of bi-directional transformer lay-
ers. CME shows that it is efficient, 29.3x faster
than cross-encoder, and effective reranker, 10%
improvement over bi-encoder. We additionally
show the effect of CME as second-stage retriever
which surpasses the performance of state-of-
the-art retrievers on various K. This in turn
shows that use of CME can make cross-encoder
reranking system faster (1.6x-2x) while main-
taining the performance. Lastly, we conduct
extensive comparison of CME to other reranker
and retrieval models including newly proposed
methods in the ablation study.

1 Introduction

The predominant approach for entity linking (EL)
consists of two stages: retrieval and reranking. Typ-
ically, a bi-encoder model is used to efficiently re-
trieve K relevant entities as candidates and then an
expressive cross-encoder model effectively reranks
the retrieved candidates, where K is significantly
smaller than the total number of entities (IV), i.e.,
K < N (Wuetal., 2020; Zhang and Stratos, 2021).
This framework emerges from the efficiency of bi-
encoder in searching over a large space, and the
superior performance of a cross-encoder(Nogueira
and Cho, 2019), at an expense of higher computa-
tional cost.

Cross-encoder captures fine-grained interactions
between mention and entity texts by jointly encod-
ing both pieces of text into a single embedding
using bi-directional tranformer and eventually pro-
duces a single compatibility score. However, this
deep interaction between tokens is computationally
expensive. In contrast, bi-encoder independently
encodes mentions and entities, then evaluates the
proximity of an entity to a mention via dot prod-
uct. This allows for the fast retrieval of the most
appropriate entitities, with the help of maximum
inner-product search (Malkov and Yashunin, 2018;
Johnson et al., 2019; Guo et al., 2020), for a men-
tion by storing large entity encodings in databases.

The typical reranking system with bi- and cross-
encoder faces two primary challenges. First,
the cross-encoder lacks the scalability to manage
a large number of K candidates, rendering the
reranking process vulnerable to error propagation.
Specifically, this occurs when the bi-encoder fails
to capture a true entity within a limited pool of re-
trieved candidates, leading to the inevitable failure
of the whole reranking system. The lack of scala-
bility of cross encoder stems from its requirement
to access the raw texts of both mention and entity.
Second, when considering serving times of appli-
cations that implement entity linking, the runtime
of cross-encoder makes it impractical as its speed
is two ordrers of magnitude slower than bi-encoder
(Humeau et al., 2019).

In this work, we propose a second-stage reranker
CME (Comparing Multiple Entities) which compares
mention embeding and pre-computed multiple en-
tity embeddings at once through a few layers of
bi-directional transformer layers. The idea is to
build a model that is scalable under incresing size
of K. To do so, we chose the strategy of comparing
multiple entities all together and actively utilizing
the precomputed entity embeddings as bi-encoder
does.

In order to investigate effectiveness of CME, we
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Figure 1: Overview of Models in the Entity Linking Framework: This figure illustrates the existing approaches (a, b,
and c) alongside the proposed ’Comparing Multiple Entities’ model. Areas shaded in blue indicate embeddings that

are available for offline indexing.

also investigated other strategies that can utilize
precomputed entity embeddings as well as revisit-
ing previous methods. We find that it is nontrival
to perform significantly better than bi-encoder in
the context of zero-shot entity linking. On the
other hand, the proposed CME framework shows
11% performance improvement at a marginal extra
latency, 0.22x of that bi-encoder and 0.03x of cross-
encoder’s latency (Table 1). In addition, we show
that CME can act as a second-stage retriever that
can provide higher recall than existing state-of-the-
art retrievers (Table 3). We further show that this
can reduce overall latency of cross-encdoer rerank-
ing system by 0.5-6x by reducing the number of
K candidates that cross-encoder examines while
performing similarly (Table 4).

The main contribution of the paper is as follows:

* We propose a novel CME framework that is
both effective in performance and effcient
by utilizing pre-computed entity embeddings
(§3). Additionally, we show that CME can ben-
efit from domain transfers of sentence encoder
while standard bi-encoder did not (§4.5).

* We provide an in-depth analysis of various
ways of utilizing pre-computed entity em-
beddings and show non-trivial to utilize pre-
computed entity embeddings (§4.5).

* We show that CME can act as a second-stage
retriever which can increase the recall of the
retriever at a marginal cost (0.2x runtime of bi-
encoder) and thus improve the cross-encoder
reranking performance as well.

* By presenting that CME can act as both
reranker and enhanced retriever, we provide
flexible options to users depending on their
need. For higher accuracy, one can utilize
CME as second-stage retriever, while for sce-

narios with a restricted time budget, CME can
be utilized as an efficient reranker.

2 Background and Related Work

2.1 Task Description

Entity linking Entity linking (EL), also known as
named entity disambiguation, refers to the process
of associating named entity mentions with unique
entities in a knowledge base, such as, Wikipedia
(Sevgili et al., 2022). Formally, given a mention
m in a context, an entity linking system predicts a
unique entity e; from an entity set £ = {e; };i=1,.. N
that matches the identity of mention m. It is as-
sumed that there exists an entity e; € £ where each
mention can be correctly mapped. The size of the
entity set, IV, is typically large. The entity linking
system is required to both efficiently search for rel-
evant entities in the large entity set and effectively
identify the correct entities.

Zero-shot entity linking We focus on a general
and challenging setting of the task, zero-shot en-
tity linking (zeshel) (Logeswaran et al., 2019). In
zeshel, training and testing sets are from separate
domains that are characterized by non-overlapping
entity sets Eyain and Eese Where Eyain N Erest = 0.
The entities are defined by short textual descrip-
tions. Zeshel systems thus need to comprehend
the semantics of unseen entity descriptions in order
to match entities with the contextualized mention
representations.

2.2 Existing Methods

Retrieve and rerank Entity linking systems
commonly comprises two stages: efficient retrieval
and effective reranking. Given a mention m in a
context sentence ctzt, a fast retriever will score
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Figure 2: Overview the proposed CME system that compares multiple entities at once for efficient and effective

entity linking.

the mention m with each entity e € £. Although
the retriever is designed to be fast, its top-1 accu-
racy tends to be suboptimal. Practitioners therefore
identify a candidate entity set

En = {em,lyem,Zy---aem,K} cée, (D

whose elements are K most relevant entities in en-
tity set £ according to the retriever, to be reranked.

A reranker sg(m, ctat, e, ;) is a model learned
to assign fine-grained matching scores between
a mention m and each candidate e, ; from the
relatively small set of entities E,,, predicted by the
retriever. It is an expressive model that is generally
slower but more accurate than the retriever. The
entity with the highest score,

ém = arg max sg(m, ctat, ey, ), 2)
€em,j cFEm

is finally output as the entity where mention m
should be linked.

Score functions Given a mention in a context
and an entity description, their matching score can
be computed by diverse functions. The retrieval
step requires fast functions while the reranking
step focuses more on accuracy. Logeswaran et al.
(2019) first retrieve candidate entities for a mention
using the bag-of-words BM25 retrieval function
and then use an expressive cross-encoder model to

score the retrieved candidates. The cross-encoder
is a transformer encoder model that inputs the men-
tion context tokens and entity description tokens
simultaneously to produce a matching score.

Gillick et al. (2019) concurrently uses a bi-
encoder architecture to embed mention context to-
kens and entity description tokens separately and
compute the dot point of the embeddings. The men-
tion embedding only needs to be calculated once
when compared to all the entities and vice versa.
The bi-encoder allows fast maximum inner-product
search (MIPS) but is less expressive than the cross-
encoder (Figure 1(a-b)). BLINK (Wu et al., 2020)
combines the advantages of both types of scores
functions, first using a bi-encoder for retrieving
relevant entities and then using a cross-encoder to
rerank them.

Humeau et al. (2019) proposes a poly-encoder
that learns global rather than token level self-
attention features to be faster than the cross-
encoder and more accurate than the bi-encoder.
Zhang and Stratos (2021) proposes negative sam-
pling strategies to improve the bi-encoder training
and proposes a sum-of-max late fusion model as
a reranker that is both faster and more accurate
than the poly-encoder. We adopt their sampling
strategies and explore a previously overlooked op-
portunity to achieve a reranker that is more accurate
than the sum-of-max model while remaining much



more efficient than the cross-encoder. In particular,
we proposes to process multiple candidate entities
(CME) at once to rerank them.

Other entity linking systems We also compare
our method with the following methods for com-
pleteness. Barba et al. (2022) revisits entity linking
as a text extraction task. De Cao et al. (2020) is
an autoregressive model which generates the title
of the corresponding entity with constrained beam
search. Our proposed CME is more accurate than
both. Xu et al. (2023) proposes a reranker that con-
sists of a cross-encoder reader module and a selec-
tion module that extracts candidate tokens based on
embeddings from the reading module. While this
method is more accurate than the cross-encoder,
it is even slower than the cross-encoder, which al-
ready has almost 30 x more extra latency than our
CME.

3 Proposed Method

We propose an entity linking system consisting of
a bi-encoder retriever and a CME reranker.

3.1 Model Architectures

Sentence Encoder After identifying the candi-
date entity set F,,, our model begins from obtain-
ing embeddings for the context sentence tokens
Xm, Which contains the mention m, and for the
entity description sentence tokens Xe,, .. Similar
to bi-encoder, embeddings are derived for both the
context sentence (h$¢™) encompassing the mention
and the entity description sentence (hgfr’:;) using
respective context and entity encoders, Enc,; and
Encent. The embeddings are calculated as follows:

hfﬁ”t = aggregator (EnCctxt (Xm)) )
h™" = aggregator (Encent (Xe,,,)) (4

Following the approach in Wu et al. (2020), the
embeddings for both the context sentence and the
entity description are limited to a maximum of
128 word-piece tokens. This includes the use of
special tokens such as [CLS], [SEP], and custom
tokens that denote the locations of mentions and
entities'. The aggregator function extracts the
[CLS] token embedding from the last layer of the
transformer encoder.

'These include [mention_start], [mention_end],
and [ENT] tokens
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Analogous to the bi-encoder retrieval, the final pre-
diction e}, is determined by computing the dot
product score between the mention and entity em-
beddings:

.
e}, = argmax hGME . (hgﬂi\/‘[E> (6)
em,]-GEm 7

3.2 Training

Optimization Given an entity set for training
E,, = {€m,1,€m2,-..,Em K}, score function sg
that assigns a score to each entity in the set. The
score function outputs a probability distribution
over the entities, representing the likelihood of each
entity being the correct one. The loss function for
our model is a combination of multi-class cross-
entropy, which is regularized by Kullback-Leibler
(KL) divergence between the reranker’s scores and
the retriever’s scores. The loss function is formu-
lated as follows:

K

L(m, En) ==\ Y yilog(p:)+
=1

K
A2 Y pilog (?)

=1

(M

where y; represents the ground truth label for each
entity e, ;, p; is the predicted probability for entity
em,; from the score function sy, g; is the probability
of the same entity from the retriever’s distribution,
and \; and )\, are coefficients forming a convex
combination of the two losses.

Negative Sampling In contrast to previous stud-
ies (Wu et al. (2020); Xu et al. (2023)), which train
a reranker using a fixed set of top-k candidates
from the retriever, our approach adopts a technique
similar to hard negative sampling for training re-
triever (Zhang and Stratos (2021)). Some negative
entities are sampled based on the retriever’s scoring
for mention-entity pairs:

Vje{l,...,K}\ {gold index},

eXp(=‘3retrit=,Vt=,r <m7 ém,j ) )

em)j ~ K ~
Zkzl,k#gold index exp(Sretriever (172, €m,k )

®)



To provide competitive and diverse negatives
for the reranker, p% of the negatives are fixed as
the top-k negatives, while the others are sampled
following the score distribution.

Sentence Encoder Initialization The initial
starting point of the sentence encoder can signif-
icantly impact performance. The transformer en-
coder may be initialized with BERT (Devlin et al.
(2018)) or with other BERT-based fine-tuned mod-
els. These include models fine-tuned on the Zeshel
dataset (Yadav et al. (2022)) or other datasets (Gao
and Callan (2022) ; Wu et al. (2020)).

3.3 Inference

In contrast to cross-encoders where entity embed-
dings are not saved in advance (Logeswaran et al.,
2019; Wu et al., 2020), our model can compute and
index entity sentence embeddings as it is processed
independently to context information (see Figure 2).
During inference, it is only required to compute the
context sentence embedding, obtain embeddings
for each mention and entity via the CME module,
and then identify the candidate with the highest
scores through an inner-product calculation.

4 Experiments

4.1 Dataset

We use the zero-shot entity linking dataset (zeshel)
created by Logeswaran et al. (2019) from Wikia?.
The dataset consists of 16 domains, divided into 8
for training, 4 for validation and testing. It includes
49,275 labeled mentions in training and 10,000
unseen mentions each in validation and test sets.
This dataset challenges linking entity mentions to
unseen entities based on their descriptions, empha-
sizing zero-shot inference. The entity domain, also
called “world”, varying from 10K to 100K enti-
ties, is unique to each domain, testing the model’s
ability to generalize to new entities, with detailed
statistics presented in Table 7 in appendix.

4.2 Training Details

All CME models are trained for 5 epochs using the
AdamW optimizer. The learning rate is tuned over
the set {1e-5, 2e-5, 5e-5}, the ratio of fixed nega-
tives, denoted as p, is chosen from the set {0, 50}.
The best model is selected based on its performance
on the development set. The number of negatives

“Now known as Fandom: https://www.fandom.com

is 63 and sampled from top-1024 candidates re-
trieved from bi-encoder. The effective batch size
is 8, with batch size 2 and gradient accumulation
steps 4. The training process takes 4 hours on a
single NVIDIA A100 GPU. The loss coefficients
are set as \; = 0.2 and Ay = 0.8. The number of
layers and multi-head attention for CME module is
two and four, respectively.

4.3 Evaluation Metric

In the evaluation of a retriever, we measure its ef-
fectiveness using recall @k, which represents the
percentage of the gold entity found within the top-k
retrieved entities. For evaluating a reranker, the pri-
mary metric is top-1 accuracy, since there is only
one correct entity corresponding to each mention.
The accuracy is categorized into unnormalized and
normalized accuracy. Unnormalized accuracy is
computed across all mention instances, while nor-
malized accuracy is calculated for those mention
sets that are successfully retrieved by the retriever.
Our model was tested on each domain in validation
and test sets. Performance metrics over each set
were then calculated using either macro- or micro-
averaging across different domains.

4.4 Results
4.4.1 CME as a reranker

We evaluated our model’s reranking performance
using the top-64 candidates generated by bi-
encoder retrievers (Yadav et al. (2022)) and BM25
(Logeswaran et al. (2019)).

Baselines We conducted a comparative analy-
sis of our model with several reranking methods.
Cross-encoder (Logeswaran et al. (2019); Wu et al.
(2020); Yadav et al. (2022)) is recognized as one
of the most powerful baselines but is resource-
intensive, as it jointly encodes context and entity to-
kens. The sum-of-max method (Zhang and Stratos
(2021)), calculates the relevance score utilizing
the entirety of mention and entity tokens (Khattab
and Zaharia (2020)). Poly-encoder (Humeau et al.
(2019)) is the model that utilizes attention mecha-
nism between entity embedding and multiple con-
text representation. Bi-encoder, a simpler approach,
determines relevance scores by the dot product of
individual mention and entity embeddings. Ex-
tEND (Barba et al. (2022)) utilizes self-attention
between mentions and entities, while making use
of longformer Beltagy et al. (2020) to carry out self-
attention between all tokens from each mention and



Table 1: Macro-Averaged accuracy (%), reranking latency, and index sizes from candidates from Bi-encoder (Yadav
et al. (2022)) To elucidate the relative latency associated with the reranking process, we express the reranking
latency as extra relative latency to the bi-encoder runtime (36.3 ms)under the same experiment setup. The best
result is denoted in bold and the second-best result is underlined  is reported at Zhang and Stratos (2021), which
is evaluated over candidate set with recall@64 91.93% for validation set and 83.48% for test set. base means
BERT-base based model and large means BERT-large based model.

Unnormalized acc. Normalized acc. Extra Relative
Method Valid Test Valid Test latency index size
Cross-encoder 66.86 65.76 72.64 74.46 +6.46x -
Sum-of-max " (Zhang and Stratos (2021)) 59.35 57.04 65.38 65.24 +0.02x  10.9x
Sum-of-max’ (w/o indexing) 59.35 57.04 65.38 65.24 +4.70x -
Poly-encoder 167 (Zhang and Stratos (2021)) 55.90 54.87 61.56 62.65 +0.03x 1Ix
Poly-encoder 1287 (Zhang and Stratos (2021)) 5598 55.17 61.67 62.95 +0.03x  Ix
Bi-encoder 5545 52.95 59.71 60.32 - 1x
Comparing Multiple Entities (large) 60.65 59.48 65.99 67.15 4+0.28x  1.4x
Comparing Multiple Entities (base) 60.01 58.98 65.06 66.69 4+0.22x  1.0x

Table 2: Test Normalized accuracy of CME model over retrieved candidates from BM25.

Method Forgotten Realms Lego Star Trek Yugioh Macro Acc. Micro Acc.

Low Latency Methods

ExtEnD (Barba et al. (2022)) 79.62 65.20 73.21 60.01 69.51 68.57
GENRE (De Cao et al. (2020)) 55.20 4271 55.76 34.68 47.09 47.06
Comparing Multiple Entities (large; Ours) 84.30 70.43 75.08 62.54 73.08 71.99
Comparing Multiple Entities (base; Ours) 83.20 70.63 75.75 64.83 73.35 72.41
High Latency Methods

Cross-encoder (Wu et al. (2020)) 87.20 75.26 79.61 69.56  77.90 77.07
ReS (Xu et al. (2023)) 88.10 78.44 81.69 75.84  81.02 80.40

candidate. GENRE (De Cao et al. (2020)) operates
entity linking using a language model, generating
entity titles corresponding to each mention. Fi-
nally, ReS (Xu et al. (2023)) uses a reading module
and a selecting module, where the reading mod-
ule functions as a cross-encoder and the selecting
module predicts the entity on top of concatenated
cross-encoder embeddings.

For candidates from bi-encoder we evaluated
the CME against various baseline models, includ-
ing the cross-encoder, sum-of-max, and bi-encoder.
The bi-encoder checkpoint from Yadav et al. (2022)
performed macro-averaged recall@64 92.04% on
the validation set and 86.8% on the test set. Also,
we’ve loaded cross-encoder from the same check-
point. CME exhibited a significant improvement in
unnormalized accuracy compared to the bi-encoder.
This increase attributed to the integration of sen-
tence encoder embeddings enhanced by a self-
attention mechanism, leading to an accuracy in-
crease of approximately 5-6 points.

Additionally, our model surpassed the performance
of multi-vector models such as the sum-of-max and
poly-encoder. In contrast to the sum-of-max, which

either requires an index size 7-10 times larger or op-
erates 16-21 times slower without indexing, CME
demonstrated superior efficiency and effectiveness
in reranking tasks while saving computation and
memory resources. Although the poly-encoder
showed lower latency compared to our model, its
performance was relatively inferior, almost compa-
rable with the bi-encoder.

When compared to the cross-encoder, CME was
found to be less accurate, with a difference of about
6 points in unnormalized accuracy. However, it
offered a considerable reduction in latency. This
decrease in time complexity renders CME a more
practical choice, especially considering it only ne-
cessitates 3-4% of the time required by the cross-
encoder to run. The accuracy, additional latency,
and index size are reported in Table 1.

For candidates from BM25 we also conduct
reranking on candidates from BM25, which was
released by Logeswaran et al. (2019). We reported
accuracy on each world of test set in Table 2. In the
comparison between CME and other models such
as ExXtEND and GENRE, it has been observed that
CME exhibits superior performance. Besides this



Table 3: Recall@k on the Zeshel test set. The best
result is denoted in bold and the second-best result is
underlined. Numbers in parentheses (e.g., CME(128))
indicate the number of candidates from which CME
selects, initially retrieved by the bi-encoder. * is re-
implemented bi-encoder from Yadav et al. (2022) which
is used for generating candidates for CME

Retriever R@1 R@4 R@8 R@16 R@32 R@64
BM25 - - - - 69.26
BLINK - - - - 82.06
Bi-encoder* 5141 7049 7634 8044 83.81 86.8
SOM - - - - 89.62
MuVER 4349 68.78 7587 77.65 8586  89.52
Arbo-EL 5031 68.34 7426 7840 82.02 85.11
MVD 5251 7343 79.74 8435 88.17 91.55
CME (128) 59.18 76.70 8135 8525 87.74 89.52
CME (256) 59.13 76.60 81.06 85.35 88.13 90.40
CME (512) 59.01 7648 81.00 8507 88.25 90.75

advantage, our model comes with another advan-
tage of a reduced computational burden. The effi-
ciency of CME can be attributed to its utilization of
a singular vector embedding strategy, which stands
in contrast to EXtEND and GENRE, where there is
a need to process the entire tokens for reranking.
In comparing CME with the Cross-encoder and
the Read-and-Select (ReS), it is evident that al-
though CME may not achieve the same level of
performance as these models, it significantly bene-
fits from lower computational requirements. The
Cross-encoder and ReS models necessitate a more
intensive computational process, as they concur-
rently encode each token from both the mention
and the entity. In contrast, CME operates under a
comparatively lighter computational burden.

4.4.2 CME as a Second-Stage Retriever

CME can be also used as a second-stage retriever,
which can enhance recall over base retriever.

Baselines Our baseline for comparison is the bi-
encoder (Yadav et al. (2022)), upon which CME
conduct the retrieval process. BM25 (Logeswaran
et al. (2019)) is a variant of the traditional TF-IDF
designed to measure the similarity between men-
tions and entity descriptions. BLINK is a standard
bi-encoder fine-tuned with the Zeshel dataset, as
presented by Wu et al. (2020). SOM (Zhang and
Stratos (2021)) can also function as a retriever as
well as reranker. ArboEL, which depends on graph
structures to derive fine-grained entity represen-
tations (Agarwal et al. (2022)). Finally, we con-
sider MVD as state-of-the-art, a multi-view entity
retrieval system that necessitates the use of multi-
ple embeddings for representing entities (Liu et al.

(2023)).

Results In our two-stage retrieval framework, the
process begins with the bi-encoder retrieving a
larger candidate set from the entire entity set. Fol-
lowing this, CME takes over, narrowing down these
candidates to 64 or fewer. This approach is essen-
tial for effective retrieval: from the result in Table 3.
while the bi-encoder has a recall @64 of 87.95% on
the test set, the subsequent use of CME in this two-
stage process leads to a significant enhancement.
Specifically, applying CME as a retriever results
in a 2.8-point increase in recall @64, showing per-
formance that is on par with MVD. Notably, CME
outperforms other state-of-the-art (SOTA) models
in recall@k for all k except 64. Results show that
utilizing the model as a second-stage retriever, as
opposed to merely a CME reranker, thereby pro-
viding a more refined selection of candidates for
further reranking.

To assess the effectiveness of candidates generated
by CME, we analyzed the cross-encoder’s perfor-
mance with varying numbers of candidates: 8, 16,
and 64 from the bi-encoder, and 16 and 8 candi-
dates from CME, derived from the initial 64 can-
didates from the bi-encoder. As demonstrated in
Table 4, the cross-encoder showed optimal perfor-
mance with 16 candidates from CME. This find-
ing underscores CME’s role in not only improving
end-to-end accuracy by filtering out less relevant
candidates but also in its ability to provide can-
didates that are more accurately identified by the
cross-encoder. Moreover, this method significantly
reduces time complexity, as the cross-encoder pro-
cesses a smaller candidate set.

4.5 Ablation Study

Initialization of CME We conduct a systematic
investigation of different initialization methods for
our sentence encoder, as illustrated in Table 5. Ini-
tially, we employed the pre-trained BERT model
(Devlin et al., 2018) as a baseline. To test domain
adaptation capability of CME, we experimented
with other pre-trained models, such as utilizing a
bi-encoder fine-tuned for the Zeshel dataset (Yadav
et al., 2022) and Cocondenser (Guo et al., 2020),
a BERT-base-cased model further adapted for the
MS-MARCO dataset. Additionally, for the BERT-
large variant, we incorporated a bi-encoder fine-
tuned on the Wikipedia entity linking dataset (Wu
et al., 2020). The results, as shown in Table 5, in-
dicate that the fine-tuning of pre-trained models



Table 4: Unnormalized accuracy of the Cross-encoder across various retriever configurations is presented. Instances
where the Cross-encoder showed superior performance with candidates generated by CME compared to those from
the Bi-encoder are underlined. The top-performing scenarios in each category are highlighted in bold. We measure

extra latency to the bi-encoder runtime.

# of Candidates Recall Unnormalized accuracy Extra
Bi-encoder CME Forgotten Realms Lego  Star Trek  Yugioh | Macro | latency
64 - 87.91 | 80.83 67.47 64.18 50.56 65.76 | 234ms
16 - 81.52 | 80.17 66.14  63.69 49.64 64.91 | 100ms
64 16 84.96 | 81.00 67.15 64.70 51.04 65.97 | 146ms
8 - 77.71 | 78.92 65.14 62.76 48.64 63.87 | 67ms
64 8 81.25 | 80.58 66.06 64.75 50.50 65.48 | 113ms
on domain-specific datasets significantly improves ~ Table 5: Corpparisor} _O_f ‘um‘mrmalized accuracy
their performance. Also, freezing sentence encoder (U.Acc.) over different initialization methods.
did not yield high performance, which yields fur- Sentence Encoder UAcc.
ther fine-tuning is required for domain adaptation. Valid  Test
This highlights the effective domain adaptation ca- i BERT-base
L BERT (Devlin et al. (2018)) 56.15 5534
pabilities of language models when fine-tuned for Bi-encoder (Yadav et al. (2022)) 58.04 5620
new tasks, evidenced by the marked increase in un- Bi-encoder (w/0 BERT fine-tuning)  56.35  51.32
normalized accuracy (U.Acc.) on both validation Cocondenser (Guo et al. (2020)) 60.01  58.98
. e e . BERT-large
and test sets across different initialization meth- BERT (Devlin ot al. (2018)) 5361 53.07
ods. The Cocondenser model, in particular, demon- BLINK-Wiki (Wu et al. (2020)) 60.65  59.48

strated the highest gains in performance, underscor-
ing the benefits of targeted fine-tuning for specific
language understanding tasks.

Effect of CME Module We also examine the
impact of the scale of BERT on the performance
of our models, as detailed in Table 6. We initial-
ized both the bi-encoder and the CME model with
two variants: Cocondenser and BLINK-Wiki. Our
findings reveal that simply training the bi-encoder,
irrespective of the scale, did not lead to perfor-
mance improvements. This outcome underscores
the importance of the CME module in effectively
adapting these models to the domain-specific tasks.

Furthermore, an intriguing observation was
made when the bi-encoder was scaled up to BERT-
large. Contrary to expectations, this upscaling re-
sulted in diminished performance. This suggests
that increasing the parameter count of BERT does
not inherently guarantee enhanced performance.
On the other hand, the incorporation of the CME
module with both BERT-base and BLINK-Wiki
significantly improved performance, as evidenced
by the higher unnormalized accuracy (U.Acc.) on
both validation and test sets. This indicates the
crucial role of the CME module in leveraging the
capabilities of BERT for effective domain adapta-
tion, transcending the mere increase in model size.

Table 6: Unnormalized accuracy (U.Acc.) of bi-encoder
and CME for different sentence encoder

U.Acc.
Model Sentence Encoder  Valid Test
Bi-encoder Cocondenser 49.32 44.01
BLINK-Wiki 49.12 46.10
CME BERT-base 60.01 58.98
BLINK-Wiki 60.65 59.48

5 Conclusion

Our study introduces the Comparing Multiple En-
tities (CME) model which can serve as both a re-
triever and a reranker for entity linking. By lever-
aging pre-computed entity embeddings, CME of-
fers scalability under an increasing size of candi-
dates. It acts as both an efficient reranker and an
enhanced retriever, improving recall and reranking
performance with minimal computational overhead.
This dual capability provides flexibility based on
user needs: higher accuracy through second-stage
retrieval or time-efficient reranking. CME’s effi-
ciency in processing, with notable improvements
in latency and computational burden, will make it a
practical choice for real-world applications. The ab-
lation studies further reveal the impact of different
sentence encoder initializations on the model’s per-
formance. Overall, the findings underscore CME’s
capability to improve retrieval accuracy and effi-
ciency in entity-linking tasks, offering valuable
insights for future model optimizations.
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A Statistics of Zero-shot Entity Linking
Dataset



Table 7: Staistics of Zero-shot Entity Linking (Zeshel)

dataset.

Domain # of Mentions # of Entities
American Football 3898 31929
Doctor Who 8334 40281
Fallout 3286 16992
Final Fantasy 6041 14044
Military 13063 104520
Pro Wrestling 1392 10133
Star Wars 11824 87056
World of Warcraft 1437 27677
Training 49275 332632
Coronation Street 1464 17809
Mupptes 2028 21344
Ice Hockey 2233 28684
Elder Scrolls 4275 21712
Validation 10000 89549
Forgotten Realms 1200 15603
Lego 1199 10076
Star Trek 4227 34430
Yugioh 3374 10031
Test 10000 70140
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