On the In-context Generation of Language Models

Anonymous ACL submission

Abstract

 Large language models (LLMs) are found to have the ability of in-context generation (ICG): when they are fed with an in-context prompt containing a somehow similar examples, they can implicitly discover the pattern of them and then complete the prompt in the same pat- tern. ICG is curious, since language models are not completely trained in the way same as the in-context prompt, and the distribution of examples in the prompt differs from that of se- quences in the pretrained corpora. This paper provides a systematic study of the ICG abil- ity of language models, covering discussions about its source and influential factors, in the view of both theory and empirical experiments. Concretely, we first propose a plausible latent variable model to describe the distribution of the pretrained corpora, and then formalize ICG as a problem of next topic prediction. With this **framework**, we can prove that the repetition na- ture of a few topics ensures the ICG ability on them theoretically. Then, we use this control- lable pretrained distribution to generate several medium-scale synthetic datasets (token scale: 2.1B~3.9B) and experiment with different set- tings of Transformer architectures (parameter 027 scale: 4M~234M). Our experimental results further offer insights into how factors of data and model architectures influence ICG.

030 1 Introduction

 As the data and parameter scale continue to in- crease, large language models (LLMs) have shown strikingly emergent abilities [\(Wei et al.,](#page-9-0) [2022a\)](#page-9-0), where one of the most exciting ones is in-context learning (ICL) [\(Brown et al.,](#page-8-0) [2020\)](#page-8-0). Given an *in- context prompt* that concatenates a few *in-context examples* and a query input, LLMs can somehow implicitly guess the "topic" of those examples and complete the query input in the desired way. Fur- thermore, LLMs can imitate those examples using 041 the topic learned in context [\(Meyerson et al.,](#page-8-1) [2023\)](#page-8-1). For instance, Llama2-13B [\(Touvron et al.,](#page-9-1) [2023\)](#page-9-1) **042** is able to generate plausible sequences of the topic **043** of in-context examples, as shown in Figure [1.](#page-1-0) This **044** in-context generation (ICG) ability forms the foun- **045** dation of multiple few-shot prompting methods like **046** [I](#page-9-2)CL and its variants like Chain-of-thoughts [\(Wei](#page-9-2) **047** [et al.,](#page-9-2) [2022b\)](#page-9-2). **048**

Intuitively, one might comment that LLMs learn **049** the ICG ability from data in the *repetition mode*, **050** which roughly refers to a type of text concatenated **051** with sequences under the same topic. This is true to 052 some extent. As known, typical pretrained corpora **053** contain (e.g. CommonCrawl^{[1](#page-0-0)}) internet data which 054 has an unneglectable portion of array-page data **055** such as IMDB review pages^{[2](#page-0-1)}. After preprocess- 056 ing, these pages are converted to repetition mode **057** data, as shown in Figure [1a](#page-1-0). However, this isn't **058** enough to explain the ICG ability, since LLMs can **059** also generate sequences of in-context learned top- **060** ics that don't appear to repeat and even are unseen **061** in the pretrained corpora. For example, Figure [1](#page-1-0) **062** shows sampled completions of Llama2-13B given 063 in-context prompts of different types of topics: **064**

1. The first one is a *repeated topic* called "movie **065** review" (Figure [1a](#page-1-0)), where Llama2-13B naturally **066** has the ICG ability on it since this topic appears to **067** repeat in the pretrained corpora as mentioned. **068**

2. The second type *nonrepeated topic* refers to **069** those that appear in the pretrained corpora but never **070** repeat, e.g., forward method in any class inherited **071** from nn.Module of Pytorch [\(Paszke et al.,](#page-8-2) [2019\)](#page-8-2) **072** code (Figure [1b](#page-1-0)). However, Llama2-13B can also **073** generate plausible code of forward method when **074** prompting a few ones. **075**

3. The last type *unseen topic* includes those that **076** never appear in the pretrained corpora. For exam- **077** ple, "unnatural addition" generates 2-digit arith- **078**

¹ <https://commoncrawl.org>

² <https://www.imdb.com>

Figure 1: ICG examples (generated from Llama2-13B) of different kinds of topics.

 metic expressions that input subtraction but expect addition (like "1-1=2"), which is intuitively be- lieved to never be seen in the pretrained corpora [\(Rong,](#page-8-3) [2021\)](#page-8-3). However, Llama2-13B can also rec- ognize this topic and generate plausible sequences in context, as shown in Figure [1c](#page-1-0).

 The above results show that LLMs can gener- alize the repetition mode to nonrepeated and un- seen topics. We term this phenomenon as the topic generalization of ICG, abbreviated as ICG- generalization. ICG-generalization is curious be- cause LLMs are not explicitly trained in the way they test. The biggest challenge of studying ICG and its generalization is that the true pretrained dis- tribution is not accessible. Thus, we don't know the topic of a span or whether it appears to repeat, mak- ing it difficult to evaluate the ICG abilities of LLMs. To address this, we turn to synthetic data generated from a known and controlled pretrained distribution [\(Bowman et al.,](#page-8-4) [2015;](#page-8-4) [McCoy et al.,](#page-8-5) [2018;](#page-8-5) [White](#page-9-3) [and Cotterell,](#page-9-3) [2021;](#page-9-3) [Xie et al.,](#page-9-4) [2021;](#page-9-4) [Papadimitriou](#page-8-6) [and Jurafsky,](#page-8-6) [2023;](#page-8-6) [Jumelet and Zuidema,](#page-8-7) [2023\)](#page-8-7). The distribution is a hierarchical latent variable model (LVM) as shown in Figure [2,](#page-2-0) where a docu- ment is guided by two kinds of latent variables. The distribution is not only plausible to explain true pre- trained data but also convenient for analysis since it decouples different levels of uncertainties.

107 Through the proposed pretrained distribution, we **108** can naturally formalize ICG as a problem of next **109** topic prediction, and then conduct mathematical analysis. We first theoretically prove that (Theorem **110** [1\)](#page-3-0), under some mild assumptions, if the language **111** model fits the pretrained distribution well, then **112** it's guaranteed to have the ICG ability on repeated **113** topics in terms of convergence in probability. As **114** a result, the ICG distribution (i.e., the generative **115** distribution conditioned on the in-context prompt) **116** converges to the true topic-paragraph distribution **117** in probability. Next, we study ICG-generalization **118** via exhaustive experiments, revealing that ICG- **119** generalization is caused by both factors of data **120** and models. Concretely, we use the controllable **121** pretrained distribution to generate several synthetic **122** datasets (token scale: 2.1B~3.9B), and train Trans- **123** former [\(Vaswani et al.,](#page-9-5) [2017\)](#page-9-5) language models with **124** different settings (parameter scale: 4M~234M). Ex- **125** periments show that data compositionality, propor- **126** tion of repeated topics, Transformer's parameter **127** scale, and window size play crucial roles in en- **128** abling ICG-generalization, while the data topic **129** uncertainty and Transformer's attention head size **130** have few influences^{[3](#page-1-1)}. Our study provides insights 131 to better understanding the ICG ability and LLMs. **132**

2 Settings **¹³³**

2.1 Pretrained Distribution **134**

We assume the pretrained distribution is a hierarchi- **135** cal LVM as shown in Figure [2,](#page-2-0) where a document is **136**

³These results are consistent with previous works about attention head pruning [\(Michel et al.,](#page-8-8) [2019;](#page-8-8) [Voita et al.,](#page-9-6) [2019\)](#page-9-6) and the importance of large attention size [\(Ratner et al.,](#page-8-9) [2023\)](#page-8-9).

Figure 2: Bayesian network of the pretrained distribution, where the non-shaded nodes are latent variables.

 generated via the following steps: 1) Draw a latent **mode** $\alpha \in A$ from the mode prior $p(\alpha)$. 2) Draw a **latent outline** $\beta_{1:N} \in B^N$ containing topics of dif- ferent paragraphs from the Markov mode-outline distribution $p(\beta_{1:N}|\alpha)$ parameterized by the mode α . 3) Sample each paragraph $x_i \in \Sigma^*$ (Σ is the vocabulary) individually from the topic-paragraph distribution $p(x|\beta_i)$, and concatenate them with delimiters. The joint distribution of this LVM is:

$$
p(\alpha, \beta_{1:N}, x_{1:N}) = p(\alpha)p(\beta_{1:N}|\alpha) \prod_{i=1}^{N} p(x_i|\beta_i)
$$
\n(1)

 This distribution is plausible because: 1) It has a clear realistic interpretation of how humans write documents. Generally, humans would first deter- mine the literature genre (e.g., narrative, letter, and so on), and then plan a specific structure of that genre before writing, as shown in Figure [1.](#page-1-0) Such **a** process is modeled via the mode prior $p(\alpha)$ and 154 the mode-outline distribution $p(\beta_{1:N}|\alpha)$. 2) It is capable of describing any language marginal dis- tribution via the marginalization over latent vari- ables. Also, it is convenient to analyze because of disentanglement: two kinds of uncertainties, topic-transition and generation of paragraphs are **handled by two separated models** $p(\beta_n|\beta_{1:n-1}, \alpha)$ and $p(x_n|\beta_n)$, respectively, but not the entangled **marginal** $p(x_{1:N})$.

163 2.1.1 Assumptions

 The pretrained distribution has three additional assumptions. Firstly, as mentioned, typical pre-166 trained distributions for LLMs include the repe-167 tition mode $\hat{\alpha} \in A$ that only generates repeated **outlines** β^N ($\beta \in B$) (β^N represents a N-length outline that each topic within is β). This formally raises the following:

171 Assumption 1. *There exists a mode* $\hat{\alpha} \in A$ **172** *called repetition mode such that* $p(\beta_{n+1}|\beta_n, \hat{\alpha}) =$ **173 1** $(\beta_{n+1} = \beta_n)$ *for all timesteps n. Other modes*

 $\alpha \in A/\hat{\alpha}$ are called continuous modes, since the **174** *outline under them seems to shift gradually and* **175** *continuously.* **176**

Secondly, we have to ensure that different modes **177** and topics are different to get rid of redundancy. **178** That is, they should be distinguished in terms of **179** distance measure of distribution: **180**

Assumption 2. *For two different modes* $\alpha, \alpha' \in A$ **181** *and an arbitrary context* $x_{1:n}$ *, define:* **182**

$$
\text{KL}_n\left(\alpha||\alpha'\right) := \sum_{x} p(x|x_{1:n}, \alpha) \log \frac{p(x|x_{1:n}, \alpha)}{p(x|x_{1:n}, \alpha')}
$$
\n
$$
(2)
$$

We assume that $KL_n(\alpha||\alpha') \geq \log c_1 > 0$ *. Like-* 184 *wise, for two different topics* $\beta, \beta' \in B$ *, define:* 185

$$
KL(\beta||\beta') := \sum_{x} p(x|\beta) \log \frac{p(x|\beta)}{p(x|\beta')} \qquad (3)
$$

(3) **186**

We assume that $KL(\beta||\beta') \ge \log c_2 > 0$. 187

Thirdly, for convenience and without loss of **188** plausibility, we assume that: **189**

Assumption 3. For each paragraph $x \in \Sigma^*$, its 190 *support from any topic* $\beta \in B$ *is bounded:* $0 <$ 191 $c_3 \leq p(x|\beta) \leq c_4 < 1.$ **192**

2.1.2 Topic Types 193

With Assumption [1,](#page-2-1) the likelihood of any repeated 194 outline $β^N$ under the repetition mode $\hat{α}$ only de- 195 pends on the topic itself: **196**

$$
p(\beta^N|\hat{\alpha}) = p(\beta_1 = \beta|\hat{\alpha}) := p(\beta|\hat{\alpha}) \tag{4}
$$

where $p(\beta|\hat{\alpha})$ is the *repetition prior* measuring how 198 often the topic β is chosen to repeat under mode $\hat{\alpha}$. **199** Analogously, let $p(\beta)$ be the *topic prior* assessing 200 the frequency of the topic β : **201**

$$
p(\beta) := \sum_{\alpha \in A} p(\beta | \alpha) p(\alpha) \tag{5}
$$

According to the appearance, we can formally **203** group topics $\beta \in B$ into three mutually exclusive 204 sets, as shown in Figure [1:](#page-1-0) **205**

1. Repeated set R . $\forall \beta \in R$, $p(\beta|\hat{\alpha}) > 0$. That 206 is, each topic within appears to repeat in the pre- **207** trained distribution. By intuition, repeated topics **208** account for a very small proportion of all topics in **209** realistic data, i.e., $r_R = |R|/|B|$ is small. **210**

2. Nonrepeated set C . $\forall \beta \in C$, $p(\beta|\hat{\alpha}) =$ 211 $0, p(\beta) > 0$. In other words, this set contains 212 topics that don't repeat but appear in the pretrained **213** corpora. **214**

, **266**

(12) **279**

. **289**

215 3. Unseen set U . $\forall \beta \in U$, $p(\beta) = 0$. Topics in **216** this set are never seen in the pretrained corpora.

217 2.2 Problem Formalization

218 **Consider a language model** p_{LM} **trained on samples 219** of the above pretrained distribution p. The ICG **220** ability could be formalized as:

 Hypothesis 1. *Given a language model* p_{LM} *trained on the pretrained distribution* p *and an in-context prompt* $x_{1:N}$ *, where each sample* $x_n \sim$ $p(x|\hat{\beta})$, the in-context topic-repetition rate (ICTR), *i.e., the probability that the language model generates a paragraph belong to topic* **²²⁶** βˆ *when prompting with* $x_{1:N}$ *is somehow close to 1:*

228
$$
p_{LM}(\hat{\beta}|x_{1:N}) := p_{LM}(\beta_{N+1} = \hat{\beta}|x_{1:N}) \approx 1
$$
 (6)

229 *Accordingly, the model ICG distribution* 230 $p_{LM}(x|x_{1:N})$ *is somehow closed to the true* 231 *topic-paragraph distribution* $p(x|\hat{\beta})$ *:*

232
$$
p_{\text{LM}}(x|x_{1:N}) \approx p(x|\beta) \tag{7}
$$

 Thus, we formalize ICG as next topic prediction, where language models seem to implicitly choose the topic of in-context examples as the next topic. Our goal is to find support for this hypothesis from the perspective of both theory and empirical exper-**238** iments.

²³⁹ 3 Theoretical Support

240 Intuitively, the pretrained distribution itself ensures **241** the ICG ability for repeated topics R. This can be **242** explicitly formalized by the following theorem:

243 Theorem 1. *Given an in-context prompt* x_1, y_2 *z*44 *where each sample* x_n ∼ $p(x|\beta)$ *and* $\beta \in R$ *, the* **245** *pretrained distribution have the following proper-***246** *ties:*

1. The data ICTR[4](#page-3-1) **247** *converges to 1 in probability* **248** *(corollary [4\)](#page-13-0):*

$$
\plim_{N \to \infty} p(\hat{\beta}|x_{1:N}) = 1 \tag{8}
$$

250 *where we denote* $p(\beta_{N+1} = \beta | x_{1:N})$:= **251** $p(\beta|x_{1:N})$.

2. *For any candidate paragraph* $x \in \Sigma^*$, the *data ICG distribution* $p(x|x_{1:N})$ *converges to true topic-paragraph* $p(x|\hat{\beta})$ *in probabil-ity (corollary [5\)](#page-14-0):*

256
$$
\lim_{N \to \infty} p(x|x_{1:N}) = p(x|\hat{\beta}) \tag{9}
$$

 \bar{N}

If the language model is expressive enough, it **257** would gradually approach the pretrained distribu- **258** tion with the increase of the number of training **259** examples^{[5](#page-3-2)}. As a result, it would exhibit the same 260 properties as shown in Theorem [1.](#page-3-0) Therefore, the **261** ICG ability for repeated topics directly originates **262** from the pretrained corpora. **263**

Detailed theoretical results are provided in Ap- **264** pendix [B,](#page-10-0) and here, we only present a proof sketch. **265** *Proof Sketch.* According to Section [2.1,](#page-1-2) $\forall x \in \Sigma^*$ the data ICG distribution is: **267**

$$
p(x|x_{1:N}) = \sum_{\beta \in B} p(\beta|x_{1:N}) p(x|\beta)
$$
 (10) (268)

Therefore, the data ICG distribution $p(x|x_{1:N})$ 269 is dominated by the topic predictive distribution **270** $p(\beta|x_{1:N})$, i.e., ICTR. $p(\beta|x_{1:N})$ can be further 271 decomposed as the mixture of modes: **272**

$$
p(\beta|x_{1:N}) = \sum_{\alpha \in A} p(\alpha|x_{1:N})p(\beta|x_{1:N}, \alpha) \quad (11)
$$

Firstly, we can prove that if $\hat{\beta} \in R$, then 274 $\text{plim}_{N\to\infty} p(\hat{\alpha}|x_{1:N}) = 1$ (corollary [1\)](#page-11-0). There- 275 fore, the mixture in formula [\(11\)](#page-3-3) focuses on the **276** component of repetition mode $p(\beta|x_{1:N}, \hat{\alpha})$ when 277 N is large: **278**

$$
p(\beta|x_{1:N}) \approx p(\beta|x_{1:N}, \hat{\alpha})
$$

=
$$
\frac{p(\beta|\hat{\alpha}) \prod_{n=1}^{N} p(x_n|\beta)}{p(x_{1:N}|\hat{\alpha})}
$$
 (12)

This form is exactly the Bayesian posterior dis- **280** tribution, which is in accord with previous works **281** connecting ICL and Bayesian statistics [\(Xie et al.,](#page-9-4) **282** [2021;](#page-9-4) [Wang et al.,](#page-9-7) [2023b;](#page-9-7) [Hahn and Goyal,](#page-8-10) [2023\)](#page-8-10). **283** Likewise, it turns out that the if $\hat{\beta} \in R$, then 284 $\text{plim}_{N\to\infty} p(\hat{\beta}|x_{1:N}, \hat{\alpha}) = 1$ (corollary [3\)](#page-13-1), thus 285 establishing the first point of theorem [1.](#page-3-0) Since **286** the data ICG distribution $p(x|x_{1:N})$ depends on 287 the topic predictive distribution $p(\beta|x_{1:N})$, we can **288** prove the second point of theorem [1](#page-3-0) analogously 6 . In Appendix [B](#page-10-0) and [C,](#page-15-0) we also present a detailed for- **290** mula of the convergence, in which the convergence **291** speed depends on the distinguishment of different **292** modes and topics. **293**

⁴Note that we use the prefix "data" to distinguish values from pretrained distribution and language model distribution.

⁵ Previous works [\(Xie et al.,](#page-9-4) [2021;](#page-9-4) [Hahn and Goyal,](#page-8-10) [2023\)](#page-8-10) typically take this as the null hypothesis.

 6 Based on of theorem [1,](#page-3-0) for regular in-context learning scenario where each example in the prompt is a tuple (x_n, y_n) consisting with an input x_n and an output y_n , we can also obtain similar theoretical conclusions about the ICL ability. Details are shown in proposition [5](#page-14-1) and corollary [6.](#page-15-1)

²⁹⁴ 4 Experiments **295** Theory [1](#page-3-0) can't ensure the ICG ability for nonre-

296 **peated and unseen topics** $\beta \in C \cup U$ because they

300 $p(x|\beta)$ would never be selected under the repeti-

331 erated via the controllable pretrained distribution.

297 have a zero repetition prior $p(\beta|\hat{\alpha}) = 0$ and so **298** the posterior under repetition mode is also zero: 299 $p(\beta|x_{1:N}, \hat{\alpha}) = 0$. Then, the correct component

301 tion mode, preventing the ICG/ICL ability as a **302** consequence.

303 However, this is contrary to the real case, where **304** LLMs have the ICG-generalization ability: they are

305 able to generalize ICG/ICL abilities to nonrepeated 306 and unseen topics $\beta \in C \cup U$. We speculate that

307 this might be caused by factors in both data and **308** model side:

309 • Data side: The compositionality of natural

310 language [\(Grandy,](#page-8-11) [1990\)](#page-8-11) and the proportion of re-

311 **peated topics** r_R **. Compositionality considers the 312** meaning of a linguistic unit results from the in-

313 dividual meanings of its sub-parts, and how they **314** are combined [\(Anderson,](#page-8-12) [2018\)](#page-8-12). Thus, nonre-

315 peated and unseen topics might share the same **316** "sub-topics" with repeated topics. The bigger the **317** proportion of repeated topics, the more frequently

318 those sub-topics are shared. Therefore, LLMs may **319** be able to recombine those sub-topics to recognize

320 those out-of-distribution topics in the repetition **321** mode and exhibit generalization.

322 • Model side: The Transformer [\(Vaswani et al.,](#page-9-5) **323** [2017\)](#page-9-5) structure. As the mainstream architecture

324 of NLP, the success of Transformer is believed **325** to originate from its strong generalization ability

326 [\(Hupkes et al.,](#page-8-13) [2023\)](#page-8-13).

327 We conduct rich experiments to verify above **328** arguments.

329 4.1 Synthetic Data

330 We conduct the experiments on synthetic data gen-

332 As mentioned, the distribution has three compo-

333 nents: 334 1. Mode prior $p(\alpha)$. We set the mode prior to be

335 uniform: $p(\alpha) = 1/|A|$.

336 **2.** Mode-outline distribution $p(\beta_{1:N}|\alpha)$. For **337** continuous modes $\alpha \in A/\hat{\alpha}$, Since we don't

338 exactly care the outline, we set $p(\beta_{1:N}|\alpha)$ = 339 $\prod_{n=1}^{N} p(\beta_n|\alpha)$ for convenience, where $p(\beta_n|\alpha)$ is a categorical distribution and its parameter is sam- **340** pled from a Dirichlet distribution. The Dirichlet pa- **341** rameters are 0 for unseen topics (so that $p(\beta) = 0$ 342 for $\beta \in U$) and 5 for others. We set the repe- 343 tition prior to be uniform: $p(\beta|\hat{\alpha}) = 1/|R| = 344$ $1/|B|r_R (\beta \in R).$ 345

3. Topic-paragraph distribution $p(x|\beta)$. In order 346 to simulate the compositionality, each topic $\beta \in B$ 347 is a tuple containing M subtopics $\rho^{1:M}$, where 348 $\rho^m \in B_*(m \in [M])$ and $B = B_*^M$. Accordingly, 349 the paragraph x also contains M sub-paragraphs 350 $s^{1:M}$, where each sub-paragraph is generated indi- 351 vidually: **352**

$$
p(x|\beta) = \prod_{m=1}^{M} p(s^m | \rho^m)
$$
 (13) 353

The composition arity M controls the data com- **354** positionality. Given a fix number of topics $|B|$, $\qquad \qquad$ 355 the number of subtopics $|B_*| = \sqrt[M]{|B|}$ decreases 356 when composition arity M increases, and different **357** topics are more likely to share structures as a result. **358** Here, each sub-paragraph distribution $p(s^m|\rho^m)$ is $\qquad \qquad$ 359 a Markov model whose initial probability vector **360** π_{ρ^m} and transition matrix \mathbf{A}_{ρ^m} are both sampled 361 from $Dir(\gamma 1)$, where 1 is an one vector. γ actually 362 controls the uncertainty of different topics, where **363** a lower value is expected to raise the KL diver- **364** gence between different topic-paragraph models, **365** making them easier to be distinguished, as shown 366 in Appendix [D.](#page-15-2) ³⁶⁷

4.1.1 Data Parameter Settings 368

We set the number of modes $|A| = 32$, the number of topics $|B| = 531441^7$ $|B| = 531441^7$, where 95% of top-
370 ics are unseen $(|U| = 504868)$. We set the vo- 371 cab size $|\Sigma| = 324$, the length of sub-paragraph 372 $|s^m| = 3$, and the number of paragraphs in a doc- 373 ument $N = 30$. Thus, each document contains 374 $30(3M + 1)$ tokens. For other parameters of pre- 375 trained distribution including composition arity M, **376** the ratio of repeated topics r_R , and topic uncer- 377 tainty γ , we adjust their values to study the effects 378 of data properties. In specific, we experiment with **379** $M \in \{2, 3, 4\}, r_R \in \{2^{-d} | d = \{6, 7, \cdots, 13\}\},\$ and $\gamma \in \{0.01, 0.02, \cdots, 0.05\}.$ 381

For each configuration of the pretrained distri- **382** bution, we generate 10M documents for training. **383** Therefore, the number of tokens in the synthetic **384** dataset ranges from 2.1B to 3.9B. Examples of the **385** synthetic dataset are shown in Figure [6.](#page-16-0) **386**

⁷ Its square, cube and fourth root are all integers.

Models	L	H	D	# params
X^2S	3	6	384	4M
XS		8	448	8M
S	5	8	448	9M
М	6	8	512	15M
L	9	12	768	48M
XL	12	16	1024	114M
X^2L	16	20	1280	234M

Table 1: Configurations of different models, where L is the number of layers, H is the number of attention heads, D is the hidden dimension. For parameter efficiency, we use grouped query attention [\(Ainslie et al.,](#page-8-14) [2023\)](#page-8-14) and set the number of key-value heads to be $H/2$.

387 4.2 Models

 We study the effect of model size, attention win- dow size, and the number of attention heads of Transformer. Table [1](#page-5-0) shows configurations of dif- ferent experimental models, where the parameters scales from 4M to 237M. The models are based on the Transformers [\(Wolf et al.,](#page-9-8) [2020\)](#page-9-8) implementa- tion of Mistral [\(Jiang et al.,](#page-8-15) [2023a\)](#page-8-15). We train each model for 1 epoch on one NVIDIA A100 (40GB).

396 4.3 Evaluation Metrics

 We aim to evaluate the overall ICG performance and the ICG-generalization ability of models using ICTR. Firstly, we define topic-wise ICTR as the expectation of prompt-wise ICTR:

401
$$
\pi_N^{\beta} = \mathbb{E}_{p(x_{1:N}|\beta^N)} [p_{LM}(\beta|x_{1:N})]
$$
 (14)

402 Then, we can obtain the average ICTR of different **403** kinds of topics:

$$
\text{ICTR}_{N}^{B} = \frac{1}{|B|} \sum_{\beta \in B} \pi_{N}^{\beta}, \quad \text{ICTR}_{N}^{R} = \frac{1}{|R|} \sum_{\beta \in R} \pi_{N}^{\beta}
$$
\n
$$
\text{ICTR}_{N}^{C} = \frac{1}{|N|} \sum_{\beta \in C} \pi_{N}^{\beta}, \quad \text{ICTR}_{N}^{U} = \frac{1}{|U|} \sum_{\beta \in U} \pi_{N}^{\beta}
$$
\n
$$
\text{(15)}
$$

Here, ICTR $_{N}^{B}$ measures the overall ICG abil-406 ity, while ICTR_N^C and ICTR_N^U reflect the ICG- generalization ability, where higher values sug- gest better generalizations. In the experiments, since each pretrained document has 30 paragraphs, the trained model at most supports 29-shot in- context prompts. So by default, we reported **ICTR** $_{29}^{B/R/C/U}$, which is short of **ICTR** $^{B/R/C/U}$.

413 According to the values of the above ICTRs, **414** we further define the following four statuses of a **415** trained model by thresholding:

$$
416 \t 1. Underfit: ICTRR < 0.65.
$$

2. *Overfit:*
$$
ICTR^R \ge 0.65
$$
, $ICTR^C < 0.65$, and $ICTR^U < 0.65$.

3. *C*-Generalization:
$$
ICTR^R \ge 0.65
$$
, 419
 $ICTR^C \ge 0.65$, and $ICTR^U < 0.65$. 420

4. *U*-Generalization: $\text{ICTR}^R \geq 0.65$, 421 $\text{ICTR}^C > 0.65$, and $\text{ICTR}^U > 0.65$. 422

The computation of prompt and topic-wise ICTR **423** is nontrivial, so we present it in Appendix [F.](#page-16-1) **424**

4.4 Results & Discussions **425**

Our experimental results suggest the following ar- **426** guments. **427**

Data compositionality enables both ICG and **428** ICG-generalization. Figure [3a](#page-6-0) shows the results **429** of different composition arities. Clearly, we can **430** see that data compositionality enables ICG and **431** ICG-generalization, specifically: 1) As the com- **432** position arity M increases, the overall ICG per- **433** formance consistently improves for models in any **434** sizes trained on the pretrained distribution with dif- **435** ferent repeated topic proportions rR. Notably, the **⁴³⁶** improvement is especially significant when we in- **437** crease M from 2 to 3. For example, for all r_R , the **438** ICTR_{29}^B value nears 0 for many small models when **439** $M = 2$, but is lifted to a considerable level when 440 $M = 3$. 2) The models are easier to generalize on 441 ICG when M is higher. When $M = 2$, most mod- 442 els are even hard to overfit on repeated topics, and **443** only model X^2L can generalize ICG to both non- 444 repeated and unseen topics only when $r_R = 1/64$. 445 On the contrary, when $M = 3$ or $M = 4$, models 446 in all sizes exhibit the ICG-generalization ability **447** with much smaller r_R . 448

The model emerges the ICG-generalization **449** as the proportion of repeated topics rises. As **450** shown in Figure [3a,](#page-6-0) the model typically tends to 451 overfit only on repeated topics when r_R is small, 452 and then suddenly emerges the ICG-generalization **453** ability when r_R hits the threshold. The threshold 454 mainly corresponds to the data compositionality, **455** where a higher composition arity M leads to a 456 lower threshold and so makes the model easier to **457** generalize. For example, for model X^2L , the gener- 458 alization threshold of r_B is $1/64$ when $M = 2$, and 459 decreases to $1/2048$ when $M = 3$. We speculate 460 this is because the more compositionality of the **461** data, the more likely that nonrepeated and unseen **462**

$$
\frac{3}{2}
$$

-
-

Underfit					Overfit					C-Generalization			U-Generalization									
Composition arity M=2					Composition arity M=3								Composition arity M=4									
1/64	.00	.03	.16	.22	.56	.57	.68	.73	.76	.82	.87	.92	.93	.95		.88	.91	.92	.95	.97	.97	.98
1/128	.00	.03	.06	.27	.51	.52	.64	.62	.78	.80	.87	.92	.93	.95		.86	.91	.93	.95	.97	.97	.98
$\tilde{\epsilon}$ $1/256 -$.00	.03	.08	.18	.46	.47	.60	.72	.77	.80	.87	.92	.93	.95		.87	.90	.92	.95	.97	.97	.98
repeated topics 1/512	.00.	.00	.06	.15	.35	.24	.18	.70	.74	.78	.87	.92	.93	.95		.88	.90	.94	.95	.97	.97	.98
1/1024 ৳	.00	.01	.02	.03	.06	.06	.05	.68	.75	.76	.85	.92	.89	.93		.88	.90	.94	.94	.97	.97	.98
Ratio /2048 +	.00	.00	.00.	.00	.00	.00	.01	.54	.64	.28	.75	.89	.91	.89		.85	.89	.91	.95	.96	.97	.95
1/4096	.00	.00	.00	.00	.00	.00	.00.	.12	.27	.24	.14	.20	.07	.32		.48	.73	.83	.67	.79	.79	.70
$1/8192 +$.00.	.00	.00.	.00.	.00	.00	.00.	.00.	.01	.01	.01	.01	.02	.00.		.26	.27	.45	.36	.18	.29	.18
	X^2S	XS	Ś	M		XL	X^2L	X^2S	XS	S	M		XL	X^2L		X^2S	XS	S	M		XL	X^2L
Model size						Model size								Model size								

(a) ICG-generalization results of models in different sizes trained on pretrained distribution with different composition arities M and proportions of repeated topics r_R , where the topic uncertainty γ is set to 0.01.

4 8 12 24 36 48 512 Window size (W) 1 2 3 6 12 24 Number of atte ntion heads (H)
. .00 \mid .01 \mid .03 \mid .83 \mid .85 \mid .60 \mid .89 .00 \mid 00. \mid 05 \mid 68 \mid 83 \mid 88 \mid 00. .90 .00 .00 .74 .90 .47 .00 .00 .40 .72 .83 .82 .91 .92 | 91. | 75. | 78. | 72. | 00. | 00. .00 .00 .87 .79 .81 .68 .89

(b) ICG-generalization results of models in different sizes trained on pretrained distribution with different topic uncertainties γ , where we set $M = 3$ and $r_R =$ $1/1024$.

(c) ICG-generalization results of model L with different window sizes and numbers of attention heads, where we set $M = 3$, $r_R = 1/1024$, and $\gamma = 0.01$.

Figure 3: ICG-generalization results, where the color suggests the status of the corresponding model, and the number in the cell shows the corresponding ICTR $_{29}^B$.

Figure 4: ICTR^{*}₂₉ of different topics for model L trained on the pretrained distribution with different topic uncertainty γ , where the other parameters in the pretrained distribution are: $M = 3$, $r_B = 1/1024$.

463 topics share sub-topics with repeated ones, there-**464** fore the less proportion of repeated topics is needed **465** for generalization.

466 Topic uncertainty doesn't affect ICG-general-**467** ization. As shown in Figure [4,](#page-6-1) Topic uncertainty

mainly affects the fitting difficulty of the data rather **468** than the ICG-generalization ability: As the topic **469** uncertainty γ increases, the ICTR₂₉ of model L for **470** all kinds of topics decreases consistently. However, **471** we don't observe apparent ICG performance gaps **472** between those topics. **473**

Larger models do better on ICG and ICG-gen- **474** eralization. Model size is considered to be a great **475** factor impacting the ability of language models **476** [\(Wei et al.,](#page-9-0) [2022a\)](#page-9-0). This is also verified in our ex- **477** periments, which we find: 1) As shown in Figure **478** [3a,](#page-6-0) obviously, larger models not only have better **479** ICTR $_{29}^B$, but also require less repeated topics to 480 generalize to nonrepeated and unseen topics. 2) As **481** shown in Figure [3b,](#page-6-0) larger models are able to deal **482** with topics with more uncertainties, i.e., bigger γ , 483 where models larger than model M are capable of 484 ICG-generalization when $\gamma = 0.02$ but smaller 485 models pose underfit. Especially for model X^2S , 486 whose ICTR $_{29}^B$ is 0. 3) As shown in Figure [5a,](#page-7-0) in **487** most cases, larger models achieve better ICTR^B 488

Figure 5: ICTR^B of different model configurations, where we set $M = 3$, $\gamma = 0.01$, and $r_R = 1/1024$.

 given fewer demonstrations. However, curiously, this does not hold when the number of shots N is 491 too small. For example, ICTR_2^B of model X^2S , XS, S, and M are typically greater than that of model L, KL , and X^2L . We speculate this might be because when N is small, larger models are more cautious in identifying the repetition mode.

 Big window size is necessary for ICG and ICG– generalization. Recently, [Wang et al.](#page-9-9) [\(2023a\)](#page-9-9) show that LLMs conduct ICL by collecting infor- mation of demonstrations in the prompt from pre- vious label words. Specifically, the hidden states of previous label words are good summarizations of corresponding demonstrations. Thus, the model needs to attend to all those previous "anchors" to conduct ICL, which hints that a small window size might harm the ICL performance. For example, in the experimental results of [Jiang et al.](#page-8-16) [\(2023b\)](#page-8-16), we [c](#page-8-17)an find that the ICL performance of RWKV [\(Peng](#page-8-17) [et al.,](#page-8-17) [2023\)](#page-8-17) series is generally inferior to that of Transformer structures. Our experiments also sup- port this argument. As shown in Figure [3c](#page-6-0) and [5b,](#page-7-0) when the number of attention heads is fixed, a low window size would cause underfit. In most cases, as we increase the window size, the model is shifted to overfit and finally U-Generalization, the overall ICTR_{29}^B also rises at the same time. Note that there also exists the emergent phenomenon, where the model suddenly learns ICG and ICG-generalization when its window size hits a threshold.

 Big number of heads is not necessary for ICG and ICG-generalization. Multi-head/group atten- tion is always believed to be the core driving state- of-the-art Transformer models. By intuition, dif- ferent heads can potentially attend onto different parts of the text, making the model more expressive. However, our experiments show this mechanism is

not very important for ICG and ICG-generalization. **526** As shown in Figure [3c,](#page-6-0) reducing the number of **527** attention heads H for XL model hardly change **528** the model status. Also, as shown in Figure [3c,](#page-6-0) **529** at the same size (L), the model with the highest **530** overall ICG performance does not necessarily have **531** the most attention heads. We speculate that this is **532** because the attention pattern for ICG is relatively **533** simple, so different heads are actually functional **534** equivalent. This is consistent with [Michel et al.](#page-8-8) **535** [\(2019\)](#page-8-8), which finds that the performance of many **536** tasks including machine translation and natural lan- **537** guage inference is insensitive to the number of **538** attention heads. **539**

Generalizations towards nonrepeated and un- **540** seen topics are almost the same. As shown in **541** Figure [3,](#page-6-0) in most cases, no matter how pretrained 542 distributions and models are configured, the mod- **543** els generally result as either underfit, overfit, or **544** U-Generalization, but hardly in the status of C- **545** Generalization. This suggests that nonrepeated top- **546** ics, though appear in the pretrained distribution, **547** are not easier for models to generalize. **548**

5 Conclusions **⁵⁴⁹**

This paper provides a systematic study of ICG abil- **550** ity of language models. Firstly, we propose a plau- **551** sible latent variable pretrained distribution, formal- **552** izing ICG as a problem of next topic prediction. **553** Then, we prove that the repetition nature of a few 554 topics ensures the ICG ability on them theoretically. **555** We also conduct rich experiments to study the ef- 556 fects of different factors of data and model architec- **557** tures on ICG and ICG-generalization. We believe **558** this paper is beneficial to a better understanding of **559** the ICG ability, as well as large language models. **560**

⁵⁶¹ Limitations

 The major limitation of this work is that we don't provide a theoretical support for ICG- generalization, while doing so is non-trivial. Now we can only speculate the ICG-generalization re- sults from the smoothing effects of neural probabil- ity approximator (e.g. Transformer), where unseen inputs would have non-zero probabilities [\(Xie et al.,](#page-9-10) [2017\)](#page-9-10). Therefore, nonrepeated and unseen topics might have a non-zero repetition prior, thus mak- ing them possible to be chosen as the topic of the next paragraph. This phenomenon might be es- pecially obvious when these topics are similar to repeated ones according to our experimental results. Further work on the theoretical understanding of ICG-generalization might take similarities between topics into account.

⁵⁷⁸ References

- **579** Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury **580** Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. **581** 2023. Gqa: Training generalized multi-query trans-**582** former models from multi-head checkpoints. *arXiv* **583** *preprint arXiv:2305.13245*.
- **584** Catherine Anderson. 2018. *Essentials of linguistics*. **585** McMaster University.
- **586** Kazuoki Azuma. 1967. Weighted sums of certain de-**587** pendent random variables. *Tohoku Mathematical* **588** *Journal, Second Series*, 19(3):357–367.
- **589** Christopher M Bishop and Nasser M Nasrabadi. 2006. **590** *Pattern recognition and machine learning*, volume 4. **591** Springer.
- **592** Samuel R Bowman, Christopher D Manning, and **593** Christopher Potts. 2015. Tree-structured composi-**594** tion in neural networks without tree-structured archi-**595** tectures. *arXiv preprint arXiv:1506.04834*.
- **596** Tom Brown, Benjamin Mann, Nick Ryder, Melanie **597** Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind **598** Neelakantan, Pranav Shyam, Girish Sastry, Amanda **599** Askell, et al. 2020. Language models are few-shot **600** learners. *Advances in neural information processing* **601** *systems*, 33:1877–1901.
- **602** Richard E Grandy. 1990. Understanding and the princi-**603** ple of compositionality. *Philosophical Perspectives*, **604** 4:557–572.
- **605** Michael Hahn and Navin Goyal. 2023. A theory of **606** emergent in-context learning as implicit structure **607** induction. *arXiv preprint arXiv:2303.07971*.
- **608** Wassily Hoeffding. 1994. Probability inequalities for **609** sums of bounded random variables. *The collected* **610** *works of Wassily Hoeffding*, pages 409–426.
- Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, **611** Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris- **612** tos Christodoulopoulos, Karim Lasri, Naomi Saphra, **613** Arabella Sinclair, et al. 2023. A taxonomy and review **614** of generalization research in nlp. *Nature Machine* **615** *Intelligence*, 5(10):1161–1174. **616** Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- **617** sch, Chris Bamford, Devendra Singh Chaplot, Diego **618** de las Casas, Florian Bressand, Gianna Lengyel, Guil- **619** laume Lample, Lucile Saulnier, et al. 2023a. Mistral **620** 7b. *arXiv preprint arXiv:2310.06825*. **621** Zhongtao Jiang, Yuanzhe Zhang, Cao Liu, Jun Zhao, **622** and Kang Liu. 2023b. Generative calibration for in- **623** context learning. *arXiv preprint arXiv:2310.10266*. **624** Jaap Jumelet and Willem Zuidema. 2023. Transparency **625** at the source: Evaluating and interpreting language **626** models with access to the true distribution. *arXiv* **627** *preprint arXiv:2310.14840*. **628** R Thomas McCoy, Robert Frank, and Tal Linzen. 2018. **629** Revisiting the poverty of the stimulus: Hierarchical **630** generalization without a hierarchical bias in recurrent **631** neural networks. *arXiv preprint arXiv:1802.09091*. **632** Elliot Meyerson, Mark J Nelson, Herbie Bradley, Arash **633** Moradi, Amy K Hoover, and Joel Lehman. 2023. **634** Language model crossover: Variation through few- **635** shot prompting. *arXiv preprint arXiv:2302.12170*. **636** Paul Michel, Omer Levy, and Graham Neubig. 2019. **637** Are sixteen heads really better than one? *Advances* **638** *in neural information processing systems*, 32. **639** Isabel Papadimitriou and Dan Jurafsky. 2023. Inject- **640** ing structural hints: Using language models to study **641** inductive biases in language learning. In *Findings* **642** *of the Association for Computational Linguistics:* **643** *EMNLP 2023*, pages 8402–8413. **644** Adam Paszke, Sam Gross, Francisco Massa, Adam **645** Lerer, James Bradbury, Gregory Chanan, Trevor **646** Killeen, Zeming Lin, Natalia Gimelshein, Luca **647** Antiga, et al. 2019. Pytorch: An imperative style, **648** high-performance deep learning library. *Advances in* **649** *neural information processing systems*, 32. **650** Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al- **651** balak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, **652** Michael Chung, Matteo Grella, Kranthi Kiran GV, **653** et al. 2023. Rwkv: Reinventing rnns for the trans- **654** former era. *arXiv preprint arXiv:2305.13048*. **655** Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, **656** Inbal Magar, Omri Abend, Ehud Karpas, Amnon **657** Shashua, Kevin Leyton-Brown, and Yoav Shoham. **658** 2023. Parallel context windows for large language **659** models. In *Proceedings of the 61st Annual Meet-* **660** *ing of the Association for Computational Linguistics* **661** *(Volume 1: Long Papers)*, pages 6383–6402. **662** [F](https://ai.stanford.edu/blog/in-context-learning/)rieda Rong. 2021. [Extrapolating to unnatural lan-](https://ai.stanford.edu/blog/in-context-learning/) **663** [guage processing with gpt-3's in-context learning:](https://ai.stanford.edu/blog/in-context-learning/) **664** [The good, the bad, and the mysterious.](https://ai.stanford.edu/blog/in-context-learning/) **665**
- **666** Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-**667** bert, Amjad Almahairi, Yasmine Babaei, Nikolay **668** Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti **669** Bhosale, et al. 2023. Llama 2: Open founda-**670** tion and fine-tuned chat models. *arXiv preprint* **671** *arXiv:2307.09288*.
- **672** Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob **673** Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz **674** Kaiser, and Illia Polosukhin. 2017. Attention is all **675** you need. *Advances in neural information processing* **676** *systems*, 30.
- **677** Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-**678** nrich, and Ivan Titov. 2019. Analyzing multi-head **679** self-attention: Specialized heads do the heavy lifting, **680** the rest can be pruned. In *Proceedings of the 57th* **681** *Annual Meeting of the Association for Computational* **682** *Linguistics*, pages 5797–5808.
- **683** Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, **684** Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label **685** words are anchors: An information flow perspective **686** for understanding in-context learning. *arXiv preprint* **687** *arXiv:2305.14160*.
- **688** Xinyi Wang, Wanrong Zhu, and William Yang Wang. **689** 2023b. Large language models are implicitly **690** topic models: Explaining and finding good demon-**691** strations for in-context learning. *arXiv preprint* **692** *arXiv:2301.11916*.
- **693** Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, **694** Barret Zoph, Sebastian Borgeaud, Dani Yogatama, **695** Maarten Bosma, Denny Zhou, Donald Metzler, et al. **696** 2022a. Emergent abilities of large language models. **697** *arXiv preprint arXiv:2206.07682*.
- **698** Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten **699** Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, **700** et al. 2022b. Chain-of-thought prompting elicits rea-**701** soning in large language models. *Advances in neural* **702** *information processing systems*, 35:24824–24837.
- **703** Jennifer C White and Ryan Cotterell. 2021. Examining **704** the inductive bias of neural language models with ar-**705** tificial languages. *arXiv preprint arXiv:2106.01044*.
- **706** Thomas Wolf, Lysandre Debut, Victor Sanh, Julien **707** Chaumond, Clement Delangue, Anthony Moi, Pier-**708** ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, **709** et al. 2020. Transformers: State-of-the-art natural **710** language processing. In *Proceedings of the 2020 con-***711** *ference on empirical methods in natural language* **712** *processing: system demonstrations*, pages 38–45.
- **713** Sang Michael Xie, Aditi Raghunathan, Percy Liang, and **714** Tengyu Ma. 2021. An explanation of in-context learn-**715** ing as implicit bayesian inference. *arXiv preprint* **716** *arXiv:2111.02080*.
- **717** Ziang Xie, Sida I Wang, Jiwei Li, Daniel Lévy, Aiming **718** Nie, Dan Jurafsky, and Andrew Y Ng. 2017. Data **719** noising as smoothing in neural network language **720** models. *arXiv preprint arXiv:1703.02573*.

A Lemmas **⁷²¹**

To access the theoretical results in Appendix [B,](#page-10-0) the **722** following lemmas are useful. **723**

Lemma 1. *For an arbitrary continuous mode* $\alpha \in$ 724 $A/\hat{\alpha}$, *let* 725

$$
s_n = \sum_{i=1}^n \log \frac{p(x_i | x_{1:i-1}, \alpha)}{p(x_i | x_{1:i-1}, \hat{\alpha})} + \text{KL}_{i-1}(\hat{\alpha} \| \alpha)
$$
\n(16)

where **727**

$$
KL_{i-1}(\hat{\alpha} \| \alpha) = \mathbb{E}_{p(x|x_{1:i-1}, \hat{\alpha})} \left[\log \frac{p(x|x_{1:i-1}, \hat{\alpha})}{p(x|x_{1:i-1}, \alpha)} \right]
$$
\n(17)

Then, s_n *is a martingale about* $x_{1:n}$. *729*

Proof. This lemma is easy to prove according to **730** the definition of martingale so we omit it. \Box 731

Lemma 2. Let z_n $(n \in [N])$ be a series of positive 732 *random variables,* $\forall t \geq 0$, *733*

$$
P\left(\sum_{n=1}^{N} z_n \ge t\right) \le \sum_{n=1}^{N} P\left(z_n \ge \frac{t}{N}\right) \quad (18) \quad 734
$$

Proof. Firstly, we have: **735**

$$
P\left(\sum_{n=1}^{N} z_n \ge t\right) = P\left(\sum_{n=1}^{N} z_n \ge t, z_N \ge \frac{t}{N}\right)
$$

+
$$
P\left(\sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t, z_N \ge \frac{t}{N}\right)
$$

+
$$
P\left(\sum_{n=1}^{N} z_n \ge t, \sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t\right)
$$

$$
\le P\left(\sum_{n=1}^{N-1} z_n \le \frac{N-1}{N}t, z_N \ge \frac{t}{N}\right)
$$

+
$$
P\left(\sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t, z_N \le \frac{t}{N}\right)
$$

+
$$
2P\left(\sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t, z_N \ge \frac{t}{N}\right)
$$

=
$$
P\left(\sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t\right) + P\left(z_N \ge \frac{t}{N}\right)
$$

(19)

(19) **736**

(16) **726**

(17) **728**

737 Then, according to this recursion,

$$
P\left(\sum_{n=1}^{N} z_n \ge t\right)
$$

\n
$$
\le P\left(\sum_{n=1}^{N-1} z_n \ge \frac{N-1}{N}t\right) + P\left(z_N \ge \frac{t}{N}\right)
$$

\n
$$
\le P\left(\sum_{n=1}^{N-2} z_n \ge \frac{N-2}{N}t\right) + P\left(z_{N-1} \ge \frac{t}{N}\right)
$$

\n
$$
+ P\left(z_N \ge \frac{t}{N}\right)
$$

· · ·

 \leq \sum N $n=1$ $P\left(z_N\geq \frac{t}{\lambda}\right)$ N \setminus **738** (20)

 \Box

739 So the result is proved.

⁷⁴⁰ B Complete Theoretical Results

741 We analyze the data ICG distribution $p(x|x_{1:N})$, where $x_{1:N}$ are independent and identical dis- **tributed with PDF** $p(x|\hat{\beta})$ and x is an arbitrary value in the domain of paragraph. As shown in **Section [2.1,](#page-1-2) x depends on its topic:**

746
$$
p(x|x_{1:N}) = \sum_{\beta \in B} p(\beta|x_{1:N})p(x|\beta) \qquad (21)
$$

 where the topic predictive distribution $p(\beta|x_{1:N}) := p(\beta_{1:N} = \beta|x_{1:N})$ controls the strength of each topic for the $N + 1$ -th paragraph. We then study the property of this distribution.

752 Note that the topic predictive distribution can **753** also analogously be factorized as the mixture of **754** modes:

755
$$
p(\beta|x_{1:N}) = \sum_{\alpha \in A} p(\alpha|x_{1:N})p(\beta|x_{1:N}, \alpha) \quad (22)
$$

756 where the mode posterior $p(\alpha|x_{1:N})$ controls the **757** strength of each mode.

758 B.1 Property of mode posterior

759 Firstly, we study the property of the mode posterior **760** $p(\alpha|x_{1:N}).$

761 Proposition 1. *Let:*

$$
p_{\max}(\hat{\alpha}) = \max_{\alpha \in A/\hat{\alpha}} p(\alpha) \tag{23}
$$

763 *If* t *satisfies:*

764

$$
\frac{|A|p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})c_1^{-N}} \le t < 1
$$
 (24)

 α *nd* $\hat{\beta} \in R$ *, for repetition mode* $\hat{\alpha}$ *, we have:* **765**

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge t)
$$

\n
$$
\le |A|e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}}
$$
 (25) 766

For any continuous mode $\alpha \in A/\hat{\alpha}$ *, we also have:* 767

$$
P(p(\alpha|x_{1:N}) \ge t)
$$

\n
$$
\le |A|e^{-\frac{\left(N\log c_1 + \log\frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})}\right)^2}{8N\log^2(c_4/c_3)}}
$$
 (26) 768

Proof. Firstly, note that the absolute martingale 769 residual difference of s_n in formula [\(17\)](#page-9-11) is 770 bounded: **771**

$$
|s_n - s_{n-1}|
$$

= $\left| \log \frac{p(x_n | x_{1:n-1}, \alpha)}{p(x_n | x_{1:n-1}, \hat{\alpha})} + \text{KL}_{n-1}(\hat{\alpha} || \alpha) \right|$
 $\leq \left| \log \frac{p(x_n | x_{1:n-1}, \alpha)}{p(x_n | x_{1:n-1}, \hat{\alpha})} \right| + |\text{KL}_{n-1}(\hat{\alpha} || \alpha)|$ (27) 772
 $\leq 2 \log \frac{c_4}{c_3}$

Then, according to Azuma's inequity [\(Azuma,](#page-8-18) **773** [1967\)](#page-8-18), $\forall \epsilon > 0$, we have: 774

$$
P\left(\sum_{n=1}^{N} \log \frac{p(x_n | x_{1:n-1}, \alpha)}{p(x_n | x_{1:n-1}, \hat{\alpha})} + KL_{n-1}(\hat{\alpha} || \alpha) \ge \epsilon\right)
$$

\$\le e^{-\frac{\epsilon^2}{8N \log^2(c_4/c_3)}}\$ (28)

Since $KL_{i-1}(\hat{\alpha}||\alpha) \ge \log c_1$, we can rewrite for- 776 mula [\(28\)](#page-10-1) as: **777**

$$
P\left(\sum_{i=1}^{N} \log \frac{p(x_n | x_{1:n-1}, \alpha)}{p(x_n | x_{1:n-1}, \hat{\alpha})} \ge \epsilon - N \log c_1\right)
$$

\$\le e^{-\frac{\epsilon^2}{8N \log^2(c_4/c_3)}}\$ (29)

Let $t = e^{\epsilon - N \log c_1} \in [c_1^{-N}, 1)$ and rearrange the 779 formula, we can obtain the following inequality **780** about the ratio of mode likelihoods: **781**

$$
\mathbf{P}\left(\frac{p(x_{1:N}|\alpha)}{p(x_{1:N}|\hat{\alpha})} \ge t\right) \le e^{-\frac{(N\log c_1 + \log t)^2}{8N\log^2(c_4/c_3)}}\tag{30}
$$

(30) **782**

The ratio of mode likelihoods has a direct impact **783** to the mode posterior. First, for repetiton mode $\hat{\alpha}$, 784

785 $\forall 0 < t < 1$, we have:

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge t) = P\left(\frac{1}{p(\hat{\alpha}|x_{1:N})} \ge \frac{1}{1-t}\right)
$$

$$
= P\left(\sum_{\alpha \in A/\hat{\alpha}} \frac{p(\alpha)}{p(\hat{\alpha})} \frac{p(x_{1:N}|\alpha)}{p(x_{1:N}|\hat{\alpha})} \ge \frac{t}{1-t}\right)
$$

$$
\le \sum_{\alpha \in A/\hat{\alpha}} P\left(\frac{p(x_{1:N}|\alpha)}{p(x_{1:N}|\hat{\alpha})} \ge \frac{tp(\hat{\alpha})}{(|A|-1)(1-t)p(\alpha)}\right)
$$

$$
\le \sum_{\alpha \in A/\hat{\alpha}} P\left(\frac{p(x_{1:N}|\alpha)}{p(x_{1:N}|\hat{\alpha})} \ge \frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})}\right)
$$

787 where we unpack the probability in the third line **788** using lemma 2. Now, if

$$
\frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})} \ge c_1^{-N}
$$

$$
\Rightarrow t \ge \frac{|A|p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha}) + |A|p_{\max}(\hat{\alpha})c_1^{-N}}
$$
(32)

790 then we can apply formula [\(30\)](#page-10-2):

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge t)
$$
\n
$$
\le |A|e^{-\frac{\left(N\log c_1 + \log\frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})}\right)^2}{8N\log^2(c_4/c_3)}} \tag{33}
$$

792 As for continuous modes $\alpha \in A/\hat{\alpha}$, note that:

$$
P(p(\alpha|x_{1:N}) \ge t) \le P\left(\sum_{\alpha \in A/\hat{\alpha}} p(\alpha|x_{1:N}) \ge t\right)
$$

=
$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge t)
$$

$$
\le |A|e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(1-t)p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}}
$$
(34)

794

795 Based on proposition [1,](#page-10-3) we can immediately **796** obtain the following two corollaries:

Corollary 1. *If* $\hat{\beta} \in R$, $\text{plim}_{N \to \infty} p(\hat{\alpha}|x_{1:N}) = 1$

798 *Proof.* To prove the results, we need to prove that, 799 $\forall \epsilon > 0, \delta > 0$, there exists N₀ such that when 800 $N \ge N_0$,

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge \epsilon) < \delta \tag{35}
$$

802 **Firstly, note that when** $\epsilon > 1$ or $\delta > 1$, the above 803 **formula holds trivially. When** $0 < \epsilon \leq 1$ **, define:**

$$
\hat{N}(\epsilon) = \log_{c_1} \frac{|A|(1-\epsilon)p_{\text{max}}(\hat{\alpha})}{tp(\hat{\alpha})} \tag{36}
$$

If $N \geq \hat{N}(\epsilon)$, then 805

$$
\epsilon \ge \frac{|A|p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha}) + |A|p_{\max}(\hat{\alpha})c_1^{-N}} \tag{37}
$$

Therefore, according to proposition [1,](#page-10-3) we have: 807

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge \epsilon) \le f(N) \quad (38)
$$

where **809**

$$
f(N) = |A|e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(1-\epsilon)p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}} \quad (39)
$$

Since $f(N) \in (0, |A|^2]$ is a monotonic decreasing 811 function in the domain of $[\hat{N}(\epsilon), \infty]$, $\forall \delta \in (0, 1)$ 812 there must exists $N' \geq \hat{N}(\epsilon)$ such that $\delta = f(N')$,), **813** or equivalently, $N' = f^{-1}(\delta)$. Let's set $N_0 =$ 814 $[f^{-1}(\delta)] + 1$. If $N \ge N_0$, 815

$$
P(1 - p(\hat{\alpha}|x_{1:N}) \ge \epsilon) \le f(\lceil f^{-1}(\delta) \rceil + 1) < \delta \tag{40}
$$

Therefore, the result is proven. \Box 817

Corollary 2. *If* t *satisfies:* **818**

$$
\frac{|A|^{5/2}p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha}) + |A|p_{\max}(\hat{\alpha})c_1^{-N}} \le t < 1 \qquad (41) \qquad \text{819}
$$

and
$$
\hat{\beta} \in R
$$
, we have:

$$
P(|p(\beta|x_{1:N}) - p(\beta|x_{1:N}, \hat{\alpha})| \ge t)
$$

\n
$$
\le |A|^2 e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(|A|^{\frac{3}{2}} - t) p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}} \quad (42)
$$

Proof. Let $p_N^{\alpha} \in \Delta^{|A|}$ be the topic posterior vec- 822 tor: **823** \mathbf{r} \overline{a}

$$
\mathbf{p}_N^{\alpha} = \begin{bmatrix} \cdots \\ p(\alpha | x_{1:N}) \\ \cdots \end{bmatrix} \in \Delta^{|A|} \tag{43}
$$

and $\delta^{\hat{\alpha}}$ be the one-hot vector peaking at $\hat{\alpha}$. $\forall 0 <$ 825 $t < 1$, Obviously: 826

$$
P\left(\|\mathbf{p}_{N}^{\alpha} - \delta^{\hat{\alpha}}\|_{2} \geq t\right)
$$

\n
$$
\leq P\left(\sum_{\alpha \in A/\hat{\alpha}} p(\alpha|x_{1:N}) + 1 - p(\hat{\alpha}|x_{1:N}) \geq t\right)
$$

\n
$$
\leq \sum_{\alpha \in A/\hat{\alpha}} P\left(p(\alpha|x_{1:N}) \geq \frac{t}{|A|}\right)
$$

\n
$$
+ P\left(1 - p(\hat{\alpha}|x_{1:N}) \geq \frac{t}{|A|}\right)
$$
(44)

(39) **810**

(44) **827**

828 If

829
$$
\mu(\alpha) = |\mathbf{A}| \mathbf{p}_{\text{max}}(\alpha) \mathbf{c}_1
$$
 (45)

$$
82\,
$$

831 following:

832 (46)

$$
832
$$

$$
\circ \circ \check{}
$$

$$
f_{\rm{max}}
$$

$$
f_{\rm{max}}
$$

833 Now, denote:

 $\leq |A|^2 e^{-}$

$$
\mathbf{p}_{\cdot|N,\alpha}^{\beta} = \begin{bmatrix} \cdots \\ p(\beta|x_{1:N},\alpha) \\ \cdots \end{bmatrix} \in [0,1]^{|A|} \qquad (47)
$$

 $\frac{t}{|A|} \geq \frac{|A|p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})}$

 $\Rightarrow t \geq \frac{|A|^2 p_{\text{max}}(\hat{\alpha}) c_1^{-N}}{(\hat{\alpha})}$

then we can apply formula (25) and (26) to get the

 $\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(|A|-t)p_{\max}(\hat{\alpha})}\right)$

 $\sqrt{8N\log^2(c_4/c_3)}$

 \setminus^2

 $p(\hat{\alpha}) + |A| p_{\text{max}}(\hat{\alpha}) c_1^{-N}$

 $p(\hat{\alpha}) + |A| p_{\text{max}}(\hat{\alpha}) c_1^{-N}$

835 Then, $\forall 0 < t < 1$, we have:

t

 $\mathrm{P}\left(\|\mathbf{p}_{N}^{\alpha}-\boldsymbol{\delta}^{\hat{\alpha}}\|_{2} \geq t\right)$

$$
P(|p(\beta|x_{1:N}) - p(\beta|x_{1:N}, \hat{\alpha})| \ge t)
$$

\n
$$
= P\left(\left|\left(\mathbf{p}_{N}^{\alpha} - \boldsymbol{\delta}^{\hat{\alpha}}\right)^{T} \mathbf{p}_{\cdot|N,\alpha}^{\beta}\right| \ge t\right)
$$

\n
$$
\le P\left(\left\|\mathbf{p}_{N}^{\alpha} - \boldsymbol{\delta}^{\hat{\alpha}}\right\|_{2}\left\|\mathbf{p}_{\cdot|N,\alpha}^{\beta}\right\|_{2} \ge t\right)
$$

\n
$$
\le P\left(\left|\mathbf{p}_{N}^{\alpha} - \boldsymbol{\delta}^{\hat{\alpha}}\right| \ge \frac{t}{\sqrt{|A|}}\right)
$$
\n(48)

837 If $t \ge \frac{|A|^{5/2} p_{\max}(\hat{\alpha}) c_1^{-N}}{p(\hat{\alpha}) + |A| p_{\max}(\hat{\alpha}) c_1^{-N}}$, we can then apply for-**838** mula [\(46\)](#page-12-0) to obtain the result. \Box

839 B.2 Property of topic posterior under **840** repetition mode

841 **Secondly, we study the property of the topic poste-**842 rior under the repetition mode $p(\beta | x_{1:N}, \hat{\alpha})$.

843 Proposition 2. *Let*

$$
p_{\max}(\hat{\beta}) = \max_{\beta \in B/\hat{\beta}} p(\beta|\hat{\alpha}) \tag{49}
$$

845 *If* t *satisfies:*

846

$$
\frac{|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}{p(\hat{\beta}|\hat{\alpha})+|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}} \le t < 1
$$
 (50)

Then, for the ground-truth topic $\hat{\beta}$ *, if* $\hat{\beta} \in R$ *, we* **848** *have:*

$$
P(1 - p(\hat{\beta}|x_{1:N}, \hat{\alpha}) \ge t) \le \sum_{\beta \in B/\hat{\beta}} \exp\left(\frac{1}{2} \sum_{\beta \in B/\hat{\beta}} |B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})\right)^2}
$$
\n
$$
\le |B|e^{-\frac{2\left(N\log c_2 + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N\log^2(c_4/c_3)}} \tag{51}
$$

For any other topic $\beta \in R/\hat{\beta}$ *, we also have:* 850

$$
P(p(\beta|x_{1:N}, \hat{\alpha}) \ge t)
$$

\n
$$
\le |B|e^{-\frac{2\left(N\log c_2 + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N\log^2(c_4/c_3)}}
$$
 (52)

Proof. For any topic $\beta \in B/\hat{\beta}$, let 852

$$
s_n = \sum_{i=1}^n \log \frac{p(x_i|\beta)}{p(x_i|\hat{\beta})}
$$
(53) 853

Since each demonstration x_n is independently sam- 854 pled from $p(x|\hat{\beta})$, all the addends in the above 855 formula are independent. Also, note that: **856**

$$
\mathbb{E}[s_n] = \sum_{i=1}^n \mathbb{E}\left[\log \frac{p(x_i|\beta)}{p(x_i|\hat{\beta})}\right] = n\text{KL}(\hat{\beta}||\beta)
$$

$$
\ge n \log c_2
$$

$$
\left|\log \frac{p(x_i|\beta)}{p(x_i|\hat{\beta})}\right| \le \log \frac{c_4}{c_3}
$$
(54)

[T](#page-8-19)hen, according to Hoeffding's inequity [\(Hoeffd-](#page-8-19) **858** [ing,](#page-8-19) [1994\)](#page-8-19), $∀\epsilon > 0$, 859

$$
P\left(\sum_{i=1}^{N}\log\frac{p(x_i|\beta)}{p(x_i|\beta)} \ge \epsilon - N\log c_2\right)
$$

\n
$$
\le P\left(\sum_{i=1}^{N}\log\frac{p(x_i|\beta)}{p(x_i|\beta)} \ge \epsilon - NKL(\hat{\beta}||\beta)\right)
$$

\n
$$
= P\left(\prod_{i=1}^{N}\frac{p(x_i|\beta)}{p(x_i|\hat{\beta})} \ge e^{\epsilon - NKL(\hat{\beta}||\beta)}\right)
$$

\n
$$
\le e^{-\frac{2\epsilon^2}{N\log^2(c_4/c_3)}}
$$
\n(55)

Let $t = e^{\epsilon - N \log c_2} \ge c_2^{-N}$, we have: 861

$$
P\left(\prod_{n=1}^{N} \frac{p(x_n|\beta)}{p(x_n|\hat{\beta})} \ge t\right) \le e^{-\frac{2(N\log c_2 + \log t)^2}{N\log^2(c_4/c_3)}} \tag{56} \tag{56}
$$

The rest of proof of is very similar to that of propo- **863** sition [1,](#page-10-3) $\forall t \geq \frac{|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}{e^{(\hat{\beta}|\hat{\alpha})+|B|_{\infty}-(\hat{\beta}|\hat{\alpha})c_2}}$ $\frac{|B|p_{\text{max}}(\beta|\alpha)c_2}{p(\hat{\beta}|\hat{\alpha})+|B|p_{\text{max}}(\hat{\beta}|\hat{\alpha})c_2^{-N}},$ 864

$$
P(1 - p(\hat{\beta}|x_{1:N}, \hat{\alpha}) \ge t) \le \sum_{\beta \in B/\hat{\beta}}
$$

\n
$$
P\left(\prod_{n=1}^{N} \frac{p(x_n|\beta)}{p(x_n|\hat{\beta})} \ge \frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)
$$

\n
$$
\le |B|e^{-\frac{2\left(N\log c_2 + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N\log^2(c_4/c_3)}}
$$
(57) 865

(54) **857**

866 And
$$
\forall \beta \in R/\hat{\beta}
$$
,

$$
P(p(\beta|x_{1:N}, \hat{\alpha}) \ge t)
$$

867

$$
\le |B|e^{-\frac{2\left(N\log c_2 + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(1-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N\log^2(c_4/c_3)}} \qquad (58)
$$

868

869 Likewise, we can also obtain the following coro-**870** lary:

871 **Corollary 3.**
$$
If \hat{\beta} \in R, \, \text{plim}_{N \to \infty} p(\hat{\beta}|x_{1:N}, \hat{\alpha}) = 1.
$$

873 *Proof.* The proof is identical to the proof of corol-**874** lary [4](#page-13-0) so we omit it. \Box

875 B.3 Property of topic predictive distribution

876 Based on the above results, we are able to investi-**877** gate the property of the topic predictive distribution **878 p**($\beta | x_{1:N}$).

879 Proposition 3. *If* t *satisfies:*

880
$$
1 > t \ge \max \begin{cases} \frac{2|A|^{5/2} p_{\max}(\hat{\alpha}) c_1^{-N}}{p(\hat{\alpha}) + |A| p_{\max}(\hat{\alpha}) c_1^{-N}} \\ \frac{2|B| p_{\max}(\hat{\beta}|\hat{\alpha}) c_2^{-N}}{p(\hat{\beta}|\hat{\alpha}) + |B| p_{\max}(\hat{\beta}|\hat{\alpha}) c_2^{-N}} \end{cases}
$$
(59)

Then, for the ground-truth topic $\hat{\beta}$ *, if* $\hat{\beta} \in R$ *, we* **882** *have:*

$$
P(1 - p(\hat{\beta}|x_{1:N}) \ge t)
$$

\n
$$
\le |A|^2 e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(2|A|^{\frac{3}{2}} - t)p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}} \quad (60)
$$

\n
$$
+ |B| e^{-\frac{2\left(N \log c_2 + \log \frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(2-t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N \log^2(c_4/c_3)}}
$$

884 For other topics
$$
\beta \in B/\hat{\beta}
$$
, we also have:

$$
P(p(\beta|x_{1:N}) \ge t)
$$

\n
$$
\le |A|^2 e^{-\frac{\left(N \log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(2|A|^{\frac{3}{2}} - t)p_{\max}(\hat{\alpha})}\right)^2}{8N \log^2(c_4/c_3)}}
$$
 (61)
\n
$$
+ |B| e^{-\frac{2\left(N \log c_2 + \log \frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(2 - t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N \log^2(c_4/c_3)}}
$$

886 *Proof.* For the ground-truth topic $\hat{\beta}$ and any 0 <

 $t < 1$, we have: 887

$$
P(1 - p(\hat{\beta}|x_{1:N}) \ge t)
$$

=
$$
P(p(\hat{\beta}|x_{1:N}, \hat{\alpha}) - p(\hat{\beta}|x_{1:N}) +
$$

$$
1 - p(\hat{\beta}|x_{1:N}, \hat{\alpha}) \ge t)
$$

$$
\le P(|p(\hat{\beta}|x_{1:N}, \hat{\alpha}) - p(\hat{\beta}|x_{1:N})| +
$$

$$
1 - p(\hat{\beta}|x_{1:N}, \hat{\alpha}) \ge t)
$$

$$
\le P(|p(\hat{\beta}|x_{1:N}, \hat{\alpha}) - p(\hat{\beta}|x_{1:N})| \ge \frac{t}{2})
$$

$$
P(1 - p(\hat{\beta}|x_{1:N}, \hat{\alpha}) \ge \frac{t}{2})
$$

Therefore, if 889

 \Box

$$
1 > t \ge \max \begin{cases} \frac{2|A|^{5/2} p_{\max}(\hat{\alpha}) c_1^{-N}}{p(\hat{\alpha}) + |A| p_{\max}(\hat{\alpha}) c_1^{-N}} \\ \frac{2|B| p_{\max}(\hat{\beta} | \hat{\alpha}) c_2^{-N}}{p(\hat{\beta} | \hat{\alpha}) + |B| p_{\max}(\hat{\beta} | \hat{\alpha}) c_2^{-N}} \end{cases} (63)
$$

we can then apply corollary [2](#page-12-1) and proposition 2 to 891 prove formula [\(60\)](#page-13-2). Meanwhile, for other topics **892** $\beta \in B/\hat{\beta}$, we have: 893

$$
P(p(\beta|x_{1:N}) \ge t) \le P\left(\sum_{\beta \in B/\hat{\beta}} p(\beta|x_{1:N}) \ge t)\right)
$$

$$
= P(1 - p(\hat{\beta}|x_{1:N}) \ge t))
$$
(64)

Then, if t satisfies formula [\(63\)](#page-13-3), we can obtain 895 **formula [\(61\)](#page-13-4).** 896

The property of the topic predictive distribution **897** can be summarized more compactly via the follow- **898** ing corollary: **899**

Corollary 4. *If*
$$
\hat{\beta} \in R
$$
, $\text{plim}_{N \to \infty} p(\hat{\beta}|x_{1:N}) = 1$.

Proof. The proof is identical to the proof of corol- 901 lary [4](#page-13-0) so we omit it. \Box 902

B.4 Property of in-context generative **903** distribution **904**

According the property of the topic predictive dis- **905** tribution, we can finally study the property of the **906** in-context generative distribution. **907**

Proposition 4. *If t satisfies:* 908

$$
1 > t \ge \max \begin{cases} \frac{2c_4|A|^{5/2}|B|^{3/2}p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})c_1^{-N}} & (65) \\ \frac{2c_4|B|^{3/2}p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}{p(\hat{\beta}|\hat{\alpha})+|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}} & (65) \end{cases}
$$

(64) **894**

910 *and* $\hat{\beta} \in R$, for any candidate paragraph $x \in \Sigma^*$, **911** *we have:*

$$
P(|p(x|x_{1:N}) - p(x|\hat{\beta})| \ge t)
$$

\n
$$
\le |A|^2 |B|e^{-\frac{\left(N\log c_1 + \log \frac{tp(\hat{\alpha})}{|A|(2|A|^{\frac{3}{2}}|B|^{\frac{3}{2}}c_4 - t)p_{\max}(\hat{\alpha})\right)^2}{8N\log^2(c_4/c_3)}}
$$

\n
$$
+ |B|^2 e^{-\frac{2\left(N\log c_2 + \log \frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(2|B|^{\frac{3}{2}}c_4 - t)p_{\max}(\hat{\beta}|\hat{\alpha})\right)^2}{N\log^2(c_4/c_3)}}
$$
(66)

913 *Proof.* Let $p_N^{\beta} \in \Delta^{|B|}$ be the topic predictive vec-**914** tor: \mathbf{r}

$$
\mathbf{p}_N^{\beta} = \begin{bmatrix} \cdots \\ p(\beta | x_{1:N}) \\ \cdots \end{bmatrix} \in \Delta^{|B|} \tag{67}
$$

916 **and** $\delta^{\hat{\beta}}$ **be the one-hot vector peaking at** $\hat{\beta}$ **. For all** 917 $0 < t < 1$, we have:

$$
P\left(\|\mathbf{p}_{N}^{\beta} - \boldsymbol{\delta}^{\hat{\beta}}\|_{2} \geq t\right)
$$

\n
$$
\leq P\left(\sum_{\beta \in B/\hat{\beta}} p(\beta|x_{1:N}) + 1 - p(\hat{\beta}|x_{1:N}) \geq t\right)
$$

\n
$$
\leq \sum_{\beta \in B/\hat{\beta}} P\left(p(\beta|x_{1:N}) \geq \frac{t}{|B|}\right)
$$

\n
$$
+ P\left(1 - p(\hat{\beta}|x_{1:N}) \geq \frac{t}{|B|}\right)
$$
(68)

 $\frac{2|A|^{5/2}p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})c_1^{-N}} \ 2|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}$

 $p(\hat{\beta}|\hat{\alpha})\!+\!|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2\!-\!N}$

 $\frac{2|A|^{5/2}|B|p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})c_1^{-N}} \ 2|B|^2p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}$

 $p(\hat{\beta}|\hat{\alpha})\!+\!|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}$

920 $\mathbf{P}(\mathbf{P}|\mathbf{a}) + \mathbf{P}(\mathbf{P}|\mathbf{a})\mathbf{c}_2$ (69)

921 Then we can apply results from proposition [3](#page-13-5) to **922** get the following:

$$
P\left(\|\mathbf{p}_{N}^{\beta} - \boldsymbol{\delta}^{\hat{\beta}}\|_{2} \geq t\right)
$$
\n
$$
\leq |A|^{2}|B|e^{-\frac{\left(N\log c_{1} + \log\frac{tp(\hat{\alpha})}{|A|(2|A)^{\frac{3}{2}}|B| - t\right)p_{\max}(\hat{\alpha})}{8N\log^{2}(c_{4}/c_{3})}} + |B|^{2}e^{-\frac{2\left(N\log c_{2} + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(2|B| - t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^{2}}{N\log^{2}(c_{4}/c_{3})}}
$$
\n
$$
\tag{70}
$$

924 Now, denote:

$$
\mathbf{p}_{\cdot|\beta}^{x} = \begin{bmatrix} \cdots \\ p(x|\beta) \\ \cdots \end{bmatrix} \in [c_3, c_4]^{|B|} \tag{71}
$$

Therefore, For all $0 < t < 1$, 926

$$
P(|p(x|x_{1:N}) - p(x|\hat{\beta})| \ge t)
$$

= $P\left(\left|\left(\mathbf{p}_{N}^{\beta} - \boldsymbol{\delta}^{\hat{\beta}}\right)^{T} \mathbf{p}_{\cdot|\beta}^{x}\right| \ge t\right)$
 $\le P\left(\left\|\mathbf{p}_{N}^{\beta} - \boldsymbol{\delta}^{\hat{\beta}}\right\|_{2}\left\|\mathbf{p}_{\cdot|\beta}^{x}\right\|_{2} \ge t\right)$
 $\le P\left(\left\|\mathbf{p}_{N}^{\beta} - \boldsymbol{\delta}^{\hat{\beta}}\right\|_{2} \ge \frac{t}{\sqrt{|B|}c_{4}}\right)$ (72)

Therefore, if t satisfies formula [\(65\)](#page-13-6), we can then **928** apply formula (66) to prove the result. \Box 929

Proposition [4](#page-13-7) directly supports the following **930** corollary: 931

Corollary 5. If
$$
\hat{\beta} \in R
$$
, $\text{plim}_{N \to \infty} p(x|x_{1:N}) =$ 932
 $p(x|\hat{\beta}).$ 933

Proof. The proof is identical to the proof of corol- **934** lary [4](#page-13-0) so we omit it. \Box 935

B.5 Property of in-context predictive 936 distribution **937**

We can generalize the property of ICG distribution **938** to the in-context predictive distribution as well, **939** which forms the theoretical foundation of ICL. 940

Proposition 5. *If t satisfies:* 941

$$
1 > t \ge \max \begin{cases} \frac{4c_3^2 c_4^2 |A|^{5/2} |B|^{3/2} p_{\max}(\hat{\alpha}) c_1^{-N}}{p(\hat{\alpha}) + |A| p_{\max}(\hat{\alpha}) c_1^{-N}} \\ \frac{4c_3^2 c_4^2 |B|^{3/2} p_{\max}(\hat{\beta}|\hat{\alpha}) c_2^{-N}}{p(\hat{\beta}|\hat{\alpha}) + |B| p_{\max}(\hat{\beta}|\hat{\alpha}) c_2^{-N}} \end{cases} (73)
$$

and
$$
\hat{\beta} \in R
$$
, we have

$$
P\left(\left|p(y|(x,y)_{1:N},x) - p(y|x,\hat{\beta})\right| \ge t\right)
$$

\n
$$
\le |A|^2|B|e^{-\frac{\left(N\log c_1 + \log\frac{tp(\hat{\alpha})}{|A|(4|A|^{\frac{3}{2}}|B|^{\frac{3}{2}}c_3^2c_4^2 - t)p_{\max}(\hat{\alpha})\right)^2}{8N\log^2(c_4/c_3)}}
$$

\n
$$
+ |B|^2e^{-\frac{2\left(N\log c_2 + \log\frac{tp(\hat{\beta}|\hat{\alpha})}{|B|(4|B|^{\frac{3}{2}}c_3^2c_4^2 - t)p_{\max}(\hat{\beta}|\hat{\alpha})}\right)^2}{N\log^2(c_4/c_3)}}
$$
(74)

919 If

t

 $\frac{v}{|B|} \geq \max$

 $\Rightarrow t \geq \max$

 $\sqrt{ }$ $\left| \right|$ \mathcal{L}

 $\sqrt{ }$ \int \mathcal{L}

(74) **944**

945 *Proof.* $\forall 0 < t < 1$, we have

$$
P\left(\left|p(y|(x,y)_{1:N},x)-p(y|x,\hat{\beta})\right|\geq t\right)
$$
\n
$$
=P\left(\left|\frac{p(x,y|(x,y)_{1:N})}{p(x|(x,y)_{1:N})}-\frac{p(x,y|\hat{\beta})}{p(x|\hat{\beta})}\right|\geq t\right)
$$
\n
$$
=P\left(\left|\frac{p(x|\hat{\beta})p(x,y|(x,y)_{1:N})}{p(x|(x,y)_{1:N})p(x|\hat{\beta})}-\frac{-p(x,y|\hat{\beta})p(x|(x,y)_{1:N})}{p(x|\hat{\beta})p(x|(x,y)_{1:N})}\right|\geq t\right)
$$
\n
$$
\leq P\left(\left|p(x|\hat{\beta})p(x,y|(x,y)_{1:N})\right|\geq \frac{t}{c_3^2}\right)
$$
\n
$$
=P\left(\left|p(x|\hat{\beta})\left(p(x,y|(x,y)_{1:N})-p(x,y|\hat{\beta})\right)\right|
$$
\n
$$
+p(x,y|\hat{\beta})\left(p(x|\hat{\beta})-p(x|(x,y)_{1:N})\right)\geq \frac{t}{c_3^2}\right)
$$
\n
$$
\leq P\left(\left|p(x|(x,y)_{1:N})-p(x|\hat{\beta})\right|\geq \frac{t}{2c_3^2c_4}\right)
$$
\n
$$
+P\left(\left|p(x,y|(x,y)_{1:N})-p(x,y|\hat{\beta})\right|\geq \frac{t}{2c_3^2c_4}\right)
$$
\n(75)

947 **Therefore, if t satisfies:**

948
$$
1 > t \ge \max \begin{cases} \frac{4c_3^2c_4^2|A|^{5/2}|B|^{3/2}p_{\max}(\hat{\alpha})c_1^{-N}}{p(\hat{\alpha})+|A|p_{\max}(\hat{\alpha})c_1^{-N}} \\ \frac{4c_3^2c_4^2|B|^{3/2}p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}}{p(\hat{\beta}|\hat{\alpha})+|B|p_{\max}(\hat{\beta}|\hat{\alpha})c_2^{-N}} \end{cases}
$$
(76)

949 we can use the results of proposition [4](#page-13-7) to obtain the **950** results. \Box

951 We can also obtain the following convergence **952** corollary from proposition [5:](#page-14-1)

953 **Corollary 6.**
$$
If \hat{\beta} \in R, \text{plim}_{N \to \infty} p(y|x_{1:N}, x) = p(y|x, \hat{\beta}).
$$

955 *Proof.* The proof is identical to the proof of corol-**956** lary [4](#page-13-0) so we omit it. \Box

957 C Convergence Speed

 We can also observe the convergence speed from $p(\beta | x_{1:N})$ to 1 from proposition [3.](#page-13-5) Specifically, take the derivative of the upper-bound to N in for- mula (60), we can see that the convergence speed is around

$$
O\left(-\left(e^{\frac{\log^2 c_1}{8\log^2(c_4/c_3)}}\right)^{-N} - \left(e^{\frac{2\log^2 c_2}{\log^2(c_4/c_3)}}\right)^{-N}\right)
$$
\n963

Therefore, the higher the distinction between dif- **964** ferent modes and topics, i.e, the higher $log c_1$ and 965 $\log c_2$, the faster the convergence of the data ICTR. 966

D Expectation of
$$
KL(\hat{\beta}||\beta)
$$
 967

According to the settings, each topic $\beta \in B$ con- 968 tains a few sub-topics, then the expectation of **969** $KL(\hat{\beta}||\beta)$ depends on KL divergences of those sub- **970** topics: **971**

$$
\mathbb{E}\left[\mathrm{KL}(\hat{\beta}||\beta)\right] = \sum_{m=1}^{M} \mathbb{E}_{\hat{\rho}_m, \rho_m} \left[\mathrm{KL}(\hat{\rho}_m||\rho_m)\right]
$$

$$
= \sum_{m=1}^{M} \mathbb{E}_{\hat{\rho}_m, \rho_m} \left[\sum_s p(s|\hat{\rho}_m) \log \frac{p(s|\hat{\rho}_m)}{p(s|\rho_m)}\right]
$$
(78)

Given that $\hat{\beta}$ and β are different, there at least exists **973** one subtopic is different between them, so: **974**

$$
\mathbb{E}\left[\mathrm{KL}(\hat{\beta}||\beta)\right] \geq \mathbb{E}_{\hat{\rho},\rho}\left[\mathrm{KL}(\hat{\rho}||\rho)\right] \qquad (79) \qquad \qquad 975
$$

Note that for each $\rho \in B_*$, the sub-paragraph dis tribution $p(s|\rho) = p(s|\tilde{A}_{\rho})$ is Markovian, where $\tilde{\mathbf{A}}_{\rho} = [\boldsymbol{\pi}_{\rho}, \mathbf{A}_{\rho}]$ is a row concatenation of the initial probability vector π_{ρ} and transition matrix A_{ρ} sampled from $Dir([\gamma]^{|\Sigma|})$. Let T be the length of s. 980 Expand the KL divergence, we have

$$
\mathbb{E}_{\hat{\rho},\rho} [\text{KL}(\hat{\rho}||\rho)] = \mathbb{E}_{\hat{\rho},\rho}^T [\text{KL}(\hat{\rho}||\rho)]
$$
\n
$$
= \mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}},\tilde{\mathbf{A}}_{\rho}} \left[\text{KL} \left(p(\cdot|\tilde{\mathbf{A}}_{\hat{\rho}})||p(\cdot|\tilde{\mathbf{A}}_{\rho}) \right) \right]
$$
\n
$$
= \mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}},\tilde{\mathbf{A}}_{\rho}} \left[\sum_{s_{1:T-1}} \sum_{s_{T}} \sum_{s_{T}} p(s_{1:T-1}|\tilde{\mathbf{A}}_{\hat{\rho}}) \tilde{\mathbf{A}}_{\hat{\rho}}^{s_{T-1},s_{T}} \right]
$$
\n
$$
p(s_{1:T-1}|\tilde{\mathbf{A}}_{\hat{\rho}}) \tilde{\mathbf{A}}_{\hat{\rho}}^{s_{T-1},s_{T}} \log \frac{p(s_{1:T-1}|\tilde{\mathbf{A}}_{\hat{\rho}}) \tilde{\mathbf{A}}_{\hat{\rho}}^{s_{T-1},s_{T}}}{p(s_{1:T-1}|\tilde{\mathbf{A}}_{\rho}) \tilde{\mathbf{A}}_{\rho}^{s_{T-1},s_{T}}}
$$
\n
$$
= \mathbb{E}_{\hat{\rho},\rho}^{T-1} [\text{KL}(\hat{\rho}||\rho)] + \mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}},\tilde{\mathbf{A}}_{\rho}} \left[\sum_{s_{T-1},s_{T}} \sum_{s_{T-1},s_{T}} \frac{\tilde{\mathbf{A}}_{\hat{\rho}}^{s_{T-1},s_{T}}}{\tilde{\mathbf{A}}_{\rho}^{s_{T-1},s_{T}}} \right]
$$
\n(80)

Note that Assumption 3 actually implicit that **983** $p(s_T | \tilde{\mathbf{A}}_{\rho})$ is bounded for all T and $\rho \in B_*$. We **984** assume the lower bound is c_5 . Then, the second 985 term of the above formula has the following lower **986**

(80) **982**

Figure 6: Examples in the synthetic dataset, where we set $M = 3$, $r_R = 1/1024$ and $\gamma = 0.01$.

987 bound:

$\mathbb{E}^T_{\hat{\rho},\rho}\left[\text{KL}(\hat{\rho} \| \rho)\right] \geq \mathbb{E}^{T-1}_{\hat{\rho},\rho}$ $\frac{T-1}{\hat{\rho},\rho}\left[\text{KL}(\hat{\rho} \| \rho)\right] + \frac{c_5(|\Sigma|-1)}{\gamma}$ $\geq \mathbb{E}_{\hat{\delta},\alpha}^{T-2}$ $\frac{T-2}{\hat{\rho},\rho}\left[\text{KL}(\hat{\rho} \| \rho)\right]+\frac{2c_5(|\Sigma|-1)}{\gamma}$

$$
\geq \frac{Tc_5(|\Sigma|-1)}{\gamma}
$$

$$
(82)
$$

Therefore, the expectation of $KL(\hat{\beta}||\beta)$ is bounded: 993

$$
\mathbb{E}\left[\mathrm{KL}(\hat{\beta}||\beta)\right] \ge \frac{Tc_5(|\Sigma|-1)}{\gamma} \qquad (83)
$$

the above formula. Therefore, we have: **991**

We can see that the lower the value of γ , the larger **995** the expected topic-wise KL divergence, and the **996** more significant the topic distinction is. 997

E Synthetic Dataset Illustration **⁹⁹⁸**

Figure [6](#page-16-0) shows examples in the synthetic dataset, **999** where we also visualize the latent variables mode 1000 α and outline $\beta_{1:N}$ for a better understanding. 1001

F Computation of Prompt and Topic-wise **¹⁰⁰²** ICTR 1003

According to the definition, given an in-context 1004 prompt $x_{1:N}$, where each sample $x_n \sim p(x|\hat{\beta})$, 1005 ICTR is the probability that the language model **1006** generates a paragraph also belongs to topic β . Thus, 1007 to measure the belongness of the generated para- **1008** graph, we use the mixture of topic-paragraph mod- **1009** e ls $\sum_{\beta \in B} \pi_{x_{1:N}}^{\beta} p(x|\beta)$ to fit the ICG distribution 1010 of the target language model $p_{LM}(x|x_{1:N})$. Here, 1011

 $\mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}}, \tilde{\mathbf{A}}_{\rho}}$ $\sqrt{ }$ $\overline{1}$ \sum s_{T-1}, s_T $p(s_{T-1}|\tilde{\textbf{A}}_{\hat{\rho}})\tilde{\textbf{A}}_{\hat{o}}^{s_{T-1},s_{T}}$ $_\hat{\rho}^{s_{T-1},s_{T}}\log$ $\tilde{\mathbf{A}}_{\hat{a}}^{s_{T-1},s_{T}}$ $\hat{\rho}$ $\tilde{\mathbf{A}}_{\rho}^{s_{T-1},s_{T}}$ 1 $\geq c_5 \mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}}, \tilde{\mathbf{A}}_{\rho}}$ $\sqrt{ }$ $\overline{1}$ \sum s_{T-1}, s_T $\tilde{\mathbf{A}}_{\hat{a}}^{s_{T-1},s_{T}}$ $_{\hat{\rho}}^{s_{T-1},s_{T}}\log$ $\tilde{\mathbf{A}}_{\hat{a}}^{s_{T-1},s_{T}}$ $\hat{\rho}$ $\tilde{\mathbf{A}}_{\rho}^{s_{T-1},s_{T}}$ 1 $\overline{1}$ $=c_5\mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}}}$ $\sqrt{ }$ $\overline{}$ \sum s_{T-1}, s_T $\tilde{\mathbf{A}}_{\hat{a}}^{x_{T-1},x_{T}}$ $_{\hat{\rho}}^{x_{T-1},x_{T}}\log\tilde{\mathbf{A}}_{\hat{\rho}}^{x_{T-1},x_{T}}$ $\hat{\rho}$ 1 \vert $-c_5\mathbb{E}_{\tilde{\mathbf{A}}_{\hat{\rho}},\tilde{\mathbf{A}}_{\rho}}$ $\sqrt{ }$ $\overline{1}$ \sum s_{T-1}, s_T $\tilde{\mathbf{A}}_{\hat{a}}^{x_{T-1},x_{T}}$ $_{\hat{\rho}}^{x_{T-1},x_{T}}\log\mathbf{\tilde{A}}_{\rho}^{x_{T-1},x_{T}}$ 1 $\overline{1}$ $= c_5|\Sigma| \left[\psi(\gamma + 1) - \psi(|\Sigma|\gamma + 1)\right]$ $-c_5|\Sigma| \left[\psi(\gamma) - \psi(|\sigma|\gamma)\right]$ $=\frac{c_5(|\Sigma|-1)}{2}$ γ

988 (81)

989 where $\psi(x)$ is the digamma function, and we use 990 the property $\psi(x+1) = \psi(x) + 1/x$ to simplify

(82) **992**

(83) **994**

 $p(x|\beta)$ is fixed, and we sample L_1 paragraphs **from** $p_{LM}(x|x_{1:N})$ to fit $\pi_{x_{1:N}}^{\beta}$ using EM algorithm [\(Bishop and Nasrabadi,](#page-8-20) [2006\)](#page-8-20) as shown in Algo-**1015 rithm [1.](#page-17-0)** As a result, the estimated $\pi_{x_{1:N}}^{\hat{\beta}}$ can repre-1016 sent the ICTR given the in-context prompt $x_{1:N}$.

1017 We further compute the topic-wise ICTR to sum-**1018** marize the ICG ability of a specific topic. Topic-**1019** wise ICTR is the expectation of prompt-wise ICTR:

1020
$$
\pi_N^{\beta} = \mathbb{E}_{p(x_{1:N}|\beta^N)} \left[\pi_{x_{1:N}}^{\beta} \right] \simeq \frac{1}{L_2} \sum_{l=1}^{L_2} \pi_{x_{1:N}^l}^{\beta} \quad (84)
$$

 Here, we use Monte-Carlo sampling to estimate 1022 the expectation, where $x_{1:N}^l$ is the *l*-th sample of $\prod_{n=1}^{N} p(x_n|\hat{\beta})$. Due to the large number of the topics (531441) in the pretrained distribution, for 1025 simplicity, L_1 and L_2 are both set to 1. Thus, the evaluation of a model just requires 531441 forward passes, where the time consumption is acceptable. In-context prompts for evaluation is shown in Fig-**1029** ure [6.](#page-16-0)

Randomly initialize $\pi_{x_{1:N}}^{\beta}$. for $l = 1, \cdots, L_1$ do $x^l \sim p_{\text{LM}}(x|x_{1:N})$ end for while not convergence do for $l = 1, \cdots, L_1$ do $\omega_{x_{1:N}}^{\beta,l}=\frac{\pi_{x_{1:N}}^{\beta}p(x^{l}|\beta)}{\sum_{x_{1:N}}\pi^{\beta'}-p(x^{l})}$ $\sum_{\beta' \in B} \pi_{x_{1:N}}^{\beta'} p(x^l|\beta)$ end for $\pi_{x_{1:N}}^{\beta} = \frac{\sum_{l=1}^{L_{1}} \omega_{x_{1:N}}^{\beta,l}}{L_{1}}$ end while $p_{\text{LM}}(\beta|x_{1:N}) \leftarrow \pi^{\beta}_{x_{1:N}}$ return $p_{\text{LM}}(\beta|x_{1:N})$