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Abstract

Large language models (LLMs) are found to
have the ability of in-context generation (ICG):
when they are fed with an in-context prompt
containing a somehow similar examples, they
can implicitly discover the pattern of them
and then complete the prompt in the same pat-
tern. ICG is curious, since language models
are not completely trained in the way same as
the in-context prompt, and the distribution of
examples in the prompt differs from that of se-
quences in the pretrained corpora. This paper
provides a systematic study of the ICG abil-
ity of language models, covering discussions
about its source and influential factors, in the
view of both theory and empirical experiments.
Concretely, we first propose a plausible latent
variable model to describe the distribution of
the pretrained corpora, and then formalize ICG
as a problem of next topic prediction. With this
framework, we can prove that the repetition na-
ture of a few topics ensures the ICG ability on
them theoretically. Then, we use this control-
lable pretrained distribution to generate several
medium-scale synthetic datasets (token scale:
2.1B~3.9B) and experiment with different set-
tings of Transformer architectures (parameter
scale: 4M~234M). Our experimental results
further offer insights into how factors of data
and model architectures influence ICG.

1 Introduction

As the data and parameter scale continue to in-
crease, large language models (LLMs) have shown
strikingly emergent abilities (Wei et al., 2022a),
where one of the most exciting ones is in-context
learning (ICL) (Brown et al., 2020). Given an in-
context prompt that concatenates a few in-context
examples and a query input, LLMs can somehow
implicitly guess the "topic" of those examples and
complete the query input in the desired way. Fur-
thermore, LLMs can imitate those examples using
the topic learned in context (Meyerson et al., 2023).

For instance, Llama2-13B (Touvron et al., 2023)
is able to generate plausible sequences of the topic
of in-context examples, as shown in Figure 1. This
in-context generation (ICG) ability forms the foun-
dation of multiple few-shot prompting methods like
ICL and its variants like Chain-of-thoughts (Wei
et al., 2022b).

Intuitively, one might comment that LLMs learn
the ICG ability from data in the repetition mode,
which roughly refers to a type of text concatenated
with sequences under the same topic. This is true to
some extent. As known, typical pretrained corpora
contain (e.g. CommonCrawl') internet data which
has an unneglectable portion of array-page data
such as IMDB review pages”. After preprocess-
ing, these pages are converted to repetition mode
data, as shown in Figure la. However, this isn’t
enough to explain the ICG ability, since LLMs can
also generate sequences of in-context learned top-
ics that don’t appear to repeat and even are unseen
in the pretrained corpora. For example, Figure 1
shows sampled completions of Llama2-13B given
in-context prompts of different types of topics:

1. The first one is a repeated topic called "movie
review" (Figure 1a), where Llama2-13B naturally
has the ICG ability on it since this topic appears to
repeat in the pretrained corpora as mentioned.

2. The second type nonrepeated topic refers to
those that appear in the pretrained corpora but never
repeat, e.g., forward method in any class inherited
from nn.Module of Pytorch (Paszke et al., 2019)
code (Figure 1b). However, Llama2-13B can also
generate plausible code of forward method when
prompting a few ones.

3. The last type unseen topic includes those that
never appear in the pretrained corpora. For exam-
ple, "unnatural addition" generates 2-digit arith-
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a masterpiece four years in the making.

this film is predictable at every turn.
interminably bleak , to say nothing of boring.
must be seen to be believed.

(b) ICG of nonrepeated topics

Model Input

def forward(self, input_ids):
embeds = self.embeddings(input_ids)

hiddens, _ = self.Istm(embeds)
pos_logprobs = self.pos_head(hiddens).log_softmax(-1)
return pos_logprobs

> def for (self,

Model Output

logprobs = self. c/sfhea‘d(hiddens).Iogfsoftmax(—1 )
return logprobs

def forward(self, imgs):
feature = self.cnn(imgs)
feature = feature.flatten(1, -1)
logprobs = self.cls_head(feature).log_softmax(-1)
return logprobs

Model Output

def forward(self, imgs, imgs_text):
feature = self.encoder(imgs)
hm = self.embedding(imgs_text)
out1 = self.rel_head(torch.cat([feature[., -1., :], hm[:, None, :]], dim=1))
out? = out1.sum(dim=1).max(-1)[0]
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out2 = self.rel_head(torch.cat([feature[:, 0:1, :J, hm[:, [0], :]], dim=1))
out2 = out2.sum(dim=1).max(-1)[0]
return out, out2

Figure 1: ICG examples (generated from Llama2-13B) of different kinds of topics.

metic expressions that input subtraction but expect
addition (like "1-1=2"), which is intuitively be-
lieved to never be seen in the pretrained corpora
(Rong, 2021). However, Llama2-13B can also rec-
ognize this topic and generate plausible sequences
in context, as shown in Figure Ic.

The above results show that LLMs can gener-
alize the repetition mode to nonrepeated and un-
seen topics. We term this phenomenon as the
topic generalization of ICG, abbreviated as ICG-
generalization. ICG-generalization is curious be-
cause LLMs are not explicitly trained in the way
they test. The biggest challenge of studying ICG
and its generalization is that the true pretrained dis-
tribution is not accessible. Thus, we don’t know the
topic of a span or whether it appears to repeat, mak-
ing it difficult to evaluate the ICG abilities of LLMs.
To address this, we turn to synthetic data generated
from a known and controlled pretrained distribution
(Bowman et al., 2015; McCoy et al., 2018; White
and Cotterell, 2021; Xie et al., 2021; Papadimitriou
and Jurafsky, 2023; Jumelet and Zuidema, 2023).
The distribution is a hierarchical latent variable
model (LVM) as shown in Figure 2, where a docu-
ment is guided by two kinds of latent variables. The
distribution is not only plausible to explain true pre-
trained data but also convenient for analysis since
it decouples different levels of uncertainties.

Through the proposed pretrained distribution, we
can naturally formalize ICG as a problem of next
topic prediction, and then conduct mathematical

analysis. We first theoretically prove that (Theorem
1), under some mild assumptions, if the language
model fits the pretrained distribution well, then
it’s guaranteed to have the ICG ability on repeated
topics in terms of convergence in probability. As
a result, the ICG distribution (i.e., the generative
distribution conditioned on the in-context prompt)
converges to the true topic-paragraph distribution
in probability. Next, we study ICG-generalization
via exhaustive experiments, revealing that ICG-
generalization is caused by both factors of data
and models. Concretely, we use the controllable
pretrained distribution to generate several synthetic
datasets (token scale: 2.1B~3.9B), and train Trans-
former (Vaswani et al., 2017) language models with
different settings (parameter scale: 4M~234M). Ex-
periments show that data compositionality, propor-
tion of repeated topics, Transformer’s parameter
scale, and window size play crucial roles in en-
abling ICG-generalization, while the data topic
uncertainty and Transformer’s attention head size
have few influences®. Our study provides insights
to better understanding the ICG ability and LLMs.

2 Settings

2.1 Pretrained Distribution

We assume the pretrained distribution is a hierarchi-
cal LVM as shown in Figure 2, where a document is
3These results are consistent with previous works about

attention head pruning (Michel et al., 2019; Voita et al., 2019)
and the importance of large attention size (Ratner et al., 2023).



Figure 2: Bayesian network of the pretrained distribu-
tion, where the non-shaded nodes are latent variables.

generated via the following steps: 1) Draw a latent
mode a € A from the mode prior p(«). 2) Draw a
latent outline 5.y € BY containing topics of dif-
ferent paragraphs from the Markov mode-outline
distribution p(S1.n|«) parameterized by the mode
«. 3) Sample each paragraph x; € ¥* (¥ is the
vocabulary) individually from the topic-paragraph
distribution p(z|3;), and concatenate them with
delimiters. The joint distribution of this LVM is:

N
plev, v, w1:v) = p(e)p(Brvle) [ [ o(xil 8:)
i=1
(D

This distribution is plausible because: 1) It has a
clear realistic interpretation of how humans write
documents. Generally, humans would first deter-
mine the literature genre (e.g., narrative, letter, and
so on), and then plan a specific structure of that
genre before writing, as shown in Figure 1. Such
a process is modeled via the mode prior p(«) and
the mode-outline distribution p(51.n|a). 2) It is
capable of describing any language marginal dis-
tribution via the marginalization over latent vari-
ables. Also, it is convenient to analyze because
of disentanglement: two kinds of uncertainties,
topic-transition and generation of paragraphs are
handled by two separated models p(/3,|51:n—1, @)
and p(z,|5,), respectively, but not the entangled
marginal p(z1.y).

2.1.1 Assumptions

The pretrained distribution has three additional
assumptions. Firstly, as mentioned, typical pre-
trained distributions for LLLMs include the repe-
tition mode & € A that only generates repeated
outlines 8V (8 € B) (8" represents a N-length
outline that each topic within is 3). This formally
raises the following:

Assumption 1. There exists a mode & € A
called repetition mode such that p(5p41|5n, &) =
1(Bn+1 = Bn) for all timesteps n. Other modes

a € A/a are called continuous modes, since the
outline under them seems to shift gradually and
continuously.

Secondly, we have to ensure that different modes
and topics are different to get rid of redundancy.
That is, they should be distinguished in terms of
distance measure of distribution:

Assumption 2. For two different modes o, o’ € A
and an arbitrary context 1.y, define:
(55|751:n, Oé/)

Zp .’13|I'1 my & log
(2)

We assume that KL,, (a]|o’) > logey > 0. Like-
wise, for two different topics 3, 3’ € B, define:

fﬂlﬁ)

1 3
§p z|3) og @7 3)
We assume that KL(B||8") > log ca > 0.

Thirdly, for convenience and without loss of
plausibility, we assume that:

L(B]6")

Assumption 3. For each paragraph x € X%, its
support from any topic 8 € B is bounded: 0 <
c3 <p(z|f) <eq < 1.

2.1.2 Topic Types

With Assumption 1, the likelihood of any repeated
outline 4~ under the repetition mode & only de-
pends on the topic itself:

p(BN|&) = p(B1 = Bla) := p(Bla) (@)

where p(3|@) is the repetition prior measuring how
often the topic [ is chosen to repeat under mode &.
Analogously, let p(/3) be the topic prior assessing
the frequency of the topic 3:

= p(Bla)p(a) ()

a€A

According to the appearance, we can formally
group topics 8 € B into three mutually exclusive
sets, as shown in Figure 1:

1. Repeated set R. V5 € R, p(B|&) > 0. That
is, each topic within appears to repeat in the pre-
trained distribution. By intuition, repeated topics
account for a very small proportion of all topics in
realistic data, i.e., rgr = |R|/|B| is small.

2. Nonrepeated set C. V3 € C, p(fla) =
0, p(8) > 0. In other words, this set contains
topics that don’t repeat but appear in the pretrained
corpora.



3. Unseenset U. V3 € U, p(B) = 0. Topics in
this set are never seen in the pretrained corpora.

2.2 Problem Formalization

Consider a language model pr g trained on samples
of the above pretrained distribution p. The ICG
ability could be formalized as:

Hypothesis 1. Given a language model pry
trained on the pretrained distribution p and an
in-context prompt x1.yN, where each sample x, ~
p(x|B), the in-context topic-repetition rate (ICTR),
i.e., the probability that the language model gener-
ates a paragraph belong to topic B when prompting
with x1.n is somehow close to 1:

pm(Blrin) = prm (B = Blriy) =~ 1 (6)

Accordingly,  the ICG distribution
pMm(z|z1.n) is somehow closed to the true
topic-paragraph distribution p(z|5):

model

pum(z]z1.N) ~ p(z]B) (7

Thus, we formalize ICG as next topic prediction,
where language models seem to implicitly choose
the topic of in-context examples as the next topic.
Our goal is to find support for this hypothesis from
the perspective of both theory and empirical exper-
iments.

3 Theoretical Support

Intuitively, the pretrained distribution itself ensures
the ICG ability for repeated topics R. This can be
explicitly formalized by the following theorem:

Theorem 1. Given an in-context prompt x1.N,
where each sample x,, ~ p(z|B) and B € R, the
pretrained distribution have the following proper-
ties:

1. The data ICTR* converges to 1 in probability
(corollary 4):
plim p(Blz1.n) = 1 (8)

N—oo

= ﬁ\JBl:N) =

where we denote p(Bn41
p(6|xlN)

2. For any candidate paragraph x € X*, the
data ICG distribution p(z|z1,N) converges
to true topic-paragraph p(z|() in probabil-
ity (corollary 5):

plim p(afeiy) = p(l) O

N—oo

“Note that we use the prefix "data" to distinguish values
from pretrained distribution and language model distribution.

If the language model is expressive enough, it
would gradually approach the pretrained distribu-
tion with the increase of the number of training
examples’. As a result, it would exhibit the same
properties as shown in Theorem 1. Therefore, the
ICG ability for repeated topics directly originates
from the pretrained corpora.

Detailed theoretical results are provided in Ap-
pendix B, and here, we only present a proof sketch.

Proof Sketch. According to Section 2.1, Vo € ¥*,
the data ICG distribution is:

plzlziy) = ) p(Blein)p(xlB)

BeB

(10)

Therefore, the data ICG distribution p(x|z1.n)
is dominated by the topic predictive distribution
p(B|z1.n), i.e., ICTR. p(B|x1.n) can be further
decomposed as the mixture of modes:

p(Blar) = 3 plalery)p(Blery.a) (1)

aEA

Firstly, we can prove that if B € R, then
plimy_, . p(&|x1.n) = 1 (corollary 1). There-
fore, the mixture in formula (11) focuses on the
component of repetition mode p(3|x1.n, &) when
N is large:

p(Blz1.N) = p(Blr1N, &)
_ p(BI&) TTp=y p(walB)

p(z1n|@)

(12)

This form is exactly the Bayesian posterior dis-
tribution, which is in accord with previous works
connecting ICL and Bayesian statistics (Xie et al.,
2021; Wang et al., 2023b; Hahn and Goyal, 2023).
Likewise, it turns out that the if B € R, then
plimpy_, oo p(B!JIl:N, &) = 1 (corollary 3), thus
establishing the first point of theorem 1. Since
the data ICG distribution p(x|x1.x) depends on
the topic predictive distribution p(/3|z1.x), we can
prove the second point of theorem 1 analogously®.
In Appendix B and C, we also present a detailed for-
mula of the convergence, in which the convergence
speed depends on the distinguishment of different
modes and topics.

SPrevious works (Xie et al., 2021; Hahn and Goyal, 2023)
typically take this as the null hypothesis.

Based on of theorem 1, for regular in-context learning
scenario where each example in the prompt is a tuple (zn, yn)
consisting with an input x,, and an output y,, we can also

obtain similar theoretical conclusions about the ICL ability.
Details are shown in proposition 5 and corollary 6.



4 [Experiments

Theory 1 can’t ensure the ICG ability for nonre-
peated and unseen topics 8 € C' U U because they
have a zero repetition prior p(/5|&) = 0 and so
the posterior under repetition mode is also zero:
p(B|z1.5,&) = 0. Then, the correct component
p(z|B) would never be selected under the repeti-
tion mode, preventing the ICG/ICL ability as a
consequence.

However, this is contrary to the real case, where
LLMs have the ICG-generalization ability: they are
able to generalize ICG/ICL abilities to nonrepeated
and unseen topics 5 € C'U U. We speculate that
this might be caused by factors in both data and
model side:

* Data side: The compositionality of natural
language (Grandy, 1990) and the proportion of re-
peated topics 7. Compositionality considers the
meaning of a linguistic unit results from the in-
dividual meanings of its sub-parts, and how they
are combined (Anderson, 2018). Thus, nonre-
peated and unseen topics might share the same
"sub-topics" with repeated topics. The bigger the
proportion of repeated topics, the more frequently
those sub-topics are shared. Therefore, LLMs may
be able to recombine those sub-topics to recognize
those out-of-distribution topics in the repetition
mode and exhibit generalization.

¢ Model side: The Transformer (Vaswani et al.,
2017) structure. As the mainstream architecture
of NLP, the success of Transformer is believed
to originate from its strong generalization ability
(Hupkes et al., 2023).

We conduct rich experiments to verify above
arguments.

4.1 Synthetic Data

We conduct the experiments on synthetic data gen-
erated via the controllable pretrained distribution.
As mentioned, the distribution has three compo-
nents:

1. Mode prior p(c«r). We set the mode prior to be
uniform: p(a) = 1/|A|.

2. Mode-outline distribution p(f1.n5|a). For
continuous modes o« € A/&, Since we don’t
exactly care the outline, we set p(fi.n|a) =
]_[7];[:1 p(fBn|a) for convenience, where p(f5,|«) is

a categorical distribution and its parameter is sam-
pled from a Dirichlet distribution. The Dirichlet pa-
rameters are 0 for unseen topics (so that p(3) =0
for 5 € U) and 5 for others. We set the repe-
tition prior to be uniform: p(5|é) = 1/|R| =
1/|Blrg (8 € R).

3. Topic-paragraph distribution p(z|3). In order
to simulate the compositionality, each topic 3 € B
is a tuple containing M subtopics p'M, where
p™ € Bi(m € [M]) and B = BM. Accordingly,
the paragraph x also contains M sub-paragraphs
sU"M where each sub-paragraph is generated indi-
vidually:

M

p(x]8) = H (s™p™) (13)
The composition arity M controls the data com-
positionality. Given a fix number of topics |B|,
the number of subtopics |B.| = \/|B| decreases
when composition arity M increases, and different
topics are more likely to share structures as a result.
Here, each sub-paragraph distribution p(s™|p™) is
a Markov model whose initial probability vector
m,m and transition matrix A ;= are both sampled
from Dir(+y1), where 1 is an one vector. 7y actually
controls the uncertainty of different topics, where
a lower value is expected to raise the KL diver-
gence between different topic-paragraph models,
making them easier to be distinguished, as shown
in Appendix D.

4.1.1 Data Parameter Settings

We set the number of modes |A| = 32, the num-
ber of topics |B| = 5314417, where 95% of top-
ics are unseen (|[U| = 504868). We set the vo-
cab size |X| = 324, the length of sub-paragraph
|s™| = 3, and the number of paragraphs in a doc-
ument N = 30. Thus, each document contains
30(3M + 1) tokens. For other parameters of pre-
trained distribution including composition arity M,
the ratio of repeated topics rg, and topic uncer-
tainty -y, we adjust their values to study the effects
of data properties. In specific, we experiment with
M € {2,3,4}, rg € {279d = {6,7,--- ,13}},
and v € {0.01,0.02,--- ,0.05}.

For each configuration of the pretrained distri-
bution, we generate 10M documents for training.
Therefore, the number of tokens in the synthetic
dataset ranges from 2.1B to 3.9B. Examples of the
synthetic dataset are shown in Figure 6.

"Its square, cube and fourth root are all integers.



Models | L H D # params
X3S 3 6 384 AM
XS 4 8 448 8M

S 5 8 448 oM

M 6 8 512 15M

L 9 12 768 48M
XL 12 16 1024 114M
XL 16 20 1280  234M

Table 1: Configurations of different models, where L is
the number of layers, H is the number of attention heads,
D is the hidden dimension. For parameter efficiency,
we use grouped query attention (Ainslie et al., 2023)
and set the number of key-value heads to be H/2.

4.2 Models

We study the effect of model size, attention win-
dow size, and the number of attention heads of
Transformer. Table 1 shows configurations of dif-
ferent experimental models, where the parameters
scales from 4M to 237M. The models are based on
the Transformers (Wolf et al., 2020) implementa-
tion of Mistral (Jiang et al., 2023a). We train each
model for 1 epoch on one NVIDIA A100 (40GB).

4.3 Evaluation Metrics

We aim to evaluate the overall ICG performance
and the ICG-generalization ability of models using
ICTR. Firstly, we define topic-wise ICTR as the
expectation of prompt-wise ICTR:

77]/6\)7 = EP(:CLNWN) [pLaa(Blr1:n)] 14

Then, we can obtain the average ICTR of different
kinds of topics:

1 1
B _ B R _ B
peB BER
ICTRG = — Y7, 1CTRY, = = 3 #f
NTIN T N T ol Y
BeC BeU
5)

Here, ICTR% measures the overall ICG abil-
ity, while ICTRS; and ICTRY, reflect the ICG-
generalization ability, where higher values sug-
gest better generalizations. In the experiments,
since each pretrained document has 30 paragraphs,
the trained model at most supports 29-shot in-
context prompts. So by default, we reported
ICTRE/ /Y \which is short of ICTRB/R/C/U

According to the values of the above ICTRs,
we further define the following four statuses of a
trained model by thresholding:

1. Underfit: ICTR® < 0.65.

2. Overfit: ICTR® > 0.65, ICTRY < 0.65,
and ICTRY < 0.65.

3. C-Generalization: ICTRE > 0.65,
ICTRY > 0.65, and ICTRY < 0.65.
4. U-Generalization: ICTRE > 0.65,

ICTRC > 0.65, and ICTRY > 0.65.

The computation of prompt and topic-wise ICTR
is nontrivial, so we present it in Appendix F.

4.4 Results & Discussions

Our experimental results suggest the following ar-
guments.

Data compositionality enables both ICG and
ICG-generalization. Figure 3a shows the results
of different composition arities. Clearly, we can
see that data compositionality enables ICG and
ICG-generalization, specifically: 1) As the com-
position arity M increases, the overall ICG per-
formance consistently improves for models in any
sizes trained on the pretrained distribution with dif-
ferent repeated topic proportions 7. Notably, the
improvement is especially significant when we in-
crease M from 2 to 3. For example, for all 7y, the
ICTR’;9 value nears 0 for many small models when
M = 2, but is lifted to a considerable level when
M = 3. 2) The models are easier to generalize on
ICG when M is higher. When M = 2, most mod-
els are even hard to overfit on repeated topics, and
only model X?L can generalize ICG to both non-
repeated and unseen topics only when rp = 1/64.
On the contrary, when M = 3 or M = 4, models
in all sizes exhibit the ICG-generalization ability
with much smaller 7.

The model emerges the ICG-generalization
as the proportion of repeated topics rises. As
shown in Figure 3a, the model typically tends to
overfit only on repeated topics when rp is small,
and then suddenly emerges the ICG-generalization
ability when rp hits the threshold. The threshold
mainly corresponds to the data compositionality,
where a higher composition arity M leads to a
lower threshold and so makes the model easier to
generalize. For example, for model X?L, the gener-
alization threshold of 7 is 1/64 when M = 2, and
decreases to 1/2048 when M = 3. We speculate
this is because the more compositionality of the
data, the more likely that nonrepeated and unseen
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(a) ICG-generalization results of models in different sizes trained on pretrained distribution with different composition arities M
and proportions of repeated topics rr, where the topic uncertainty -y is set to 0.01.
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sizes trained on pretrained distribution with different
topic uncertainties v, where we set M = 3 and rr =
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(c) ICG-generalization results of model L with different
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Figure 3: ICG-generalization results, where the color suggests the status of the corresponding model, and the

number in the cell shows the corresponding ICTRZ,.
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Figure 4: ICTR3, of different topics for model L trained
on the pretrained distribution with different topic uncer-
tainty v, where the other parameters in the pretrained
distribution are: M = 3, rgr = 1/1024.

topics share sub-topics with repeated ones, there-
fore the less proportion of repeated topics is needed
for generalization.

Topic uncertainty doesn’t affect ICG-general-
ization. As shown in Figure 4, Topic uncertainty

mainly affects the fitting difficulty of the data rather
than the ICG-generalization ability: As the topic
uncertainty ~y increases, the ICTR2g of model L for
all kinds of topics decreases consistently. However,
we don’t observe apparent ICG performance gaps
between those topics.

Larger models do better on ICG and ICG-gen-
eralization. Model size is considered to be a great
factor impacting the ability of language models
(Wei et al., 2022a). This is also verified in our ex-
periments, which we find: 1) As shown in Figure
3a, obviously, larger models not only have better
ICTRQ%, but also require less repeated topics to
generalize to nonrepeated and unseen topics. 2) As
shown in Figure 3b, larger models are able to deal
with topics with more uncertainties, i.e., bigger v,
where models larger than model M are capable of
ICG-generalization when v = 0.02 but smaller
models pose underfit. Especially for model X2S,
whose ICTR?9 is 0. 3) As shown in Figure 5a, in
most cases, larger models achieve better ICTR?
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Figure 5: ICTR*B of different model configurations, where we set M = 3, v = 0.01, and rp = 1/1024.

given fewer demonstrations. However, curiously,
this does not hold when the number of shots NV is
too small. For example, ICTRQB of model X28, XS,
S, and M are typically greater than that of model L,
XL, and X?L. We speculate this might be because
when N is small, larger models are more cautious
in identifying the repetition mode.

Big window size is necessary for ICG and ICG-
generalization. Recently, Wang et al. (2023a)
show that LLMs conduct ICL by collecting infor-
mation of demonstrations in the prompt from pre-
vious label words. Specifically, the hidden states
of previous label words are good summarizations
of corresponding demonstrations. Thus, the model
needs to attend to all those previous "anchors" to
conduct ICL, which hints that a small window size
might harm the ICL performance. For example, in
the experimental results of Jiang et al. (2023b), we
can find that the ICL performance of RWKYV (Peng
et al., 2023) series is generally inferior to that of
Transformer structures. Our experiments also sup-
port this argument. As shown in Figure 3c and 5b,
when the number of attention heads is fixed, a low
window size would cause underfit. In most cases,
as we increase the window size, the model is shifted
to overfit and finally U-Generalization, the overall
ICTR2B9 also rises at the same time. Note that there
also exists the emergent phenomenon, where the
model suddenly learns ICG and ICG-generalization
when its window size hits a threshold.

Big number of heads is not necessary for ICG
and ICG-generalization. Multi-head/group atten-
tion is always believed to be the core driving state-
of-the-art Transformer models. By intuition, dif-
ferent heads can potentially attend onto different
parts of the text, making the model more expressive.
However, our experiments show this mechanism is

not very important for ICG and ICG-generalization.
As shown in Figure 3c, reducing the number of
attention heads H for XL model hardly change
the model status. Also, as shown in Figure 3c,
at the same size (L), the model with the highest
overall ICG performance does not necessarily have
the most attention heads. We speculate that this is
because the attention pattern for ICG is relatively
simple, so different heads are actually functional
equivalent. This is consistent with Michel et al.
(2019), which finds that the performance of many
tasks including machine translation and natural lan-
guage inference is insensitive to the number of
attention heads.

Generalizations towards nonrepeated and un-
seen topics are almost the same. As shown in
Figure 3, in most cases, no matter how pretrained
distributions and models are configured, the mod-
els generally result as either underfit, overfit, or
U-Generalization, but hardly in the status of C-
Generalization. This suggests that nonrepeated top-
ics, though appear in the pretrained distribution,
are not easier for models to generalize.

5 Conclusions

This paper provides a systematic study of ICG abil-
ity of language models. Firstly, we propose a plau-
sible latent variable pretrained distribution, formal-
izing ICG as a problem of next topic prediction.
Then, we prove that the repetition nature of a few
topics ensures the ICG ability on them theoretically.
We also conduct rich experiments to study the ef-
fects of different factors of data and model architec-
tures on ICG and ICG-generalization. We believe
this paper is beneficial to a better understanding of
the ICG ability, as well as large language models.



Limitations

The major limitation of this work is that we
don’t provide a theoretical support for ICG-
generalization, while doing so is non-trivial. Now
we can only speculate the ICG-generalization re-
sults from the smoothing effects of neural probabil-
ity approximator (e.g. Transformer), where unseen
inputs would have non-zero probabilities (Xie et al.,
2017). Therefore, nonrepeated and unseen topics
might have a non-zero repetition prior, thus mak-
ing them possible to be chosen as the topic of the
next paragraph. This phenomenon might be es-
pecially obvious when these topics are similar to
repeated ones according to our experimental results.
Further work on the theoretical understanding of
ICG-generalization might take similarities between
topics into account.
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A Lemmas

To access the theoretical results in Appendix B, the
following lemmas are useful.

Lemma 1. For an arbitrary continuous mode o €

A/é, let
Sn = Zn: tog Zil7Li=1:0) 4 g a1
i—1 p(zi|z1:i-1, &)
(16)
where

p(z|T1:i-1, &)

p(z|x14-1, @)
(17)

KLl_l(CAUHCk) = Ep(

x|x1:4-1,4)

Then, s, is a martingale about x1.p,.

Proof. This lemma is easy to prove according to
the definition of martingale so we omit it. 0

Lemma 2. Let z, (n € [N]) be a series of positive
random variables, ¥t > 0,

N

P(Zzn2t> géPGn

n=1

t

> N) (18)

Proof. Firstly, we have:




Then, according to this recursion,

(e

n=1

N-1
N -1 t
§P<Zzn2 N >+P<ZN>N>
n=1
N—2
N -2 t
§P<Zznz ¥ t) +P<ZN_12N>
n=1
+P( > t)
P i
N=N
al t
<>P <zN > N)
n=1
(20)
So the result is proved. O

B Complete Theoretical Results

We analyze the data ICG distribution p(x|z1.n5),
where 1. are independent and identical dis-
tributed with PDF p(z|3) and z is an arbitrary
value in the domain of paragraph. As shown in
Section 2.1, z depends on its topic:

plalrin) =Y p(Blern)pxl8) 1)

BeB
where the topic predictive distribution
p(mxlzN) = p(ﬁl:N = ﬁ\xu\/) controls

the strength of each topic for the N + 1-th
paragraph. We then study the property of this
distribution.

Note that the topic predictive distribution can
also analogously be factorized as the mixture of
modes:

p(Blziy) =Y plalzin)p(Blriy, ) (22)

a€cA
where the mode posterior p(«a|x;.x) controls the
strength of each mode.
B.1 Property of mode posterior

Firstly, we study the property of the mode posterior
p (O[ | T1:N ) .
Proposition 1. Let:

max A - 23
Pmax (&) = a%lﬁfap( @) (23)
If t satisfies:
~\ —N
[Alpmax(@)ey <t<1 (24

p(a) + |A|pmaX(d)CfN

11

and B € R, for repetition mode &, we have:

P(1 - p(&lz1.n) > )
. 2
(Nlog cq+log m) (25)

8N log2(cy/c3)

<|Ale
For any continuous mode o« € A/&, we also have:

P(p(alzi:n) > 1)
. 2
(Nlog c1+log M#;q(d)) (26)
8N logZ(cq/c3)

< |Ale

Proof. Firstly, note that the absolute martingale
residual difference of s, in formula (17) is
bounded:

|3n_5n71’
— 'log p—fcn|x1;n—1, @) + KL, —1(&]|e)
p(xn|:c1;n_1, )
27)
< logw + |KLn_1 (&) @)
p(xn’«xln 1,« )
< 2logc—4
c3

Then, according to Azuma’s inequity (Azuma,
1967), Ve > 0, we have:

wn’xln 1,« )
xn’xln 1, & )

<Zl + KLp—1(da) > )

2

< ¢ SNlog%(eq/cy)
(28)
Since KL;_1(&||a)) > log c1, we can rewrite for-
mula (28) as:

xn|1‘1n 1, Q )

>e—Nlogc
xn|$1n 1, & )

gt

2

< e 8Nlog%(ea/cy)
(29)
Lett = ec~N1oger ¢ [¢7N 1) and rearrange the
formula, we can obtain the following inequality
about the ratio of mode likelihoods:

2t>§e‘

The ratio of mode likelihoods has a direct impact
to the mode posterior. First, for repetiton mode &,

(N log cq+log t)2
8N log? (cq/c3)

P (p(HCl:N\Oé) 30)

p(r1.n|&)



V0 < t < 1, we have:

P(1 —p(dlz1y) > t) = ( (G2 N)

a) p(xy. N|a
&) p(xin|G) — 1 -t

ponla)
Sag;dp(p@1NM)>(Vﬂ—1x1—t)()>

porla) t9(a)
Sag%P<(ﬁNm)Z\KL%WmA®>

(€29)
where we unpack the probability in the third line
using lemma 2. Now, if

tp(c)
)pmax(d)
N

| |pmaX(a)cl
p(&) + |Alpmax(6)e; Y

—N
= G

A
[AJ(1 = 32)

=>1t2>

then we can apply formula (30):

(L~ o) > 1)
4 2
(N log cq +log m) (33)
8N log2(cy/c3)

<|Ale

As for continuous modes o € A/, note that:

P(p(ajzin) > t) <P

Z plajriy) >t

acA/é
=P — p(&lx1.n) > t)

N 2
(v 108 exos B )
8N log? (cq/c3)

< |Ale
(34)
O

Based on proposition 1, we can immediately
obtain the following two corollaries:

Corollary 1. If 3 € R, plimy_, . p(&|z1.y) =1

Proof. To prove the results, we need to prove that,
Ve > 0, 0 > 0, there exists Ny such that when
N > Ny,

P(l —p(d\xlzN) > 6) < (35)
Firstly, note that when € > 1 or § > 1, the above
formula holds trivially. When 0 < € < 1, define:

‘A|(1 _ E)pmax(d)

tp(&)

N(e) = log,, (36)

12

If N > N(e), then
‘A‘pmax@‘)cl_]v
p(a) + |A|pmaX(5‘)CfN

Therefore, according to proposition 1, we have:

(37)

P(1 —p(alzi.n) > €) < f(N) (38)
where

N 2
(vtomen tios p B e )
8N log2 (cq/c3)

f(N) = |Ale

Since f(N) € (0, |A|?] is a monotonic decreasing
function in the domain of [N (e), oc], V& € (0,1)
there must exists N’ > N (e) such that § = f(N),
or equivalently, N’ = f~1(§). Let’s set Ny =

(39)

[f71(8)] + 1. If N > N,
P(1—p(alzin) > ) < fF([F710)]+1) <0
(40)
Therefore, the result is proven. O
Corollary 2. Ift satisfies:
A 5/2 max A 7N
p(a) + ‘A‘pmaX(O‘)cl
and B € R, we have:
P(lp(Blz1.n) — p(Blr1.n, &) > 1)
2
N log c1 +log ?)tp(éz) ) (42)
‘A|(‘A|§*t)l’max(d)

8N log? (cq/c3)

<|AP%e

Proof. Let p}; € Al be the topic posterior vec-
tor:

(43)

and 8% be the one-hot vector peaking at &. V0 <
t < 1, Obviously:

P (llpf — 8%l = t)

<P | > plalziy) +1-plalzry) >t
a€A/&
t
< 3 v (salnw = )
acA/& ‘A|

+P (1 —p(&lzin) > —



If N
¢ lApmel@)r
| ‘ N p(d> + ’A‘pmax(d)cl_N
e N 45)
= t> | | pmax(a)cl

p(&) + ’A‘pmaX(d)cl_N
then we can apply formula (25) and (26) to get the
following:

P (lIpk — %2 > ¢)

& 2 46
B (Nlog c1+log m) ( )
S ‘A|2€ 8N10g2(04/(33)
Now, denote:
Plyva = [PBlory.a)| € 0,4 @)
Then, V0O < t < 1, we have:
P(‘p(mxl:N> (,3‘561 N, t
(o o]
(48)

<

<r

5/2
Ift > ‘A‘ pmdx(a)cl
~ p(&)+|Alpmax(&)ey
mula (46) to obtain the result.

> 1)

|
t

)

~, we can then apply for-
O]

PN 5¢

B.2 Property of topic posterior under
repetition mode

Secondly, we study the property of the topic poste-
rior under the repetition mode p(8|x1.n, &).

Proposition 2. Let

Prmax(8) = max p(Ba) (49)

BeB/B
If t satisfies:

‘B’pmax(B’A) <t<l
(6|O‘) + |B’pmax(ﬁ’a)02 N

(50)

Then, for the ground-truth topic B, lfB € R, we
have:

P(1—p(Blriy,é) > 1) <
BEB/B
2(N10 co+lo tp(ﬁ\&) )2 (51)
_ 82T %8 IBlA—t)pmax(Bl&)
< |Ble Nlog2(cy/c3)

13

For any other topic B € R/ B, we also have:

P(p(Blzin, &) = 1)
tp(Bl&)

2( N1 +log —— PP
( 78278 |Bl(1—tpmax(Bl&)
N log2(cyq/c3)

(52)

.

< |Ble

Proof. For any topic 8 € B/j3, let

Zl wzw

p(:]B)
Since each demonstration x, is independently sam-
pled from p(x|53), all the addends in the above
formula are independent. Also, note that:

(33)

E[sn] = Z;E llog m] = nKL(8|8)
> nlogcy
‘bg<zw> 2
(xi|B) | €3
(54)

Then, according to Hoeffding’s inequity (Hoeffd-

ing, 1994), Ve > 0,
N
P (Z log p(l’z\BA; >¢e¢— Nlog 02>
>€e— NKL(ﬂHB))

i=1 p($z|ﬂ

ee—NKL(BII6)>

_ 2¢2
<e Nlog2(cq/c3)

(55)
Lett = e~ Vloge2 > o= N e have:

pxn!ﬁ -
(I =) =

The rest of proof of is very similar to that of propo-
sition 1, Vi > —|Blpmax(5d)ea =¥

2(N log cog+log t)2

Nlog2(cy/e3)

(56)

- p(B‘d)+|B|pmax(/B|d)62_N,
P(1—p(Blory,a) >t) < Y
BeB/B
H p(zalB) o tp(B)&)
n=1P $n|ﬁ |B|(1 - t)pmax(ﬁ|a)
2
,2(N log ez +los \B\(l—tffila)x(mm)
< |Ble Nlog2(cy/c3)

(57)



AndVp € R/,

P(p(Blzin, &) > t)

‘ _ w@le) V(58
_Q(Nl"gcﬁ"’g\B\(H)pmax(md)) )

< |B|€ N log2(cy/c3)
]

Likewise, we can also obtain the following coro-
lary:

Corollary 3. If 8 € R, plimy_,. p(B|z1.n, &)
1.

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it. O

B.3 Property of topic predictive distribution

Based on the above results, we are able to investi-
gate the property of the topic predictive distribution

p(Blr1n).
Proposition 3. Ift satisfies:

2| A5/ 2pmax (@)ep N
P(&)+ Alpmax(a)e;
A2|B|pmax(6|d)A02_N

p(ﬁ‘é)"’_lBlpmax (6'6‘)02_1\]

1>1¢> max 59)

Then, for the ground-truth topic B ifB € R, we
have:

P(1 - p(Blzin) > t)

2
N log c1+log gp(&) >
_ |A|(2]A|2 —t)pmax (&)
S ‘A|2€ 8N10g2(¢:4/(33) (60)
s oot 1o tp(B&) 2
_2(N1 g catlos |B‘(2_t)1)max(é|07>>
+ |Ble Nlog2(cq/c3)
For other topics § € B/ B we also have:
P(p(Blz1:n) > t)
2
N log ¢y +log gp(o?) )
_ |A|(2]A|2 —t)pmax (&)
S |A|2€ SNIOgQ(C4/C3) (61)

tp(B|a)

2( N1 it —_—
( o8 28 B o= ) pmax(Bla)
N log2(cyq/c3)

.

+|Ble

Proof. For the ground-truth topic B and any 0 <

14

t < 1, we have:

P(1 - p(Blz1.n) > 1)

= P(p(Blz1:n, &) — p(Blorny)+
1—p(Blz1y,a) > t)

< P(Ip(Blzin, &) — p(Blery) |+

A R 62
1= p(Blern, @) > 1) (62)
A . N t
< (InBlor. @) - p(Blorn)| = 3 )
A . t
P (1= plo.a) = 5)
Therefore, if
2| A3/ 2prax (@)er N
1>t>max P(8)+ Alpmax(&)e; (63)

A2|B|pma>c(3|54)f2 N
P(B16)+|Blpmax (Bla)ca =N

we can then apply corollary 2 and proposition 2 to
prove formula (60). Meanwhile, for other topics
B € B/, we have:

P(p(mxl:N) > t) <P Z p(ﬁ‘xlzN) > t)

BEB/B
P(1— p(Blz1n) > 1))

(64)
Then, if ¢ satisfies formula (63), we can obtain
formula (61). ]

The property of the topic predictive distribution
can be summarized more compactly via the follow-
ing corollary:

Corollary 4. If 3 € R, plimy_, . p(lz1.y) = 1.

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it. O

B.4 Property of in-context generative
distribution

According the property of the topic predictive dis-
tribution, we can finally study the property of the
in-context generative distribution.

Proposition 4. Ift satisfies:

2c4| A[P/2| B*/? pmax(8)e;
P(6)+ Alpmax (&)e; ¥
2€4|B|3/2pmax (IB‘AOA{)CZ -N
p(Bl&)+|Blpmax (Bl&)ca =N

1>t > max (65)




and B € R, for any candidate paragraph x € %7,
we have:

P(|p(z|z1:n) — p(z|B)] > t)

N log c1+log

2
tp() )

3 3

[Al(2|A]2 |B|2 cy—t)pmax (&)
8N log2(cy/c3)
R 2

p(51a) )
‘B|(2|B‘7C4—t)l7max(md)
N 10g2(64/C3)

< [AP|Ble”

2 (N log co+log

+ |BJ*e )

Proof. Let p?\, e AlBl be the topic predictive vec-
tor:

pa = |p(Blzin)| € AP (67)

and 6° be the one-hot vector peaking at B . For all
0 < t < 1, we have:

P (lIp% —8%ll2 > 1)

<P Z p(Blz1n) + 1 — p(Bley) >t
BeB/B
t
< Z p (P(B’ﬂfl N) > ]B|>
BeB/B
A t
+P (1 — p(Blrry) > )
| | B
(68)
If
t 2|A‘5/2pmax(&)C;N
— > P(&)+|Alpmax(a)e; ™
1B] = ™ 2Blpus Bla)es N
& : &)es—N
P(B1&)+|Blpmax(B]&)c2 69)

2/ AP/?| Blpmax(@)e;

P(&)+[Alpmax (@)e;

A2‘B‘2pmax(6|d2027N
P(B|&)+|Blpmax (Bl &) ez =N
Then we can apply results from proposition 3 to
get the following:

P (IpR — 872 = t)

=t > max

N log c1+log

2
tp(8) )
|A[(2|A|2 | B|~t)pmax (&)
8N10g2((:4/(:3)

< |A]?|Ble

tp(Bla) )2
|Bl(2|B|—t)pmax (B|&)
Nlog2(cy/c3)

2 (N log co+log

+ |B| 2e”
(70)
Now, denote:

pis = |p(@(B)| € les,ca]® (D)

Therefore, Forall 0 <t < 1,

P(|p(|z1.n) — p(x]B)] > t)
:P( (p%—&B)Tpﬁﬁ Zt)

<o (-] ot > )
v (Jot -, > ot

Therefore, if ¢ satisfies formula (65), we can then
apply formula (66) to prove the result. O

(72)

x
Ps

Proposition 4 directly supports the following
corollary:

Corollary 5. If B € R, plimy_, . p(z|z1.y) =
p(z|B).

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it. O

B.5 Property of in-context predictive
distribution

We can generalize the property of ICG distribution
to the in-context predictive distribution as well,
which forms the theoretical foundation of ICL.

Proposition 5. If t satisfies:

4c2c3| APP/2| B3 2pax (@)ey N
P(&)+|Alpmax(d)e;
4C%CZ ‘ B‘S/meax(ﬁld)CQ -
p(Bl&)+|Blpmax (Bl&)cz =N

1>t > max (73)

and B € R, we have

P (‘p(yl(«’v, Y)1N, T) — p(y|$,5)‘ > t)

2
tp(&)
3 8 99
|A‘(4|A‘2‘B|20364*t)17max(d)

N log ¢ +log

8N log2 (cq/c3)

< |AP|Ble

2
2| Nlogcgo+log tp(5la)
|B|(4B|2 c2c2—t)pmax (B15)
NlogZ(cq/e3)

+[B%e \
(74)



Proof. VO < t < 1, we have

<P (|p(lBp(e, vl @ )1v)
bl pteln)| 2 5 )
3
=P ([p(13) (p(@, vl v)1v) = pla. 1)

N—

pla.y1®) (p(alB) — p(al(@.yh) )| 2 tg )

<P <’p($|(x,y)1;zv) _pmﬁ)’ = 20§C4>
+P <‘p($,y|(x,y)1;1v) _p(x,ylﬁ)‘ = 26204)
7 (75)

Therefore, if ¢ satisfies:

A3 A2 B 2pmax (3)ey
( )+|A|pmax(a)61
3B/ 2pmax(Blé)ea =N
(ﬁ‘a)+|B|pmax(6|O‘)02_N

1>t > max (76)

we can use the results of proposition 4 to obtain the
results. [

We can also obtain the following convergence
corollary from proposition 5:
Corollary 6. If 3 € R, plimy_,. p(y|lzi.n,2) =
p(ylz, B).

Proof. The proof is identical to the proof of corol-
lary 4 so we omit it. O

C Convergence Speed

We can also observe the convergence speed from
p(Blx1.n) to 1 from proposition 3. Specifically,
take the derivative of the upper-bound to N in for-
mula (60), we can see that the convergence speed

is around
-N ) -N
2log” co
) — (elog2(04/03)>

7

log2 cq

O = <€810g2(04/03)
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Therefore, the higher the distinction between dif-
ferent modes and topics, i.e, the higher log ¢; and
log c2, the faster the convergence of the data ICTR.

D Expectation of KL(3||5)

According to the settings, each topic S € B con-
tains a few sub-topics, then the expectation of
KL(B]|8) depends on KL divergences of those sub-
topics:

M
E[KL(318)] = Z Epy o [KL(Prm 1))
p(s]pm)
® plslom)

M
Z Epm.pm [ZP
(78)

m=1
Given that ﬁ and [ are different, there at least exists
one subtopic is different between them, so:

E [KL(3||8)] > By, [KL(70)] (79

Note that for each p € B,, the sub-paragraph dis-
tribution p(s|p) = p(s|A,) is Markovian, where
A, = [m,, A,] is a row concatenation of the ini-
tial probability vector 7, and transition matrix A,
sampled from Dir([y]*!). Let T be the length of s.
Expand the KL divergence, we have

Esp [KL(p]lp)] = Ej , [KL(p]lp)]
—E;, 4, [KL (p("Aﬁ)Hp("Apﬂ

B4, A, >y

S1:T—1 ST

p(slT 1|A )AZT 1,8T

sur—1|Ap) AT log
p( 1.T— 1| ) p p(81;T_1|Ap)Af)T 1,8T

ST—1,5T

(80)
Note that Assumption 3 actually implicit that
p(sT|A,) is bounded for all 7" and p € B,. We

assume the lower bound is c¢5. Then, the second
term of the above formula has the following lower

= E. ' [KL(pllp)] + Ej, 4,

ST 1,8T
ST 15

p(sr— 1]A ) *T log —

ST 1,ST
Ap

|
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Figure 6: Examples in the synthetic dataset, where we set M = 3, rp = 1/1024 and v = 0.01.
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where ¢(z) is the digamma function, and we use

the property ¢ (x + 1) = ¢(z) + 1/ to simplify

the above formula. Therefore, we have:

-1
E}, [KL(plp)] > EL ' KL(p]lp)] + o2 - 1)
. 2¢5(12| =1
202 KL (gl + 22
STes (X - 1)
I
(82)

Therefore, the expectation of KL (]| 3) is bounded:
- Tes(|12]—1
Bku@)e)] > THEED @)

We can see that the lower the value of +, the larger
the expected topic-wise KL divergence, and the
more significant the topic distinction is.

E Synthetic Dataset Illustration

Figure 6 shows examples in the synthetic dataset,
where we also visualize the latent variables mode
« and outline 1.y for a better understanding.

F Computation of Prompt and Topic-wise
ICTR

According to the definition, given an in-context
prompt x1.n, where each sample x,, ~ p(m|/3’),
ICTR is the probability that the language model
generates a paragraph also belongs to topic B . Thus,
to measure the belongness of the generated para-
graph, we use the mixture of topic-paragraph mod-
els 3" e s Ty v P(]B) to fit the ICG distribution
of the target language model prni(z|z1.n). Here,



p(z|B) is fixed, and we sample L; paragraphs
from pr(x|x1.n) to fit Wflw using EM algorithm
(Bishop and Nasrabadi, 2000) as shown in Algo-
rithm 1. As a result, the estimated wﬁl: N €an repre-
sent the ICTR given the in-context prompt 1.y
We further compute the topic-wise ICTR to sum-
marize the ICG ability of a specific topic. Topic-
wise ICTR is the expectation of prompt-wise ICTR:

Lo
1
6 _ 5 1l N8
T = Epfapnla™) [Ton | = o2, B
=1 ’

Here, we use Monte-Carlo sampling to estimate
the expectation, where le n 1s the [-th sample of
ngl p(x,]B). Due to the large number of the
topics (531441) in the pretrained distribution, for
simplicity, L1 and Lo are both set to 1. Thus, the
evaluation of a model just requires 531441 forward
passes, where the time consumption is acceptable.
In-context prompts for evaluation is shown in Fig-
ure 6.

Algorithm 1 Prompt-wise ICTR computation

Randomly initialize 71’51:1\, .
forl=1,---,L;do
' ~ prv(z|zn)
end for
while not convergence do
forl=1,---,L;do
B,1 _ ng:NP(zl‘ﬁ)

Wei oy — = 57 -
LN S ey p(l18)
end for .
1 Bl
B _ Xy
Tey.n = Ly
end while

pm(Blzin) < 75,
return prv (B|71.3)
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