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Abstract

Large language models (LLMs) are found to001
have the ability of in-context generation (ICG):002
when they are fed with an in-context prompt003
containing a somehow similar examples, they004
can implicitly discover the pattern of them005
and then complete the prompt in the same pat-006
tern. ICG is curious, since language models007
are not completely trained in the way same as008
the in-context prompt, and the distribution of009
examples in the prompt differs from that of se-010
quences in the pretrained corpora. This paper011
provides a systematic study of the ICG abil-012
ity of language models, covering discussions013
about its source and influential factors, in the014
view of both theory and empirical experiments.015
Concretely, we first propose a plausible latent016
variable model to describe the distribution of017
the pretrained corpora, and then formalize ICG018
as a problem of next topic prediction. With this019
framework, we can prove that the repetition na-020
ture of a few topics ensures the ICG ability on021
them theoretically. Then, we use this control-022
lable pretrained distribution to generate several023
medium-scale synthetic datasets (token scale:024
2.1B~3.9B) and experiment with different set-025
tings of Transformer architectures (parameter026
scale: 4M~234M). Our experimental results027
further offer insights into how factors of data028
and model architectures influence ICG.029

1 Introduction030

As the data and parameter scale continue to in-031

crease, large language models (LLMs) have shown032

strikingly emergent abilities (Wei et al., 2022a),033

where one of the most exciting ones is in-context034

learning (ICL) (Brown et al., 2020). Given an in-035

context prompt that concatenates a few in-context036

examples and a query input, LLMs can somehow037

implicitly guess the "topic" of those examples and038

complete the query input in the desired way. Fur-039

thermore, LLMs can imitate those examples using040

the topic learned in context (Meyerson et al., 2023).041

For instance, Llama2-13B (Touvron et al., 2023) 042

is able to generate plausible sequences of the topic 043

of in-context examples, as shown in Figure 1. This 044

in-context generation (ICG) ability forms the foun- 045

dation of multiple few-shot prompting methods like 046

ICL and its variants like Chain-of-thoughts (Wei 047

et al., 2022b). 048

Intuitively, one might comment that LLMs learn 049

the ICG ability from data in the repetition mode, 050

which roughly refers to a type of text concatenated 051

with sequences under the same topic. This is true to 052

some extent. As known, typical pretrained corpora 053

contain (e.g. CommonCrawl1) internet data which 054

has an unneglectable portion of array-page data 055

such as IMDB review pages2. After preprocess- 056

ing, these pages are converted to repetition mode 057

data, as shown in Figure 1a. However, this isn’t 058

enough to explain the ICG ability, since LLMs can 059

also generate sequences of in-context learned top- 060

ics that don’t appear to repeat and even are unseen 061

in the pretrained corpora. For example, Figure 1 062

shows sampled completions of Llama2-13B given 063

in-context prompts of different types of topics: 064

1. The first one is a repeated topic called "movie 065

review" (Figure 1a), where Llama2-13B naturally 066

has the ICG ability on it since this topic appears to 067

repeat in the pretrained corpora as mentioned. 068

2. The second type nonrepeated topic refers to 069

those that appear in the pretrained corpora but never 070

repeat, e.g., forward method in any class inherited 071

from nn.Module of Pytorch (Paszke et al., 2019) 072

code (Figure 1b). However, Llama2-13B can also 073

generate plausible code of forward method when 074

prompting a few ones. 075

3. The last type unseen topic includes those that 076

never appear in the pretrained corpora. For exam- 077

ple, "unnatural addition" generates 2-digit arith- 078

1https://commoncrawl.org
2https://www.imdb.com
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?

Movie review

Movie review

  a solidly seaworthy chiller.

Movie review

Movie review

Movie review

Topic-repetition

  a fascinating and fun film.

  overly long and worshipful bio-doc.

  the script ? please.

  one of the worst films of 2002 .

  a masterpiece four years in the making.
  this film is predictable at every turn.
  interminably bleak , to say nothing of boring.
  must be seen to be believed.

  the acting of the young people is very good.

Model Input

Model Output

  import torch.nn as nn

  class LSTMPOSTagger(nn.Module):

      def __init__(self, vocab_size, emb_dim, hidden_dim, n_pos):
          super().__init__()
          self.embeddings = nn.Embedding(vocab_size, emb_dim)
          self.lstm = nn.LSTM(emb_dim, hidden_dim, batch_first=True)
          self.pos_head = nn.Linear(hidden_dim, n_pos)

      def forward(self, input_ids):
          embeds = self.embeddings(input_ids)
          hiddens, _ = self.lstm(embeds)
          pos_logprobs = self.pos_head(hiddens).log_softmax(-1)
          return pos_logprobs

Import library

Class name

Initial method

Forward method

Pytorch m
odule

  def forward(self, input_ids):
      embeds = self.embeddings(input_ids)
      hiddens, _ = self.lstm(embeds)
      pos_logprobs = self.pos_head(hiddens).log_softmax(-1)
      return pos_logprobs

  def forward(self, hiddens):
      logprobs = self.cls_head(hiddens).log_softmax(-1)
      return logprobs

  def forward(self, imgs):
      feature = self.cnn(imgs)
      feature = feature.flatten(1, -1)
      logprobs = self.cls_head(feature).log_softmax(-1)
      return logprobs

  def forward(self, imgs, imgs_text):
      feature = self.encoder(imgs)
      hm = self.embedding(imgs_text)
      out1 = self.rel_head(torch.cat([feature[:, -1:, :], hm[:, None, :]], dim=1))
      out1 = out1.sum(dim=1).max(-1)[0]
      out2 = self.rel_head(torch.cat([feature[:, 0:1, :], hm[:, [0], :]], dim=1))
      out2 = out2.sum(dim=1).max(-1)[0]
      return out1, out2

Model Input

Model Output  2-3=5
  1-1=2
  4-6=10
  4-2=6

  5-3=8

Model Input

Model Output
???

(a) ICG of repeated topics

(b) ICG of nonrepeated topics

???
(c) ICG of unseen topics

Figure 1: ICG examples (generated from Llama2-13B) of different kinds of topics.

metic expressions that input subtraction but expect079

addition (like "1-1=2"), which is intuitively be-080

lieved to never be seen in the pretrained corpora081

(Rong, 2021). However, Llama2-13B can also rec-082

ognize this topic and generate plausible sequences083

in context, as shown in Figure 1c.084

The above results show that LLMs can gener-085

alize the repetition mode to nonrepeated and un-086

seen topics. We term this phenomenon as the087

topic generalization of ICG, abbreviated as ICG-088

generalization. ICG-generalization is curious be-089

cause LLMs are not explicitly trained in the way090

they test. The biggest challenge of studying ICG091

and its generalization is that the true pretrained dis-092

tribution is not accessible. Thus, we don’t know the093

topic of a span or whether it appears to repeat, mak-094

ing it difficult to evaluate the ICG abilities of LLMs.095

To address this, we turn to synthetic data generated096

from a known and controlled pretrained distribution097

(Bowman et al., 2015; McCoy et al., 2018; White098

and Cotterell, 2021; Xie et al., 2021; Papadimitriou099

and Jurafsky, 2023; Jumelet and Zuidema, 2023).100

The distribution is a hierarchical latent variable101

model (LVM) as shown in Figure 2, where a docu-102

ment is guided by two kinds of latent variables. The103

distribution is not only plausible to explain true pre-104

trained data but also convenient for analysis since105

it decouples different levels of uncertainties.106

Through the proposed pretrained distribution, we107

can naturally formalize ICG as a problem of next108

topic prediction, and then conduct mathematical109

analysis. We first theoretically prove that (Theorem 110

1), under some mild assumptions, if the language 111

model fits the pretrained distribution well, then 112

it’s guaranteed to have the ICG ability on repeated 113

topics in terms of convergence in probability. As 114

a result, the ICG distribution (i.e., the generative 115

distribution conditioned on the in-context prompt) 116

converges to the true topic-paragraph distribution 117

in probability. Next, we study ICG-generalization 118

via exhaustive experiments, revealing that ICG- 119

generalization is caused by both factors of data 120

and models. Concretely, we use the controllable 121

pretrained distribution to generate several synthetic 122

datasets (token scale: 2.1B~3.9B), and train Trans- 123

former (Vaswani et al., 2017) language models with 124

different settings (parameter scale: 4M~234M). Ex- 125

periments show that data compositionality, propor- 126

tion of repeated topics, Transformer’s parameter 127

scale, and window size play crucial roles in en- 128

abling ICG-generalization, while the data topic 129

uncertainty and Transformer’s attention head size 130

have few influences3. Our study provides insights 131

to better understanding the ICG ability and LLMs. 132

2 Settings 133

2.1 Pretrained Distribution 134

We assume the pretrained distribution is a hierarchi- 135

cal LVM as shown in Figure 2, where a document is 136

3These results are consistent with previous works about
attention head pruning (Michel et al., 2019; Voita et al., 2019)
and the importance of large attention size (Ratner et al., 2023).
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Figure 2: Bayesian network of the pretrained distribu-
tion, where the non-shaded nodes are latent variables.

generated via the following steps: 1) Draw a latent137

mode α ∈ A from the mode prior p(α). 2) Draw a138

latent outline β1:N ∈ BN containing topics of dif-139

ferent paragraphs from the Markov mode-outline140

distribution p(β1:N |α) parameterized by the mode141

α. 3) Sample each paragraph xi ∈ Σ∗ (Σ is the142

vocabulary) individually from the topic-paragraph143

distribution p(x|βi), and concatenate them with144

delimiters. The joint distribution of this LVM is:145

p(α, β1:N , x1:N ) = p(α)p(β1:N |α)
N∏
i=1

p(xi|βi)

(1)146

This distribution is plausible because: 1) It has a147

clear realistic interpretation of how humans write148

documents. Generally, humans would first deter-149

mine the literature genre (e.g., narrative, letter, and150

so on), and then plan a specific structure of that151

genre before writing, as shown in Figure 1. Such152

a process is modeled via the mode prior p(α) and153

the mode-outline distribution p(β1:N |α). 2) It is154

capable of describing any language marginal dis-155

tribution via the marginalization over latent vari-156

ables. Also, it is convenient to analyze because157

of disentanglement: two kinds of uncertainties,158

topic-transition and generation of paragraphs are159

handled by two separated models p(βn|β1:n−1, α)160

and p(xn|βn), respectively, but not the entangled161

marginal p(x1:N ).162

2.1.1 Assumptions163

The pretrained distribution has three additional164

assumptions. Firstly, as mentioned, typical pre-165

trained distributions for LLMs include the repe-166

tition mode α̂ ∈ A that only generates repeated167

outlines βN (β ∈ B) (βN represents a N -length168

outline that each topic within is β). This formally169

raises the following:170

Assumption 1. There exists a mode α̂ ∈ A171

called repetition mode such that p(βn+1|βn, α̂) =172

1(βn+1 = βn) for all timesteps n. Other modes173

α ∈ A/α̂ are called continuous modes, since the 174

outline under them seems to shift gradually and 175

continuously. 176

Secondly, we have to ensure that different modes 177

and topics are different to get rid of redundancy. 178

That is, they should be distinguished in terms of 179

distance measure of distribution: 180

Assumption 2. For two different modes α, α′ ∈ A 181

and an arbitrary context x1:n, define: 182

KLn

(
α∥α′) :=∑

x

p(x|x1:n, α) log
p(x|x1:n, α)
p(x|x1:n, α′)

(2) 183

We assume that KLn (α∥α′) ≥ log c1 > 0. Like- 184

wise, for two different topics β, β′ ∈ B, define: 185

KL(β∥β′) :=
∑
x

p(x|β) log p(x|β)
p(x|β′)

(3) 186

We assume that KL(β∥β′) ≥ log c2 > 0. 187

Thirdly, for convenience and without loss of 188

plausibility, we assume that: 189

Assumption 3. For each paragraph x ∈ Σ∗, its 190

support from any topic β ∈ B is bounded: 0 < 191

c3 ≤ p(x|β) ≤ c4 < 1. 192

2.1.2 Topic Types 193

With Assumption 1, the likelihood of any repeated 194

outline βN under the repetition mode α̂ only de- 195

pends on the topic itself: 196

p(βN |α̂) = p(β1 = β|α̂) := p(β|α̂) (4) 197

where p(β|α̂) is the repetition prior measuring how 198

often the topic β is chosen to repeat under mode α̂. 199

Analogously, let p(β) be the topic prior assessing 200

the frequency of the topic β: 201

p(β) :=
∑
α∈A

p(β|α)p(α) (5) 202

According to the appearance, we can formally 203

group topics β ∈ B into three mutually exclusive 204

sets, as shown in Figure 1: 205

1. Repeated set R. ∀β ∈ R, p(β|α̂) > 0. That 206

is, each topic within appears to repeat in the pre- 207

trained distribution. By intuition, repeated topics 208

account for a very small proportion of all topics in 209

realistic data, i.e., rR = |R|/|B| is small. 210

2. Nonrepeated set C. ∀β ∈ C, p(β|α̂) = 211

0, p(β) > 0. In other words, this set contains 212

topics that don’t repeat but appear in the pretrained 213

corpora. 214
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3. Unseen set U . ∀β ∈ U, p(β) = 0. Topics in215

this set are never seen in the pretrained corpora.216

2.2 Problem Formalization217

Consider a language model pLM trained on samples218

of the above pretrained distribution p. The ICG219

ability could be formalized as:220

Hypothesis 1. Given a language model pLM221

trained on the pretrained distribution p and an222

in-context prompt x1:N , where each sample xn ∼223

p(x|β̂), the in-context topic-repetition rate (ICTR),224

i.e., the probability that the language model gener-225

ates a paragraph belong to topic β̂ when prompting226

with x1:N is somehow close to 1:227

pLM(β̂|x1:N ) := pLM(βN+1 = β̂|x1:N ) ≈ 1 (6)228

Accordingly, the model ICG distribution229

pLM(x|x1:N ) is somehow closed to the true230

topic-paragraph distribution p(x|β̂):231

pLM(x|x1:N ) ≈ p(x|β) (7)232

Thus, we formalize ICG as next topic prediction,233

where language models seem to implicitly choose234

the topic of in-context examples as the next topic.235

Our goal is to find support for this hypothesis from236

the perspective of both theory and empirical exper-237

iments.238

3 Theoretical Support239

Intuitively, the pretrained distribution itself ensures240

the ICG ability for repeated topics R. This can be241

explicitly formalized by the following theorem:242

Theorem 1. Given an in-context prompt x1:N ,243

where each sample xn ∼ p(x|β̂) and β̂ ∈ R, the244

pretrained distribution have the following proper-245

ties:246

1. The data ICTR4 converges to 1 in probability247

(corollary 4):248

plim
N→∞

p(β̂|x1:N ) = 1 (8)249

where we denote p(βN+1 = β|x1:N ) :=250

p(β|x1:N ).251

2. For any candidate paragraph x ∈ Σ∗, the252

data ICG distribution p(x|x1:N ) converges253

to true topic-paragraph p(x|β̂) in probabil-254

ity (corollary 5):255

plim
N→∞

p(x|x1:N ) = p(x|β̂) (9)256

4Note that we use the prefix "data" to distinguish values
from pretrained distribution and language model distribution.

If the language model is expressive enough, it 257

would gradually approach the pretrained distribu- 258

tion with the increase of the number of training 259

examples5. As a result, it would exhibit the same 260

properties as shown in Theorem 1. Therefore, the 261

ICG ability for repeated topics directly originates 262

from the pretrained corpora. 263

Detailed theoretical results are provided in Ap- 264

pendix B, and here, we only present a proof sketch. 265

Proof Sketch. According to Section 2.1, ∀x ∈ Σ∗, 266

the data ICG distribution is: 267

p(x|x1:N ) =
∑
β∈B

p(β|x1:N )p(x|β) (10) 268

Therefore, the data ICG distribution p(x|x1:N ) 269

is dominated by the topic predictive distribution 270

p(β|x1:N ), i.e., ICTR. p(β|x1:N ) can be further 271

decomposed as the mixture of modes: 272

p(β|x1:N ) =
∑
α∈A

p(α|x1:N )p(β|x1:N , α) (11) 273

Firstly, we can prove that if β̂ ∈ R, then 274

plimN→∞ p(α̂|x1:N ) = 1 (corollary 1). There- 275

fore, the mixture in formula (11) focuses on the 276

component of repetition mode p(β|x1:N , α̂) when 277

N is large: 278

p(β|x1:N ) ≈ p(β|x1:N , α̂)

=
p(β|α̂)

∏N
n=1 p(xn|β)

p(x1:N |α̂)
(12) 279

This form is exactly the Bayesian posterior dis- 280

tribution, which is in accord with previous works 281

connecting ICL and Bayesian statistics (Xie et al., 282

2021; Wang et al., 2023b; Hahn and Goyal, 2023). 283

Likewise, it turns out that the if β̂ ∈ R, then 284

plimN→∞ p(β̂|x1:N , α̂) = 1 (corollary 3), thus 285

establishing the first point of theorem 1. Since 286

the data ICG distribution p(x|x1:N ) depends on 287

the topic predictive distribution p(β|x1:N ), we can 288

prove the second point of theorem 1 analogously6. 289

In Appendix B and C, we also present a detailed for- 290

mula of the convergence, in which the convergence 291

speed depends on the distinguishment of different 292

modes and topics. 293

5Previous works (Xie et al., 2021; Hahn and Goyal, 2023)
typically take this as the null hypothesis.

6Based on of theorem 1, for regular in-context learning
scenario where each example in the prompt is a tuple (xn, yn)
consisting with an input xn and an output yn, we can also
obtain similar theoretical conclusions about the ICL ability.
Details are shown in proposition 5 and corollary 6.
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4 Experiments294

Theory 1 can’t ensure the ICG ability for nonre-295

peated and unseen topics β ∈ C ∪ U because they296

have a zero repetition prior p(β|α̂) = 0 and so297

the posterior under repetition mode is also zero:298

p(β|x1:N , α̂) = 0. Then, the correct component299

p(x|β) would never be selected under the repeti-300

tion mode, preventing the ICG/ICL ability as a301

consequence.302

However, this is contrary to the real case, where303

LLMs have the ICG-generalization ability: they are304

able to generalize ICG/ICL abilities to nonrepeated305

and unseen topics β ∈ C ∪ U . We speculate that306

this might be caused by factors in both data and307

model side:308

• Data side: The compositionality of natural309

language (Grandy, 1990) and the proportion of re-310

peated topics rR. Compositionality considers the311

meaning of a linguistic unit results from the in-312

dividual meanings of its sub-parts, and how they313

are combined (Anderson, 2018). Thus, nonre-314

peated and unseen topics might share the same315

"sub-topics" with repeated topics. The bigger the316

proportion of repeated topics, the more frequently317

those sub-topics are shared. Therefore, LLMs may318

be able to recombine those sub-topics to recognize319

those out-of-distribution topics in the repetition320

mode and exhibit generalization.321

• Model side: The Transformer (Vaswani et al.,322

2017) structure. As the mainstream architecture323

of NLP, the success of Transformer is believed324

to originate from its strong generalization ability325

(Hupkes et al., 2023).326

We conduct rich experiments to verify above327

arguments.328

4.1 Synthetic Data329

We conduct the experiments on synthetic data gen-330

erated via the controllable pretrained distribution.331

As mentioned, the distribution has three compo-332

nents:333

1. Mode prior p(α). We set the mode prior to be334

uniform: p(α) = 1/|A|.335

2. Mode-outline distribution p(β1:N |α). For336

continuous modes α ∈ A/α̂, Since we don’t337

exactly care the outline, we set p(β1:N |α) =338 ∏N
n=1 p(βn|α) for convenience, where p(βn|α) is339

a categorical distribution and its parameter is sam- 340

pled from a Dirichlet distribution. The Dirichlet pa- 341

rameters are 0 for unseen topics (so that p(β) = 0 342

for β ∈ U ) and 5 for others. We set the repe- 343

tition prior to be uniform: p(β|α̂) = 1/|R| = 344

1/|B|rR (β ∈ R). 345

3. Topic-paragraph distribution p(x|β). In order 346

to simulate the compositionality, each topic β ∈ B 347

is a tuple containing M subtopics ρ1:M , where 348

ρm ∈ B∗(m ∈ [M ]) and B = BM
∗ . Accordingly, 349

the paragraph x also contains M sub-paragraphs 350

s1:M , where each sub-paragraph is generated indi- 351

vidually: 352

p(x|β) =
M∏

m=1

p(sm|ρm) (13) 353

The composition arity M controls the data com- 354

positionality. Given a fix number of topics |B|, 355

the number of subtopics |B∗| = M
√

|B| decreases 356

when composition arity M increases, and different 357

topics are more likely to share structures as a result. 358

Here, each sub-paragraph distribution p(sm|ρm) is 359

a Markov model whose initial probability vector 360

πρm and transition matrix Aρm are both sampled 361

from Dir(γ1), where 1 is an one vector. γ actually 362

controls the uncertainty of different topics, where 363

a lower value is expected to raise the KL diver- 364

gence between different topic-paragraph models, 365

making them easier to be distinguished, as shown 366

in Appendix D. 367

4.1.1 Data Parameter Settings 368

We set the number of modes |A| = 32, the num- 369

ber of topics |B| = 5314417, where 95% of top- 370

ics are unseen (|U | = 504868). We set the vo- 371

cab size |Σ| = 324, the length of sub-paragraph 372

|sm| = 3, and the number of paragraphs in a doc- 373

ument N = 30. Thus, each document contains 374

30(3M + 1) tokens. For other parameters of pre- 375

trained distribution including composition arity M , 376

the ratio of repeated topics rR, and topic uncer- 377

tainty γ, we adjust their values to study the effects 378

of data properties. In specific, we experiment with 379

M ∈ {2, 3, 4}, rR ∈ {2−d|d = {6, 7, · · · , 13}}, 380

and γ ∈ {0.01, 0.02, · · · , 0.05}. 381

For each configuration of the pretrained distri- 382

bution, we generate 10M documents for training. 383

Therefore, the number of tokens in the synthetic 384

dataset ranges from 2.1B to 3.9B. Examples of the 385

synthetic dataset are shown in Figure 6. 386

7Its square, cube and fourth root are all integers.
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Models L H D # params

X2S 3 6 384 4M
XS 4 8 448 8M
S 5 8 448 9M
M 6 8 512 15M
L 9 12 768 48M

XL 12 16 1024 114M
X2L 16 20 1280 234M

Table 1: Configurations of different models, where L is
the number of layers,H is the number of attention heads,
D is the hidden dimension. For parameter efficiency,
we use grouped query attention (Ainslie et al., 2023)
and set the number of key-value heads to be H/2.

4.2 Models387

We study the effect of model size, attention win-388

dow size, and the number of attention heads of389

Transformer. Table 1 shows configurations of dif-390

ferent experimental models, where the parameters391

scales from 4M to 237M. The models are based on392

the Transformers (Wolf et al., 2020) implementa-393

tion of Mistral (Jiang et al., 2023a). We train each394

model for 1 epoch on one NVIDIA A100 (40GB).395

4.3 Evaluation Metrics396

We aim to evaluate the overall ICG performance397

and the ICG-generalization ability of models using398

ICTR. Firstly, we define topic-wise ICTR as the399

expectation of prompt-wise ICTR:400

πβN = Ep(x1:N |βN ) [pLM(β|x1:N )] (14)401

Then, we can obtain the average ICTR of different402

kinds of topics:403

ICTRB
N =

1

|B|
∑
β∈B

πβN , ICTRR
N =

1

|R|
∑
β∈R

πβN

ICTRC
N =

1

|N |
∑
β∈C

πβN , ICTRU
N =

1

|U |
∑
β∈U

πβN

(15)404

Here, ICTRB
N measures the overall ICG abil-405

ity, while ICTRC
N and ICTRU

N reflect the ICG-406

generalization ability, where higher values sug-407

gest better generalizations. In the experiments,408

since each pretrained document has 30 paragraphs,409

the trained model at most supports 29-shot in-410

context prompts. So by default, we reported411

ICTRB/R/C/U
29 , which is short of ICTRB/R/C/U .412

According to the values of the above ICTRs,413

we further define the following four statuses of a414

trained model by thresholding:415

1. Underfit: ICTRR < 0.65.416

2. Overfit: ICTRR ≥ 0.65, ICTRC < 0.65, 417

and ICTRU < 0.65. 418

3. C-Generalization: ICTRR ≥ 0.65, 419

ICTRC ≥ 0.65, and ICTRU < 0.65. 420

4. U -Generalization: ICTRR ≥ 0.65, 421

ICTRC ≥ 0.65, and ICTRU ≥ 0.65. 422

The computation of prompt and topic-wise ICTR 423

is nontrivial, so we present it in Appendix F. 424

4.4 Results & Discussions 425

Our experimental results suggest the following ar- 426

guments. 427

Data compositionality enables both ICG and 428

ICG-generalization. Figure 3a shows the results 429

of different composition arities. Clearly, we can 430

see that data compositionality enables ICG and 431

ICG-generalization, specifically: 1) As the com- 432

position arity M increases, the overall ICG per- 433

formance consistently improves for models in any 434

sizes trained on the pretrained distribution with dif- 435

ferent repeated topic proportions rR. Notably, the 436

improvement is especially significant when we in- 437

crease M from 2 to 3. For example, for all rR, the 438

ICTRB
29 value nears 0 for many small models when 439

M = 2, but is lifted to a considerable level when 440

M = 3. 2) The models are easier to generalize on 441

ICG when M is higher. When M = 2, most mod- 442

els are even hard to overfit on repeated topics, and 443

only model X2L can generalize ICG to both non- 444

repeated and unseen topics only when rR = 1/64. 445

On the contrary, when M = 3 or M = 4, models 446

in all sizes exhibit the ICG-generalization ability 447

with much smaller rR. 448

The model emerges the ICG-generalization 449

as the proportion of repeated topics rises. As 450

shown in Figure 3a, the model typically tends to 451

overfit only on repeated topics when rR is small, 452

and then suddenly emerges the ICG-generalization 453

ability when rR hits the threshold. The threshold 454

mainly corresponds to the data compositionality, 455

where a higher composition arity M leads to a 456

lower threshold and so makes the model easier to 457

generalize. For example, for model X2L, the gener- 458

alization threshold of rR is 1/64 whenM = 2, and 459

decreases to 1/2048 when M = 3. We speculate 460

this is because the more compositionality of the 461

data, the more likely that nonrepeated and unseen 462
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(a) ICG-generalization results of models in different sizes trained on pretrained distribution with different composition arities M
and proportions of repeated topics rR, where the topic uncertainty γ is set to 0.01.
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Figure 3: ICG-generalization results, where the color suggests the status of the corresponding model, and the
number in the cell shows the corresponding ICTRB

29.

0.01 0.02 0.03 0.04 0.05
Topic uncertainty 

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

IC
TR

ICTRR

ICTRC

ICTRU

Figure 4: ICTR∗
29 of different topics for model L trained

on the pretrained distribution with different topic uncer-
tainty γ, where the other parameters in the pretrained
distribution are: M = 3, rR = 1/1024.

topics share sub-topics with repeated ones, there-463

fore the less proportion of repeated topics is needed464

for generalization.465

Topic uncertainty doesn’t affect ICG-general-466

ization. As shown in Figure 4, Topic uncertainty467

mainly affects the fitting difficulty of the data rather 468

than the ICG-generalization ability: As the topic 469

uncertainty γ increases, the ICTR29 of model L for 470

all kinds of topics decreases consistently. However, 471

we don’t observe apparent ICG performance gaps 472

between those topics. 473

Larger models do better on ICG and ICG-gen- 474

eralization. Model size is considered to be a great 475

factor impacting the ability of language models 476

(Wei et al., 2022a). This is also verified in our ex- 477

periments, which we find: 1) As shown in Figure 478

3a, obviously, larger models not only have better 479

ICTRB
29, but also require less repeated topics to 480

generalize to nonrepeated and unseen topics. 2) As 481

shown in Figure 3b, larger models are able to deal 482

with topics with more uncertainties, i.e., bigger γ, 483

where models larger than model M are capable of 484

ICG-generalization when γ = 0.02 but smaller 485

models pose underfit. Especially for model X2S, 486

whose ICTRB
29 is 0. 3) As shown in Figure 5a, in 487

most cases, larger models achieve better ICTRB 488
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Figure 5: ICTRB
∗ of different model configurations, where we set M = 3, γ = 0.01, and rR = 1/1024.

given fewer demonstrations. However, curiously,489

this does not hold when the number of shots N is490

too small. For example, ICTRB
2 of model X2S, XS,491

S, and M are typically greater than that of model L,492

XL, and X2L. We speculate this might be because493

when N is small, larger models are more cautious494

in identifying the repetition mode.495

Big window size is necessary for ICG and ICG–496

generalization. Recently, Wang et al. (2023a)497

show that LLMs conduct ICL by collecting infor-498

mation of demonstrations in the prompt from pre-499

vious label words. Specifically, the hidden states500

of previous label words are good summarizations501

of corresponding demonstrations. Thus, the model502

needs to attend to all those previous "anchors" to503

conduct ICL, which hints that a small window size504

might harm the ICL performance. For example, in505

the experimental results of Jiang et al. (2023b), we506

can find that the ICL performance of RWKV (Peng507

et al., 2023) series is generally inferior to that of508

Transformer structures. Our experiments also sup-509

port this argument. As shown in Figure 3c and 5b,510

when the number of attention heads is fixed, a low511

window size would cause underfit. In most cases,512

as we increase the window size, the model is shifted513

to overfit and finally U-Generalization, the overall514

ICTRB
29 also rises at the same time. Note that there515

also exists the emergent phenomenon, where the516

model suddenly learns ICG and ICG-generalization517

when its window size hits a threshold.518

Big number of heads is not necessary for ICG519

and ICG-generalization. Multi-head/group atten-520

tion is always believed to be the core driving state-521

of-the-art Transformer models. By intuition, dif-522

ferent heads can potentially attend onto different523

parts of the text, making the model more expressive.524

However, our experiments show this mechanism is525

not very important for ICG and ICG-generalization. 526

As shown in Figure 3c, reducing the number of 527

attention heads H for XL model hardly change 528

the model status. Also, as shown in Figure 3c, 529

at the same size (L), the model with the highest 530

overall ICG performance does not necessarily have 531

the most attention heads. We speculate that this is 532

because the attention pattern for ICG is relatively 533

simple, so different heads are actually functional 534

equivalent. This is consistent with Michel et al. 535

(2019), which finds that the performance of many 536

tasks including machine translation and natural lan- 537

guage inference is insensitive to the number of 538

attention heads. 539

Generalizations towards nonrepeated and un- 540

seen topics are almost the same. As shown in 541

Figure 3, in most cases, no matter how pretrained 542

distributions and models are configured, the mod- 543

els generally result as either underfit, overfit, or 544

U -Generalization, but hardly in the status of C- 545

Generalization. This suggests that nonrepeated top- 546

ics, though appear in the pretrained distribution, 547

are not easier for models to generalize. 548

5 Conclusions 549

This paper provides a systematic study of ICG abil- 550

ity of language models. Firstly, we propose a plau- 551

sible latent variable pretrained distribution, formal- 552

izing ICG as a problem of next topic prediction. 553

Then, we prove that the repetition nature of a few 554

topics ensures the ICG ability on them theoretically. 555

We also conduct rich experiments to study the ef- 556

fects of different factors of data and model architec- 557

tures on ICG and ICG-generalization. We believe 558

this paper is beneficial to a better understanding of 559

the ICG ability, as well as large language models. 560
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Limitations561

The major limitation of this work is that we562

don’t provide a theoretical support for ICG-563

generalization, while doing so is non-trivial. Now564

we can only speculate the ICG-generalization re-565

sults from the smoothing effects of neural probabil-566

ity approximator (e.g. Transformer), where unseen567

inputs would have non-zero probabilities (Xie et al.,568

2017). Therefore, nonrepeated and unseen topics569

might have a non-zero repetition prior, thus mak-570

ing them possible to be chosen as the topic of the571

next paragraph. This phenomenon might be es-572

pecially obvious when these topics are similar to573

repeated ones according to our experimental results.574

Further work on the theoretical understanding of575

ICG-generalization might take similarities between576

topics into account.577
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A Lemmas 721

To access the theoretical results in Appendix B, the 722

following lemmas are useful. 723

Lemma 1. For an arbitrary continuous mode α ∈ 724

A/α̂, let 725

sn =

n∑
i=1

log
p(xi|x1:i−1, α)

p(xi|x1:i−1, α̂)
+ KLi−1(α̂∥α)

(16) 726

where 727

KLi−1(α̂∥α) = Ep(x|x1:i−1,α̂)

[
log

p(x|x1:i−1, α̂)

p(x|x1:i−1, α)

]
(17) 728

Then, sn is a martingale about x1:n. 729

Proof. This lemma is easy to prove according to 730

the definition of martingale so we omit it. 731

Lemma 2. Let zn (n ∈ [N ]) be a series of positive 732

random variables, ∀t ≥ 0, 733

P

(
N∑

n=1

zn ≥ t

)
≤

N∑
n=1

P

(
zn ≥ t

N

)
(18) 734

Proof. Firstly, we have: 735

P

(
N∑

n=1

zn ≥ t

)
= P

(
N∑

n=1

zn ≥ t, zN ≥ t

N

)

+ P

(
N−1∑
n=1

zn ≥ N − 1

N
t, zN ≥ t

N

)

+ P

(
N∑

n=1

zn ≥ t,
N−1∑
n=1

zn ≥ N − 1

N
t

)

≤ P

(
N−1∑
n=1

zn ≤ N − 1

N
t, zN ≥ t

N

)

+ P

(
N−1∑
n=1

zn ≥ N − 1

N
t, zN ≤ t

N

)

+ 2P

(
N−1∑
n=1

zn ≥ N − 1

N
t, zN ≥ t

N

)

= P

(
N−1∑
n=1

zn ≥ N − 1

N
t

)
+ P

(
zN ≥ t

N

)
(19) 736
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Then, according to this recursion,737

P

(
N∑

n=1

zn ≥ t

)

≤ P

(
N−1∑
n=1

zn ≥ N − 1

N
t

)
+ P

(
zN ≥ t

N

)

≤ P

(
N−2∑
n=1

zn ≥ N − 2

N
t

)
+ P

(
zN−1 ≥

t

N

)
+ P

(
zN ≥ t

N

)
· · ·

≤
N∑

n=1

P

(
zN ≥ t

N

)
(20)738

So the result is proved.739

B Complete Theoretical Results740

We analyze the data ICG distribution p(x|x1:N ),741

where x1:N are independent and identical dis-742

tributed with PDF p(x|β̂) and x is an arbitrary743

value in the domain of paragraph. As shown in744

Section 2.1, x depends on its topic:745

p(x|x1:N ) =
∑
β∈B

p(β|x1:N )p(x|β) (21)746

where the topic predictive distribution747

p(β|x1:N ) := p(β1:N = β|x1:N ) controls748

the strength of each topic for the N + 1-th749

paragraph. We then study the property of this750

distribution.751

Note that the topic predictive distribution can752

also analogously be factorized as the mixture of753

modes:754

p(β|x1:N ) =
∑
α∈A

p(α|x1:N )p(β|x1:N , α) (22)755

where the mode posterior p(α|x1:N ) controls the756

strength of each mode.757

B.1 Property of mode posterior758

Firstly, we study the property of the mode posterior759

p(α|x1:N ).760

Proposition 1. Let:761

pmax(α̂) = max
α∈A/α̂

p(α) (23)762

If t satisfies:763

|A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

≤ t < 1 (24)764

and β̂ ∈ R, for repetition mode α̂, we have: 765

P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(25) 766

For any continuous mode α ∈ A/α̂, we also have: 767

P(p(α|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(26) 768

Proof. Firstly, note that the absolute martingale 769

residual difference of sn in formula (17) is 770

bounded: 771

|sn − sn−1|

=

∣∣∣∣log p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
+ KLn−1(α̂∥α)

∣∣∣∣
≤
∣∣∣∣log p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)

∣∣∣∣+ |KLn−1(α̂∥α)|

≤ 2 log
c4
c3

(27) 772

Then, according to Azuma’s inequity (Azuma, 773

1967), ∀ϵ > 0, we have: 774

P

(
N∑

n=1

log
p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
+ KLn−1(α̂∥α) ≥ ϵ

)

≤ e
− ϵ2

8N log2(c4/c3)

(28) 775

Since KLi−1(α̂∥α) ≥ log c1, we can rewrite for- 776

mula (28) as: 777

P

(
N∑
i=1

log
p(xn|x1:n−1, α)

p(xn|x1:n−1, α̂)
≥ ϵ−N log c1

)

≤ e
− ϵ2

8N log2(c4/c3)

(29) 778

Let t = eϵ−N log c1 ∈ [c−N
1 , 1) and rearrange the 779

formula, we can obtain the following inequality 780

about the ratio of mode likelihoods: 781

P

(
p(x1:N |α)
p(x1:N |α̂)

≥ t

)
≤ e

− (N log c1+log t)2

8N log2(c4/c3) (30) 782

The ratio of mode likelihoods has a direct impact 783

to the mode posterior. First, for repetiton mode α̂, 784

11



∀0 < t < 1, we have:785

P(1− p(α̂|x1:N ) ≥ t) = P

(
1

p(α̂|x1:N )
≥ 1

1− t

)

= P

 ∑
α∈A/α̂

p(α)

p(α̂)

p(x1:N |α)
p(x1:N |α̂)

≥ t

1− t


≤
∑

α∈A/α̂

P

(
p(x1:N |α)
p(x1:N |α̂)

≥ tp(α̂)

(|A| − 1)(1− t)p(α)

)

≤
∑

α∈A/α̂

P

(
p(x1:N |α)
p(x1:N |α̂)

≥ tp(α̂)

|A|(1− t)pmax(α̂)

)
(31)786

where we unpack the probability in the third line787

using lemma 2. Now, if788

tp(α̂)

|A|(1− t)pmax(α̂)
≥ c−N

1

⇒ t ≥ |A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(32)789

then we can apply formula (30):790

P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(33)791

As for continuous modes α ∈ A/α̂, note that:792

P(p(α|x1:N ) ≥ t) ≤ P

 ∑
α∈A/α̂

p(α|x1:N ) ≥ t


= P(1− p(α̂|x1:N ) ≥ t)

≤ |A|e−
(
N log c1+log

tp(α̂)
|A|(1−t)pmax(α̂)

)2

8N log2(c4/c3)

(34)793

794

Based on proposition 1, we can immediately795

obtain the following two corollaries:796

Corollary 1. If β̂ ∈ R, plimN→∞ p(α̂|x1:N ) = 1797

Proof. To prove the results, we need to prove that,798

∀ϵ > 0, δ > 0, there exists N0 such that when799

N ≥ N0,800

P(1− p(α̂|x1:N ) ≥ ϵ) < δ (35)801

Firstly, note that when ϵ > 1 or δ ≥ 1, the above802

formula holds trivially. When 0 < ϵ ≤ 1, define:803

N̂(ϵ) = logc1
|A|(1− ϵ)pmax(α̂)

tp(α̂)
(36)804

If N ≥ N̂(ϵ), then 805

ϵ ≥ |A|pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(37) 806

Therefore, according to proposition 1, we have: 807

P(1− p(α̂|x1:N ) ≥ ϵ) ≤ f(N) (38) 808

where 809

f(N) = |A|e−
(
N log c1+log

tp(α̂)
|A|(1−ϵ)pmax(α̂)

)2

8N log2(c4/c3) (39) 810

Since f(N) ∈ (0, |A|2] is a monotonic decreasing 811

function in the domain of [N̂(ϵ),∞], ∀δ ∈ (0, 1) 812

there must exists N ′ ≥ N̂(ϵ) such that δ = f(N ′), 813

or equivalently, N ′ = f−1(δ). Let’s set N0 = 814

⌈f−1(δ)⌉+ 1. If N ≥ N0, 815

P(1− p(α̂|x1:N ) ≥ ϵ) ≤ f(⌈f−1(δ)⌉+ 1) < δ
(40) 816

Therefore, the result is proven. 817

Corollary 2. If t satisfies: 818

|A|5/2pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

≤ t < 1 (41) 819

and β̂ ∈ R, we have: 820

P(|p(β|x1:N )− p(β|x1:N , α̂)| ≥ t)

≤ |A|2e−

N log c1+log
tp(α̂)

|A|(|A|
3
2 −t)pmax(α̂)

2

8N log2(c4/c3)

(42) 821

Proof. Let pα
N ∈ ∆|A| be the topic posterior vec- 822

tor: 823

pα
N =

 · · ·
p(α|x1:N )

· · ·

 ∈ ∆|A| (43) 824

and δα̂ be the one-hot vector peaking at α̂. ∀0 < 825

t < 1, Obviously: 826

P
(
∥pα

N − δα̂∥2 ≥ t
)

≤ P

 ∑
α∈A/α̂

p(α|x1:N ) + 1− p(α̂|x1:N ) ≥ t


≤
∑

α∈A/α̂

P

(
p(α|x1:N ) ≥ t

|A|

)

+ P

(
1− p(α̂|x1:N ) ≥ t

|A|

)
(44) 827
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If828
t

|A|
≥ |A|pmax(α̂)c

−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

⇒ t ≥ |A|2pmax(α̂)c
−N
1

p(α̂) + |A|pmax(α̂)c
−N
1

(45)829

then we can apply formula (25) and (26) to get the830

following:831

P
(
∥pα

N − δα̂∥2 ≥ t
)

≤ |A|2e−
(
N log c1+log

tp(α̂)
|A|(|A|−t)pmax(α̂)

)2

8N log2(c4/c3)

(46)832

Now, denote:833

pβ
·|N,α =

 · · ·
p(β|x1:N , α)

· · ·

 ∈ [0, 1]|A| (47)834

Then, ∀0 < t < 1, we have:835

P(|p(β|x1:N )− p(β|x1:N , α̂)| ≥ t)

= P

(∣∣∣∣(pα
N − δα̂

)T
pβ
·|N,α

∣∣∣∣ ≥ t

)
≤ P

(∥∥∥pα
N − δα̂

∥∥∥
2

∥∥∥pβ
·|N,α

∥∥∥
2
≥ t
)

≤ P

(∣∣∣pα
N − δα̂

∣∣∣ ≥ t√
|A|

) (48)836

If t ≥ |A|5/2pmax(α̂)c
−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

, we can then apply for-837

mula (46) to obtain the result.838

B.2 Property of topic posterior under839

repetition mode840

Secondly, we study the property of the topic poste-841

rior under the repetition mode p(β|x1:N , α̂).842

Proposition 2. Let843

pmax(β̂) = max
β∈B/β̂

p(β|α̂) (49)844

If t satisfies:845

|B|pmax(β̂|α̂)c2−N

p(β̂|α̂) + |B|pmax(β̂|α̂)c2−N
≤ t < 1 (50)846

Then, for the ground-truth topic β̂, if β̂ ∈ R, we847

have:848

P(1− p(β̂|x1:N , α̂) ≥ t) ≤
∑

β∈B/β̂

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(51)849

For any other topic β ∈ R/β̂, we also have: 850

P(p(β|x1:N , α̂) ≥ t)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(52) 851

Proof. For any topic β ∈ B/β̂, let 852

sn =
n∑

i=1

log
p(xi|β)
p(xi|β̂)

(53) 853

Since each demonstration xn is independently sam- 854

pled from p(x|β̂), all the addends in the above 855

formula are independent. Also, note that: 856

E[sn] =
n∑

i=1

E

[
log

p(xi|β)
p(xi|β̂)

]
= nKL(β̂∥β)

≥ n log c2∣∣∣∣∣log p(xi|β)p(xi|β̂)

∣∣∣∣∣ ≤ log
c4
c3

(54) 857

Then, according to Hoeffding’s inequity (Hoeffd- 858

ing, 1994), ∀ϵ > 0, 859

P

(
N∑
i=1

log
p(xi|β)
p(xi|β̂)

≥ ϵ−N log c2

)

≤ P

(
N∑
i=1

log
p(xi|β)
p(xi|β̂)

≥ ϵ−NKL(β̂∥β)

)

= P

(
N∏
i=1

p(xi|β)
p(xi|β̂)

≥ eϵ−NKL(β̂∥β)

)

≤ e
− 2ϵ2

N log2(c4/c3)

(55) 860

Let t = eϵ−N log c2 ≥ c2
−N , we have: 861

P

(
N∏

n=1

p(xn|β)
p(xn|β̂)

≥ t

)
≤ e

− 2(N log c2+log t)2

N log2(c4/c3) (56) 862

The rest of proof of is very similar to that of propo- 863

sition 1, ∀t ≥ |B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N
, 864

P(1− p(β̂|x1:N , α̂) ≥ t) ≤
∑

β∈B/β̂

P

(
N∏

n=1

p(xn|β)
p(xn|β̂)

≥ tp(β̂|α̂)
|B|(1− t)pmax(β̂|α̂)

)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(57) 865
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And ∀β ∈ R/β̂,866

P(p(β|x1:N , α̂) ≥ t)

≤ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(1−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(58)867

868

Likewise, we can also obtain the following coro-869

lary:870

Corollary 3. If β̂ ∈ R, plimN→∞ p(β̂|x1:N , α̂) =871

1.872

Proof. The proof is identical to the proof of corol-873

lary 4 so we omit it.874

B.3 Property of topic predictive distribution875

Based on the above results, we are able to investi-876

gate the property of the topic predictive distribution877

p(β|x1:N ).878

Proposition 3. If t satisfies:879

1 > t ≥ max


2|A|5/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(59)880

Then, for the ground-truth topic β̂, if β̂ ∈ R, we881

have:882

P(1− p(β̂|x1:N ) ≥ t)

≤ |A|2e−

N log c1+log
tp(α̂)

|A|(2|A|
3
2 −t)pmax(α̂)

2

8N log2(c4/c3)

+ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(60)883

For other topics β ∈ B/β̂, we also have:884

P(p(β|x1:N ) ≥ t)

≤ |A|2e−

N log c1+log
tp(α̂)

|A|(2|A|
3
2 −t)pmax(α̂)

2

8N log2(c4/c3)

+ |B|e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(61)885

Proof. For the ground-truth topic β̂ and any 0 <886

t < 1, we have: 887

P(1− p(β̂|x1:N ) ≥ t)

= P(p(β̂|x1:N , α̂)− p(β̂|x1:N )+

1− p(β̂|x1:N , α̂) ≥ t)

≤ P(|p(β̂|x1:N , α̂)− p(β̂|x1:N )|+
1− p(β̂|x1:N , α̂) ≥ t)

≤ P

(
|p(β̂|x1:N , α̂)− p(β̂|x1:N )| ≥ t

2

)
P

(
1− p(β̂|x1:N , α̂) ≥

t

2

)
(62) 888

Therefore, if 889

1 > t ≥ max


2|A|5/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(63) 890

we can then apply corollary 2 and proposition 2 to 891

prove formula (60). Meanwhile, for other topics 892

β ∈ B/β̂, we have: 893

P(p(β|x1:N ) ≥ t) ≤ P

 ∑
β∈B/β̂

p(β|x1:N ) ≥ t)


= P(1− p(β̂|x1:N ) ≥ t))

(64) 894

Then, if t satisfies formula (63), we can obtain 895

formula (61). 896

The property of the topic predictive distribution 897

can be summarized more compactly via the follow- 898

ing corollary: 899

Corollary 4. If β̂ ∈ R, plimN→∞ p(β̂|x1:N ) = 1. 900

Proof. The proof is identical to the proof of corol- 901

lary 4 so we omit it. 902

B.4 Property of in-context generative 903

distribution 904

According the property of the topic predictive dis- 905

tribution, we can finally study the property of the 906

in-context generative distribution. 907

Proposition 4. If t satisfies: 908

1 > t ≥ max


2c4|A|5/2|B|3/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2c4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(65) 909
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and β̂ ∈ R, for any candidate paragraph x ∈ Σ∗,910

we have:911

P(|p(x|x1:N )− p(x|β̂)| ≥ t)

≤ |A|2|B|e−

N log c1+log
tp(α̂)

|A|(2|A|
3
2 |B|

3
2 c4−t)pmax(α̂)

2

8N log2(c4/c3)

+ |B|2e−
2

N log c2+log
tp(β̂|α̂)

|B|(2|B|
3
2 c4−t)pmax(β̂|α̂)

2

N log2(c4/c3)

(66)912

Proof. Let pβ
N ∈ ∆|B| be the topic predictive vec-913

tor:914

pβ
N =

 · · ·
p(β|x1:N )

· · ·

 ∈ ∆|B| (67)915

and δβ̂ be the one-hot vector peaking at β̂. For all916

0 < t < 1, we have:917

P
(
∥pβ

N − δβ̂∥2 ≥ t
)

≤ P

 ∑
β∈B/β̂

p(β|x1:N ) + 1− p(β̂|x1:N ) ≥ t


≤
∑

β∈B/β̂

P

(
p(β|x1:N ) ≥ t

|B|

)

+ P

(
1− p(β̂|x1:N ) ≥ t

|B|

)
(68)918

If919

t

|B|
≥ max


2|A|5/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

⇒ t ≥ max


2|A|5/2|B|pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

2|B|2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(69)920

Then we can apply results from proposition 3 to921

get the following:922

P
(
∥pβ

N − δβ̂∥2 ≥ t
)

≤ |A|2|B|e−

N log c1+log
tp(α̂)

|A|(2|A|
3
2 |B|−t)pmax(α̂)

2

8N log2(c4/c3)

+ |B|2e−
2

(
N log c2+log

tp(β̂|α̂)

|B|(2|B|−t)pmax(β̂|α̂)

)2

N log2(c4/c3)

(70)923

Now, denote:924

px
·|β =

 · · ·
p(x|β)
· · ·

 ∈ [c3, c4]
|B| (71)925

Therefore, For all 0 < t < 1, 926

P(|p(x|x1:N )− p(x|β̂)| ≥ t)

= P

(∣∣∣∣(pβ
N − δβ̂

)T
px
·|β

∣∣∣∣ ≥ t

)
≤ P

(∥∥∥pβ
N − δβ̂

∥∥∥
2

∥∥∥px
·|β

∥∥∥
2
≥ t
)

≤ P

(∥∥∥pβ
N − δβ̂

∥∥∥
2
≥ t√

|B|c4

) (72) 927

Therefore, if t satisfies formula (65), we can then 928

apply formula (66) to prove the result. 929

Proposition 4 directly supports the following 930

corollary: 931

Corollary 5. If β̂ ∈ R, plimN→∞ p(x|x1:N ) = 932

p(x|β̂). 933

Proof. The proof is identical to the proof of corol- 934

lary 4 so we omit it. 935

B.5 Property of in-context predictive 936

distribution 937

We can generalize the property of ICG distribution 938

to the in-context predictive distribution as well, 939

which forms the theoretical foundation of ICL. 940

Proposition 5. If t satisfies: 941

1 > t ≥ max


4c23c

2
4|A|5/2|B|3/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

4c23c
2
4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(73) 942

and β̂ ∈ R, we have 943

P
(∣∣∣p(y|(x, y)1:N , x)− p(y|x, β̂)

∣∣∣ ≥ t
)

≤ |A|2|B|e−

N log c1+log
tp(α̂)

|A|(4|A|
3
2 |B|

3
2 c23c

2
4−t)pmax(α̂)


2

8N log2(c4/c3)

+ |B|2e−
2

N log c2+log
tp(β̂|α̂)

|B|(4|B|
3
2 c23c

2
4−t)pmax(β̂|α̂)


2

N log2(c4/c3)

(74) 944
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Proof. ∀0 < t < 1, we have945

P
(∣∣∣p(y|(x, y)1:N , x)− p(y|x, β̂)

∣∣∣ ≥ t
)

= P

(∣∣∣∣∣p(x, y|(x, y)1:N )

p(x|(x, y)1:N )
− p(x, y|β̂)

p(x|β̂)

∣∣∣∣∣ ≥ t

)

= P

(∣∣∣∣∣p(x|β̂)p(x, y|(x, y)1:N )

p(x|(x, y)1:N )p(x|β̂)

−p(x, y|β̂)p(x|(x, y)1:N )
∣∣∣∣∣ ≥ t

)
≤ P

(∣∣∣p(x|β̂)p(x, y|(x, y)1:N )

−p(x, y|β̂)p(x|(x, y)1:N )
∣∣∣ ≥ t

c23

)
= P

(∣∣∣p(x|β̂)(p(x, y|(x, y)1:N )− p(x, y|β̂)
)

+ p(x, y|β̂)
(
p(x|β̂)− p(x|(x, y)1:N )

)∣∣∣ ≥ t

c23

)
≤ P

(∣∣∣p(x|(x, y)1:N )− p(x|β̂)
∣∣∣ ≥ t

2c23c4

)
+ P

(∣∣∣p(x, y|(x, y)1:N )− p(x, y|β̂)
∣∣∣ ≥ t

2c23c4

)
(75)946

Therefore, if t satisfies:947

1 > t ≥ max


4c23c

2
4|A|5/2|B|3/2pmax(α̂)c

−N
1

p(α̂)+|A|pmax(α̂)c
−N
1

4c23c
2
4|B|3/2pmax(β̂|α̂)c2−N

p(β̂|α̂)+|B|pmax(β̂|α̂)c2−N

(76)948

we can use the results of proposition 4 to obtain the949

results.950

We can also obtain the following convergence951

corollary from proposition 5:952

Corollary 6. If β̂ ∈ R, plimN→∞ p(y|x1:N , x) =953

p(y|x, β̂).954

Proof. The proof is identical to the proof of corol-955

lary 4 so we omit it.956

C Convergence Speed957

We can also observe the convergence speed from958

p(β̂|x1:N ) to 1 from proposition 3. Specifically,959

take the derivative of the upper-bound to N in for-960

mula (60), we can see that the convergence speed961

is around962

O

−

(
e

log2 c1
8 log2(c4/c3)

)−N

−

(
e

2 log2 c2
log2(c4/c3)

)−N


(77)963

Therefore, the higher the distinction between dif- 964

ferent modes and topics, i.e, the higher log c1 and 965

log c2, the faster the convergence of the data ICTR. 966

D Expectation of KL(β̂∥β) 967

According to the settings, each topic β ∈ B con- 968

tains a few sub-topics, then the expectation of 969

KL(β̂∥β) depends on KL divergences of those sub- 970

topics: 971

E
[
KL(β̂∥β)

]
=

M∑
m=1

Eρ̂m,ρm [KL(ρ̂m∥ρm)]

=

M∑
m=1

Eρ̂m,ρm

[∑
s

p(s|ρ̂m) log
p(s|ρ̂m)

p(s|ρm)

]
(78) 972

Given that β̂ and β are different, there at least exists 973

one subtopic is different between them, so: 974

E
[
KL(β̂∥β)

]
≥ Eρ̂,ρ [KL(ρ̂∥ρ)] (79) 975

Note that for each ρ ∈ B∗, the sub-paragraph dis- 976

tribution p(s|ρ) = p(s|Ãρ) is Markovian, where 977

Ãρ = [πρ,Aρ] is a row concatenation of the ini- 978

tial probability vector πρ and transition matrix Aρ 979

sampled from Dir([γ]|Σ|). Let T be the length of s. 980

Expand the KL divergence, we have 981

Eρ̂,ρ [KL(ρ̂∥ρ)] = ET
ρ̂,ρ [KL(ρ̂∥ρ)]

= EÃρ̂,Ãρ

[
KL
(
p(·|Ãρ̂)∥p(·|Ãρ

)]
= EÃρ̂,Ãρ

 ∑
s1:T−1

∑
sT

p(s1:T−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

p(s1:T−1|Ãρ̂)Ã
sT−1,sT
ρ̂

p(s1:T−1|Ãρ)Ã
sT−1,sT
ρ

]

= ET−1
ρ̂,ρ [KL(ρ̂∥ρ)] + EÃρ̂,Ãρ

 ∑
sT−1,sT

p(sT−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ

]
(80) 982

Note that Assumption 3 actually implicit that 983

p(sT |Ãρ) is bounded for all T and ρ ∈ B∗. We 984

assume the lower bound is c5. Then, the second 985

term of the above formula has the following lower 986
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Data

Topic

Mode

Testing set

Training set

31
12212 8452

183 134 200 62 69 22 103 181 66 73 248 114 310 145 87 18 102 222dd
18361

201 128 189 17 291 100 197 205 85d

15
3109 18361

94 43 72 142 255 252 188 255 159 201 214 27 71 253 139 2 299 205dd
23265

89 175 165 97 308 85 38 244 116d

0
491 491

39 54 223 64 107 154 120 114 25 219 90 225 173 44 80 120 113 194dd
491

260 220 189 173 44 51 120 305 223d

...

...

...

Continuous mode (id: 1~31)

Repetition mode (id: 0)

Nonrepeated topic (id: 518~26571)

Repeated topic (id: 0~517)

Unseen topic (id: 26572~531440)

d Delimiter

Paragraph (length: 9, vocab: 324)0
107652 107652

142 164 313 248 279 314 75 321 114 252 182 7 174 124 50 75 116 125dd
107652

142 164 313 188 185 256 1 278 8d

0
4582 4582

16 94 301 252 12 103 202 232 126 110 197 0 142 26 104 85 318 196dd
4582

121 293 113 313 117 39 128 49 292d

0
491 491

219 187 308 64 229 256 120 305 32 219 60 139 229 36 90 245 217 317dd
491

17 44 23 64 229 227 120 114 63d

...

...

...

...

...

Figure 6: Examples in the synthetic dataset, where we set M = 3, rR = 1/1024 and γ = 0.01.

bound:987

EÃρ̂,Ãρ

 ∑
sT−1,sT

p(sT−1|Ãρ̂)Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ

]

≥ c5EÃρ̂,Ãρ

 ∑
sT−1,sT

Ã
sT−1,sT
ρ̂ log

Ã
sT−1,sT
ρ̂

Ã
sT−1,sT
ρ


= c5EÃρ̂

 ∑
sT−1,sT

Ã
xT−1,xT

ρ̂ log Ã
xT−1,xT

ρ̂


− c5EÃρ̂,Ãρ

 ∑
sT−1,sT

Ã
xT−1,xT

ρ̂ log Ã
xT−1,xT
ρ


= c5|Σ| [ψ(γ + 1)− ψ(|Σ|γ + 1)]

− c5|Σ| [ψ(γ)− ψ(|σ|γ)]

=
c5(|Σ| − 1)

γ
(81)988

where ψ(x) is the digamma function, and we use989

the property ψ(x + 1) = ψ(x) + 1/x to simplify990

the above formula. Therefore, we have: 991

ET
ρ̂,ρ [KL(ρ̂∥ρ)] ≥ ET−1

ρ̂,ρ [KL(ρ̂∥ρ)] + c5(|Σ| − 1)

γ

≥ET−2
ρ̂,ρ [KL(ρ̂∥ρ)] + 2c5(|Σ| − 1)

γ

· · ·

≥Tc5(|Σ| − 1)

γ
(82) 992

Therefore, the expectation of KL(β̂∥β) is bounded: 993

E
[
KL(β̂∥β)

]
≥ Tc5(|Σ| − 1)

γ
(83) 994

We can see that the lower the value of γ, the larger 995

the expected topic-wise KL divergence, and the 996

more significant the topic distinction is. 997

E Synthetic Dataset Illustration 998

Figure 6 shows examples in the synthetic dataset, 999

where we also visualize the latent variables mode 1000

α and outline β1:N for a better understanding. 1001

F Computation of Prompt and Topic-wise 1002

ICTR 1003

According to the definition, given an in-context 1004

prompt x1:N , where each sample xn ∼ p(x|β̂), 1005

ICTR is the probability that the language model 1006

generates a paragraph also belongs to topic β̂. Thus, 1007

to measure the belongness of the generated para- 1008

graph, we use the mixture of topic-paragraph mod- 1009

els
∑

β∈B π
β
x1:Np(x|β) to fit the ICG distribution 1010

of the target language model pLM(x|x1:N ). Here, 1011
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p(x|β) is fixed, and we sample L1 paragraphs1012

from pLM(x|x1:N ) to fit πβx1:N using EM algorithm1013

(Bishop and Nasrabadi, 2006) as shown in Algo-1014

rithm 1. As a result, the estimated πβ̂x1:N can repre-1015

sent the ICTR given the in-context prompt x1:N .1016

We further compute the topic-wise ICTR to sum-1017

marize the ICG ability of a specific topic. Topic-1018

wise ICTR is the expectation of prompt-wise ICTR:1019

πβN = Ep(x1:N |βN )

[
πβx1:N

]
≃ 1

L2

L2∑
l=1

πβ
xl
1:N

(84)1020

Here, we use Monte-Carlo sampling to estimate1021

the expectation, where xl1:N is the l-th sample of1022 ∏N
n=1 p(xn|β̂). Due to the large number of the1023

topics (531441) in the pretrained distribution, for1024

simplicity, L1 and L2 are both set to 1. Thus, the1025

evaluation of a model just requires 531441 forward1026

passes, where the time consumption is acceptable.1027

In-context prompts for evaluation is shown in Fig-1028

ure 6.1029

Algorithm 1 Prompt-wise ICTR computation

Randomly initialize πβ
x1:N

.
for l = 1, · · · , L1 do

xl ∼ pLM(x|x1:N )
end for
while not convergence do

for l = 1, · · · , L1 do

ωβ,l
x1:N

=
πβ
x1:N

p(xl|β)∑
β′∈B π

β′
x1:N

p(xl|β)

end for
πβ
x1:N

=
∑L1

l=1
ωβ,l
x1:N

L1

end while
pLM(β|x1:N )← πβ

x1:N

return pLM(β|x1:N )
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