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Abstract

Meta-learning has been demonstrated to be useful to improve the sampling effi-
ciency of Bayesian optimization (BO) and surrogate-assisted evolutionary algo-
rithms (SAEAs) when solving expensive optimization problems (EOPs). Existing
studies mainly focus on either combinations of existing meta-learning modeling
methods with optimization algorithms, or the development of meta-learning acqui-
sition functions for specific meta BO. However, the meta-learning models used in
the literature are not designed for optimization purposes, and the generalization
ability of meta-learning acquisition functions is limited. In this work, we develop a
novel architecture of meta-learning model for optimization purposes and propose a
generalized few-shot evolutionary optimization (FSEO) framework to solve EOPs.
We focus on the scenario of expensive multi-objective EOPs (EMOPs) in the con-
text of few-shot optimization as there are few studies on it and its high requirement
on surrogate modeling performance. The surrogates in FSEO framework combines
neural network with Gaussian Processes (GPs), their network parameters and some
parameters of GPs represent task-independent experience and are meta-learned
across related optimization tasks, the remaining GPs parameters are task-specific
parameters that represent unique features of the target task. We demonstrate that
FSEO is able to improve the sampling efficiency of existing SAEAs on EMOPs.

1 Introduction

Expensive optimization problems (EOPs) aim to find as good as possible solutions within a budget of
limited solution evaluations. Conventional Bayesian optimization (BO) and surrogate-assisted evolu-
tionary algorithms (SAEAs) have been widely used to solve EOPs, but they train surrogate models
from scratch. To further improve sampling efficiency and optimization performance, many efforts
have been made to pre-train surrogates with the prior experience gained from related optimization
tasks, resulting in experience-based optimization algorithms [2} 24} 38} 37].

Scope. This work considers solving EOPs in the context of few-shot problems [7, 44], where
plenty of expensive related tasks are available and each of them can provide a small dataset for
experience learning. Therefore, many experience-based optimization approaches, such as multi-
tasking optimization [47, 3} 52] and transfer optimization [37, 21, 20], are not considered as they
cannot learn experience from small related tasks (a detailed clarification of differences between
these concepts is available in Appendix [A.T). In comparison, meta-learning [I7] has been proven
to be powerful in solving few-shot problems, leading to a new subcategory of experience-based
optimization, namely few-shot optimization (FSO) [50].

Motivation. Existing studies on FSO are mainly few-shot Bayesian optimization (FSBO) where
meta-learning approaches are combined with BO to solve EOPs with only one objective. These
studies either employ meta-learning models from the literature directly or focus on the meta-learning
of acquisition functions (AFs) that are customized for BO. In this paper, we develop a novel meta-
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learning architecture for optimization purposes to enhance modeling performance and propose
a generalized few-shot evolutionary optimization (FSEO) framework to address EOPs from the
perspective of SAEAs. We demonstrate the generality and applicability of FSEO on multi-objective
EOPs (EMOPs). FSO on EMOPs has been limited studied but EMOPs have a higher requirement
on modeling performance than expensive single-objective optimization. Major contributions are
summarized as follows.

* A novel meta-learning method, namely Meta Deep Kernel Learning (MDKL), is developed
to gain prior experience from related expensive tasks. Our model architecture and parameter
designs make it possible to generate a regression-based surrogate on the prior experience
and then continually adapt the surrogate to approximate the target task.

* We propose a FSEO framework to solve EOPs from the perspective of SAEAs. FSEO
framework is applicable to regression-based SAEAs since FSEO embed our meta-learning
models in these SAEAs as their surrogates. In addition, an update strategy is designed to
constantly adapt surrogates during optimization. Note that our FSEO framework is a general
framework but we focus on its performance on EMOPs in this paper.

* Experiments are conducted on EMOPs to show that our FSEO framework is effective. Our
comprehensive ablation studies reveal the influence of several factors on FSEO performance
and provide empirical guidance on the application of our FSEO framework.

2 Related Work

Experience-based optimization can be divided into several subcategories according to the techniques
of learning prior experience from related tasks. A detailed classification and discussion on these
subcategories is available in Appendix[A.T] This subsection focuses on related work on FSO.

Wistuba [50] firstly employed meta-learning for few-shot optimization on hyperparameter optimiza-
tion (HPO) problems. Subsequent FSO related studies can be grouped into two categories: The
first category focuses on improving the performance of few-shot optimization, either by employing
different models [27] or by developing novel acquisition functions for BO [18]]. The second category
extends few-shot optimization to more complex optimization problems [S6] or applies it to new
domains [6} |8]. In addition, FSO studies in the literature can also be categorized according to their
model architectures. Most studies meta-learn parameters for Gaussian Processes (GPs) [48]], namely
FSBO or Meta Bayesian Optimization (MBO) [34} 45, 29, 40]. In addition, [27] meta-learns with
transformer neural processes and [50, [8] meta-learn parameters for the architecture of deep kernel
learning (DKL) [49]. The MDKL model in our FSEO belongs to the last category as its model
architecture is relevant to DKL.

Our work differs from existing studies in three points: Firstly, the novel architecture of meta-learning
model for optimization purposes. Many studies [S0] use existing meta-learning models [30] as their
surrogates. During the optimization process, these surrogates make predictions with newly observed
data, which is a kind of data adaptation rather than a model parameter adaptation. The parameters
in these models are trained and fixed before the optimization process begins, no further parameter
adaptations are made during the optimization, as these meta-learning models are originally designed
for regression or classification tasks rather than optimization tasks. In comparison, we develop a
meta-learning model, MDKL, for optimization purposes. MDKL has a novel model architecture with
explicit task-specific parameters, which allows continual adaptations of model parameters and thus
improves modeling performance during optimization. Secondly, the generality and broad applicability
of FSEO. Existing works are mainly customized for specific algorithms or optimization problems.
For example, the meta-learning settings for AFs [46]] are not applicable to the SAEAs without AFs.
However, our FSEO works on the meta-learning of surrogates and is applicable to various SAEAs,
so our work broadens the scope of existing FSO research. A detailed discussion between BO and
SAEA is presented in Appendix [A.2} In addition, most existing FSO studies investigated only global
optimization, leaving other optimization scenarios such as EMOP still awaiting investigation. In
contrast, as our MDKL is designed for optimization and is capable of continually adaptation, we
focus on EMOPs which require more effective models than global optimization. Lastly, in-depth
ablation studies are lacking in the literature, making it unclear which factors affect the performance
of FSO. Our extensive ablation studies fill this gap and we conclude some empirical rules to improve
the performance of FSO.



3 Background

Preliminaries about meta-learning and DKL are given here. The former is the method of experience
learning, the latter is the underlying structure of experience representation.

Meta-Learning in Few-Shot Problems. In the context of few-shot problems, we have plenty of
related tasks, each task 7 contributes a couple of small datasets D = {(S, Q)}, namely support
dataset S and query dataset Q, respectively. After learning from datasets of random related tasks, a
support set S, from a new unseen task 7 is given and one is asked to estimate the labels or values of
a query set Q.. The problem is called 1-shot or 5-shot when only 1 data point or 5 data points are
provided in S,. A comprehensive definition of few-shot problems is available in [7} [44].

Meta-learning methods have been widely used to solve few-shot problems [44]]. They learn domain-
specific features that are shared among related tasks as experience, such experience is used to
understand and interpret the data collected from new tasks encountered in the future.

Deep Kernel Learning (DKL). DKL aims to construct kernels that encapsulate the expressive power
of deep architectures for GPs. To create expressive and scalable closed-form covariance kernels, DKL
combines the non-parametric flexibility of kernel methods and the structural properties of deep neural
networks. In practice, a deep kernel k(x%, x’|y) transforms the inputs x of a base kernel k(x*,x7|0)
through a non-linear mapping given by a deep architecture ¢(x|w, b):

k(x", X7 |y) = k(¢(x'|w,b), ¢(x|w,b)|8), (1

where 0 and (w, b) are parameter vectors of the base kernel and the deep architecture, respectively.
~ = {6, w,b} is the set of all the parameters in this deep kernel. Note that in DKL, all parameters
~ of a deep kernel k(x*, x?|) are learned jointly by using the log marginal likelihood function of
GPs as the loss function. Such a joint learning strategy has been shown to make a DKL algorithm
outperform a combination of a deep neural network and a GP model, where a trained GP model is
applied to the output layer of a trained deep neural network [49].

Meta-Learning on DKL. An important distinction between DKL algorithms and the applications of
meta-learning to DKL is that DKL algorithms learn their deep kernels from single tasks instead of
collections of related tasks. This difference alleviates two drawbacks of single task DKL [41]]: First,
the scalability of deep kernels is no longer an issue as datasets in meta-learning are small. Second,
the risk of overfitting decreases since diverse data points are sampled across tasks.

4 Few-Shot Evolutionary Optimization (FSEQO) Framework

In this paper, 7T, denotes the target optimization task, and plenty of small datasets D; sampled from
related tasks 7; are available for experience learning. A complete list of notations is available at the
beginning of the Appendix.

4.1 Overall Working Mechanism
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Figure 1: Diagram of our FSEO framework. Methods for handling multiple objectives or constraints
are dependent on the module ‘SAEA optimizer’.

As illustrated in Fig. [T} all modules covering the optimization of target task 7, are included in
the blue block. The modules included in the yellow block are associated with related tasks 7; and



Algorithm 1 FSEO Framework.

1: Input: D;: Datasets collected from related tasks 7;, i={1,..., N}; N,,,: Number of subsets
D,,, for meta-learning; |D,,|: Size of subsets D,,. |D,,| < |D;| due to D,,, C D;; Batch size
B; Surrogate learning rates «, 3; Target task 7,; An SAEA optimizer Opt; Fitness evaluation
budget F E,,q-
Experience v¢ < Meta-learning(D;, Ny, | D, B, ). /*Alg. */
S, < Sampling 1d solutions from 7.
h(~*) + Adaptation(~v¢, S,, 8). /*Initialize surrogate.* /
Set evaluation counter F'E = |S.|.
while FE < FE,,,, do
Candidate solution(s) x* < Surrogate-assisted optimization (Opt, h(vy*)).
f(x*) < Evaluate x* on 7,.
9: S+ S U{" f(x)}.
10:  h(~*) « Update(vy*, S, B). /*Alg. E}*/
11:  Update F'E.
12: end while
13: Output: Optimal solutions in S,.
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experience learning, which distinguishes our FSEO framework from conventional SAEAs and BO.
The MDKL surrogate modeling method consists of two procedures: the meta-learning procedure and
the adaptation procedure. The former learns prior experience from 7;, the latter uses experience to
adapt surrogates to fit 7,. The framework of FSEO is depicted in Alg. [T} it consists of the following
major steps.

1. Experience learning: Before expensive optimization begins, a meta-learning procedure
is performed to train task-independent parameters v° for MDKL surrogates (line 2). N,,
datasets {D,,1, ..., Dmn,, } collected from N related tasks {77, ..., T} are used to train
~¢. ~¢ is the experience that represents the domain-specific features of related tasks.

2. Initialize surrogates with experience: Optimization begins when a target optimization task
T. is given. An initial dataset S, is sampled (line 3) to adapt task-specific parameters v* on
the basis of experience v°. After that, MDKL surrogates are updated (line 4).

3. Reproduction: MDKL surrogates h(~*) are combined with an SAEA optimizer Opt to
search for optimal solution(s) x* on h(v*) (line 7). This is implemented by replacing the
original (regression-based) surrogates in an SAEA with h(~*).

4. Update archive and surrogates: New optimal solution(s) x* is evaluated on target task
T (line 8). The evaluated solutions will be added to dataset S, (line 9) which serves as an
archive. Then, surrogate adaptation is triggered, surrogates h(~*) are updated (line 10).

5. Stop criterion: Once the evaluation budget has run out, the evolutionary optimization
process terminates, outputting the optimal solutions in dataset S,. Otherwise, the algorithm
returns to Step 3.

4.2 Learning and Using Experience by MDKL

In MDKL, the domain-specific features of related tasks are used as experience, which are represented
by the task-independent parameters «© learned across related tasks. To make MDKL more capable of
expressing complex domain-specific features, the base kernel k(x,x7| 8) in GP is combined with a
neural network ¢(w, b) to construct a deep kernel (see Eq.). The modeling of an MDKL model
consists of two procedures: the meta-learning procedure and the adaptation procedure. To illustrate
them clearly, we present frameworks for both procedures and explain them in detail.

Meta-learning procedure: Learning experience
Our MDKL model uses the kernel in [22] as its base kernel:

d
k(x',x7]0,p) = exp(— 3 Ol — 7). @)
k=1



Algorithm 2 Meta-learning(D;, N, |Dy.|, B, @)

1: Input: D;: Datasets collected from related tasks 7;, i={1, ..., N}; N,,: Number of subsets D,,
for meta-learning; |D,,,|: Size of subsets D,,. |D,,| < |D;| due to D,,, C D;; Batch size B;
Learning rate for priors «.

2: Randomly initialize w, b, 8¢, p°©.

3: Set the number of update iterations U = N,,,/B.

4: for j =1to U do

5. {D},...,Dz} + Randomly select a batch of datasets from {Ds,...,Dy}.

6

7

8

for all D] in the batch do
Dyni < A subset of size |D,,| from D;.
Initialize task-specific increment A@*, Ap*.

9: Compute task-specific parameters: 0 = 6° + AG'p’ = p° + Ap'.
10 Obtain deep kernel k(x*, x? |7) based GP h(7), where v = {w, b 01, p'} (Eq.( .).
11: Compute the loss function £(D,,;, h()) (Eq. .)
12:  end for

13:  Update w,b, 6, p© via gradient descent: o 57 £(Dni, h(7)) (Eq.(6]).
14: end for
15: Output: Task-independent parameters: v¢ = {w,b, 8¢,p°}.

Therefore, the deep kernel will be:

k(x', %7 |y) = exp(— Zem z},[w, b) — p(a|w,b)[P*), 3)
k=1

where v = {w, b, 0, p} is a set of deep kernel parameters. ¢, w and b denote the neural network and
its parameters (see Eq.(I)). 6, p are parameters of base kernel, details on alternative base kernels are
available in [48]].

The aim of the meta-learning procedure is to learn experience v from related tasks {77, ..., Tn },
including neural network parameters w, b, and task-independent base kernel parameters 8¢, p¢. The
pseudo-code of the meta-learning procedure is presented in Alg. [2] Ideally, experience ¢ is learned
from plenty of (/V,;,) small datasets D,,, collected from different related tasks. However, in practice,
the number of available related tasks N may be much smaller than N,,. Hence, meta-learning is
conducted gradually over U update iterations (line 3). During each update iteration, a small batch of
related tasks contribute B small datasets {D,,,1, . .., D,,p} for meta-learning purposes (lines 5 and
7). Note that if N < N,,, a related task 7; can be used multiple times in the meta-learning procedure.

For a given dataset D,,,;, we denote 8° = 6° 4+ A@® and p’ = p® + Ap’ as the task-specific kernel
parameters, where A@°, Ap’ are the distance we need to move from the task-independent parameters
to the task-specific parameters (line 9). The loss function £ of MDKL is the negative log-likelihood
function, where the likelihood is defined as follows [22]:

1 I 1) "R (y — 1p)
(2m)n/2(a2)n/2R[172 P 902
where |R| is the determinant of the correlation matrix R, each element in the matrix is computed

using Eq.( . y is the fitness vector of D,,,;. Mean  and variance o2 of the prior distribution can be
estimated by:

s )

17R 1y 1 o X
= TR-11’ 0:5(y—1u)TR Yy — 14). )

Experience v¢ = {w, b, 8¢, p°} is updated by gradient descent (line 13), take ¢ as an example:

ew—ef—fzvge Doni, h()). (6)

After U iterations, ¢ has been sufficiently tralned by N,,, small datasets D,,, and will later be used
in target task 7.

Adaptation procedure: Using experience
The meta-learning of experience ¢ enables MDKL to handle a family of related tasks in general. To



effectively approximate a specific task 7., surrogate h(~¢) needs to adapt task-specific increments
A@* and Ap* in the way described in Alg. 3] A diagram of the deep kernel implemented in our
MDKL model is illustrated in Fig. 2} From Fig. 2, it is clear that task-independent parameters
~¢ = {w,b, 8¢, p} are trained on meta data D;. During the optimization process, MDKL adapts
task-specific increments A@*, Ap* (Algorithm 8, line 3) and combines them with experience 6°¢,
resulting in task-specific parameters 0, p*. Hence, the deep kernel parameter v* = {w, b, 6* p*} is
available. By invoking Eq. [3] the prior distribution of MDKL is estimated for the following surrogate
prediction procedure.

Algorithm 3 Adaptation(v*, S, 5)

1: Imput: Current surrogate parameters v*; A dataset S, sam- Neural network ¢
pled from target task 7. (Archive); Learning rate for adap- ST Wb feee 2=ED
tation /3. :

2: if ’)/* == ’)/e then Base kemel k

3:  Initialize task-specific increments A8*, Ap*. = P‘T 0%, " oo > Kln

4:  Compute task-specific parameters: 8* = 6¢ + A@*, S.—— a6*4p

5:  Obtain deep kernel k(x", x?|v*) based GP: h(~*), where  Figure 2: Diagram of our deep

~* = {w,b, 0%, p*} (Eq.(3)). kernel implementation. The solid

6: end if lines depict the training process,

7: Compute the loss function £(S,, h(~v*)) (Eq. .) the dotted lines depict the infer-

8: Update A8*, Ap* using gradlent descent: By  ence process. Q, denotes query
L(S., h(x")). samples to be evaluated on our

9: Output: Adapted MDKL h(~*). surrogates.

Surrogate prediction. Due to the nature of a GP, when predicting the fitness of a solution x*, an
MDKL surrogate produces a predictive Gaussian distribution A/(5(x*), 82(x*)) , the predicted mean
§(x*) and covariance $2(x*) are specified as [22]:

§(x*) = p+ 'Ry — 1p), §(x*) =o*(1 —rR7'r), (7)

where r is a correlation vector consisting of covariances between x* and S, other variables are
explained in Eq.(@).

4.3 Surrogate Update Strategy

This subsection describes the update strategy in our FSEO framework. To properly integrate experi-
ence and data from 7, our update strategy is designed to determine whether an MDKL surrogate
should be adapted in the current iteration or not, ensuring an optimal surrogate update frequency.
As illustrated in Alg. [ the surrogate update begins
when a new optimal solution(s) has been evaluated on Algorithm 4 Update(~v*, S,, )

expensive functions and an updated archive S, is avail- . Input:

able. For a given surrogate h(~*), its mean sgugred Current surrogate parameters v*;
error (MSE) on S, is selected as the update criterion: Updated archive S, ;

If the MSE.after an adaptatlgn el (hpe 4) is larger than Learning rate for further adaptations 8.
the MSE without an adaptation e (line 2), then the sur- 5. eo < MSE(h(~*

rogate will roll back to the status before the adaptation.

>dle Wi h(y") + Adaptatlon fy ,Se, B
This indicates the surrogate update has been refused /*Temporary surrogate Alg i */
and h(vy*) will not be adapted in the current iteration. 4. . . MSE(h(v'
Otherwise, the adapted surrogate will be chosen (line 5. ¢ o > e then
6). Note that no matter whether surrogate adaptations ¢, update v* = ~/, obtain new A (~*).
are accepted or refused, the resulting surrogates will 7. andif
be treated as updated surrogates, which are employed . Output: Surrogate h(y*).

to assist the SAEA optimizer in the next iteration.

4.4 Discussion on Runtime

The computational complexity introduced by meta-learning is negligible in the context of few-shot
expensive optimization. The time cost of model training mainly depends on the size of the dataset
used for meta-learning (see Appendix [J]for a complexity analysis of meta-learning). In few-shot



optimization, the dataset is typically small, indicating that training meta-learning models is not
time-consuming. In contrast, in expensive optimization, the time cost of each solution evaluation is
much higher than the computational cost of model training. For example, each evaluation of engine
performance in real-world engine calibration applications may take hours to days [55]], similar to the
evaluation costs reported in other studies on expensive optimization [45]]. Therefore, in real-world
applications, introducing a meta-learning model is worthwhile if even a single expensive evaluation
can be saved.

S Computational Studies

Our computational studies can be divided into three parts:

1. Appendix [D]evaluates our meta-learning model performance on two problems and analyzes
model component contributions via ablation comparisons with model variants.

2. Sections [5.1] to [5.2] investigate the performance of our FSEO framework in enhancing
sampling efficiency. Extensive ablation studies are conducted to provide guidance for
practical applications of our FSEO framework.

3. Section and Appendix [H|demonstrate the performance and broad applicability of our
FSEO framework on real-world problems.

For all meta-learning methods used in our experiments, their basic setups are listed in Table [H

5.1 Performance on EMOPs

The experiment in this subsection is designed to answer the question below: With the experience
learned from related tasks, can our FSEO framework help an SAEA save 9d solutions without a loss
of optimization performance?

5.1.1 Experimental Setups

Optimizaion problems. The computational study is conducted on DTLZ test problems [[11]]. All
DTLZ problems have d=10 decision variables and 3 objectives, as the setups that have been widely
used in [35]]. The details of generating DTLZ variants (related tasks) are provided in Appendix [C]

Comparison algorithms. We test our FSEO framework using an instantiation on MOEA/D-EGO,
resulting in MOEA/D-FS. Details of the comparison algorithms are given in Appendix [E.2]

Optimization setups. The parameter setups for this multi-objective optimization experiment are
listed in Table [6} During the optimization process, an initial dataset S, is sampled using Latin-
Hypercube Sampling (LHS) method [28]], then extra evaluations are conducted until the evaluation
budget has run out. Note that we aim to use related tasks to save 9d evaluations without a loss of
SAEA optimization performance. Hence, the total evaluation budgets for MOEA/D-FS and the
comparison algorithms are different.

Performance indicators. Since the test problems have 3 objectives, we employ inverted generational
distance plus (IGD+) [19] as our performance indicator, where smaller IGD+ values indicate better
optimization results. 5000 reference points are generated for computing IGD+ values. More results
in the metrics of IGD [5] and HV [61] are reported in Appendix

5.1.2 Results and Analysis

The statistical test results are reported in Fig. [3]and Appendix (Table[7). It can be seen from
Fig. 3| that, although 90 fewer evaluations are used in surrogate initialization, MOEA/D-FS can still
achieve competitive or even smaller IGD+ values than MOEA/D-EGO on all DTLZ problems except
for DTLZ7. In addition, the IGD+ values obtained by MOEA/D-FS drop rapidly, especially during
the first few evaluations, implying the experience learned from DTLZ variants is effective. Therefore,
in most situations, our FSEO framework is able to assist MOEA/D-EGO in reaching competitive
or even better optimization results, with the number of evaluations used for surrogate initialization
reduced from 10d to only 1d.

'Code is available at https:/github.com/Xunzhao Yu/FSEO
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Figure 3: IGD+ curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. MOEA/D-FSs and comparison algorithms initialize their surrogates
with 10, 100 samples, respectively. X-axis denotes the extra 50 evaluations allowed in the further
optimization. Note that ‘FS(out)’ indicates the target task is excluded from the range of related tasks
during the meta-learning procedure (see Section @

MOEA/D-FS is less effective on DTLZ7 than on other DTLZ problems, which might be attributed to
the discontinuity of the Pareto front on DTLZ7. Note that MOEA/D-FS learns experience from small
datasets such as D,,, and S.. The solutions in these small datasets are sampled at random, hence, the
probability of having optimal solutions being sampled is small. However, it is difficult to learn the
discontinuity of the Pareto front from the sampled non-optimal solutions. As a result, the knowledge
of ‘there are four discrete optimal regions’ cannot be learned from such small datasets (|D,,,| = 20)
collected from related tasks. The performance analysis between MOEA/D-FS and other comparison
algorithms is available in Appendix [E.3]

5.1.3 Further Comparison Experiments with Different Evaluation Budgets

We also compared the performance of our FSEO framework when only 10 evaluations are used for
surrogate initialization for comparison algorithms. Consistent results are observed and reported in
Table [I0]in Appendix [E-3] In addition, the performance of our FSEO framework in the context of
extremely expensive optimization has been investigated in Appendix [F (Table[TT]and Fig. [7).

The question raised at the beginning of this subsection can be answered by the results discussed so
far. Due to the integration of the experience learned from related tasks (DTLZ variants), although the
evaluation cost of surrogate initialization has been reduced from 10d to 1d, our FSEO framework is
still capable of assisting regression-based SAEAs to achieve competitive or even better optimization
results in most situations.

5.2 Ablation Studies on Influence of Task Similarity and Dataset Size in Meta-Learning

We conduct two ablation studies to investigate the influence of task similarity and that of the dataset
size used in meta-learning.

5.2.1 Ablation Study: Influence of Task Similarity

In real-world applications, it is optimistic to assume that some related tasks are very similar to the

target task. A more common situation is that all related tasks have limited similarity to the target task.

To investigate the relationship between task similarity and FSEO optimization performance, we also
test the performance in an ‘out-of-range’ situation, where the original DTLZ is excluded from the
range of DTLZ variants during the MDKL meta-learning procedure. As a result, only the DTLZ

variants that are quite different from the original DTLZ problem can be used to learn experience.

The ‘out-of-range’ situation eliminates the probability that MDKL surrogates benefit greatly from
the DTLZ variants that are very similar to the original DTLZ problem. Detailed definitions of the

50




related tasks used in the ‘out-of-range’ situation are given in Appendix [C] Apart from the related
tasks used, the remaining experimental setups are the same as the setups described in Section [5.1]
For convenience, we denote the situation we tested in Section[5.1]as ‘in-range” below.

Table 1: Mean IGD+ values and standard
deviation (in parentheses) obtained from 30
runs on 7 DTLZ problems. Both MOEA/D-
FSs initialize their surrogates with 10 sam-
ples, extra 50 evaluations are allowed in the
further optimization. ‘+’, ‘~’, and ‘—’ de-
note the result of the ‘out-of-range’ situation
is statistically significantly superior to, al-
most equivalent to, and inferior to that of
the ‘in-range’ situation in the Wilcoxon rank
sum test (significance level is 0.05), respec-
tively. The last two rows count the statistical
test results between MOEA/D-FSs and other
compared algorithms.

MOEA/D-FESs In-range Out-of-range
DTLZI 9.70e+1(1.87e+1)~  9.11e+I(1.53e+1)
DTLZ2 1.43e-1(2.29¢-2)~ 1.41e-1(1.75e-2)
DTLZ3 1.97e+2 (1.64e+1)~  1.98e+1(1.51e+1)
DTLZ4 4.44e-1(1.35e-1)~  4.96e-1(8.63¢-2)
DTLZ5 1.13e-1(2.24e-2)~ 1.03e-1(2.39%¢-2)
DTLZ6 1.11e+0(5.71e-1)~  1.17e+0(6.88¢-1)
DTLZ7 2.47e+0(1.89e+0)~  2.86e+0(1.87e+0)
+/~ /- 0/7/0 -/-I-

vs MOEA/D-EGO

4/2/1
30/15/18

4/2/1
31/13/19

The statistical test results reported in Table [T] show
that the ‘out-of-range’ situation achieves competitive
IGD+ values to the ‘in-range’ situation on all 7 test
instances. This suggests that related tasks that are very
similar to the target task have a limited impact on the
optimization performance of our FSEO framework.
Useful experience can be learned from related tasks
that are not very similar to the target task. Crucially,
when comparing the performance of the ‘out-of-range’
situation and that of MOEA/D-EGO, we can still ob-
serve competitive or improved optimization results on
6 DTLZ problems (see Table[T] the row titled by ‘vs
MOEA/D-EGO’, or Fig. E]) Moreover, it can be seen
from the last row of Table|[I]that the ‘out-of-range’ sit-
uation achieves better/competitive/worse IGD+ values
than all compared SAEAs on 31/13/19 test instances.
In comparison, the corresponding statistical test re-
sults for the ‘in-range’ situation are 30/15/18. The
difference between these statistical test results is not
significant.

vs 9 Comparisons

A study on the ‘out-of-range’ situation in the context of extremely expensive multi-objective opti-
mization is presented in Appendix [F.2] Consistent results are observed in Table[I2]and Fig.

Consequently, related tasks that are very similar to the target task are not essential to the optimization
performance of our FSEO framework. In the ‘out-of-range’ situation, our MOEA/D-FS can still
achieve competitive or better optimization results than MOEA/D-EGO while using only 1d samples
for surrogate initialization.

5.2.2 Ablation Study: Influence of the Size of Datasets Used in Meta-Learning

We also investigated the performance of our FSEO framework when different sizes of datasets |D,y, |

are used in the meta-learning procedure. The experimental setups are the same as the setups of
MOEA/D-FS in Section|[5.1]except for | D, |.

It is evident from Table[2]that when each DTLZ variant provides |D,,| = 60 samples for the meta-
learning of MDKL surrogates, the performance of both MOEA/D-FSs are improved on 2 or 3 DTLZ
problems. Particularly, a significant improvement can be observed from the optimization results of
DTLZ7. As we discussed in Section[5.1} the poor performance of our experience-based optimization
on DTLZ7 is caused by the small size of D,,,. Optimal solutions have few chances to be included in a
small D,,,, which makes D,,, fail to provide the experience about the discontinuity of optimal regions.
In comparison, the experience of ‘optimal regions’ can be learned from large datasets D,,, and thus
the optimization results are improved significantly.

In conclusion, for our FSEO framework, a large D,,, for the meta-learning procedure indicates
more useful experience can be learned from related tasks, which further improves the performance
of experience-based optimization. Therefore, when applying our FSEO framework to real-world
optimization problems, it is preferable to collect more data from related tasks for experience learning.

5.3 Performance on Real-World Problems

We also evaluate the performance of our FSEO on real-world problems. In this section, we focus
on a Network Architecture Search (NAS) problem, and more computational studies on real-world
problems are reported in Appendix [H] This NAS problem optimizes the architecture of a Transformer



Table 2: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on 7
DTLZ problems. 10 samples are used for initialization and extra 50 evaluations are allowed in the
further optimization. |D,,,| is the size of the dataset collected from each related task.

Problem In-range Out-of-range
D, |=20 |D,.|=60 D, |=20 |D,.|=60

DTLZI 9.70e+1(1.87e+1)~  9.77e+1(1.73e+1) 9.1le+1(1.53e+1)~ 9.93e+1(1.87e+1)
DTLZ2 1.43e-1(2.29¢-2)+ 1.24e-1(2.11e-2) 1.41e-1(1.75e-2)+  1.29e-1(2.36e-2)
DTLZ3 1.97e+2 (1.64e+1)~ 1.98e+2 (2.21e+1) 1.98e+1(1.5le+1)~ 1.93e+2(1.19e+1)
DTLZ4 4.44e-1(1.35e-1)~ 5.17e-1(5.68e-2)  4.96e-1(8.63e-2)~  5.17e-1(5.38e-2)
DTLZ5 1.13e-1(2.24e-2)+ 9.96e-2(2.18e-2) 1.03e-1(2.39%e-2)~  1.05e-1(2.73e-2)
DTLZ6 1.11e+0(5.71e-1)~ 1.04e+0(6.06e-1) 1.17e+0(6.88e-1)~  1.22e+0(6.41e-1)
DTLZ7 2.47e+0(1.89e+0)+  7.49e-1(2.61e-1)  2.86e+0(1.87e+0)+  6.96e-1(2.41e-1)
+/~ /- 3/4/0 -/-/- 2/5/0 -/-/-

in terms of two objectives: error and flops. Fig. @]illustrates the result, detailed experimental setups
are available in Appendix [G|

0.900

Fig. d]illustrates the optimization results in terms

of Hypervolume (HV) values, a large HV value

indicates a good performance. We can observe

that MOEA/D-FS, qLogEHVI, K-RVEA, and §Z:§Z

DirHVEI are preferable to the remaining compar- %,

ison algorithms in this NAS problem. However,

we should note that MOEA/D-FS uses only 1d 0885 L= —

samples from the target task to initialize surro- " ¢  ® 2 % @ =
e 4. . NAS: Transformer architecture optimization

gates. Due to the small initialization dataset, at
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0.775
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the early stage, the initial HV value of MOEA/D-
FS is smaller than the initial HV values of other
comparison algorithms (see Fig. [)). With our
meta-learning models, MOEA/D-FS adapts to the
target task rapidly and it achieves a competitive

Figure 4: NAS comparison results. MOEA/D-
FS and comparison algorithms initialize their
surrogates with 18, 100 samples, respectively.
MOEA/D-FS reaches competitive results while
82 evaluations are saved.

HV value within 50 additional evaluations, which is a substantial improvement in optimization
performance when compared to the performance of its underlying example algorithm, MOEA/D-
EGO. This implies that MOEA/D-FS has saved 82 more evaluations than comparison algorithms
by learning experience from related tasks and also has improved the performance of underlying
optimization algorithm simultaneously. Therefore, the effectiveness of our FSEO framework on this
real-world EMOP is demonstrated.

6 Conclusion and Future Work

Conclusion. We present a FSEO framework to address EMOPs from the perspective of SAEAs. A
novel meta-learning approach MDKL is proposed to learn prior experience from related expensive
tasks. MDKL model is designed for optimization and has explicit task-specific parameters, which
allows continually update of task-specific parameters during the optimization process. Empirical
experiments show that the FSEO framework is able to improve sampling efficiency and save expensive
evaluations for existing regression-based SAEAs. Ablation studies reveal the influence between
optimization performance and solutions similarity as well as the size of datasets for meta-learning.

Limitation and future work. The limitations of this work can be summarized as the following two
points, they widely exist in the literature: First, we do not have a mathematical definition of related
tasks. As a result, the boundary between related and unrelated tasks is not clear, making it difficult
to perform theoretical analysis on task similarity. Second, the proposed framework is currently for
regression-based SAEAs only. A detailed discussion on this point is available in Appendix [B]

Future work could focus on quantifying task similarity by proposing a metric to measure similarity
between tasks. With an appropriate task similarity measure, systematic studies on few-shot optimiza-
tion and experience-based optimization could be conducted. In addition, a few-shot optimization
framework for other SAEA categories can also be a future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Claims we made accurately reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6 and Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experimental setups are described in details.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Will release our code after acceptation, or we can provide the code if any
reviewers are interested in it during the review process. Anyway, the details about the code
have already described in the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper has described all the details about its experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper has conducted statistical tests in its experiments, error bars are
plotted in figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The paper does not provide information about compute workers and memory
since its experiments do not have specific requirements on memory or other computation
resource.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper has cited the algorithm platform and the data used in the experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background
	Few-Shot Evolutionary Optimization (FSEO) Framework
	Overall Working Mechanism
	Learning and Using Experience by MDKL
	Surrogate Update Strategy
	Discussion on Runtime

	Computational Studies
	Performance on EMOPs
	Experimental Setups
	Results and Analysis
	Further Comparison Experiments with Different Evaluation Budgets

	Ablation Studies on Influence of Task Similarity and Dataset Size in Meta-Learning
	Ablation Study: Influence of Task Similarity
	Ablation Study: Influence of the Size of Datasets Used in Meta-Learning

	Performance on Real-World Problems

	Conclusion and Future Work

