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Abstract

Exploration is a crucial and distinctive aspect of reinforcement learning (RL) that
remains a fundamental open problem. Several methods have been proposed to
tackle this challenge. Commonly used methods inject random noise directly into
the actions, indirectly via entropy maximization, or add intrinsic rewards that
encourage the agent to steer to novel regions of the state space. Another previously
seen idea is to use the Bellman error as a separate optimization objective for
exploration. In this paper, we introduce three modifications to stabilize the latter
and arrive at a deterministic exploration policy. Our separate exploration agent
is informed about the state of the exploitation, thus enabling it to account for
previous experiences. Further components are introduced to make the exploration
objective agnostic toward the episode length and to mitigate instability introduced
by far-off-policy learning. Our experimental results show that our approach can
outperform ε-greedy in dense and sparse reward settings.

1 Introduction

Deep reinforcement learning (RL) algorithms are capable of solving complex tasks such as playing
video games only by using pixel inputs [1, 2], learning to control intricate bodies in simulation [3]
and in reality [4] or beating humans at complex board games [5, 6]. Exploration is a fundamental
component of RL, since the ability to solve a given problem comes with the need of discovering
a solution in the first place. Many exploration strategies in RL rely on injecting random noise
either directly by adding noise to the actions [7, 1, 8] or indirectly by maximizing entropy as an
additional objective [9, 10]. Exploration by random noise has been shown to be very effective in
many applications. However, it lacks coherence between the taken actions. In an environment with
sparse rewards, this can be thought of as performing a random walk in the state space by performing
random actions. As random walk is not effective at covering the state space, this method can be
ineffective for environments with sparse rewards.

In the setting of sparse rewards, one common approach is to introduce intrinsic rewards to substitute
the sparseness of the extrinsic rewards stemming from the environment. Such techniques often rely on
state-novelty measures to encourage the agent to explore novel regions of the state space, for example
by using generalized visitation counts [11], discriminating between seen and unseen states [12], or
using prediction errors of random networks [13]. Effectively these methods transform the sparse
reward problem back to a dense reward where exploration by random noise is known to work well.
With respect to the aforementioned random-walk, this can be thought of as performing a random
walk at the edge of the known state space. While these methods have been shown to be effective in
sparse reward settings [13], they have little or even a negative effect in other reward settings [14].

∗Correspondence to sebastian.griesbach@uni-wuerzburg.de.

17th European Workshop on Reinforcement Learning (EWRL 2024).

sebastian.griesbach@uni-wuerzburg.de


Several conceptual drawbacks to novelty-seeking methods might be the cause of this. For example,
indiscriminately seeking state novelty could lead the agent to excessively explore regions of the
state space that are not relevant to achieving the goal. Moreover, rewarding novelty results in a
non-stationary signal which introduces additional difficulties. By combining extrinsic and intrinsic
rewards into a single MDP, the optimal policy might be diluted by the intrinsic reward and negatively
affects the performance of the agent.

This work is based on the previously known idea of using the Bellman error as a separate optimization
objective for exploration. Our method Stationary Error-seeking Exploration (SEE) does not rely on
random noise and aims to be effective in both dense and sparse reward settings. SEE adopts two
separate neural networks, which we call exploration network and exploitation network, and uses the
Bellman error as a proxy measure for interesting transitions. To drive exploration, SEE trains the
exploration network by maximizing the absolute Bellman error, approximated with the TD-error of
the exploitation network. Crucially, to tackle the problem of non-stationarity of the Bellman error
during learning, we use a fingerprinting embedding [15] to inform the exploration network about
the state of the exploitation network. The exploration network is agnostic to the episode length by
maximizing the maximum single TD-error encountered throughout an episode instead of accumulated
future TD-errors. To mitigate instability introduced when training too far off-policy [16] a mixture
of both network outputs is used during the rollout. Importantly the resulting exploration policy is
deterministic. In the random walk analogy, our method acts such that it selects a random point in a
promising state region and tries to move there with coherent actions. In this paper, we conduct a set
of experiments sufficing as proof of concept by showing improvements over ε-greedy exploration, as
well as an ablation study to verify the effectiveness of all components of the algorithm.

2 Related works

Most exploration strategies rely on random noise like the ε-greedy strategy employed in DQN [1],
or entropy maximization in SAC [10] or PPO [9]. Some sophisticated exploration methods focus
on the case of sparse rewards by introducing an intrinsic reward that encourages exploration by
adding a bonus to novel state regions. The underlying mechanic for selection explorative actions
stays unchanged. One successful algorithm that follows this concept is Random Network Distillation
(RND) [13]. RND is designed for large continuous state spaces and therefore can not rely on
visitation counts; instead, two additional networks are introduced, a randomly initialized and static
target network, and a predictor network aiming to imitate the target network. During training of the
agent, encountered states are passed through the target and predictor network. The difference in
prediction is used as the intrinsic reward and the predictor network is updated on the data to imitate
the target network. This has the effect that the predictor network will be good at imitating the target
network at frequently visited states and thus reducing the intrinsic reward, while for rare or new
states a high intrinsic reward is expected. The idea of using a predictor error as a reward signal is
also a core concept of our method, but instead of using a random target network, the TD-error of
the action-value network is used. One known problem of novelty-seeking methods is the so-called
"noisy TV problem", which is a thought-experiment in which an agent encounters a screen that will
indefinitely show unique images and therefore keep triggering the novelty reward. Our method does
not indiscriminately seek novel states but instead aims to maximize the TD-error. Therefore, the noisy
TV problem only applies if the transitions also impact the return (see Section 6 for more details).

The idea of using the TD-error as an exploration objective is not a new one [17, 18]. For exam-
ple, Simmons-Edler et al. [19] follow the same conceptual idea as our method of splitting exploration
and exploitation into two separate objectives and using the TD-error as the maximization objective
for the exploration component. However, the implementation of their method varies greatly from
ours, as their method does not include any of the three modifications of our method. To overcome
the off-policy problem, which we handle by mixing both policies, they separate the rollouts of the
exploitation and exploration agent and save the transitions in separate replay buffers. During the
update, the transitions from both buffers are mixed according to a specific ratio. Their method
leverages the idea into the continuous action domain by having two sets of actor and critic networks.
For now, we limit our approach to the simpler case of the discrete action spaces to build a solid
foundation before moving to continuous control settings.

The exploration-exploitation dilemma is thought of as the conflict of wanting to explore just enough
to find the optimal solution and then starting to exploit as soon as possible [7]. Unfortunately, in
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practice we can never be sure about whether the optimal solution has been found. Riedmiller et al.
[20] propose to rethink this paradigm and instead look at exploration and exploitation as separate
phases of the process. The exploration phase is considered as an optimization process of gathering
an optimal dataset such that an optimal exploitation policy can be learned based on this dataset
thereafter. This also means that the data collection process should be aware of what data has already
been collected. Only after the exploration phase is done, exploitation starts. Our method roughly
follows this concept. We consider the TD-error as a proxy of valuable transitions for the learning
process. Through gathering data by maximizing the TD-error, we aim to optimize the usefulness of
gathered data. The exploration objective is conditioned on the state of the exploitation objective and
thus can take into account what is already known to limit the amount of redundantly gathered data.
However, our method also balances exploration and exploitation during the exploration phase.

3 Preliminaries

3.1 Markov decision processes

We define a Markov decision process (MDP) [21] as a tuple ⟨S,A,P,R, γ⟩, where S is a continuous
state space,A is a discrete action space,P : S×A 7→M(S) is a transition kernel,R : S×A×S 7→ R
is a deterministic reward function, and γ ∈ [0, 1) is a discount factor. A policy π : S 7→ A
is a probability distribution over actions a ∈ A to perform in any state s ∈ S, which induces
an action-value function Qπ(s, a) ≜ E [Σ∞

t=0γ
tRt|S0 = s,A0 = a], i.e., the expected cumulative

discounted return obtained when executing action a in state s and following policy π thereafter. The
goal of RL is to find the optimal policy π∗ corresponding to the one inducing the optimal action-
value function Q∗(s, a) = maxπ Q

π(s, a), which satisfies the Bellman optimality equation [22]
Q∗(s, a) ≜

∫
S P(s

′|s, a)[R(s, a, s′) + γmaxa′ Q∗(s′, a′)ds′ and is the fixed point of the optimal
Bellman operator T ∗ : B(S ×A) 7→ (S ×A) defined as (T ∗Q)(s, a) ≜

∫
S P(s

′|s, a)[R(s, a, s′) +
γmaxa′ Q∗(s′, a′)ds′.

3.2 Deep Q-network

Deep Q-Network (DQN) [1] is an RL algorithm that leverages a deep neural network to approximate
the action-value function Q̂θ(s, a), where θ represents the network parameters. The objective is to
minimize the difference between the predicted action values and the target action values derived
from the Bellman equation. To stabilize training, DQN employs two key techniques: experience
replay and a target network. Experience replay stores the agent’s experiences (s, a, r, s′) in a replay
buffer and samples mini-batches of experiences uniformly at random to update the network, breaking
the correlation between consecutive updates. The target network, a copy of the online network, is
updated periodically to provide stable target values, reducing the oscillations and divergence during
training. The loss function for updating the online network is defined as:

Lθ = Es,a,r,s′∼D

[(
r + γmax

a′
Q̂θ′

(s′, a′)− Q̂θ(s, a)
)2

]
, (1)

where ⟨s, a, r, s′⟩ is a transition from the replay buffer D, θ and θ′ are parameters of the online and
target networks, respectively. In this work, we use a combination of two variants of DQN known as
dueling [23] and double DQN [2]. The former aims at improving the estimate of the action-value
function by obtaining separate approximations of value function and advantage function, while the
latter aims at mitigating the problem of action-value function overestimation typical of DQN by
optimizing for the following loss

Lθ = Es,a,r,s′∼D

[(
r + γQ̂θ′

(s′, argmax
a′

Q̂θ(s′, a′))− Q̂θ(s, a)

)2
]
, (2)
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3.3 Fingerprinting

Fingerprinting has been originally designed as an embedding method for policy networks for the
purpose of policy evaluation [15]. To embed a policy network, a set of probe states is passed through
it, and the resulting actions are concatenated and taken as the embedding. Importantly, as this process
is fully differentiable, the probe states can be optimized using any gradient-based optimizer. The
number of probe states is a hyperparameter, thus the embedding size is independent of the size of the
policy network. It has been shown that only a few probe states are needed to carry enough information
in an RL setting to learn complex locomotion behavior [24]. As our method currently is limited to
discrete action spaces, we do not have dedicated policy networks, and only action-value networks are
used. However, fingerprinting can be applied to embed any neural network without any modification,
by concatenating action-value vectors of the probe states instead of actions.

4 Stationary Error-seeking Exploration

We propose a novel exploration strategy for both dense and sparse reward problems, that tackles
exploration and exploitation as two separate objectives. Besides the regular RL objective that trains
what we call the exploitation policy, our method introduces an additional optimization procedure that
maximizes the absolute Bellman error to train a separate policy, which we call exploration policy. To
reduce instabilities common to the optimization of the Bellman error [7], our approach conditions the
exploration network on the exploitation network to render the objective stationary. Because of this,
we call our method Stationary Error-seeking Exploration (SEE). In the following, we present our
method and the required key modifications, namely the use of fingerprinting for conditioning, the use
of maximum reward update, and the mixing of objectives to create the deterministic behavior policy.

4.1 Exploration-exploitation as separate optimization problems

The exploitation objective is the regular objective of DQN [1], minimizing the loss shown in equation 1.
Additionally, we use a combination of Dueling [23] and Double DQN [2]. As a second separate
component, we want to formulate an exploration objective, leveraging a dedicated approximation
network ∆̂ω to predict the absolute TD-error of the exploitation network Q̂θ. We propose that our
exploration objective solves the MDP of the exploitation objective with two modifications:

• The parameters of the exploitation network θ ∈ Θ are included in the state space

S∆ = S ∪Θ; (3)

• The reward functionR is replaced by the absolute TD-error of the exploitation action-value
estimation

R∆(s, a, s
′, θ) =

∣∣∣R(s, a, s′) + γmax
a′

Q̂θ(s′, a′)− Q̂θ(s, a)
∣∣∣ , (4)

whereR(s, a, s′) is the reward function of the exploitation MDP.

Thus, the exploration objective is to maximize the absolute TD-error of the exploitation objective.
Note that we are not using a target network here such that this reward entirely depends on the
transition and the online parameters θ. In the following, we discuss the aforementioned modifications
to the exploration optimization.

4.1.1 Conditioning of exploration on exploitation

During learning, the exploitation action-value approximation changes, causing the TD-errors to
be non-stationary. To tackle this, we propose to inform the exploration policy about the cause of
these changes. As mentioned above, we include the parameters θ of the exploitation objective
in the state-space of the exploration objective. By doing this, the exploration objective becomes
stationary as it is conditioned on the changes in the exploitation value function. Thus, the exploration
value network ∆̂ω receives as input an environment state, an action, and exploitation parameters
∆̂ω(s, a, θ). Simply taking the parameters as a vector has been proven effective at conveying the
necessary information [25]. However, the fingerprinting embedding is scalable as it requires fewer
learnable parameters and has an embedding size that can be chosen as a hyperparameter [15, 24].
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After being passed to the exploration network, the exploitation parameters θ are embedded by
fingerprinting, where the learnable probe states are part of the exploration network parameters ω. The
embedding is concatenated with the state vector and passed through the fully connected network to
generate the absolute TD-error predictions.

4.1.2 Maximum reward formulation

Since we consider the absolute TD-error as the exploration reward function R∆, this would lead
to a preference for longer episodes, as more positive rewards can be received. Let us consider any
environment with a constant negative reward such that the goal is to reach the terminal state as fast as
possible. There might be a large TD-error in the transitions towards the terminal state, but through
many small TD-errors elsewhere in the state space the exploration agent might be incentivised to
prolong the episode. To avoid this undesired behavior, we want to make our exploration policy
insensitive to the episode length by seeking the maximum single step TD-error instead of the
accumulated one. This can be achieved by the maximum reward formulation of the optimal Bellman
update [26, 27]:

Qk+1(s, a) = max
(
r, γmax

a′
Qk(s′, a′)

)
. (5)

4.2 Exploration objective

The exploration objective is a modified version of DQN including the maximum reward formulation
and conditioning as described above. The loss to minimize is

Lω = Es,a,s′∼D,θ∼DΘ

[(
max

(
R∆(s, a, s

′, θ), γmax
a′

∆̂ω′
(s′, a′, θ)

)
− ∆̂ω(s, a, θ)

)2
]
, (6)

where D is the transition replay buffer, DΘ is a separate buffer containing the current and previous
exploitation objective parameters θ, ∆̂ω(s, a, θ) is the absolute TD-error approximation network
with online parameters ω and target network parameters ω′. Fingerprinting is used to embed θ.
R∆(s, a, s

′, θ) is the exploration reward function defined in Equation (4). Note that transitions
and exploitation parameters are stored and sampled independently. In practice, we use the double
Q-learning variant to calculate the target [2].

4.3 Mixing of objectives

In common off-Policy settings, the behavior policy used during rollouts behaves similarly to the
learned target policy. For example, it can be a noisy and past variant of the target policy, e.g., when
using ε-greedy exploration with a replay buffer. It has been shown that deep off-policy algorithms
perform poorly in settings where the behavior policy is too out-of-distribution w.r.t. the target
policy [16]. For this reason, the exploitation policy learns poorly when purely using data generated
by the exploration policy. To mitigate this effect we combine both policies to select actions during
the rollout, such that the behavior policy effectively is closer in behavior to the exploitation policy. A
weighted average across the values of both objectives selects the action:

µ(s) = argmax
a

(
(1− λ)Q̂θ(s, a) + λ∆̂ω(s, a, θ)

)
, (7)

where µ is the deterministic behavior policy and λ is a hyperparameter mixing the exploitation and
exploration objectives. In practice, before this deterministic behavior policy comes into play, a
warm-up phase takes place to prefill the replay buffer with some transitions. During this warm-up
phase, random actions are selected uniformly. Unlike ε-greedy methods, λ does not need to be
scheduled to decrease over time. As the exploitation objective learns, TD-errors decrease and thus
also the impact of the exploration objective. This is not true if there is an unpredictable element in
the environment connected to the reward as explained in Section 6. Besides the off-policy problem,
maximizing the TD-error can cause the exploration to seek unpromising regions. Generally, we do
not want to take up much capacity of the networks to accurately describe how bad certain states are if
it is clear that they are bad. Balancing exploitation with exploration during this phase helps to steer
the gathering of data toward promising state regions.
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Algorithm 1 Stationary Error-seeking Exploration (SEE)

Input: exploitation network Q̂θ : S ×A → R with initialized parameters θ; exploration network
∆̂ω : S ×A×Θ→ R empty transition buffer D; empty exploitation parameter buffer DΘ

Output: Learned Q̂θ

repeat
for number of environment interactions do

select action according to a← µ(s) ▷ Equation (7)
execute a and record transition in transition buffer D ← D ∪ {s, a, s′, r}

end for
for number of gradient steps do

sample minibatch from transition buffer ⟨s, a, r, s′⟩ ∼ D
update exploitation parameters θ by minimizing Lθ ▷ Equation (1)

end for
add exploitation parameters to parameter buffer DΘ ← DΘ ∪ {θ}
for number of gradient steps do

sample minibatch from transition buffer ⟨s, a, r, s′⟩ ∼ D
sample minibatch parameters from parameter buffer θ ∼ DΘ

calculate exploration rewardsR∆ per transition and parameter combination ▷ Equation (4)
update exploration parameters ω by minimizing Lω ▷ Equation (6)

end for
until stopping criteria met

5 Experimental results

5.1 Environments

Many sophisticated exploration algorithms focus on the specific setting of sparse rewards. We are
aiming to find a generic exploration mechanism that works in a variety of settings. Therefore, we
choose three basic well-known RL problems, implemented in gymnasium [28], that follow different
reward schemes. These include a sparse reward environment, a dense reward environment with
unshaped reward function, and a dense reward environment with shaped reward function.

For the sparse reward environment, we use a modified version of MountainCar-v0, named
SparseMountainCar-v0. In the regular MountainCar-v0, the environment returns a constant
reward of −1 on each transition to incentivize the agent to reach the terminal state as soon as possible.
The agent controls a car with a weak engine and is supposed to climb a hill. To reach the goal it
must first gather speed by swinging up and down the valley it is in. To make the environment sparse
SparseMountainCar-v0 returns a constant reward of 0 for each transition and a reward of +1 upon
reaching the terminal state.

For the dense unshaped reward setting, we use unmodified CartPole-v1, where the agent has to
balance a pole on a cart that can move to the left and right. The environment starts with the pole close
to an upright position and returns a constant reward of +1. The episode terminates when the Pole has
an angle of 10 or more degrees to a vertical line or if the cart moves too far to the left or right.

For the dense and shaped reward setting, we use a modified version of LunarLander-v2. In this
environment, the agent controls a lunar lander by controlling three engines. The goal is to safely
land. The reward contains many components that lead towards the right solution. Among others, the
reward includes information about the distance to the ground, the tilting of the lander, and engine
usage. However, the original version of LunarLander-v0 has two problems.

• The terrain around the landing zone is not observable. In each episode the terrain around the
landing zone is randomized, thus the agent can not know when exactly it will crash/land
when it’s outside the landing zone. This partial observability is problematic for the current
version of SEE as explained in Section 6.

• An episode terminates when the lunar lander object becomes inactive, which is the case when
it has not moved for three consecutive frames. However, the observation does not contain
information about past motion, therefore the termination condition is also not observable.
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Figure 1: Comparison between ε-greedy and SEE, the x-axis in 10, 000 steps. The line shows the
mean performance across 50 runs, the shaded area shows the standard error of the mean.

We slightly modify the problem to obtain PredictableLunarLander-v0, which has a flat moon
surface instead of a randomly generated one and where the termination condition is fully dependent
on the observation. An episode terminates as a successful landing when both landing feet touch the
ground and the velocity is 0 regardless of past movement.

5.2 Comparison to ε-greedy

The considered baseline is identical to the exploitation objective of SEE, combining dueling double
DQN, but uses the ε-greedy strategy for exploration. Both the baseline and SEE have been separately
optimized (see Appendix A). The result of this comparison is shown in Figure 1, showing both the
exploration and evaluation returns during training. The evaluation returns are measured by rolling out
the policy for 10 episodes without using any exploration at each 2000 timesteps during the training,
and taking the average across these 10 runs. The exploration returns are obtained with rollouts
generated during training. Data points are generated each time an episode finishes. SEE outperforms
the ε-greedy baseline during training in all environments, with the most pronounced difference being
in PredictableLunarLander-v0, the environment with the most shaped reward. Both algorithms
handle SparseMountainCar-v0 surprisingly well. While the number of updates per environment
interaction is fixed, the scheduling when these updates take place is optimized. We found that both
algorithms solve SparseMountainCar-v0 only when the updates do not take place at each timestep.

5.3 Ablation study

SEE includes three major modifications as described in Section 4. To show that each of these
components is necessary to achieve the shown result, we conduct an ablation study in the environment
with the most pronounced advantage over ε-greedy, i.e., PredictableLunarLander-v0 (Figure 2).
The plot for SEE in Figure 2 is the same as Figure 1, but only contains the first 10 of the 50 runs,
to maintain a consistent number of runs across the plot. Every other line excludes one of the three
components of SEE. For all the runs, we use the same hyperparameters as in Figure 1.
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Figure 2: Comparison of SEE and modified versions where one of the components is replaced or left
out. The x-axis is in steps of 10, 000. For this ablation, only the PredictableLunarLander-v0
environment has been used. The line shows the mean performance across 10 runs, the shaded area
shows the standard error of the mean.

"Conditioning" removes the Fingerprinting that informs the exploration network about the current
state of the exploitation network. This makes the objective non-stationary from the perspective of the
exploration objective as there is no information about the TD-error changing for the same state-action
pairs. In this version, the TD-error is always calculated on the current parameters of the exploitation
network during the exploration update. There is no buffer that holds past exploitation parameters.

"Max update" uses the regular bellman update instead of the maximum update of Equation (5) for
the update of the exploration network. We still use the double Q-learning variant to calculate the
target. We want to note here that the regular Bellman updates might require different hyperparameters
to work properly as the scale of the target changes drastically when using this update.

"Mixing" removes the mixing of both objectives during the rollout. Instead, both exploration and
exploitation networks are used during the rollout in an alternating fashion. The active network is
switched after an episode ends.

This ablation study evinces that each component of SEE is necessary to achieve the best results.

6 Conclusion and future outlook

In this paper, we have introduced a new approach for exploration in reinforcement learning (RL)
that frames exploitation and exploration as separate optimization problems. While the exploitation
objective is the regular one of RL, we have formulated an exploration objective that maximizes
Bellman error to drive exploration, instead of adopting exploration strategies like random sampling,
such as ε-greedy. Our approach comes with several components that are necessary to make our
method work. We have leveraged a fingerprinting technique to mitigate the non-stationarity induced
by the Bellman error maximization and adopted a maximum reward formulation instead of the regular
average reward one. We have shown experimentally that our method can outperform ε-greedy on
well-known RL problems.

Limitations Our exploration method relies on the property that the absolute TD-error indicates that
there is information to learn in a transition. If the exploitation agent has seen this transition often
enough we expect the error to go to zero such that the exploration focuses on other regions. However,
this is not the case if the TD-error is caused by an unlearnable transition of the environment for
example by stochasticity or partial observability. If the value of the transition cannot be learned, the
TD-error will stay constant and the exploration agent would therefore indefinitely seek this transition.
This is similar to the "noisy TV" problem [13] but concerning rewards instead of states. Currently,
this method can not be successfully applied to most stochastic environments. In the next steps, we
will search for solutions to mitigate this issue as well as assessing the validity of SEE in more complex
environments and against more sophisticated exploration strategies.
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Hyperparameter Type Min Value Max Value Logarithmic
learning rate float 0.0001 0.01 True
replay buffer size int 10000 100000 False
warm-up steps int 0 10000 False
epsilon end float 0.0 0.1 False
epsilon decay steps int 0 50000 False
update frequency int 1 64 False
tau per timestep float 0.001 0.01 True

Table 1: Optuna hyperparameter search settings for ε-greedy DQN.

Hyperparameter Type Min Value Max Value Logarithmic
exploration discount float 0.9 0.99 True
mixture float 0.0 1.0 False
exploration transition batch size categorical [128, 64, 32, 16, 8, 4, 2, 1]
value function replay buffer size int 1 128 False
fingerprinting probe number of probe states int 1 16 False
exploitation learning rate float 0.0001 0.01 True
exploration learning rate float 0.0001 0.01 True
transition replay buffer int 10000 100000 False
update frequency int 0 64 False
exploitation tau per timestep float 0.001 0.01 True
exploration tau per timestep float 0.001 0.01 True

Table 2: Optuna hyperparameter search settings for SEE.

A Optimisation procedure

For the comparison of Figure 1, we optimized both DQN with ε-greedy and SEE independently
for a fair comparison. In the following, we describe the optimization procedure and report the
hyperparameters used for the experiments. For the optimisation, we used Optuna [29]. The objective
is to maximize the average evaluation return across the three selected environments described
in Section 5.1. A single trial consists of 9 runs, 3 runs per environment. As the environments
have different return ranges we need to weigh them such that every environment has roughly the
same impact on the results. We aim to normalize the range of returns to the interval [0, 100].
For SparseMountainCar-v0 and CartPole-v1 this is straightforward. Both have a clear range
of returns namely [0, 1] and [0, 500] respectively. Therefore, we weight them with 100 and 0.2
accordingly. PredictableLunarLander-v0 does not have a bounded range of returns in either
direction. However, a return of 0 is usually very quickly obtained by learning to hover after a few
episodes. According to the Gymnasium documentation [28], the environment is solved at a return
of 200. It is possible to reach a higher return but that is quite hard. Therefore, we opted to treat
PredictableLunarLander-v0 as if it had a return range of [0, 200] and therefore weight it by 0.5.
To simplify the optimization we disentangled τ , used for the update of the target network, from
the update frequency. We optimize "τper time step" and then calculate the τ used in the configuration
together with the update frequency by

τ = 1− (1− τper time step)
update frequency. (8)

Since we have fixed the number of gradient steps per environment interaction to 1, the update fre-
quency equals the number of gradient steps per update. The optimization settings for the optimization
of DQN with ε-greedy are reported in Table 1. With this setting, 100 trials have been executed to find
the hyperparameters.

For SEE, we use two additional batch sizes to the regular transition batch used for DQN. The two
additional batch sizes are the number of transitions and the number of exploitation value function
parameters sets θ from the respective replay buffers. The absolute TD-error is calculated for each
transition in combination with each value function set of parameters. Therefore, we have an effective
batch size of "exploration transition batch size" × "value function batch size". To stick to the same
effective batch size, as we choose for ε-greedy and the exploitation objective, we optimize the "value
function batch size" as a categorical parameter and then choose the exploration transition batch size
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Hyperparameter Value
hidden layer sizes [256, 256]
discount factor 0.99
batch size 128
gradient clip value 10
gradient steps per environment interaction 1

Table 3: Fixed hyperparameters across methods.

Hyperparameter Value
epsilon end 0.0929
epsilon decay steps 5144
learning rate 0.0004
replay buffer size 85317
warm-up steps 194
update frequency 63
tau per update 0.3421

Table 4: Optimised hyperparameters for ε-greedy DQN, values are rounded to 4 decimal points.

as
exploration transition batch size =

batch size
value function batch size

. (9)

Table 2 shows the search settings used to optimise the hyperparameters of SEE. Since there are
11 hyperparameters compared to only 7 for ε-greedy, we used 200 trials to find the optimised
hyperparameters.

B Hyperparameters selection

Table 4 and Table 5 show the optimized hyperparameters for DQN with ε-greedy and SEE respectively.
These are the hyperparameters that have been used for the experiments. Note that there is a nonsensical
combination of hyperparameters for SEE. The "value function batch size" is 34, while the value
function replay buffer size is only 2. This could either mean that more search is necessary to find
good hyperparameters, that the method requires more gradient steps, or that we are misunderstanding
a property of the method and its hyperparameters. Also, note that the hyperparameters of DQN are
all within expected ranges. Calculating the tau per timestep here gives 0.0066 which is close to the
often-used default value of 0.005.

Hyperparameter Value
exploration transition batch size 4
value function batch size 32
exploration discount 0.9724
exploitation tau 0.1700
exploration tau 0.1622
exploitation learning rate 0.0007
exploration learning rate 0.00851
transition replay buffer size 16517
value function replay buffer size 2
fingerprinting number of probe states 12
warm-up steps 2829
mixture factor 0.3525
update frequency 21

Table 5: Optimised hyperparameters for SEE, values are rounded to 4 decimal points.
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