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Abstract

The optimal training configurations of large language models (LLMs) with respect1

to model sizes and compute budgets have been extensively studied. But how to2

optimally configure LLMs during inference has not been explored in sufficient3

depth. We study compute-optimal inference: designing models and inference4

strategies that optimally trade off additional inference-time compute for improved5

performance. As a first step towards understanding and designing compute-optimal6

inference methods, we assessed the effectiveness and computational efficiency7

of multiple inference strategies such as Greedy Search, Majority Voting, Best-of-8

N, Weighted Voting, and their variants on two different Tree Search algorithms,9

involving different model sizes (e.g., 7B and 34B) and computational budgets. We10

found that a smaller language model with a novel tree search algorithm typically11

achieves a Pareto-optimal trade-off. These results highlight the potential benefits of12

deploying smaller models equipped with more sophisticated decoding algorithms13

in end-devices to enhance problem-solving accuracy. For instance, we show that14

the Llemma-7B model can achieve competitive accuracy to a Llemma-34B model15

on MATH500 while using 2× less FLOPs. Our findings could potentially apply to16

any generation task with a well-defined measure of success.17

1 Introduction18

Scaling laws of neural networks [Hestness et al., 2017, Rosenfeld et al., 2019] have been established19

across a range of domains, including language modeling [Kaplan et al., 2020, Hoffmann et al., 2022,20

OpenAI, 2023], image modeling [Henighan et al., 2020, Yu et al., 2022, Peebles and Xie, 2023],21

video modeling [Brooks et al., 2024], reward modeling [Gao et al., 2023], and board games [Jones,22

2021]. These studies have demonstrated how model performance is influenced by both the size of the23

model and the amount of training computation. However, there is limited knowledge on how varying24

the compute during inference affects model performance after the model has been trained.25

To improve the task performance of large language models (LLMs), inference techniques typically26

involve additional computation in a performance maximization step at inference time [Nye et al.,27

2021, Wei et al., 2022, Wang et al., 2022b, Yao et al., 2023, Chen et al., 2024b]. This cost must be28

taken into account for compute-optimal inference. For example, a Monte Carlo Tree Search (MCTS)29

method [Jones, 2021] may improve task performance, but potentially cost much more than simply30

sampling solutions multiple times. Generally speaking, we need a comprehensive understanding of31

how various inference-time methods (e.g., Best-of-N, majority voting) trade off between performance32

and cost. To improve our understanding, this paper presents a thorough empirical evaluation with33

careful analysis over various configurations of representative LLMs and inference algorithms.34

Specifically, we explore how to select an optimal model size (e.g., 7B or 34B) for the policy model35

and an effective inference strategy (e.g., Greedy Search, Majority Voting, Best-of-N, Weighted Voting,36
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Figure 1: The inference computation scaling laws exhibited in error rate on the MATH500 test set
based on weighted majority voting, where the left figure shows sampling vs. MCTS, and the right
figure shows our proposed REBASE. Clearly, the error rate decreases steadily when the computation
increases, and REBASE exhibits a Pareto-optimal tradeoff during inference.

and their Tree Search variants) to maximize performance (i.e., accuracy) within a given compute37

budget. We manipulate the inference computation (FLOPs) of a fixed model by generating additional38

tokens through the policy model, sampling further candidate solutions, and ranking them with a39

reward model. We analyze the performance of a family of math-specialized LLMs (i.e., Llemma-7B40

and Llemma-34B [Azerbayev et al., 2023]) fine-tuned on the MetaMath dataset [Yu et al., 2023] and41

measure the error rate on the GSM8K test set [Cobbe et al., 2021a] and MATH500 test set [Hendrycks42

et al., 2021b, Lightman et al., 2023b].43

Our analysis shows that voting-based methods generally outperform the strategy which selects the44

best solution (i.e., Best-of-N), and weighted voting has the most favorable results (Section 4.3,45

Figure 5 & 6). However, neither method shows a desirable behavior at high levels of compute. For46

instance, weighted voting saturates when sampling more than 128 solutions (Figure 1). We have also47

found that the commonly used MCTS method does not perform well with weighted voting, as it often48

yields many unfinished solutions, hence having less votes. To address this issue, we propose a novel49

tree search algorithm, REward BAlanced SEarch (REBASE), which pairs well with weighted voting50

and improves the Pareto-optimal trade-off between accuracy and inference compute. The key idea of51

REBASE is to use a node-quality based reward to control the exploitation and pruning properties of52

tree search, while ensuring enough candidate solutions for voting or selection.53

In our experiments, REBASE consistently outperforms sampling and MCTS methods across all54

settings, models, and tasks. Importantly, we find that REBASE with a smaller language model55

typically achieves a Pareto-optimal trade-off. For instance, we show that the Llemma-7B model can56

achieve competitive accuracy to a Llemma-34B model while using 2× less FLOPs when evaluating57

on MATH500 (Figure 1) or GSM8K (Figure 4). These findings underscore the advantages of using58

smaller models with advanced inference-time algorithms on end-devices to improve problem-solving.59

2 Related Works60

Mathematical Reasoning with LLMs. Large language models have made significant progress61

in recent years, and have exhibited strong reasoning abilities [Brown et al., 2020, Hoffmann et al.,62

2022, Chowdhery et al., 2022, Lewkowycz et al., 2022]. Mathematical problem solving is a key task63

for measuring LLM reasoning abilities [Cobbe et al., 2021a, Hendrycks et al., 2021b]. [Ling et al.,64

2017] first developed the method of producing step by step solutions that lead to the final answer.65

Later, [Cobbe et al., 2021b] extended the work by finetuning the pre-trained language model on a66

large dataset to solve math word problems, a verifier is trained for evaluating solutions and ranking67

solutions. Nye et al. [2021] train models to use a scratchpad and improve their performance on68

algorithmic tasks. Wei et al. [2022] demonstrate that the reasoning ability of a language model can69

be elicited through the prompting. Subsequent research [Kojima et al., 2022, Lewkowycz et al., 2022,70

Zhou et al., 2022] in reasoning tasks has also highlighted the efficacy of rationale augmentation. We71

choose problem solving in mathematics as the task to study the compute-optimal strategy since it72

allows us to accurately evaluate the problem solving ability of LLMs.73
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Figure 2: Illustration of compute-optimal scaling laws in training and inference. The Chinchilla
scaling law shows how to choose a model size and number of training tokens under a training-
compute budget, while ours shows how to choose a model size and an inference strategy under a
inference-compute budget.

Inference Strategies of LLM Problem Solving. A variety of inference (also called decoding)74

strategies have been developed to generate sequences with a trained model. Deterministic methods75

such as greedy decoding and beam search [Teller, 2000, Graves, 2012] find highly probable sequences,76

often yielding high quality results but without diversity. Sampling algorithms (e.g., temperature77

sampling [Ackley et al., 1985]) can produce a diverse set of results which are then aggregated to78

achieve higher accuracy (e.g., via majority voting [Wang et al., 2022a]). Recent methods combine79

search algorithms with modern LLMs, including breadth-first or depth-first search [Yao et al., 2023],80

Monte-Carlo Tree Search (MCTS) [Zhang et al., 2023, Zhou et al., 2023, Liu et al., 2024, Choi et al.,81

2023], and Self-evaluation Guided Beam Search [Xie et al., 2023]. All of these methods show that82

using search at inference time can lead to performance gains in various tasks. However, the trade-off83

for the improved performance is the use of compute to perform the search. Analyzing the trade-off84

between compute budget and LLM inference performance remains understudied. In this paper, we85

systematically analyze the trade-off between compute budget and problem-solving performance, and86

propose a tree search method that is empirically Pareto-optimal.87

Process Reward Models. Process reward models (PRMs) have emerged as a technique to improve88

the reasoning and problem-solving capabilities of LLMs. These models assign rewards to the89

intermediate steps of the LLM generated sequences. PRMs have been shown effective in selecting90

reasoning traces with a low error rate, and for providing rewards in reinforcement learning-style91

algorithms [Uesato et al., 2022, Polu and Sutskever, 2020, Gudibande et al., 2023]. Ma et al. [2023]92

applies the PRM to give rewards on the intermediate steps and guide the multi-step reasoning process.93

The PRM can be either trained on human labeled data [Lightman et al., 2023a] or model-labeled94

synthetic data [Wang et al., 2023]. In our work, we use the PRM as the reward model for selecting95

generated solutions, and for selecting which partial solutions to explore in tree search.96

3 An Empirical Analysis of Compute-Optimal Inference for Problem-Solving97

We explore the following question: Given a fixed FLOPs budget, how should one select an optimal98

model size for the policy model, and an effective inference strategy to maximize performance (i.e.,99

accuracy)? To address this, we represent the problem-solving error rate E(N,T ) as a function of the100

number of model parameters N and the number of generated tokens T . The computational budget C101

is a deterministic function FLOPs(N,T ), based on N and T . Our goal is to minimize E under the102

test-time compute constraint FLOPs(N,T ) = C:103

Nopt(C), Topt(C) = argmin
N,T s.t. FLOPs(N,T )=C

E(N,T ) (1)

where Nopt(C) and Topt(C) denote the optimal allocation of a computational budget C.104

3



Here, the inference computation (FLOPs) for a fixed model can be modulated by generating more105

tokens with the policy model, e.g., by sampling additional candidate solutions and subsequently106

ranking them using a reward model. We primarily consider sampling and tree-search approaches107

with reranking or majority voting as the means to consume more tokens, including Greedy Search,108

Majority Voting, Best-of-N, Weighted Voting, and their variants on tree search methods.109

3.1 Inference Strategies110

3.1.1 Sampling111

Greedy Search. This strategy generates tokens one at a time by selecting the highest probability token112

at each step, without considering future steps. It is computationally efficient but often suboptimal in113

terms of diversity.114

Best-of-n. This strategy, also known as rejection sampling, samples multiple solutions and chooses115

the one with the highest score given by the reward model.116

Majority Voting. In this strategy, multiple model outputs are generated, and the final answer to the117

problem is determined by the most frequently occurring answer in all the outputs.118

Weighted Majority Voting. This strategy is a variant of majority voting in which the votes are119

weighted based on the score given by the reward model.120

3.1.2 Monte Carlo Tree Search (MCTS)121

Monte Carlo Tree Search (MCTS) has proven effective in domains such as board games where122

strategic decision-making is required [Silver et al., 2016, 2017, Jones, 2021]. Recent work has shown123

that adapting MCTS to the context of LLMs can enhance the text generation process [Zhang et al.,124

2023, Zhou et al., 2023, Liu et al., 2024, Choi et al., 2023, Chen et al., 2024a, Tian et al., 2024,125

Chen et al., 2024a]. In this context, MCTS is often paired with a value model to score and guide the126

exploration steps. For additional background, we provide a review of MCTS in Appendix B.127

Recent work in MCTS or its variants (e.g., Tree of Thoughts [Yao et al., 2023]) mainly focus on128

improving the performance (e.g., accuracy) on the studied tasks. However, generic comparisons of129

MCTS with conventional methods like Best-of-n and Majority Voting in terms of computational130

budget, measured in generated tokens or processing time, are either scarce or indicating inference-131

time issues. For example, MCTS consumes substantially more resources, often requiring dozens of132

times more generated tokens than simpler methods. Specifically, a significant portion of the paths133

in the search tree are used to estimate and select nodes, and these paths do not necessarily become134

a part of the final candidate solution, although MCTS ensures that the sampled solutions comprise135

high-quality intermediate steps. In contrast, sampling methods generate multiple solutions in parallel136

and independently, and all the generated sequences are included in the candidate solutions. However,137

the intermediate steps in these sequences are not guaranteed to be of high quality, as there is no138

mechanism for pruning poor steps or exploiting promising ones.139

This highlights the need for developing a new tree search method that can achieve a comparable (or140

better) performance as MCTS, and that is computationally less costly, just like weighted majority141

voting and best-of-n. This need leads to the development of our new method named Reward Balanced142

SEarch (REBASE), as introduced next.143

3.1.3 Reward Balanced Search (REBASE)144

The REBASE tree search method inherits the exploitation and pruning properties of tree search,145

while using the reward model alone to estimate the nodes’ qualities without additional computation146

for estimating values by sampling children. The efficiency is achieved by constraining the total147

expansion width of the tree at a certain depth. REBASE balances the expansion width among the148

nodes at the same depth based on the rewards given by the Process Reward Model (PRM). The details149

are provided below:150

Notations. We consider the fine-tuned LLM as a policy πθ. Given a question q and the first k steps151

of a solution x1, · · · , xk, the (k + 1)-th step is produced by πθ(xk+1|q, x1 · · ·xk). When generating152

solutions using tree search, the root of the tree corresponds to the question q. The node corresponding153
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Figure 3: Illustration of one iteration of REward BAlanced SEarch (REBASE).

to xk+1 is the child of the node corresponding to xk if it is sampled from πθ(·|q, x1 · · · , xk). The154

reward of a node n(xk) is determined by the PRM as R(n(xk)) = R(q, x1, · · · , xk).155

Initialization. Given the question q, balance temperature Tb, and sampling number of solutions N,156

we sample N instances of the first step for the question, yielding all the nodes of depth 1 in the search157

tree. We set the sampling budget of depth 0 B0 = N as initialization.158

Reward modeling and update. In the i-th iteration, the PRM assigns the rewards to all the nodes159

at depth i. After that, the algorithm examines whether the solutions up to depth i are complete.160

Supposing there are Ci completed solutions, we update the sampling budget using Bi ← Bi−1 − Ci.161

If Bi = 0, the process ends, and we obtain N solutions.162

Exploration balancing and expansion. For all of the nodes nj with reward R(nj) in the depth i of163

the tree, we calculate the expansion width of the nj as:164

Wj = Round
(
Bi

exp (R(nj)/Tb)∑
k exp (R(nk)/Tb)

)
. (2)

Then we sample Wj children for nj for all the nodes in depth i, and start the next iteration.165

3.1.4 Theoretical Analysis166

Before empirically studying the scaling effects of increasing the inference-time compute budget,167

we present two theorems which will help us understand the experimental results later. These two168

theorems give an upper bound on the performance of sampling when fixing the LLM generator.169

We assume the vocabulary is limited and the sequence length is constrained, thus the number of170

possible solutions and answers are finite. The proofs are provided in the Appendix A.171

Theorem 1. Given a test dataset D and a LLM π. |A| is the finite set of all possible answers given172

by LLM, the ground truth function g maps test data d to the true answer. Denote the accuracy of the173

LLM on this dataset with majority over N samples as ACCMV (π,D, N). The accuracy of majority174

voting on the LLM will eventually saturate, i.e.175

lim
N→∞

ACCMV (π,D, N) =

∑
d∈D I ((g(d) = argmaxa∈A π(a|d))

|D|
. (3)
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Figure 4: The inference computation scaling comparisons across different model sizes. The
left/right panel shows the GSM8K problem-solving error rate on GSM8K based on Weighted
Mjority/Best-of-N.

where π(x|d) denotes the probability that the LLM answers x given input d and I is the indicator176

function.177

Theorem 2. Assume the reward model assigns an expected reward of R(a) to a ∈ A among the178

different solutions generated by LLM that yields a. Given a test dataset D and a LLM π. |A| is the179

finite set of all possible answers given by LLM, the ground truth function g maps test data d to the180

true answer. Denote the accuracy of the LLM on this dataset with weighted majority over N samples181

as ACCWV (π,D, N,R). The accuracy of weighted majority voting on the LLM will eventually182

saturate, i.e.183

lim
N→∞

ACCWV (π,D, N,R) =

∑
d∈D I ((g(d) = argmaxa∈A R(a)π(a|d))

|D|
. (4)

where π(x|d) denotes the probability that the LLM answers x given input d and I denotes the184

indicator function.185

Theorem 2 shows that as long as the reward model assigns higher rewards than the policy for correct an-186

swers versus other answers in expectation, the upper bound of Weighted Majority Voting will be higher187

than Majority Voting since I ((g(d) = argmaxa∈A R(a)π(a|d)) > I ((g(d) = argmaxa∈A π(a|d)).188

We put the figures comparing BoN and Weighted Majority Voting in the main paper and leave the189

Majority Voting figures in Appendix D since Majority Voting is dominated by Weighted Majority190

Voting.191

4 Experiments192

4.1 Setup193

Datasets. We conduct experiments on two mathematical problem-solving datasets to investigate194

the scaling effects of computation and our REBASE method for both challenging and simpler195

problems. Specifically, MATH [Hendrycks et al., 2021a] and GSM8K[Cobbe et al., 2021b] are196

datasets containing high school mathematics competition-level problems and grade-school level197

mathematical reasoning problems, respectively. Following [Lightman et al., 2023b, Wang et al., 2024,198

Sun et al., 2024], we use the MATH500 subset as our test set.199

Generators. We use Llemma-7B and Llemma-34B [Azerbayev et al., 2024] as our base models and200

finetune them on the MetaMath dataset [Yu et al., 2024] using full parameter supervised fine-tuning201

(Full-SFT), The detailed finetuning configuration is given in the Appendix. Additionally, we test the202

Mistral-7B model to expand our findings across different models.203

Reward Model. All of the experiments use the same Llemma-34B reward model, which we204

finetuned on the synthetic process reward modeling dataset, Math-Shepherd [Wang et al., 2024]. We205

added a reward head to make the model, enabling it to output a scalar reward at the end of each step.206
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Figure 5: The inference computation scaling laws of different models for the problem-solving
error rate on MATH500 test set. The tested models are Llemma-7B (left), Llemma-34B (middle),
& Mistral-7B (right). In the legend, W.M. and BoN refer to Weighted Majority and Best-of-N,
respectively.

Inference Configuration. For the MATH dataset, we sample 1, 2, 4, 8, 16, 32, 64, 128, and 256207

solutions for the 7B models, and 1 to 64 solutions for the 34B Llemma model. For the GSM8K dataset,208

we sample 1 to 32 solutions, as it is relatively easier. We use sampling and REBASE to generate209

these samples and select the answer through Best-of-N, Majority Voting, and Weighted Voting.210

Each configuration is run multiple times to calculate the mean and variance, thereby mitigating the211

randomness and ensuring the reliability of our conclusions.212

4.2 Main Results of Compute-Optimal Inference213

In order to compare the compute budgets of 7B and 34B models, we plot the figures with the number214

of FLOPs used per question during inference. We compute the inference FLOPs based on the standard215

formula from [Kaplan et al., 2020].216

Llemma-7B model achieves competitive accuracy to Llemma-34B model with lower compute217

budget. Figures 1 and 4 show the curves of error rates versus total number of inference FLOPs per218

question. Inference methods with different model sizes are plotted in the same diagram. We found219

that Llemma-7B costs approximately 2x less total FLOPs than Llemma-34B under the same method220

(Sampling, MCTS, REBASE) and task (MATH, GSM8K) while achieving competitive accuracy.221

This result suggests that, with the same training dataset and model family, training and inference with222

a smaller model could be more favorable in terms of compute budget if multiple sampling or search223

methods are employed.224

All inference configurations will saturate eventually. This is expected as Theorem 1 and Theorem225

2 show. Also illustrated in Figures 5 and 6, the slope of the erro rate curves start large, then decreases226

and the curves finally become nearly flat as the number of samples scales, showing the effect of227

saturation.228

Scaling law of compute-optimal inference. The findings in our experiments are consistent with229

the Theorem 1 and 2, After a threshold the accruacy of sampling more solutions saturate, we should230

scale the model size. We interpolate the smoothed test error rate curve in Figure 1 and Figure 4,231

and fit power laws to estimate the optimal model size N and number of generated tokens T for any232

given amount of compute. We obtained a relationship Nopt ∝ Ca and Topt ∝ Cb, where a = 1.0233

and b = 0.0 for both sampling-based weighted voting and our tree-search method REBASE. Our234

fitted curves indicate that the optimal inference strategy is invariant to the amount of compute (e.g.,235

re-ranking with 32 sampled solutions or REBASE tree search with a compute budget of 64 for236

MATH), and the optimal model size grows linearly with the increased compute budget.237

4.3 Comparing REBASE to Other Baselines238

REBASE is Pareto-optimal. While MCTS undeperforms Sampling (Fig. 1), from Fig. 1, 4, 5,239

and 6, we found that REBASE consistently outperforms the Sampling method in all settings, when240
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Figure 6: The inference computation scaling laws of different models for the problem-solving
error rate on GSM8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle),
& Mistral-7B (right). In the legend, W.M. and BoN refer to Weighted Majority and Best-of-N,
respectively.

Table 1: REBASE with lower compute budget has competitive accuracy against Sampling with
higher compute budget. We use weighted voting to aggreagte the candidate solutions in both Sampling
and REBASE.

# SAMPLES FLOPS MATH500

MISTRAL-7B

SAMPLING 256 8.7× 1014 42.8
REBASE 32 1.36× 1014 45.0

LLEMMA-7B

SAMPLING 256 10.0× 1014 45.5
REBASE 32 1.48× 1014 46.8

LLEMMA-34B

SAMPLING 64 12.1× 1014 46.7
REBASE 32 7.08× 1014 49.2

fixing the model and the evaluation task. Table 1 shows that REBASE can achieve competitive241

accuracy with even a lower compute budget than the sampling method. This finding is novel, and242

differs from previous tree search works which typically improve the performance at the cost of higher243

computational expense compared to sampling [Chen et al., 2024a, Xie et al., 2023]. Table 2 shows244

that given the same compute budget (sampling 32 solutions for the 7B model and 8 solutions for 34B245

model), using REBASE yields higher accuray than sampling.246

Weaker models gain more from Tree Search. From Fig. 2, we saw that compared with sampling,247

Mistral-7B, Llemma-7B, Llemma-34B increase 5.3%, 3.3%, 2.6% in MATH and 0.7%, 1.9%, 0.9%248

in GSM8K. The order of accuracy increase is inversely related to the model’s corresponding greedy249

search on those datasets. This suggests that weaker models, as indicated by their lower greedy search250

accuracy, benefit more from tree search methods like REBASE.251

REBASE saturates later than sampling with higher accuray. From Figure 5 and Figure 6, we252

observe that both sampling and REBASE saturate early in GSM8K and relatively late in MATH,253

which we attribute to the difference of the difficulty level. This can be explained through the LLM254

may assign high probability to the true answer in easy problems than those of harder problem, as255

suggested by Theorem 1 and 2 with their proofs A. On MATH (Figure 5), we see that REBASE256

finally saturates with a higher accuracy than sampling. We hypothesize the reason is that REBASE257

samples the truth answer with higher probability than sampling. And as demonstrated by Theorem 1258

and 2, the upper bound becomes higher.259
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Table 2: Accuracy of diffrent inference configurations under a specific compute budget. MV, BoN
and WV denote Majority Voting, Best-of-N and Weighted Voting, respectively.

# SAMPLES MATH FLOPS GSM8K FLOPS MATH500 GSM8K

MISTRAL-7B

GREEDY 1 3.4× 1012 2.3× 1012 28.6 77.9
SAMPLING + MV 32 109.2× 1012 72.6× 1012 36.1 85.7
SAMPLING + BON 32 109.2× 1012 72.6× 1012 40.3 89.4
SAMPLING + WV 32 109.2× 1012 72.6× 1012 39.7 89.1
REBASE + MV 32 136.2× 1012 78.9× 1012 44.1 88.8
REBASE + BON 32 136.2× 1012 78.9× 1012 45.4 89.4
REBASE + WV 32 136.2× 1012 78.9× 1012 45.0 89.8

LLEMMA-7B

GREEDY 1 3.92× 1012 2.3× 1012 30.0 68.5
SAMPLING + MV 32 125.4× 1012 73.9× 1012 41.0 80.0
SAMPLING + BON 32 125.4× 1012 73.9× 1012 41.7 85.6
SAMPLING + WV 32 125.4× 1012 73.9× 1012 43.5 85.4
REBASE + MV 32 148.0× 1012 82.6× 1012 46.1 86.1
REBASE + BON 32 148.0× 1012 82.6× 1012 44.1 86.9
REBASE + WV 32 148.0× 1012 82.6× 1012 46.8 87.3

LLEMMA-34B

GREEDY 1 19.0× 1012 11.2× 1012 33.0 78.4
SAMPLING + MV 8 152.3× 1012 89.7× 1012 39.9 84.3
SAMPLING + BON 8 152.3× 1012 89.7× 1012 40.4 86.7
SAMPLING + WV 8 152.3× 1012 89.7× 1012 41.0 86.0
REBASE + MV 8 176.8× 1012 98.7× 1012 43.9 86.1
REBASE + BON 8 176.8× 1012 98.7× 1012 43.6 86.9
REBASE + WV 8 176.8× 1012 98.7× 1012 42.9 86.9

5 Conclusion & Limitations260

In this work, we have conducted a comprehensive empirical analysis of compute-optimal inference261

for problem-solving with language models. Our study has revealed several key findings. First, with262

an optimal inference configuration, a small language model can achieve competitive accuracy to a263

4× larger model while using approximately 2× less total FLOPs under the same inference method264

(Sampling, MCTS, REBASE) and task (MATH, GSM8K), suggesting that training and inference265

with smaller models could be more favorable in terms of compute budget when combined with266

multiple sampling or search strategies. Second, our new REBASE tree-search method consistently267

outperforms sampling (and MCTS) across all settings, models, and tasks, achieving competitive268

accuracy with even lower compute budget compared to sampling. Our findings highlight the potential269

of deploying smaller models equipped with more sophisticated inference strategies like REBASE to270

enhance problem-solving accuracy while maintaining computational efficiency.271

Limitations First, our experiments focused specifically on mathematical problem-solving tasks,272

and the generalizability of our findings to other domains remains to be explored. Second, we only273

investigated a limited range of model scales, primarily focusing on 7B and 34B models. Future274

research could extend our analysis to a wider range of model sizes to gain a more comprehensive275

understanding of the scaling laws for compute-optimal inference. Finally, our experiments mainly276

utilized the MetaMath dataset for training the models. It would be valuable to explore the impact of277

different training datasets on the performance and efficiency of compute-optimal inference strategies278

for mathematical problem-solving.279
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A Proofs of Theorem 1 and 2419

A.1 Proof of Theorem 1420

Proof. Suppose the possible answers of the LLM are x1, x2, x3, · · · , x|A|, with π(x1|d) >421

π(x2|d) > · · · > π(x|A||d). After sampling N solutions from the LLM, we denote the occurence of422

xi as f(xi), the probability that x1 is not the most frequent output is423

P (f(x1) ̸= argmax
x

f(x)) (5)

With Union bound, we get424

P (x1 ̸= argmax
x

f(x)) (6)

≤
|A|∑
i=2

P (f(x1) ≤ f(xi)) (7)

≤|A|P (f(x1) ≤ f(x2)) (8)
=|A| (1− P (f(x1) ≥ f(x2))) (9)

≤|A|
(
1− P

(
f(x1) ≥

π(x1|d) + π(x2|d)
2

N

)
P

(
f(x2) ≤

π(x1|d) + π(x2|d)
2

N

))
(10)

≤|A|
(
1−

(
1− e−

δ21
2 π(x1|d)N

)(
1− e−

δ22
2+δ2

π(x2|d)N
))

(11)

≤|A|CN for some C < 1. (12)

Where (11) is by Chernoff Bound, δ1 = π(x1|d)−π(x2|d)
2π(x1|d) and δ2 = π(x1|d)−π(x2|d)

2π(x2|d) . As N →∞, we425

have426

f(x) =

{
M(x|N) = 1 if x = argmaxa∈A π(a|d)
M(x|N) = 0 otherwise .

(13)

Where M(x|N) denotes the probability that majority voting over N sampled solutions gives x. The427

proof of original theorem is automatically completed by (13).428

A.2 Proof of Theorem 2429

Proof. The proof is similar to the Theorem 1, We rank x1, x2, · · · , x|A| with R(x1)f(x1) > · · · >430

R(x|A|f(x|A|). Denotes w(xi) as the the total weights of answer xi after sampling N solutions. As431

N →∞, w(xi)→ R(xi)f(xi). Same as proof in theorem 1, we have432

P (x1 ̸= argmax
x

f(x)) (14)

≤|A|P (w(x1) ≤ w(x2)) (15)
=|A| (1− P (w(x1) ≥ w(x2))) (16)

≤|A|
(
1− P

(
w(x1) ≥

v(x1) + v(x2)

2
N

)
P

(
w(x2) ≤

v(x1) + v(x2)

2
N

))
. (17)

Where v(x) = R(x)π(x|d), the remaining proof completely follows Theorem 1.433

B MCTS Details434

The MCTS process can be represented as the following steps:435

Selection The process begins at the root node. Here, the algorithm recursively selects the child436

node that offers the highest Upper Confidence Bound applied to Trees (UCT) value, continuing until437

a node is reached that has not been expanded. The UCT is calculated using the formula438

UCT (s) = Q(s) + C

√
ln (N(Parent(s)))

N(s)
. (18)
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Table 3: Fine-tuning Hyper-parameters: LR refers to the learning rate, BS refers to the batch size.
Llemma-7B and LLemma-34B are the generators we use in our experiments, RM is short for Reward
Model.

Model # Epoch Dataset BS LR Max Seq Length Dtype

Llemma-7B 1 MetaMath 128 8E-6 1024 FP32
Llemma-34B 1 MetaMath 128 8E-6 768 FP32
Llemma-34B RM 2 Math-Shepherd 128 1E-5 768 BF16
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Figure 7: The inference computation scaling laws of different models for the problem-solving
error rate on MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M.V. refer to Majority Voting.

Where Q(s) represents the quality score of node s, N(s) is the number of visits to node s, and C is a439

constant determining the level of exploration.440

Expansion and evaluation Upon reaching a non-terminal node s, the node is expanded by gener-441

ating multiple child nodes. Each child node c is then evaluated using a value function V (c), which442

predicts the potential quality of continuing the sequence from node c.443

Backpropagation After evaluation, the algorithm updates the UCT values and the visit counts for444

all nodes along the path from the selected node back to the root. For any node n in this path, the445

updates are made as follows:446

N(n)← N(n) + 1,

Q(n)← (N(n)− 1)Q(n) + V (s)

N(n)
.

C Hyper-parameters447

Finetuning We put all the hyperparameters of fine-tuned models in the table 3. We preprocess the448

MetaMath Dataset to make the solutions in a stepwise format.449

Inference For all the inference strategies, the temperature of the LLM is set to 1.0. Max tokens450

for the output is 1024 and max tokens for one step is 256. For REBASE, we chose the balance451

temperature (the softmax temperature in the REBASE algorithm) as Tb = 0.1. For MCTS, we set452

C in the UCT value as 1 and we expand 4, 8, 16 children for the root, 2 children for other selected453

nodes with total 32, 64, 128 expansions respectively.454

D Supplementary Figures455

In the main part of paper, there isn’t enough space for showing the scaling effects of Majority Voting,456

we append the figures about Majority Voting and Majority Voting v.s. Weighted Majority Voting457
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Figure 8: The inference computation scaling laws of different models for the problem-solving
error rate on GSM8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M.V. refer to Majority Voting.
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Figure 9: The inference computation scaling laws of different models for the problem-solving
error rate on MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M.V. and W.M. refer to Majority Voting and Weighted Majority,
respectively.
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Figure 10: The inference computation scaling laws of different models for the problem-solving
error rate on GSM8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M.V. and W.M. refer to Majority Voting and Weighted Majority,
respectively.

(Fig. 7, 8 ,9, 10) in this appendix. The experiments show that although the gap between Majority458

Voting and Weighted Majority Voting on sampling is huge. This gap becomes much smaller if we459

apply REBASE. This phenomenon can be caused by the selection ability of tree search like REBASE.460

Once REBASE already samples solutions with high rewards, conducing weighted majority voting461

gains less since the sampled solutions may all have relatively high and stable rewards compared with462

those of sampling.463
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NeurIPS Paper Checklist464

1. Claims465

Question: Do the main claims made in the abstract and introduction accurately reflect the466

paper’s contributions and scope?467

Answer: [Yes]468

Justification: In Abstract and Introduction, we claim that we investigate the compute-optimal469

inference: designing models and inference strategies that optimally trade off additional470

inference-time compute for improved performance.471

Guidelines:472

• The answer NA means that the abstract and introduction do not include the claims473

made in the paper.474

• The abstract and/or introduction should clearly state the claims made, including the475

contributions made in the paper and important assumptions and limitations. A No or476

NA answer to this question will not be perceived well by the reviewers.477
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much the results can be expected to generalize to other settings.479
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are not attained by the paper.481

2. Limitations482

Question: Does the paper discuss the limitations of the work performed by the authors?483

Answer: [Yes]484

Justification: The discussion is in the last section of the main paper.485
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• The answer NA means that the paper has no limitation while the answer No means that487

the paper has limitations, but those are not discussed in the paper.488

• The authors are encouraged to create a separate "Limitations" section in their paper.489

• The paper should point out any strong assumptions and how robust the results are to490
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model well-specification, asymptotic approximations only holding locally). The authors492

should reflect on how these assumptions might be violated in practice and what the493

implications would be.494

• The authors should reflect on the scope of the claims made, e.g., if the approach was495

only tested on a few datasets or with a few runs. In general, empirical results often496

depend on implicit assumptions, which should be articulated.497

• The authors should reflect on the factors that influence the performance of the approach.498

For example, a facial recognition algorithm may perform poorly when image resolution499

is low or images are taken in low lighting. Or a speech-to-text system might not be500

used reliably to provide closed captions for online lectures because it fails to handle501

technical jargon.502

• The authors should discuss the computational efficiency of the proposed algorithms503

and how they scale with dataset size.504

• If applicable, the authors should discuss possible limitations of their approach to505

address problems of privacy and fairness.506

• While the authors might fear that complete honesty about limitations might be used by507

reviewers as grounds for rejection, a worse outcome might be that reviewers discover508

limitations that aren’t acknowledged in the paper. The authors should use their best509

judgment and recognize that individual actions in favor of transparency play an impor-510

tant role in developing norms that preserve the integrity of the community. Reviewers511

will be specifically instructed to not penalize honesty concerning limitations.512

3. Theory Assumptions and Proofs513

Question: For each theoretical result, does the paper provide the full set of assumptions and514

a complete (and correct) proof?515
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Answer: [Yes]516

Justification: It’s in Appendix.517

Guidelines:518

• The answer NA means that the paper does not include theoretical results.519

• All the theorems, formulas, and proofs in the paper should be numbered and cross-520

referenced.521

• All assumptions should be clearly stated or referenced in the statement of any theorems.522

• The proofs can either appear in the main paper or the supplemental material, but if523

they appear in the supplemental material, the authors are encouraged to provide a short524

proof sketch to provide intuition.525

• Inversely, any informal proof provided in the core of the paper should be complemented526

by formal proofs provided in appendix or supplemental material.527

• Theorems and Lemmas that the proof relies upon should be properly referenced.528

4. Experimental Result Reproducibility529

Question: Does the paper fully disclose all the information needed to reproduce the main ex-530

perimental results of the paper to the extent that it affects the main claims and/or conclusions531

of the paper (regardless of whether the code and data are provided or not)?532

Answer: [Yes]533

Justification: We introduce our method in Section 3 and the hyperparameters are introduced534

in the Appendix.535

Guidelines:536

• The answer NA means that the paper does not include experiments.537

• If the paper includes experiments, a No answer to this question will not be perceived538

well by the reviewers: Making the paper reproducible is important, regardless of539

whether the code and data are provided or not.540

• If the contribution is a dataset and/or model, the authors should describe the steps taken541

to make their results reproducible or verifiable.542

• Depending on the contribution, reproducibility can be accomplished in various ways.543

For example, if the contribution is a novel architecture, describing the architecture fully544

might suffice, or if the contribution is a specific model and empirical evaluation, it may545

be necessary to either make it possible for others to replicate the model with the same546

dataset, or provide access to the model. In general. releasing code and data is often547

one good way to accomplish this, but reproducibility can also be provided via detailed548

instructions for how to replicate the results, access to a hosted model (e.g., in the case549

of a large language model), releasing of a model checkpoint, or other means that are550

appropriate to the research performed.551

• While NeurIPS does not require releasing code, the conference does require all submis-552

sions to provide some reasonable avenue for reproducibility, which may depend on the553

nature of the contribution. For example554

(a) If the contribution is primarily a new algorithm, the paper should make it clear how555

to reproduce that algorithm.556

(b) If the contribution is primarily a new model architecture, the paper should describe557

the architecture clearly and fully.558

(c) If the contribution is a new model (e.g., a large language model), then there should559

either be a way to access this model for reproducing the results or a way to reproduce560

the model (e.g., with an open-source dataset or instructions for how to construct561

the dataset).562

(d) We recognize that reproducibility may be tricky in some cases, in which case563

authors are welcome to describe the particular way they provide for reproducibility.564

In the case of closed-source models, it may be that access to the model is limited in565

some way (e.g., to registered users), but it should be possible for other researchers566

to have some path to reproducing or verifying the results.567

5. Open access to data and code568
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Question: Does the paper provide open access to the data and code, with sufficient instruc-569

tions to faithfully reproduce the main experimental results, as described in supplemental570

material?571

Answer: [Yes]572

Justification: We only used open-source models in this work. The code will be released.573

Guidelines:574

• The answer NA means that paper does not include experiments requiring code.575

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/576

public/guides/CodeSubmissionPolicy) for more details.577

• While we encourage the release of code and data, we understand that this might not be578

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not579

including code, unless this is central to the contribution (e.g., for a new open-source580

benchmark).581

• The instructions should contain the exact command and environment needed to run to582

reproduce the results. See the NeurIPS code and data submission guidelines (https:583

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.584

• The authors should provide instructions on data access and preparation, including how585

to access the raw data, preprocessed data, intermediate data, and generated data, etc.586

• The authors should provide scripts to reproduce all experimental results for the new587

proposed method and baselines. If only a subset of experiments are reproducible, they588

should state which ones are omitted from the script and why.589

• At submission time, to preserve anonymity, the authors should release anonymized590

versions (if applicable).591

• Providing as much information as possible in supplemental material (appended to the592

paper) is recommended, but including URLs to data and code is permitted.593

6. Experimental Setting/Details594

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-595

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the596

results?597

Answer: [Yes]598

Justification: We used the standard training and test splits or MATH and GSM8K and report599

the hyperparameters in the appendix.600

Guidelines:601

• The answer NA means that the paper does not include experiments.602

• The experimental setting should be presented in the core of the paper to a level of detail603

that is necessary to appreciate the results and make sense of them.604

• The full details can be provided either with the code, in appendix, or as supplemental605

material.606

7. Experiment Statistical Significance607

Question: Does the paper report error bars suitably and correctly defined or other appropriate608

information about the statistical significance of the experiments?609

Answer: [Yes]610

Justification: The error bars are included in our figures.611

Guidelines:612

• The answer NA means that the paper does not include experiments.613

• The authors should answer "Yes" if the results are accompanied by error bars, confi-614

dence intervals, or statistical significance tests, at least for the experiments that support615

the main claims of the paper.616

• The factors of variability that the error bars are capturing should be clearly stated (for617

example, train/test split, initialization, random drawing of some parameter, or overall618

run with given experimental conditions).619
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• The method for calculating the error bars should be explained (closed form formula,620

call to a library function, bootstrap, etc.)621

• The assumptions made should be given (e.g., Normally distributed errors).622

• It should be clear whether the error bar is the standard deviation or the standard error623

of the mean.624

• It is OK to report 1-sigma error bars, but one should state it. The authors should625

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis626

of Normality of errors is not verified.627

• For asymmetric distributions, the authors should be careful not to show in tables or628

figures symmetric error bars that would yield results that are out of range (e.g. negative629

error rates).630

• If error bars are reported in tables or plots, The authors should explain in the text how631

they were calculated and reference the corresponding figures or tables in the text.632

8. Experiments Compute Resources633

Question: For each experiment, does the paper provide sufficient information on the com-634

puter resources (type of compute workers, memory, time of execution) needed to reproduce635

the experiments?636

Answer: [Yes]637

Justification: All the experiments are conducted on 8× H100 GPUs.638

Guidelines:639

• The answer NA means that the paper does not include experiments.640

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,641

or cloud provider, including relevant memory and storage.642

• The paper should provide the amount of compute required for each of the individual643

experimental runs as well as estimate the total compute.644

• The paper should disclose whether the full research project required more compute645

than the experiments reported in the paper (e.g., preliminary or failed experiments that646

didn’t make it into the paper).647

9. Code Of Ethics648

Question: Does the research conducted in the paper conform, in every respect, with the649

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?650

Answer: [Yes]651

Justification: Yes, we conform with the NeurIPS Code of Ethics.652

Guidelines:653

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.654

• If the authors answer No, they should explain the special circumstances that require a655

deviation from the Code of Ethics.656

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-657

eration due to laws or regulations in their jurisdiction).658

10. Broader Impacts659

Question: Does the paper discuss both potential positive societal impacts and negative660

societal impacts of the work performed?661

Answer: [NA]662

Justification: We do not find significant positive societal impacts and negative societal663

impacts of our work.664

Guidelines:665

• The answer NA means that there is no societal impact of the work performed.666

• If the authors answer NA or No, they should explain why their work has no societal667

impact or why the paper does not address societal impact.668
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• Examples of negative societal impacts include potential malicious or unintended uses669

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations670

(e.g., deployment of technologies that could make decisions that unfairly impact specific671

groups), privacy considerations, and security considerations.672

• The conference expects that many papers will be foundational research and not tied673

to particular applications, let alone deployments. However, if there is a direct path to674

any negative applications, the authors should point it out. For example, it is legitimate675

to point out that an improvement in the quality of generative models could be used to676

generate deepfakes for disinformation. On the other hand, it is not needed to point out677

that a generic algorithm for optimizing neural networks could enable people to train678

models that generate Deepfakes faster.679

• The authors should consider possible harms that could arise when the technology is680

being used as intended and functioning correctly, harms that could arise when the681

technology is being used as intended but gives incorrect results, and harms following682

from (intentional or unintentional) misuse of the technology.683

• If there are negative societal impacts, the authors could also discuss possible mitigation684

strategies (e.g., gated release of models, providing defenses in addition to attacks,685

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from686

feedback over time, improving the efficiency and accessibility of ML).687

11. Safeguards688

Question: Does the paper describe safeguards that have been put in place for responsible689

release of data or models that have a high risk for misuse (e.g., pretrained language models,690

image generators, or scraped datasets)?691

Answer: [NA]692

Justification:693

Guidelines:694

• The answer NA means that the paper poses no such risks.695

• Released models that have a high risk for misuse or dual-use should be released with696

necessary safeguards to allow for controlled use of the model, for example by requiring697

that users adhere to usage guidelines or restrictions to access the model or implementing698

safety filters.699

• Datasets that have been scraped from the Internet could pose safety risks. The authors700

should describe how they avoided releasing unsafe images.701

• We recognize that providing effective safeguards is challenging, and many papers do702

not require this, but we encourage authors to take this into account and make a best703

faith effort.704

12. Licenses for existing assets705

Question: Are the creators or original owners of assets (e.g., code, data, models), used in706

the paper, properly credited and are the license and terms of use explicitly mentioned and707

properly respected?708

Answer: [Yes]709

Justification: We use the proper citations.710

Guidelines:711

• The answer NA means that the paper does not use existing assets.712

• The authors should cite the original paper that produced the code package or dataset.713

• The authors should state which version of the asset is used and, if possible, include a714

URL.715

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.716

• For scraped data from a particular source (e.g., website), the copyright and terms of717

service of that source should be provided.718

• If assets are released, the license, copyright information, and terms of use in the719

package should be provided. For popular datasets, paperswithcode.com/datasets720

has curated licenses for some datasets. Their licensing guide can help determine the721

license of a dataset.722
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• For existing datasets that are re-packaged, both the original license and the license of723

the derived asset (if it has changed) should be provided.724

• If this information is not available online, the authors are encouraged to reach out to725

the asset’s creators.726

13. New Assets727

Question: Are new assets introduced in the paper well documented and is the documentation728

provided alongside the assets?729

Answer: [Yes]730

Justification: We use the proper citations.731

Guidelines:732

• The answer NA means that the paper does not release new assets.733

• Researchers should communicate the details of the dataset/code/model as part of their734

submissions via structured templates. This includes details about training, license,735

limitations, etc.736

• The paper should discuss whether and how consent was obtained from people whose737

asset is used.738

• At submission time, remember to anonymize your assets (if applicable). You can either739

create an anonymized URL or include an anonymized zip file.740

14. Crowdsourcing and Research with Human Subjects741

Question: For crowdsourcing experiments and research with human subjects, does the paper742

include the full text of instructions given to participants and screenshots, if applicable, as743

well as details about compensation (if any)?744

Answer: [NA]745

Justification: No crowdsourcing experiments are used.746

Guidelines:747

• The answer NA means that the paper does not involve crowdsourcing nor research with748

human subjects.749

• Including this information in the supplemental material is fine, but if the main contribu-750

tion of the paper involves human subjects, then as much detail as possible should be751

included in the main paper.752

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,753

or other labor should be paid at least the minimum wage in the country of the data754

collector.755

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human756

Subjects757

Question: Does the paper describe potential risks incurred by study participants, whether758

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)759

approvals (or an equivalent approval/review based on the requirements of your country or760

institution) were obtained?761

Answer: [NA]762

Justification: No human subjects are involved.763

Guidelines:764

• The answer NA means that the paper does not involve crowdsourcing nor research with765

human subjects.766

• Depending on the country in which research is conducted, IRB approval (or equivalent)767

may be required for any human subjects research. If you obtained IRB approval, you768

should clearly state this in the paper.769

• We recognize that the procedures for this may vary significantly between institutions770

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the771

guidelines for their institution.772

• For initial submissions, do not include any information that would break anonymity (if773

applicable), such as the institution conducting the review.774
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