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Abstract

Stochastic min-max optimization has gained in-
terest in the machine learning community with
the advancements in GANs and adversarial train-
ing. Although game optimization is fairly well
understood in the deterministic setting, some is-
sues persist in the stochastic regime. Recent work
has shown that stochastic gradient descent-ascent
methods such as the optimistic gradient are highly
sensitive to noise or can fail to converge. Al-
though alternative strategies exist, they can be
prohibitively expensive. We introduce Omega,
a method with optimistic-like updates that mit-
igates the impact of noise by incorporating an
EMA of historic gradients in its update rule. We
also explore a variation of this algorithm that in-
corporates momentum. Although we do not pro-
vide convergence guarantees, our experiments on
stochastic games show that Omega outperforms
the optimistic gradient method when applied to
linear players. Our code is available here!.

1. Introduction

The recent progress in machine learning can be attributed
to being able to reliably minimize (or maximize) objec-
tive functions, such as losses or rewards, using gradient-
based optimization. Min-max optimization has emerged
as particularly relevant for machine learning due to the
success of GANs (Goodfellow et al., 2014), adversarial
training (Madry et al., 2018), and actor-critic systems (Pfau
& Vinyals, 2016). Even though the dynamics of gradient-
based methods are well understood for minimization, some
issues emerge in the context of saddle point optimization
(Gidel et al., 2019). Moreover, the noise introduced by us-
ing stochastic estimates of the gradients can exacerbate the
issue (Chavdarova et al., 2019).
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Extragradient (Korpelevich, 1976) and extrapolation from
the past (Popov, 1980) are popular methods for solving de-
terministic min-max optimization problems as they enjoy
better convergence guarantees to gradient descent-ascent
(Gidel et al., 2019). However, their natural extensions to
the stochastic setting, independent samples stochastic extra-
gradient (ISEG) (Gorbunov et al., 2022a; Beznosikov et al.,
2022) and independent samples optimistic gradient (ISOG)
can fail to converge for a simple stochastic bilinear game
and are sensitive to noise (Chavdarova et al., 2019). This
is concerning for machine learning applications, where per-
forming full batch optimization is prohibitively expensive.

An alternative for ISEG has been considered where the same
sample is used during the extrapolation and update steps
(Gidel et al., 2019; Mishchenko et al., 2020), and it has
been shown to converge under weaker assumptions. For
the optimistic gradient method, however, same-sample style
updates would require the computation of two gradients per
parameter update. Therefore, the same-sample stochastic
optimistic gradient (SSOG) is equivalent to same-sample
SEG in terms of its computational cost. Other methods
such as variance-reduced extragradient mitigate the issues
associated with stochasticity but significantly increase the
cost of the algorithm (Chavdarova et al., 2019; Alacaoglu &
Malitsky, 2022).

We focus on methods that employ optimistic-like updates.
We propose Omega, a variation of SOG, where an exponen-
tial moving average of historic gradients is considered in
the update rule. This helps us mitigate the shortcoming of
the independent samples SOG approach. More importantly,
Omega requires only one gradient computation per parame-
ter update, thereby guaranteeing better computational com-
plexity when compared to SEG. Although we do not provide
convergence guarantees for our approach, we demonstrate
that Omega outperforms SOG in stochastic bilinear games
(see Figure 1) and showcases similar performance to other
methods for quadratic games.

QOutline: the optimistic gradient method is presented in Sec-
tion 2. Our proposed method, Omega, and its extension to
incorporate momentum are introduced in Section 3. General
stochastic quadratic games are described in Section 4. The
performance of Omega for bilinear, quadratic and quadratic-
linear games is presented in Section 5. Closing remarks and
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Figure 1. Iterates of stochastic gradient descent-ascent (SGD), the
independent samples stochastic optimistic gradient method (ISOG)
and for a 2D stochastic bilinear game. & indicates the
conditioning of the optimization problem. SGD diverges, while
ISOG and Omega converge. Omega converges faster than ISOG.

future directions are included in Section 6.

2. The Stochastic Optimistic Gradient Method

Consider the unconstrained stochastic saddle point optimiza-
tion problem stated in Equation (1), where ¢ terms represent
the stochasticity,  and y represent the value of each player
and / refers to the payoff function.

min  max L(z,y) = E¢ [((z,y, )] M

zERIw yeRdy

Letw = [z,9] 7, Fe(w) = [Val(z,y,£), =V, l(z,4,6)] .
The update scheme of the stochastic optimistic gradient
method with independent samples (ISOG) is:

wer = w1 (1+0) Fe, (wr) = @, (wer)] )

Where 7 is a step size, « is the optimism hyper-parameter,
and &; is a stochastic sample drawn at step ¢. On each step,
the gradient field F¢, (w,) is computed and stored for use
on the next iteration. Equation (2) employs independent
samples &; and &, for computing the gradients at w; and
wy_1, respectively.

The deterministic optimistic gradient method converges at a
rate of the same order as extragradient (Korpelevich, 1976;
Gidel et al., 2019), while only requiring one gradient calcu-
lation per parameter update as opposed to two (Gorbunov
et al., 2022b). In the stochastic setting, however, indepen-
dent samples stochastic extragradient (ISEG) and ISOG
require stronger assumptions for convergence, like bounded
variance of the gradient field (Beznosikov et al., 2022). For
extragradient, this assumption is unnecessary if the same
stochastic sample is used for the extrapolation and update
steps. The same-sample extragradient (SSEG) method does:

Wiy1/2 = W — nke, (wy) 3)
W1 = W — NFe, (Wig1/2) 4

This approach computes the gradient for updating the cur-
rent iterate w; at an extrapolated point w; /2. The look-
ahead nature of the updates in Equation (3) is associated
with stabilizing the dynamics of the min-max problem
(Gidel et al., 2019). Considering the same stochastic sample
& to compute the look-ahead and update steps allows SSEG
to converge under weaker assumptions to ISOG (Beznosikov
et al., 2023). However, performing the look-ahead step re-
quires the computation of two gradient fields per parameter
update as opposed to one.

For optimistic methods, however, same-sample updates
are less practical as they represent a computational over-
head similar to that of extragradient. A same-sample vari-
ant of ISOG is presented in Equation (5). Unfortunately,
Fe¢, (w;—1) must be computed at iteration ¢ as it does not
carry over from previous iterations, thus requiring two gra-
dient calculations per parameter update.

wisr = wp = | (1+ ) Fe, (wr) — afg, (1) 5)

Moreover, it has been noted that stochastic min-max opti-
mization is especially sensitive to noise. Chavdarova et al.
(2019) propose variance reduced extragradient to mitigate
this issue, but their approach requires five gradient compu-
tations per parameter update on average. We are interested
in an algorithm that: (i) has similar convergence properties
to same-sample extragradient, (ii) is robust to noisy esti-
mates of the gradients, and (iii) retains the computational
cost of an optimistic method by requiring one gradient field
calculation per parameter update.

3. Optimistic EMA gradients

We propose an algorithm with optimistic-like updates for
stochastic min-max optimization. We consider an exponen-
tial moving average of historic gradients for the correction
term in the optimistic update. This is shown in Equation (6):

wepr = wy — | (1 4+ o) Fe, (wy) — aF,_4 6)

Where F} is an EMA of previously observed gradients.
Fy = (1= B)Fe, (we) + BFiy @

A new hyper-parameter 3 € [0, 1] is introduced for decaying
the previous EMA value. We initialize Fyy = F, (wyp) so the
first step of Omega corresponds to a gradient descent-ascent
step. F} is not initialized to 0 to prevent later EMA iterates
from being biased towards O.

Note that the use of an EMA reduces the variance of the cor-
rection term F; when compared to F, (w;). Thus, Omega
is less sensitive to noisy estimates of the gradients than
the optimistic gradient method. Moreover, Omega requires
one gradient field calculation per parameter update, with
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a memory footprint associated with storing F,,. Therefore,
the cost of Omega matches that of the independent samples
optimistic gradient method in Equation (2).

3.1. Optimism and Momentum

Alternatively, the EMA can be employed both for the update
direction and the correction term. We refer to this method
as optimism with momentum (or OmegaM) given that F,
can be viewed as a momentum term with a dampening of
(1 — j3). The updates of this approach are:

Wiyl = Wi — 77[(1 +a)F; — aﬁt—1:| (®)

Where Fy = Fp, (wyp). It can be seen that the update rule
in Equation (8) is equivalent to Equation (6) under a spe-
cific choice of o (see Appendix A.1). Section 5 contains
experiments with both Omega and Omega with momentum.
Appendix A.2 discusses an approach to combine Adam
(Kingma & Ba, 2014) and optimism, as previously consid-
ered by Gidel et al. (2019).

4. Stochastic Quadratic Games

We consider the following stochastic quadratic game:

1

1
Ee¢ | 52" Agx +agr + 3" Bey — cey — 5u" Cey| - 9)

Where x € R% minimizes and y € R% maximizes. By
ensuring that all A¢ and C¢ are symmetric positive-definite
matrices, Equation (9) is strongly convex in = and strongly
concave in y. The bilinear coupling terms B, represent the
interaction between both players.

In practice, we generate a fixed set of independent tuples
{(4;, B;, C;,a;,¢;)},, and sample one on each iteration
of the algorithm. Given L4 > pu4 > 0Oand Lo > puc > 0,
the A; and C; are sampled such that uy < A; < Ly
and puc < C; <X L. The B; are generated so that their
smallest singular value is yp > 0 and their largest singular
value is L. The condition numbers of each component of
the game are: k4 = La/pa, kg = Lp/up, and ko =
L¢/pe. Our implementation of stochastic quadratic games
is inspired by that of Loizou et al. (2021)

5. Experiments

We solve a series of bilinear, quadratic, and quadratic-linear
stochastic games. All of these are derived from Equation (9).
The distance to the optimal solution is measured throughout
the optimization. The derivation of the optimal solution for
a game is presented in Appendix B. More details about the
experimental setup and how the games are generated can be
found in Appendix C.

5.1. Stochastic Bilinear Game

For bilinear games, we set the terms A and C' in Equation (9)
to 0. Figure 2 shows the distance to the optimum when using
SGD, ISOG, and Omega to solve a 100-dimensional bilinear
game. The learning rates for ISOG and Omega are tuned
separately to be 0.05 and 0.02, respectively. Although we
tried OmegaM on this task, it would diverge for a wide range
of learning rates.
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Figure 2. Distance to optimum when solving a 100-dimensional
stochastic bilinear game with SGD, ISOG, and

. reaches the optimum faster than ISOG
while SGD diverges.

We observe that SGD diverges while ISOG and Omega get
close to the optimum and then oscillate in a neighborhood
around it. Given that the optimization problem is stochastic
and we use a constant step size, these oscillations are ex-
pected. In this experiment, Omega approaches the optimum
faster than ISOG.

We carry out a sensitivity analysis over the EMA decay
hyper-parameter 3. The results are presented in Figure 3.
Note that the experiment with 3 = 0 corresponds to ISOG.
Generally, large EMA values outperform smaller values.
However, using a very large (3 is detrimental as it introduces
oscillations and iterates get stuck far from the optimum.
Overall, we found 8 = 0.9 to be a reasonable choice and
used it throughout the rest of our work.
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Figure 3. Training dynamics of Omega when solving a 100-
dimensional bilinear game for different choices of the EMA decay
hyper-parameter 8. We use a learning rate of 0.02. We notice
that an EMA of 0.99 produces larger oscillations compared to the
others. An EMA of 0.9 seemed to be the best choice from the
experiment, for the given setup
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Table 1 presents the distance to the optimum after 1000
steps for different choices of batch size. The learning rates
for ISOG and Omega are tuned independently. Overall,
both methods improve when the effect of stochasticity is
mitigated by considering larger batch sizes. Notably, Omega
performs well in the deterministic bilinear game.

Batch Size 1 5 10 20 100
ISOG 4224 3941 3876 3916 3.900
Omega 0458 0323 0.291 0.281 0.280

Table 1. Distance to the optimum after 1000 steps for different
batch size choices. A batch size of 100 corresponds to a full batch.

5.2. Stochastic Quadratic Game

Figure 4 shows the distance to the optimum for different
optimization methods when applied to a stochastic quadratic
game with good conditioning. Table 2 reports the distance
to the optimum after 500 steps for problems with different
conditioning. We identify that a learning rate of 0.01 yields
good performance for all optimization approaches.

d=100, Ka=Kg=Kc=1
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Figure 4. Distance to optimum for SGD, ISOG, , SGDM,

and OmegaM when solving a 100-dimensional stochastic quadratic

game. For the latter 3 methods, we choose S = 0.9. We can see

that, given the nature of quadratic games, all algorithms converge
with similar behavior.

All methods converge to a neighborhood of the optimum
at a linear rate. In particular, SGDM and OmegaM yield
slightly faster convergence. Although momentum can be
detrimental to min-max optimization, our experiments show
quadratic games as benefiting from acceleration. This could
be related to the quadratic component dominating over the

bilinear term and making the optimization problem easier.

For quadratic games, Omega slows down progress when
compared to ISOG and SGD. Similar trends are seen when
considering worse conditioning for A and C.

ka, ke kK SGD ISOG Omega SGDM OmegaM
1 1 0119 0.125 0.112 0.112 0.112
1 10 0.128 0.129 0.135 0.180 0.106
10 1 0963 0.967 1.108 0.105 0.116
10 10 0915 0908 1.035 0.777 0.820

Table 2. Distance to the optimum at 500 steps for stochastic
quadratic games with different conditioning.

5.3. Quadratic-Linear Games

This section considers a game that is quadratic on one player,
but linear on the other player. Min-max optimization with
one linear player is relevant for the Lagrangian-based con-
strained optimization literature (Elenter et al., 2022), as
the Lagrangian is always a linear function of the dual vari-
ables. Given that Omega performs well in bilinear games
but under-performs in quadratic games, we fix SGD with
a step size of 0.02 for the quadratic player and experiment
with the choice of optimizer for the linear player.

Figure 5 shows the distance to the optimum when solving a
quadratic-linear game and using SGD, ISOG, and Omega
for the linear player, all with a step size of 0.01. While SGD
and ISOG perform very similarly, the Omega experiment
approaches the optimum at a slightly faster rate.
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Figure 5. Distance to optimum when solving a 100-dimensional
stochastic quadratic-linear game. SGD is used for the quadratic
player, and SGD, ISOG, and for the linear player. We can
notice that Omega makes progress toward the optimum faster than
the other methods.

Table 3 reports the distance to the optimum after 500 steps
for problems with different conditioning. Omega generally
approaches the optimum faster than SGD and ISOG. This is
most notorious when the conditioning of the quadratic term
is relatively poor (k4 = 10, kg = 1).

ka4 kp SGD ISOG Omega
1 1 0225 0221 0.176
1 10 2.691 2.689 2.664
10 1 0990 0941 0.587
10 10 1.247 1242 1.198

Table 3. Distance to the optimum at 500 steps for stochastic
quadratic-linear games with different conditioning.

6. Conclusion

We consider algorithms for stochastic min-max optimization.
Given that extragradient methods are computationally ex-
pensive, we focus on updates based on optimism. However,
as independent samples SOG can fail to converge in some
settings, and same-sample SOG is as expensive as stochastic
extragradient, we propose Omega, a simple modification of
the optimistic gradient method. By considering an EMA
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of past gradients for the update, we obtain an algorithm
that has the computational requirements of an optimistic
method and that is competitive on a set of toy experiments.
In particular, Omega outperforms the optimistic gradient
method when applied to linear players in stochastic games.

An important step for future work is to analyze the conver-
gence properties of Omega. Moreover, it would interesting
to evaluate Omega on a machine learning task such as train-
ing of GANs (Goodfellow et al., 2014).
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A. Optimistic-like Updates.
A.1. Omega with Momentum is Equivalent to Omega

It can be seen that the update rule in Equation (8) is equivalent to Equation (6) under a specific choice of the optimism
hyper-parameter o. By replacing F}; with its definition, given in Equation (7), it follows that:

wir = w = |+ a(Fy - Fia))| (10)
—w, — 7 :(1 — B)Fe, (wr) + BFy_1 + a[(1 — B)Fe, (wy) + BE_y — FHH (11)
= wi = (1= B)Fe,(w) + B + a(l = B)[Fe, (we) = Fooa ]| (12)
= wy — | Fe, (we) = B[Fe, (we) = Fia] + (1 = B)[Fe, (wy) — Fia]| (13)
= w = n[[Fe,(w) + (a1 = B) = B)[Fe, (wy) = i1 ]| (14)

Which is equivalent to Omega with a choice of optimism of «(1 — 3) — 8 and with the same EMA coefficient.

A.2. Optimism and Adam

Adam (Kingma & Ba, 2014) is a popular method for stochastic minimization that has been shown to work well for min-max
problems such as training Generative Adversarial Networks (Goodfellow et al., 2014). Adam updates can be written as:

Fy= (1= B)Fe,(wi) + BF (15)
vr = (1= ) Fe, (we)® + i1 (16)
E

a7

Wy = W1 — 1N

VU + €

Where v, is an EMA on the square of the gradients with coefficient v € [0, 1], and € > 0 is a small number. The usual Adam
updates apply a correction to the first and second order estimates to account for their bias towards 0.

E,=F/1-8Y 6 =v/1-9) (18)

We disregard this correction in our presentation of the updates in Equation (17) as we choose to initialize Fy = Fe,(wo) and
vo = Fg, (wp)?, as opposed to starting both at 0.

Combining optimistic-like updates with Adam yields the following update rule:

Wy = Wt—1 — 17

19)

E ( R R,
VUt + € Ve t+e U1 te
This formulation already considers EMAs on the gradients. As such, optimistic Adam does not need to be extended to
Omega-style updates. Note that the pairing of optimistic updates with Adam presented in Equation (19) has been considered
in the past by (Gidel et al., 2019).

B. Stochastic Games
B.1. Solving the Stochastic Quadratic Game

The stochastic quadratic game is given by:

1 1
min max [E, fxTAgx +acx + xTBgy —cey — fyTC%y (20)
z€Rde yeRdy 2 2

Equation (20) represents a strongly convex-strongly concave game if E¢[A¢] and E¢[C¢] are positive definite matrices with
their smallest eigenvalues being 114 > 0 and pc > 0, respectively. In such a setting, the min-max optimization problem has

6
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a unique Nash equilibrium. Given a dataset {(A;, B;, C;, a;, ¢;) }7, the Nash equilibrium can be derived analytically by
considering:

Z 1)
Z (22)

3\»—

E

3\»—
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:\*—‘
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And finding a stationary point of Equation (20) by solving the following linear system:

5 L]+

QI

} =0 (23)

B.2. Solving the Stochastic Bilinear Game

The stochastic bilinear game is given by:

min max E [agsc +x Bgy - csy} (24)
rER ye]RdU

Consider a dataset {(B;, a;, ¢;) }7~_;. Moreover, let:

Z (25)

:\H

-iyn

3\»—

e

:\H

The first order necessary conditions for the problem in Equation (24) are By +a = 0 and 2 ' B + ¢ = 0. If, in addition, B
has full rank, each system of equations has a unique solution.
Contribution of LatinX Individuals

The first author of this work is a LatinX individual.

C. Experimental Details

We use Pytorch 1.13 (Paszke et al., 2019). Our implementation of the optimistic gradient method is a slight modification of
that provided by Gidel et al. (2019)?. Our code for Omega is inspired by their implementation of optimism.

C.1. Games

We perform experiments on bilinear, quadratic and quadratic-linear games. The default hyper-parameters for these problems
are presented in Table 4. We focus on games where both player vectors have 100 dimensions. We consider 100 stochastic
samples for the matrices and vectors of the game.

2Optimistic gradient method code available here: https:/github.com/GauthierGidel/Variational-Inequality-GAN

Game dy dy n | pa La|pp Lp|pc Le
Bilinear 100 100 100 | - - 1 1 - -
Quadratic 100 100 100 | 1 1 1 1 1 1
Quadratic-Linear | 100 100 100 | 1 1 1 1 - -

Table 4. Default game hyper-parameters.
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C.2. Generating the Stochastic Games

We generate a fixed set of independent tuples {(A;, B;, C;, a;, ¢;) }?_, to sample from during each iteration of the algorithm.
Given Ly > pa > 0and Lo > pue > 0, we generate A; and C;; such that:

pa-lag, A 2 La-lg, (26)
pe - lg, 2C; 2 Lo -1, 27

The B; are generated so that their smallest singular value is ;g > 0 and their largest singular value is L. We consider the
following condition numbers throughout our work:

ka=1La/pa, kB=Lp/up, kc=Lc/uc (28)

For bilinear games, we set A; = C; = 0. Each entry in a; is drawn independently from a Gaussian distribution with mean 0
and variance 1/d,. The ¢; terms are drawn analogously.

The initial guess for the algorithm (z, yo) is initialized from an isotropic Gaussian distribution with unit variance.

C.3. Optimization Hyper-Parameters

Different optimization algorithms are considered for solving stochastic games: gradient descent-ascent (SGD), gradient
descent-ascent with momentum (SGDA, see Appendix C.4), the independent samples optimistic gradient method (ISOG)
from Equation (2), Omega, and Omega with momentum from Equation (8). We refer to Omega with momentum as OmegaM.

For ISOG, Omega, and OmegaM, we set the optimism hyper-parameter to 1. For the approaches with EMAs, namely,
SGDM, Omega, and OmegaM, we employ a decay hyper-parameter 3 of 0.9. For all optimization methods, we employ
simultaneous updates. Experiments are run for 5000 steps with a batch size of 1. We only consider one random seed per
experiment. Although a constant step size for stochastic optimization allows for convergence up to a neighborhood of the
optimal point (Schmidt, 2014), our experiments do not employ decreasing step sizes.

C.4. Our Implementation of SGD with Momentum
We consider an implementation of SGD with momentum which incorporates dampening:
di = Bds—1 + (1 —7)Fe,_, (wi—1) (29)
Wiy = Wi — Ndy (30

Where (3 is the momentum coefficient and 7 is the dampening. By letting 5 € [0, 1] and 7 = /3, we recover that updates are
performed in the direction of an EMA of historic gradients:

Fy = BF,_y + (1 — B)F, (w)
Wi41 = W — ﬂFt GD

For ease of comparison with Omega and Omega with momentum, our experiments with SGD with momentum consider the
formulation presented in Equation (31).



