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ABSTRACT

Dataset distillation (DD) has emerged as a powerful paradigm for dataset compres-
sion, enabling the synthesis of compact surrogate datasets that approximate the
training utility of large-scale ones. While significant progress has been achieved in
distilling image datasets, extending DD to the video domain remains challenging
due to the high dimensionality and temporal complexity inherent in video data.
Existing video distillation (VD) methods often suffer from excessive computational
costs and struggle to preserve temporal dynamics, as naive extensions of image-
based approaches typically lead to degraded performance. In this paper, we propose
a novel uni-level video dataset distillation framework that directly optimizes syn-
thetic videos with respect to a pre-trained model. To address temporal redundancy
and enhance motion preservation, we introduce a temporal saliency-guided fil-
tering mechanism that leverages inter-frame differences to guide the distillation
process, encouraging the retention of informative temporal cues while suppressing
frame-level redundancy. Extensive experiments on standard video benchmarks
demonstrate that our method achieves state-of-the-art performance, bridging the
gap between real and distilled video data and offering a scalable solution for video

dataset compression.

1 INTRODUCTION

In recent years, video data has accounted
for over 70% of global internet traffic, and
this proportion continues to grow steadily
Barnett et al.| (2018). The explosive in-
crease in online video content has driven a
strong demand for automatic video under-
standing, which has in turn led to remark-
able progress in video action recognition
using neural networks. However, the im-
pressive performance of these models often
comes at the cost of high computational
expense (Wang et al., 2021). The sheer
volume of video data, along with its signif-
icantly larger size compared to images, im-
poses substantial training costs and compu-
tational burdens on the models. Dataset dis-
tillation has become a promising technique
to address this challenge, aiming to com-
press large-scale datasets into compact syn-
thetic datasets while preserving as much
task-specific information as possible.

However, existing dataset distillation meth-
ods still primarily focus on the image do-
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Figure 1: Comparison ofperformance and computa-
tional cost between different methods across all the
IPC settings. The size of each point indicates memory
consumption, and the labels denote the corresponding
method names and IPC (instance per class) settings.
The methods involved include DM (Zhao et al., [2021}),
MTT (Cazenavette et al., |2022), VDSD (Wang et al.,
2024) and Ours. IPC represents the number of instances
per class in the distilled dataset and serves as a primary
metric for indicating the compression rate. As shown in
the figure, Our method exhibits superior performance.

main and are difficult to directly extend to videos. Existing methods can be broadly classified into
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two categories: optimization-based and training-free methods. Traditional optimization-based meth-
ods (Wang et al.,|2018;|Zhao et al.,[2021;|Nguyen et al., 2021} Zhao & Bilen, |2021; /Cazenavette et al.,
2022; Zhong et al.| [2024a; |Sajedi et al., |2023; |Cazenavette et al., 2023 [Zhong et al., |2024b)) typically
employ a bi-level optimization framework, wherein the synthetic dataset is optimized in conjunction
with the training of a neural network that functions as a task-specific information extractor. Another
category of optimization-based methods, decoupled distillation methods (Yin et al.l 2024; |Shao
et al., 2024a; [Yin & Shen| 2024; Du et al., [2024} [Shao et al., 2024b)), optimize synthetic datasets
without repeatedly training random sampled neural networks to further reduce cost. Although these
methods often achieve strong performance under high compression ratios, the need to optimize all
the pixels with a synthetic dataset introduces considerable time overhead and memory consumption.
In contrast, training-free methods (Sun et al., 2024} [Su et al.}[2024;|Gu et al., 2024} |Chen et al.| [2025)
commonly utilize the priors from pre-trained classifiers or generative models to directly synthesize
datasets, avoiding pixel-level optimization of individual images and thereby significantly reducing
computational costs. However, due to their limited capacity to remove redundant information, such
methods generally result in suboptimal performance.

Although effective for image datasets, these two types of methods encounter significant challenges
when applied to video datasets. Videos comprise sequences of frames, which significantly amplifies
the computational cost of traditional optimization-based approaches, making them impractical for
high-resolution or large-scale video distillation scenarios. Moreover, the temporal dimension inherent
in video data necessitates that the distillation process account for inter-frame relationships to preserve
temporal coherence and motion dynamics. In contrast, training-free methods are limited by the
current capabilities of video generation models. While image generation techniques have reached
a level of maturity that allows for the synthesis of high-quality images, video generation models
still struggle to produce high-fidelity sequences suitable for action recognition tasks, often suffering
from fragmented or incoherent temporal dynamics. Additionally, the presence of temporal dynamics
greatly increases the difficulty of selecting informative frames, further contributing to the suboptimal
performance of these approaches.

To address these challenges, VDSD (Wang et al.} |2024) introduces a two-stage video distillation
paradigm. In the first stage, it randomly selects frames from each video and performs standard
image-level distillation. In the second stage, an interpolation model is used to reconstruct videos,
followed by image distillation applied to each individual frame. Although this method achieves
certain performance, the two stages are inherently conflicting and fail to effectively incorporate
temporal information. As an extention of VDSD, IDTD (Zhao et al., |2024)) selects frames with
maximal differences to enhance frame diversity in the first stage and randomly sampling frames for
interpolation in the second stage, thereby increasing video variability. While IDTD demonstrates
improvements over VDSD, it maintains the same distillation pipeline and still overlooks essential
temporal dependencies. Furthermore, the two-stage framework introduces considerable time overhead
while offering only marginal performance gains.

However, extending image dataset distillation methods to videos and preserving temporal dynamics
during the distillation process is a non-trivial task. First, modeling temporal dynamics is itself a
difficult task. While using optical flow as a representation is a straightforward solution, it introduces
considerable storage and computational overhead, necessitating more compact and efficient alterna-
tives. Second, performing data augmentation on video without disrupting its temporal coherence
is another major concern. Differentiable data augmentation has proven effective in enhancing the
diversity of synthetic data in dataset distillation. However, naively applying image-level augmentation
techniques to videos can degrade them into a sequence of unrelated frames, ultimately impairing
performance. Therefore, designing augmentation strategies that respect the temporal structure of
videos is crucial for effective video dataset distillation.

In this paper, we propose a novel framework for video dataset distillation. By simplifying the
conventional bi-level optimization framework, we design an efficient uni-level optimization-based
distillation process. Furthermore, we introduce the Temporal Saliency-Guided Filter (TSGF) to
preserve and enhance temporal information during the distillation process. Specifically, we first
train a standard video classification model to encode video information into a pre-trained classifier.
Subsequently, we align the distribution of the synthetic dataset with the model’s internal statistics
under the guidance of classification loss. To further reinforce temporal information, we apply TSGEF,
computed via inter-frame differences, as a constraint during optimization. In the post-evaluation
phase, we propose a dynamic video augmentation strategy that enhances synthetic videos with
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TSGEF to identify the key frames. By effectively capturing and reinforcing temporal characteristics
throughout the overall distillation process, our method achieves significant performance improvements
across various benchmark datasets. As illustrated in Figure[I] compared to existing image and video
distillation methods, our approach significantly improves performance while substantially reducing
both computational time and memory consumption, demonstrating the effectiveness of our framework.

The contributions of this paper can be summarized as follows:

* We propose an efficient uni-level video dataset distillation framework that is orthogonal
to existing methods. It effectively addresses the excessive time consumption of prior
approaches and reduces framework complexity.

* We introduce TSGEF, a temporal saliency-guided filter to guide the distillation process, along
with a dynamic data augmentation technique. Both components enhance the temporal
consistency and informativeness of the generated videos.

 Extensive experiments across various video datasets and compression ratios demonstrate the
effectiveness and efficiency of our method, significantly reducing training time for video
action classification tasks.

2 RELATED WORK

2.1 IMAGE DATASET DISTILLATION

Traditional optimization-based dataset distillation methods were initially formulated as meta-learning
problems (Wang et al., [2018)), in which the objective is achieved by alternately updating the neural
network and the distilled dataset. To mitigate the substantial computational cost caused by the
unrolled computational graph inherent in meta-learning, DC (Zhao et al.,[2021) proposed matching
the gradients of the loss function with respect to model parameters on both real and synthetic datasets,
thereby significantly reducing overhead via short-horizon gradient matching. MTT (Cazenavette
et al.,|2022) extended this idea by aligning the parameter trajectories of models trained on real and
synthetic datasets, enabling long-horizon matching. Alternatively, DM (Zhao et al., 2021) focused
on aligning feature distributions between datasets by treating the neural network solely as a feature
extractor, further reducing computational costs.

In contrast to optimization-based methods, training-free dataset distillation approaches avoid pixel-
level optimization of the synthetic dataset and instead aim to preserve high-level semantic information.
RDED (Sun et al.|[2024) and DDPS (Zhong et al., [2024c) respectively leverage a pre-trained classifier
and a diffusion model to directly select the most class-representative images from the original dataset.
Other methods such as Minimax (Gu et al.,[2024), D*M (Su et al.l [2024), and IGD (Chen et al., 2025)
fine-tune components of diffusion models (Song et al.,[2021)) to directly generate synthetic images
for the target dataset. While these approaches demonstrate promising performance on large-scale
datasets (Deng et al.l [2009), they tend to suffer under extreme compression ratios due to a lack
of optimization, often resulting in synthetic datasets with redundant information and suboptimal
performance.

Distinct from the aforementioned methods, decoupled dataset distillation methods (Yin et al.} [2024;
Yin & Shen| 2024; Shao et al.l |2024bza Du et al.| 2024), such as SRe?L (Yin et al., [2024), first
compress the information of the full dataset into a target model, and then generate synthetic datasets
by aligning their statistical properties (e.g., batch normalization statistics) and task-specific loss with
those of the model. However, a key limitation of existing work (Chen et al., 2024) that directly
applies decoupled methods to video datasets lies in the treatment of frames from the same video
as independent and unrelated samples, resulting in redundant optimization and neglect of temporal
structure.

2.2 VIDEO DATASET DISTILLATION

Compared to image data, video data incorporates an additional temporal dimension, which signif-
icantly increases the complexity of the distillation process. Currently, research on video dataset
distillation remains in its early stages. VDSD (Wang et al., |[2024) is the first work in this field,
introducing a two-stage paradigm that disentangles the static and dynamic components of video
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Algorithm 1 Saliency-Guided Video Distillation

Input: Original dataset 7, distillation iterations K, learning rate n
Train 67 on T: 0 = arg H01in Lee(bo, (XT),y7)
T

fork < Oto K —1do
Calculate regularization loss L,..4 using Eq.
Calculate distillation loss £ = Lec(do, (x5),y) + Lreg
Compute mask M using Eq. (8)), where compute temporal saliency vector s using Eq. (6) and
Eq.
Update S + S —nMVsL
end for
Compute temporal saliency vector s using Eq. (6) and Eq. (7)
Apply temporally guided video augmentation: xg = D(xg)
Recalibrate video data labels: ys = ¢g. (x5)
Output: Distilled dataset S = (xs,ys)

data. In the static distillation stage, VDSD compresses pixel-level information into a single frame
sampled from the video, aiming to align spatial features between the original and synthetic data. In
the dynamic distillation stage, the distilled image is interpolated into a video, and semantic motion
information is utilized to achieve temporal alignment between the original and synthetic sequences.

IDTD (Zhao et al.| [2024) builds upon this two-stage paradigm and achieves further progress by
incorporating two key modules. The Information Diversification module augments the distilled
data into multiple feature segments to enhance diversity, while the Temporal Densification module
aggregates these segments into complete video clips to capture richer temporal dynamics. These
components improve the algorithm’s capacity to compress temporal features, leading to better
performance.

Despite these advances, existing video dataset distillation methods often suffer from conflicting
optimization objectives and considerable computational overhead. In contrast to previous approaches,
we utilize a pre-trained classifier to guide the generation of synthetic video datasets, effectively
reducing computational cost while preserving temporal coherence to the greatest extent possible.

3 METHOD

3.1 PRELIMINARY

The objective of dataset distillation is to compress a large-scale training set 7 = {(x’-, y%-)} LZ‘l into

a distilled dataset S = {(x%, y}s)}‘l‘ill (IS] << |T1), while preserving the training accuracy as much
as possible. The learning objective on S can be formulated as follow:

Os = argmeinE(xs_’ys)es[l(%s (xs),ys)l: (M

where [(-,-) denotes the typical loss function (e.g., cross-entropy loss), and ¢y, represents the
neural network with parameter 6s. The primary objective of the dataset distillation task is to generate
synthetic data aimed at attaining a specific or minimal performance disparity on the original validation
data when the same models are trained on the synthetic data and the original dataset, respectively.
Thus, we aim to optimize S as follow:

arg gl|i§1|(sup{|l(¢97 (Xval)a y’ual) - l(¢95 (Xval)7 yval)|}(xm1,ywz)€7’)7 2)

where (Xyal, Yval) denotes the image and label pair samppled from the validation set of 7. For a
typical dataset distillation process, the synthetic dataset S is first initialized using random noise or
randomly sampled instances. Then, the distillation loss is computed, and S is optimized based on the
loss. However, for video datasets, each video consists of multiple frames and can be regarded as image

data with a large batch size in terms of computational cost. Consequently, previous image-based
distillation methods are difficult to apply due to the substantial overhead of video datasets.
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Figure 2: Comparison between our TSGF framework and the traditional two-stage video distillation
paradigm. S and 7 represent the synthetic dataset and the real train dataset, respectively. f represents
an individual frame and = denotes a video. 6 is the model parameters. While both stages of the
traditional approach primarily rely on pixel-level information, our unified framework effectively
distills temporal information through a three-stage process. TSGF comprises two key components:
TSGFpand TSGF 4. During the optimization stage, TSGF constrains the optimization by computing
inter-frame differences. In the evaluation stage, TSGF 4 guides the data augmentation process to
preserve temporal dynamics.

3.2 UNI-LEVEL VD FRAMEWORK

Distinct from existing two-stage video distillation frameworks, we propose a novel uni-level video
dataset distillation paradigm that enables efficient synthetic data generation. By decoupling model
training from synthetic data optimization, our approach effectively addresses the substantial intra-
batch computational cost encountered by traditional image-based distillation methods when applied
to video data.

To capture the dataset distribution, we first train a video action recognition model, compressing the
informative content of the original dataset into the model. The training process is formulated as:

07 = argmin Lee(¢or (x7), y7), @
T

where 67 denotes the parameters of the pre-trained model, and L. is the cross-entropy loss. Subse-
quently, we optimize the synthetic video samples using class-discriminative and statistical information
extracted from the pre-trained model, following a process similar to (Yin et al.,[2020):

Xs = arg II)}ISD ace£ce(¢97— (XS)7 ZU) + Oé'regAC'reg (4)

where y is the one-hot class label assigned to xs, L4 is a regularization term used to align the
statistical distribution of synthetic data with the pre-trained model, and o, and o4 are coefficients
used for weighting. The regularization loss is computed as follows:

Lreg =Y (Ilmi(xs) = RMill2 + |07 (xs) — RVil|2) )
l

where [ denotes the index of the batch normalization (BN) layer, 1;(xs) and 07 (x) represent the
mean and variance of the activations in the [-th BN layer, and RM;, RV, are the corresponding
running mean and running variance.
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3.3 TEMPORAL SALIENCY-GUIDED FILTER

Naively treating video frames as discrete and independent images and applying uniform optimization
across the entire video often leads to the loss of motion-related information in the temporal dimension,
resulting in suboptimal performance (Chen et al.| 2024). To address this limitation, we propose a
Temporal Saliency-Guided Filter (TSGF), which comprises temporally guided video optimization
and temporally guided video augmentation. This filter guides the update of video data by preserving
and enhancing temporal coherence, thereby improving the overall quality of the distilled videos.

Temporally Guided Video Optimization. To preserve motion-related semantic information during
the optimization process, it is essential to impose constraints that prevent over-optimization, which
could otherwise diminish temporal dynamics. To this end, we compute the temporal saliency of
each frame and assign adaptive optimization magnitudes accordingly. Specifically, we calculate the
inter-frame difference for each frame using the following formulation:

_ | fixr — fil +1fi — fil
2

where f; denotes the i-th frame, and d; represents the inter-frame difference of the :-th frame. Inter-
frame differences are often used as a metric to determine key frames in a video, and the magnitude
of these differences can indicate the importance of each frame to some extent. However, the raw
inter-frame difference cannot be directly used to measure the temporal saliency of the video frames
because of the local jitter. To take advantage of the locality inherent in the video and eliminate the
effects of local jitter, we apply smoothing to the raw inter-frame differences as follows:

d; (6)

s;=agxd; + oy xdi—1 + -+ o xdi_y, @)

where s; denotes the temporal saliency of the ¢-th frame, k represents the window length, and ay, is
the smoothing weight for previous frames, which is determined by the window function. To preserve
the temporal information of the video, we compute the TSGF based on s; of each frame. Specifically,
the greater the importance of a frame, the smaller its optimization degree will be. The calculation

formula is as follows:
max (e — s,0)

M= (8)

max(s) — min(s)’

where M denotes the optimization mask, s represents the temporal saliency vector of the video, and e
indicates the upper bound of temporal saliency. The resulting mask is directly multiplied with the
gradients to guide the optimization process for each frame in the video.

Temporally Guided Video Augmentation. To further enhance the diversity of synthetic datasets
while preserving teporal information, we apply a dynamic video data augmentation during post-
evaluation phase. To prevent the loss of key frame information during augmentation, we also utilize
TSGF as guidance to selectively perform data augmentation. The augmented videos are then used for
the final model training.

Common image augmentation methods such as MixUp (Zhang et al.,|2017) and CutMix (Yun et al.,
2019) are not directly applicable to videos, as they can disrupt the inherent temporal structure. To
address this issue, we first compute s; of each video frame using the Eq. (7). Then, we apply
VideoMix (Yun et al.,[2020) augmentation at the same positions across non-key frames, guided by
their temporal saliency scores s;. Specifically, when s; < ¢, data augmentation is applied to the frame
fi, and if not, the frame remains unchanged. This strategy is simple yet effective, and the detailed
ablation results can be found in the Appendix |C] Our distillation process is summarized in Algorithm

0

4 EXPERIMENTS

To verify the efficiency of our proposed method, we conduct experiments following two-steps
paradigm, as the standard evaluation procedure for dataset distillation. In the first step, we train a
randomly initialized model using the original dataset to compress the information of the original
dataset into the model, and then use the model to synthesize the distilled dataset. In the second
step, a standard model training process is conducted using the synthetic dataset, and performance is
evaluated on the original test set.



Under review as a conference paper at ICLR 2026

Table 1: Comparison of top-1 accuracy with existing methods on small-scale datasets. Our method
achieve significant performance improvements across various settings.

Dataset MiniUCF HMDBS1
IPC 1 5 1 5
Random 9.9+0.8 229+£1.1 4.6=£0.5 6.6 0.7
Coreset Selection Herding 12716 25.8+0.3 3.84+0.2 8.5+0.4
K-Center 11.5+0.7 23.0+£1.3 3.1+0.1 5.2+0.3
DM 15.3+£1.1  25.7+£0.2 6.1+0.2 8.0+0.2
MTT 19.0+0.1 28.4+0.7 6.6 +0.5 8.4+0.6
FRePo 203+£05 302417 7.24+0.8 9.6 £0.7

DM+VDSD 175+0.1 272+£04 6.0£0.9 8.2+04
MTT+VDSD 23.3£06 28.3+0.0 6.5+0.4 8.9+0.1
FRePo+VDSD 22.0+1.0 31.24+0.7 8.6 0.1 10.3 £ 0.6
IDTD 225+0.1 33.3£0.5 9.5£0.3 16.2£0.9
Ours 39.2+07 548+05 139+£09 202+04

Dataset Distillation

4.1 DATASETS

In this study, we conduct experiments on several widely-used video benchmark datasets, including
UCF101(Soomro et al.,[2012), HMDB51(Kuehne et al., [2011)), Kinetics-400(Carreira & Zisserman,
2017), and Something-Something V2(Goyal et al.,|2017). To ensure fair comparison with previous
work (Wang et al.| 2024} |Zhao et al.,|2024), we adopt the light-weight version of UCF101, namely
MiniUCFE.

UCF101 is a widely used benchmark dataset for human action recognition, containing 13,320
unconstrained video clips from 101 action categories. HMDBS51 consists of 6,766 video clips spanning
51 human action classes. Kinetics-400 is a large-scale video dataset introduced by DeepMind,
comprising around 240,000 training videos and 400 diverse action categories. Something-Something
V2 focuses on fine-grained temporal reasoning and object interactions, with 220,847 video clips
across 174 action categories.

4.2 IMPLEMENTATION DETAILS

To ensure fair comparison, all experimental settings are aligned with those used in VDSD (Wang
et al., 2024) and IDTD (Zhao et al., [2024)). For the MiniUCF and HMDBS51 datasets, we follow
the dataset splits provided by VDSD, and each video is sampled to 16 frames with a resolution of
112x112. For the Kinetics-400 and SSv2 datasets, each video is sampled to 8 frames with a resolution
of 64x64. The four datasets are grouped into two categories for experimentation: MiniUCF and
HMDBS1 are treated as light-weight datasets, and we report top-1 accuracy; Kinetics-400 and SSv2
are considered large-scale datasets, and we report top-5 accuracy. For the proxy model, we adopt
MiniC3D(Wang et al.,[2024), a light-weight version of the C3D(Tran et al.,[2015) model obtained
through architectural simplifications. We will provide a detailed description of the model architecture

in Appendix
4.3 MAIN RESULTS

We present the experimental results on light-weight and large-scale datasets in Table[I]and Table 2]
respectively, demonstrating the superiority of our method across various datasets and IPC (instance per
class) settings. The methods evaluated include coreset selection methods, image dataset distillation
methods, existing video dataset distillation methods and our method.

Light-weight Datasets. On the MiniUCF and HMDB51 datasets, our method achieves significantly
better performance compared to existing approaches. Specifically, under the IPC=5 setting on
MiniUCEF, our method attains an accuracy of 54.8%, yielding a 21.5% improvement over previous
methods. On HMDBS51 with IPC=5, our method achieves 20.2% accuracy, outperforming existing
methods by 4%. Although the performance gain on HMDBS51 appears smaller compared to MiniUCF,
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Table 2: Comparison of top-5 accuracy with existing methods on large-scale datasets. T denotes the
top-5 accuracy of our teacher models trained on the full dataset is lower than the baselines due to
different hyper-parameters settings.

Dataset Kinetics-400 SSv2

IPC 1 5 1 5
Random 3.0£+0.1 5.6 +0.0 3.3+0.1 3.9+0.1
DM 6.3+0.0 9.14+0.9 3.6 0.0 4.14+0.0
MTT 3.84+0.2 9.14+0.3 3.9+0.1 6.3+0.3

DM+VDSD 6.34+0.2 7.04+0.1 4.0+0.1 3.84+0.1
MTT+VDSD 6.3 +0.1 11.5+0.5 5.5+ 0.1 8.3+0.1
IDTD 6.1+0.1 12.14+0.2 3.9+0.1 9.5+0.3
Ours 6.5+02" 1344037 104+01 152+0.2

Random

Figure 3: Visualization results on MiniUCF under IPC=1 with varying numbers of frames.

it is important to note that the full dataset accuracy on HMDBS51 is only 28.6%. The accuracy
achieved by our distilled dataset is already approaching that of the full dataset, demonstrating the
effectiveness of our method. Coreset selection and image dataset distillation methods generally
exhibit inferior performance, highlighting the limitations of image-based algorithms in effectively
leveraging temporal information inherent in video data. These methods, when directly transferred to
the video domain, can only achieve suboptimal results.

Existing video distillation algorithms address this issue by incorporating partial temporal cues, leading
to moderate performance gains; however, their improvements remain limited, as their effectiveness
still primarily relies on spatial information, with minimal exploitation of temporal dynamics. Our
proposed distillation algorithm achieves consistent performance improvements across all experimental
settings, validating the effectiveness of the proposed temporal saliency-guided filter.

Large-scale Datasets. Under the IPC=5 setting on the SSv2 dataset, our method achieves an accuracy
of 15.2%, resulting in a 5.7% performance gain over existing approaches. On Kinetics-400, our
method also surpasses the baseline, even though the model used achieves only 22.4% accuracy
when trained on the full dataset. With an IPC=5 setting, the compression ratio on both datasets falls
below 1%, making the distillation task significantly more challenging than on light-weight datasets.
Consequently, the overall performance of existing methods remains relatively low, with a substantial
gap compared to models trained on the full datasets. This highlights the considerable room for
improvement in video dataset distillation on large-scale datasets. Despite the increased difficulty, our
method consistently outperforms existing approaches across all experimental settings.

4.4 VISUALIZATION

To visually demonstrate the effectiveness of our method in utilizing temporal information, we conduct
a qualitative analysis of the distilled results under the [PC=1 setting on the MiniUCF dataset, with
visualizations for each method presented in Figure[3] As shown in the results, the distilled samples
generated by the DM method are visually similar to real images. In contrast, VDSD suffers from
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distortion due to its reliance on interpolation techniques, and SRe?L’s matching strategy leads to
homogenization across frames, resulting in the loss of temporal information. In comparison, our
method enables dynamic optimization of individual frames, effectively preserving temporal dynamics
while simultaneously compressing spatial information. For additional visualization results, please
refer to the Appendix

4.5 ABLATION STUDY

Effectiveness of Each Component.  To verify

the effectiveness of each component in the dis- Table 3: Ablation study on individual components.
tillation framework, we conduct ablation studies TSGFo and TSGF 4 denote the video optimization
on the MiniUCF dataset under the IPC=5 setting. and the video augmentation based on TSGF, re-
The detailed results are shown in Table 3] where spectively.

TSGFo denotes the temporal saliency-guided fil- Methods Acc
ter, and TSGF 4 refers to the temporal saliency-

aware video augmentation strategy. The base- baseline 40.5 0.3
line refers to the three-stage video distillation baseline + TSGF 4 46.9 £0.2
framework without the inclusion of these two baseline + TSGFp 51.7+£0.6

components. Experimental results demonstrate baseline + TSGFp +TSGF4 54.8 £ 0.5
that both components contribute significantly to
performance improvements.

Cross Architecture Generalization. We

present the cross architecture generalization re- Table 4: Cross-architecture experiments on Mini-
sults in Table [d] where all the evaluated model UCF with IPC=1. Our method achieve superior
architectures are introduced in (Wang et al generalization ability.

2024). Although the synthetic dataset is gener- Evaluation Model

ated based on a pre-trained model, which limits ConvNet3D  CNN+GRU = CNN+LSTM
the performance gain when transferring across Random 99+08 62408 6.5+ 0.3
architectures, our method consistently outper- DM 153+£11  9.9+£07 9.2+0.3

. . . MTT 19.0£0.1 8.4%0.5 73+04
forms existing approaches across all architec-  \onen | 17500 190407 108402

tures. This demonstrates the strong generaliza- MTT+VDSD | 23.3+0.6 148+0.1 13.4+02

tion ability of our method in cross-architecture Ours 39.2+07 178404 16.5+0.3
scenarios.

Number of Frames. Figure 4 presents the ac- 50-

curacy comparison between our method and the —e— VDSD

baseline under different numbers of frames. As 40{ —— IDTD

shown, when the number of frames is small, § Ours

the video data essentially degrades into image E”’

data, with minimal temporal information avail- g

able. In this case, our method achieves relatively § 207 W
poor performance. However, as the number of < 10] o

frames increases and temporal information be-

comes more prominent, the performance of our 0. | | |
method improves significantly, demonstrating 12 4 8 16
its effectiveness in leveraging temporal cues in Number of Frames

video data. Figure 4: Experimental results on MiniUCF under

IPC=1 with varying numbers of frames.

5 CONCLUSION

In this study, we propose a unified video distillation framework that enables efficient video distillation
based on a Temporal Saliency-Guided Filter. We first train the model using a standard training
process, and then perform temporally guided video optimization to simultaneously compress spatial
and motion-related information during the distillation process. To further enhance video diversity,
we adopt temporally guided video augmentation to augment the video data. Extensive experiments
conducted on datasets of varying scales and domains, demonstrating that our method provides a novel
and effective paradigm for video dataset distillation.
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A ABLATION STUDY ON INITIALIZATION

Table 5: Results under vari-Table 6: Ablation study on Table 7: Experimental results on static

ous initialization strategies data augmentation. and dynamic group.
Methods Acc Methods Acc IPC Acc S-Acc D_Acc
random init  36.8 + 0.3 image-based  43.1 4 0.4 1 39.2+0.7 355+1.0 34.6=+0.38
.. TSGF 54.8+ 0.5 5 54.84+05 H3.6+1.2 585£0.7
realinit ~ 54.8+£0.5 A ©=0. 10 605406 57.1+09 64.6+0.7

To evaluate the impact of initialization on the distillation process, we conduct an ablation study
by comparing different initialization strategies for the synthetic dataset. Specifically, we compare
random noise initialization with initialization from real video frames. Our results indicate that real
initialization significantly outperforms noise-based initialization. This suggests that temporal priors
embedded in real videos provide a more informative starting point for learning temporal dynamics.

B IPC ABLATION

We further examine the effect of instance per class (IPC) on the performance of the distilled dataset.
Experiments are conducted on MiniUCF and HMDBS51 with IPC values ranging from 1 to 20. As
expected, the performance improves consistently with larger IPC values, highlighting the trade-off
between data compactness and model accuracy.

Table 8: Ablation study on IPC.
IPC 1 5 10 20

MiniUCF 39.24+0.7 54.8+0.5 60.5+0.6 62.84+0.2
HMDB51 13.94+0.9 202+04 2254+09 26.3+0.7

C DATA AUGMENTATION ABLATION

To understand the contribution of data augmentation in our framework, we conduct a comparative
study between two settings: standard image-based augmentations and our proposed Temporally
Guided Video Augmentation. The results clearly show that traditional image augmentations tend to
disrupt temporal coherence, resulting in suboptimal performance. In contrast, our TSGF 4 significantly
enhances the temporal diversity of synthetic videos while preserving motion continuity, leading to
noticeable performance gains.

D EXPERIMENTS ON STATIC AND DYNAMIC GROUP

Following the protocol established by VDSD(Wang et al.,|2024), the MiniUCF dataset was partitioned
into two subsets: the static group, consisting of categories characterized by minimal motion changes,
and the dynamic group, comprising categories with significant temporal variations. We conducted
separate distillation experiments on these two groups to investigate the effectiveness of our method
under different temporal dynamics. Our results show that on the dynamic group, which requires
capturing complex temporal dependencies, our method achieves outstanding performance. This
demonstrates the superior capability of our framework in preserving and leveraging temporal dynam-
ics during the distillation process. The distinction between static and dynamic groups highlights the
importance of explicitly modeling temporal information in video dataset distillation. While static
actions rely more on spatial cues, dynamic actions demand effective temporal modeling, which our
method addresses through temporal saliency-guided optimization and augmentation.
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E ABLATION STUDY ON GRADIENT DIRECTION

To investigate the effect of gradient direction, we con-
duct additional experiments in which the mask values Table 9: Performance comparison of whether
are allowed to take negative values, enabling tem- the mask affects the gradient direction.

poral saliency to modulate both the magnitude and IPC  Magnitude-only Both

direction of the gradients. We evaluate this setting

on the MiniUCF dataset under various IPC configu- 1 39.24£0.2 19.0£0.3
5 54.8+0.5 29.6 £0.1

rations, as shown in Table[0] The results indicate that
when the mask affects both the magnitude and direc- 10 60.5+0.3 32.9+0.4
tion of the gradients, the overall performance experiences a substantial degradation. This observation
suggests that constraining the role of the mask to regulating gradient magnitude, rather than altering
gradient direction, constitutes a more effective and robust strategy.

F EXPERIMENTS ON DOWNSTREAM VIDEO TASKS

Existing baseline methods are primarily designed for
dataset distillation in video classification tasks, and Table 10: Performance on the Temporal Ac-
we follow the same setting to ensure fair comparisons. tion Segmentation task.

However, the proposed method offers a plug-and-play Acc Edit F1@10,25,50

solution for video dataset distillation, as it does not Mean  69.0 427  50.0/46.1/37.4
rely on any task-specific supervision. This generality Coreset 61.7 43.3  49.9/46.3/35.4
enables the method to be seamlessly extended and Ours 73.2 56.3 64.2/61.8/51.7

applied to other video understanding tasks beyond
classification. Here we present some results by applying our method on Temporal Action Segmenta-
tion (TAS) dataset 50Salads (Stein & McKennal 2013)), as shown in Table@} The results demonstrate
that our method attains consistently strong performance on the TAS task.

G VISUALIZATION

G.1 OpT1icaL FLows

To qualitatively analyze how our method pre-
serves temporal dynamics, we visualize the op-

tical flow of distilled videos in Figure [5] The )
optical flow maps clearly illustrate that our ap-
proach preserves smooth and consistent motion ,‘. [ .

patterns. This indicates that the temporal dynam-
ics crucial for action recognition are effectively
retained during the distillation process.

ApplyEyeMakeup  BalanceBeam GolfSwing

Figure 5: Optical flows of MiniUCF.
G.2 INTER-FRAME DIFFERENCES
In addition to optical flow, we also visualize frame differences to highlight temporal changes across
frames. As shown in Figure[6] our method maintains coherent motion patterns and smooth temporal

transitions. This further validates the effectiveness of our temporal saliency-guided framework in
maintaining critical dynamic information necessary for accurate video understanding.

H IMPLEMENTATION DETAILS

H.1 MODEL ARCHITECTURE

The specific architecture of MiniC3D
is illustrated in Figure[7] For the con- | convan 1
volutional layers, Conv3D 1 through 64

Conv3D 3 adopt kernels of size 3x7x7

with a stride of 1x2x2 and padding of Figure 7: The architecture of MiniC3D.(Wang et al, 2024)

Conv3D 2
128

Conv3D 3
128

Conv3D 4
num_class
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Figure 6: Inter-frame difference visualization on MiniUCFE.
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1x3%3. Conv3D 4, which serves as

the classification layer, employs a kernel of size 1x1x1 with a stride of 1x1x1. Regarding the pooling
layers, Pool3D 1 applies max pooling with a 1x2x2 kernel, Pool3D 2 and Pool3D 3 adopt max
pooling with a 2x2x2 kernel, while Pool3D 4 uses average pooling.

H.2 HYPERPARAMETERS

We provide a detailed summary of the parameters used in Dataset IPC | Ir " bn
our experiments in Table[TT] where Ir denotes the learning —
rate, and r_bn refers to the coefficient of the regularization MiniUCE 11025 0.001
loss. Parameters not explicitly stated are assumed to follow ? 8%2 888?
the default values specified in our code. : :

P HMDBSI 5 | 025 0.005

L 1 03 0.01
H.3 COMPUTATIONAL RESOURCES Kinetics-400 o | (3 0
1 03 0.01

All experiments were performed on a server equipped SSv2 5 03 001

with eight NVIDIA RTX 3090 GPUs, each with 24 GB of
memory. Compared to training on the full-scale original
datasets, our video dataset distillation method significantly
reduces both training time and computational resource
demands.

Table 11: Hyperparameters for different
datasets.

I BROADER IMPACT

Our proposed video dataset distillation framework holds significant potential to advance research
and applications in video understanding by substantially reducing the computational cost associated
with training deep video models. This can democratize access to large-scale video analysis tech-
niques, enabling wider adoption across academia and industry, especially for groups with limited
computational resources. By facilitating faster and more efficient model training, our method may
accelerate developments in areas such as video surveillance, autonomous driving, human-computer
interaction, and content recommendation systems, ultimately benefiting society through improved
safety, convenience, and personalized experiences. Importantly, the distilled synthetic datasets gener-
ated by our approach inherently protect privacy by reducing reliance on storing and sharing large
volumes of original video data, which often contain sensitive or personally identifiable information.
From an ethical perspective, our work does not introduce new risks for malicious use, as it focuses
on improving data efficiency rather than altering or generating misleading content. Nonetheless,
as with any technology related to video analysis, responsible deployment should consider privacy,
consent, and potential biases in training data. Overall, we believe our method contributes positively
to sustainable and ethical Al development in the video domain.
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