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Abstract

Autonomous assembly of objects is an essential task in
robotics and 3D computer vision. It has been studied exten-
sively in robotics as a problem of motion planning, actuator
control and obstacle avoidance. However, the task of de-
veloping a generalized framework for assembly robust to
structural variants remains relatively unexplored. In this
work, we tackle this problem using a recurrent graph learn-
ing framework considering inter-part relations and the pro-
gressive update of the part pose. Our network can learn
more plausible predictions of shape structure by account-
ing for priorly assembled parts. Compared to the current
state-of-the-art, our network yields up to 10% improvement
in part accuracy and up to 15% improvement in connectiv-
ity accuracy on the PartNet [23] dataset. Moreover, our
resulting latent space facilitates exciting applications such
as shape recovery from the point-cloud components. We con-
duct extensive experiments to justify our design choices and
demonstrate the effectiveness of the proposed framework.

1. Introduction

Automated assembly requires a structural and functional
understanding of object parts to place them in their appro-
priate locations. In a chair, a square-shaped structure could
be its base or its back. A long cuboid part could be its legs.
However, imparting this assembly skill to machines is still
an open problem in vision and robotics.

To ensure smooth and collision-free assembly, we must
accurately estimate the pose of each part. In robotics litera-
ture, there are a few works that attempt this problem. Choi
et al. [6] develop a pose estimation scheme to register point
cloud to incomplete depth maps. Suarez et al. [30] assem-
ble an IKEA chair by hard-coding motion trajectories onto
robotic arm manipulators. However, none of the prior works
can be generalized to assembling everyday objects where we
do not have access to the global structure of the assembled
shape. In this work, we assemble a shape from its part point

B-DGL Ours Ground-truth

Figure 1: Our progressive Part Assembly scheme reduces
inter-part confusion. Dynamic Graph Learning [11] (B-
DGL) mistakes the green coloured chair seat for its back.

clouds without any prior semantic knowledge. Instead of
manually configuring per-part pose, we explore relations that
can be generalized across shapes in a category.

A study conducted in 2003 on designing assembly instruc-
tions [2] uncovers that humans prefer sequential assembly
instructions - split into step-by-step instructions. This could
be an assembly diagram illustrating how each part connects
with the other or an instructional video. However, designing
detailed diagrams can become cumbersome for the designer.
In some instances, intricate designs are often unnecessary.
Understanding the assembly progression can provide infor-
mation of the subsequent part poses. This work demonstrates
that a linear ordering of part elements can significantly im-
prove part placement and inter-part connectivity.

Being a recently formulated research problem, only a few
works tackle this problem in a similar setting as ours. Li et
al. [19] assemble a shape from its component point cloud
using an image-based prior. In Coalesce [37], the authors
develop a framework for assembly and joint synthesis using
translation and scaling of component point clouds. Huang
et al. [11] attempt this task without semantic knowledge of
parts using a dynamic graph learning framework.

However, none of these prior works have explored pro-
gressive assembly strategies. They transform all parts at once
without leveraging information that previous part placements
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Figure 2: Top-down order for a chair in PartNet [23].

can offer. This can result in confusion among structurally
similar components. For instance, a chair seat may have a
very similar structure to the chair back, resulting in its in-
correct placement (Figure 1). By incorporating an assembly
progression (Figure 2), we reduce inter-part confusion and
increase the network’s capacity to learn intricate structures.

Similar to [11], we account for structural variety by incor-
porating random noise and allowing our network to explore
the ground truth space using the minimum-over-N (MoN) [8]
loss. Further, we analyze our network performance at vari-
ous dimensions of random noise. Our analysis reveals that
our framework can generalize well even at the zero random-
ness setting. Overall, our progressive scheme demonstrates
up to 10% improvement in part accuracy and up to 15%
improvement in connectivity accuracy over dynamic graph
learning [11] on PartNet [23]. Moreover, our standalone
framework can achieve up to 6% improvement over this
baseline, demonstrating its efficacy. Our ablation studies
address the critical aspects of our scheme, including the ar-
chitectural design and the optimal order for part placement.

In summary, our major contributions are -

• We propose a novel recurrent graph learning frame-
work for assembly which significantly improves part-
placement and inter-part connectivity.

• Our framework yields competitive performance even in
the absence of random exploration.

• We demonstrate qualitatively the potency of our latent
space by utilizing it to recover shape without access to
its global structure.

• We investigate a variety of ways of ordering part com-
ponents, and experimentally establish the optimality of
our choice.

2. Related Work
Part Based 3D Modelling. We can decompose complex

3D shapes into simple part structures, which can construct
novel shapes. One of pioneering works in this direction was
by Funkhouser et al. [9], who attempted this problem using
an intelligent scissoring of parts components. The subse-
quent works [3, 16, 13] utilize probabilistic graphical models
to encode semantic part relationships. The authors of [4]
demonstrate the construction of high-quality CAD models
using noisy data from sensors and a 3D shape database.

Recent works leverage the power of deep neural networks
for shape-modelling. ComplementMe [31] introduces a
weakly supervised approach in the absence of consistent
semantic segmentation and labels. The authors of [7] create
an autoencoder for a latent space to factorize a shape into its
parts, allowing for part-level shape manipulation.

Most of the prior works in this domain either assume
known part semantics or depend on an existing shape reposi-
tory. We make no such assumption and assemble a variable
number of parts during testing.

Structural Shape Generation. With the advent of
deep-learning and the development of large scale shape
datasets [23, 36], shape generation has garnered the interest
of the vision community. GRASS [18] and StructureNet [21]
compress shape structure into a latent space, taking into ac-
count inter-part relationships. PT2PC [22] generates 3D
shapes conditioned on the part-tree decomposition. Sha-
peAssembly [15] uses a procedural programmatic represen-
tation for connecting part cuboids. SAGNET [34] develops
a structural aware generative model, catering to pairwise re-
lationships and encoding structure and geometry separately.
SDM-NET [10] extends this approach to meshes through a
controlled generation of fine-grained geometry.

Few of these prior works model shape generation as an
assembly of point cloud components. Inspired by Seq2Seq
networks for machine translation, PQ-NET [33] develops
a sequential encoding and decoding scheme for regressing
shape parameters. PageNet [17] utilizes a partwise-VAE to
regress the transformation parameters of a 3D shape.

Instead of generating a new point cloud structure, we
transform the existing point clouds of shape components
using a rigid transformation. This is more relevant to real-
world vision and robotics applications.

Part Component Assembly. Automated part assembly
is a long-standing problem in robotics, emphasizing 6D pose
estimation, motion planning and actuator control. Shao et
al. [28] utilize fixtures to reduce the complexity of the assem-
bly space. Zakka et al. [38] generalize assembly to unseen
categories using shape descriptors. The authors of [20] uti-
lize reinforcement learning to incorporate parameters like
force and torque into assembly. Several other works formu-
late assembly as a motion planning problem [12, 14].

We tackle the problem closely aligned to computer vision,
wherein we estimate the 6D pose from part point clouds
without prior semantic knowledge. In this domain, [19, 11]
formulate a similar problem to ours. Li et al. [19] utilize
a two-stage pipeline of image segmentation followed by
part assembly. The authors of [11] utilize a dynamic graph
framework to assemble a shape. However, unlike these
prior works, we incorporate progressive assembly to encode
information, significantly improving part-placement.
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Figure 3: One iteration of our Recurrent Graph Learning framework. (a) We process part features and compute a graph
message. (b) The message is encoded sequentially in our bidirectional GRU framework. (c) The features generated by the
forward and reverse GRU are used to regress part-pose. We use three such iterations in our framework.

3. Proposed Method
Consider an ordered set of N non-overlapping point

clouds components of a 3D shape, P = (P1,P2, . . . ,PN ),
where Pi ∈ RNd×3, and Nd, represents the number of points
per 3D shape. We predict part poses (qi, ci), where, qi ∈ R4

given ∥qi∥2 = 1 represents the quaternion and ci ∈ R3 rep-
resents the translation. The complete assembled shape is
S = T1(P1) ∪ T2(P2) ∪ · · · ∪ TN (PN ). Here, Ti(.)
represents joint SE(3) transformation arising from (qi, ci).

To assemble a shape, we utilize an iterative network com-
posed of a graph learning backbone [11] and a progressive
assembly encoder. We call this framework Recurrent Graph
Learning (RGL). The graph learning backbone accounts for
inter-part relations to comprehend contextual information.
Progressive encoding accumulates a prior using the shape
structure of already assembled parts. We provide the com-
plete pipeline of our framework in Figure 3.

3.1. Graph Learning Backbone

We model the inter-part relations, using a time-varying
dynamic graph with set of vertices V(t) and edges E(t).
The nodes of the graph V(t) = {v(t)

1 ,v
(t)
2 , . . . ,v

(t)
N } are

the features of each part Pi at time step t of the itera-
tive network. The graph is complete with a self-loop, i.e.,
(i, j) ∈ E(t) ∀ (i, j) ∈ [N ]× [N ]. Here, [N ] denotes the set
of first N natural numbers {1, 2, . . . , N}. We initialize the
features v(0)

i ∈ R256 using a shared PointNet [26] encoder

on the point-cloud Pi. At time step t, we model the edge
message e

(t)
ij ∈ R256 between the i-th and j-th nodes as,

e
(t)
ij = fedge

([
v
(t)
i

v
(t)
j

])
. (1)

During assembly, distinct part-pairs may bear a different
relationship. For instance, the four legs of a chair could be
strongly dependent on each other and less influenced by the
position of the chair back. To account for this, we use an
attention mechanism [32]. Accordingly, we compute the
overall message received by v

(t)
i as a weighted combination

of edge messages from all possible nodes v(t)
j .

m
(t)
i =

∑N
j=1 w

(t)
ij e

(t)
ij∑N

j=1 w
(t)
ij

. (2)

Here, w(t)
ij represents the scalar attention weight between

nodes v
(t)
i and v

(t)
j . Among the many possible ways to

compute attention, we observe that using features extracted
from part poses T(t)

i and T
(t)
j yield good results.

w
(t)
ij = frel(ffeat(T

(t)
i ), ffeat(T

(t)
j )), ∀t > 0. (3)

Here, ffeat processes part-poses and returns a 128D feature.
frel operates on these features to return the scalar wij . At the
initial time step, w(0)

ij = 1 and T
(0)
k (Pk) = Pk, ∀k ∈ [N ].
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3.2. Progressive Message Encoding

We identified two choices for progressive assembly - a)
update the part features one at a time and use the updated
features for relational reasoning with subsequent parts, b)
storing the assembly information in a recurrent unit. We
reject the first option because - i) we face the problem of
vanishing and exploding gradients for parts occurring at the
beginning of the sequence, ii) the parts at the end receive
more supervision than the parts occurring at the beginning.
Instead, we utilize a bidirectional gated recurrent unit (GRU)
to store the prior assembly. This ensures smoother gradient
flow. Moreover, its bidirectional nature distributes informa-
tion fairly across the sequence.

We model the network by two ordered sets of hid-
den states H(t) = {h(t)

1 ,h
(t)
2 , . . . ,h

(t)
N } and G(t) =

{g(t)
1 ,g

(t)
2 , . . . ,g

(t)
N } for the forward and backward recur-

rent units, respectively. Here, h(t)
k ,g

(t)
k ∈ R256, ∀k ∈ [N ].

We allow our network to explore the ground truth space by
encoding noise in the initial hidden state.

h
(t)
1 = g

(t)
N =

[
z⊤ 0⊤]⊤ . (4)

Here, z ∼ N (0, I) represents the random noise vector.
We keep the initial forward and reverse hidden states the
same so that both learn similar shape structures. While
regressing the part pose of a current part Pi, we take into
account its current features and the received part message.

The recurrent input, r(t)i =

[
v
(t)
i

m
(t)
i

]
gives the network a

context of the relative and absolute orientation of each part.
We incorporate this information onto the prior using fhidden.

h
(t)
i+1 = fhidden(r

(t)
i ,h

(t)
i ) (5)

g
(t)
i−1 = fhidden(r

(t)
i ,g

(t)
i ). (6)

Correspondingly, for each part we obtain two outputs, a(t)i

and b
(t)
i through forward and reverse encoding, respectively.

a
(t)
i = fout(r

(t)
i ,h

(t)
i ) (7)

b
(t)
i = fout(r

(t)
i ,g

(t)
i ). (8)

We model the updated features v(t+1)
i by processing a

(t)
i ,

b
(t)
i ∈ R256 using a function fconcat.

v
(t+1)
i = fconcat

([
a
(t)
i

b
(t)
i

])
. (9)

This step aims to reduce the bias occurring due to part
location in the sequence; parts appearing at the beginning

of the first sequence would occur at the end of the second
and vice-versa. Using these updated features, we can regress
the pose for each part. We also utilize the original features
v
(0)
i and previously extracted part-pose T

(t)
i , to pass on

information extracted in previous time-steps.

T
(t+1)
i = fpose(v

(t+1)
i ,v

(0)
i ,T

(t)
i ). (10)

In our implementation, fout and fhidden are the transfer
functions of the GRU block. frel, fedge, ffeat, fpose and
fconcat are Multi-Layer-Perceptron’s (MLP’s). Overall, we
utilize three time steps of the RGL framework.

4. Experiments
In this section, we demonstrate the merits of our sequen-

tial strategy through a variety of experiments. We also justify
our design choices through extensive ablation studies.

4.1. Dataset

Due to the unavailability of a large scale real-world
dataset for this task, we utilize the synthetic PartNet [23]
dataset containing fine-grained part segmentation. We use
the three largest categories - i) chair, ii) table and iii) lamp
with the predefined train (70%), validation (10%) and test
(20%) splits. Each component part contains 1000 points,
sampled from part meshes using farthest point sampling.
To ensure invariance to rigid transformations, we transform
each point cloud into its canonical space using PCA [25].

4.2. Loss Functions

To explore structural variations, we incorporate the MoN
loss [8], along with random noise zj in the initial hidden
state. Considering our overall network as f and the optimal
pose-extractor as f∗, we define the MoN loss as,

Lmon = min
j∈[N ]

L (f (P, zj) , f
∗(P)) . (11)

Here, zj ∼ N (0, I) ∀ j ∈ [N ], are IID random noise vec-
tors. The loss function, L, is split into three categories
similar to [11] for global and part-wise structural integrity.

The translation is supervised by an L2 loss Lt between
the predicted and ground-truth part center (c∗i ,c∗i ).

Lt =

N∑
i=1

∥ci − c∗i ∥
2
2 . (12)

The rotation is supervised by calculating Chamfer dis-
tance [8] between the rotated point cloud qi(Pi) and the
ground-truth point cloud q∗

i (Pi) (Equation (13)).

Lr =

N∑
i=1

dc(qi(Pi),q
∗
i (Pi)). (13)
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B-Global [27, 17] B-LSTM [33] B-Complement [31] B-DGL [11] Ours without MoN Ours (Complete)

SCD↓
Chair 0.0146 0.0131 0.0241 0.0091 0.0101 0.0087
Table 0.0112 0.0125 0.0298 0.0050 0.0053 0.0048
Lamp 0.0079 0.0077 0.0150 0.0093 0.0088 0.0072

PA↑
Chair 15.70 21.77 8.78 39.00 42.84 49.06
Table 15.37 28.64 2.32 49.51 49.15 54.16
Lamp 22.61 20.78 12.67 33.33 31.66 37.56

CA↑
Chair 9.90 6.80 9.19 23.87 28.74 32.26
Table 33.84 22.56 15.57 39.96 39.71 42.15
Lamp 18.60 14.05 26.56 41.70 46.28 57.34

Table 1: Quantitative comparison with baseline methods. Green represents the best and Blue represents the second best.

Here, dc(X ,Y) is the Chamfer distance between the two
point sets X and Y , defined in Equation (14).

dc(X ,Y) =
∑
x∈X

min
y∈Y

∥x−y∥22+
∑
y∈Y

min
x∈X

∥x−y∥22. (14)

Lastly, the shape-cd-loss Ls (Equation (15)), ensures the
overall quality of the generated assembly S by computing
its Chamfer distance from the ground truth assembly S∗.

Ls = dc(S,S∗). (15)

Figure 4: Comparison of our method with B-DGL [11] on
the most common sub-components of each category.

4.3. Evaluation Metrics

We measure the network performance by generating a
variety of shapes and finding the closest shape to the ground
truth using minimum matching distance [1]. For better com-
parison, we utilize part accuracy (PA) , connectivity accu-
racy (CA) and shape Chamfer distance (SCD), used by [11].
Shape Chamfer distance is defined in Equation (15). We
define the remaining terms below.

Part Accuracy. This metric (Equation (16)) measures the
fraction of SE(3) transformed parts Ti(Pi) that lie below a
threshold Chamfer distance τp from the ground truth T∗

i (Pi).
Here, 1 represents the indicator function.

PA =
1

N

N∑
i=1

1
(
dc(Ti (Pi) ,T

∗
i (Pi)) < τp

)
. (16)

Connectivity Accuracy. We incorporate connectivity
accuracy (Equation (17)), to measure the quality of inter-
part connections. For each connected-part pair (Pi,Pj), we
define the contact c∗ij as a point on Pi that is closest to Pj .
Similarly, contact point c∗ji is the point on Pj that is closest
to Pi. (c∗ij , c

∗
ji) are transformed into their corresponding part

canonical space as (cij , cji). Then, connectivity accuracy is,

CA =
1

|C|
∑

{cij ,cji}∈C

1
(
∥Ti (cij)−Tj (cji)∥22 < τc

)
.

(17)
Here, C represents the set of all possible contact point pairs
{cij , cji}. During evaluation, τc and τp are set to 0.01.

4.4. Results and Comparisons

The only direct baseline to our work is Dynamic Graph
Learning (B-DGL) [11]. We also compare our results with
three other baselines: B-LSTM [33], B-Global [17, 27] and
B-Complement [31] used by B-DGL. As we were unable
to reproduce the results of B-Complement accurately, we
exclude it from our qualitative comparison.

In Table 1, we observe that the most improvement in part
accuracy(≈ 10%) occurs in the chair category. This could be
due to four distinct components of the chair - back, seat, leg
and arm, which merits our progressive assembly framework.
The improvement is ≈ 4.5% on the table category, which has
only two such distinct components - table-top and table-base.
On the lamp category, progressive assembly helps to ensure
better connectivity accuracy, which is 15% above B-DGL.

Figure 4 shows that the improvement is distributed across
the most common subcategories of a shape. Among these,
the chair-seat, chair-back and table-top are well-performing
subcategories. On the other hand, structurally diverse compo-
nents like the chair arm and table base have lower accuracy’s.

Our qualitative results reflect a few key aspects which our
progressive framework improves .We further highlight these
qualitative results in our supplementary video.

Inter-Part Confusion. In Figure 5(a), we observe that
the chair arm and leg share a very similar structure. B-
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B-Global [27, 17]

B-LSTM [33]

B-DGL [11]

Ours

Ground Truth

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Chair Table Lamp

Figure 5: Qualitative comparison with baseline methods on 9 different shapes, (a)-(i) of PartNet [23].

Figure 6: Comparison of our method with B-DGL [11] with
varying percentage of missing parts.

DGL misinterprets the unconventionally structured red chair
handles. Our framework is able to correctly place this part.

Better Connectivity. Our method better understands
fine-grained part connections. In Figure 5(f), our network is
able to correctly predict the four bars around the table-top.
In the lamp in Figure 5(i), our network is able to predict the
light bulb and its cover correctly.

Rotational Symmetry. Predicting rotational symmetry
is a challenging task which our network handles very well. In
Figure 5(b) the star shaped chair legs are correctly predicted.

4.5. Performance with Missing Parts

Often, a packaging defect can result in missing parts
during assembly. In this scenario, we want our algorithm to
predict plausible results so the deficiency can be identified.

This is not without a few caveats. By randomly choosing
a candidate for deletion, pivotal parts like the chair-seat could

be removed, affecting the quality of assembly. Instead, we
order parts according to their volume and delete a certain
percentage of the smallest volume parts. We utilize this
strategy as smaller parts are more likely to be misplaced.

B-DGL [11] Ours Ground Truth

Figure 7: Sample result with missing chair legs. Notice how
our method approximately positions the curved back.

For part deletion, we compute the volume of the axis-
aligned-bounding-box of the point cloud. Further, each part
belonging to a part-group (ex:-chair legs) is assigned the
minimum volume among all its members. This accounts for
point-cloud sampling variations. Moreover, we do not use
partial part-groups. For instance, if we delete one chair leg,
the rest of the chair legs are also deleted.

In Figure 6, we observe that the accuracy increases at spe-
cific deletion percentages. This could be due to the removal
of incorrectly placed smaller volume parts. The increasing
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difference with the baseline B-DGL shows that our algorithm
is more robust at higher deletion percentages. In Figure 7,
we provide a sample visual result on a chair at 60% deletion.

4.6. Shape Recovery from Latent Space

An exciting application of our latent space is shape re-
covery. Unlike shape-autoencoding [35, 5, 24], we do not
have access to the global shape structure. Instead, we re-
cover shape structure from the component point clouds. We
utilize the point cloud decoder of TreeGAN [29] and train
it without the discriminator separately on the two largest
categories, chair and table, using the last hidden state of our
GRU. During training, we optimize shape Chamfer distance
(Equation (15)) and train it independently of assembly.

In Figure 8, we observe that for the four-leg table, our
recovery maintains structural integrity. On the chair, our
network gives a good outline of the structure, with a sparser
distribution of points around the chair legs. This could be
due to storing a detailed shape in a smaller dimension.

This experiment gives an insight into our progressive
scheme. Our latent state carries coarse structure informa-
tion required in the subsequent steps. The reconstruction is
reasonably accurate given the hidden state has not been con-
strained during assembly and the diversity of PartNet [23].

Prediction Ground-truth Prediction Ground-truth

Figure 8: Results on shape recovery from hidden state. Our
method can recover coarse structure of the shape.

4.7. Bounds of Performance

Introducing random noise to our network architecture al-
lows us to generate structural variations. In this section, we
monitor the performance of our network to varying amounts
of randomness and establish a bound on part accuracy. We
do not modify the network architecture but change the dimen-
sion of random noise in Equation (4), keeping the dimension
of the hidden state h

(t)
1 and g

(t)
N fixed.

To better quantify the variations, we introduce the term
variability VE as the difference between its best and worst
performance. Analogous to Equation (11), we define maxi-
mum matching distance as the network’s worst performance
over E iterations. Then, considering our network as a func-
tion, f , the ground truth as f∗, and random noise as zj ,

VE = maxj∈[E] L (f (P, zj) , f
∗(P))−

minj∈[E] L (f (P, zj) , f
∗(P)) .

(18)

Figure 9: Performance of our network on varying dimension
of random noise. Our results at zero noise are comparable to
B-DGL [11] (Chair: 39.00, Table: 49.51, Lamp: 33.33).

To replicate a practical scenario, we choose E = 10 and
experiment with noise dimensions of 0, 32, 128 and 256.

Our results in Figure 9 demonstrate that increasing the
random noise allows the network to explore more structural
varieties; however, it results in a decreasing infimum. Also,
at a given noise dimension, the lamp category shows the
highest variability. This could be attributed to its structural
diversity and smaller dataset size.

We customize our network design choices based on this
analysis. For optimal performance, our network must bal-
ance accuracy (PA ↑) and variability (VE ↓). Accordingly,
we choose the noise dimension as 32 for the chair and lamp
category and 128 for the table category.

Performance in Absence of Random Noise. Incorporat-
ing MoN [8] loss during training explores structural varieties,
leading to better overall performance. However, it comes at
the cost of increased training time and variability (VE). Fig-
ure 9 reflects an additional benefit of our progressive scheme;
our results are competitive even in the absence of random
noise. In this setting, our network can be trained without
the MoN loss, which is ×2.5 faster and has no tradeoff on
variability (VE = 0). In Table 1, we note that these results
are comparable to B-DGL trained with 5 iterations of MoN.

4.8. Ablation Studies

In this section, we provide an experimental justification
of our design choices. In particular, we consider two major
aspects - i) structural variations of our architecture and ii)
optimal sequence for assembly. We provide details of each
configuration in our supplementary file.

Architectural Variants. We construct a diverse set of
architecture variants to justify our design choices. We use a
unidirectional RNN in both i) bottom to top and ii) top to bot-
tom ordering, iii) we initialize the subsequent hidden state,
(h(t+1)

1 = h
(t)
N and g

(t+1)
N = g

(t)
1 ), iv) we add noise to the

pose decoder instead of the hidden state, v) we evaluate our
recurrent backbone without graph learning, and vi) we pass
the precomputed graph-message after sequential encoding.

In Table 2, we observe that the bidirectional GRU in-
corporates more context compared to its unidirectional
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SCD ↓ PA ↑ CA ↑
(i) Bottom to Top Encoding 0.0086 46.42 29.66
(ii) Top to Bottom Encoding 0.0101 44.81 28.85
(iii) Initialize hidden states 0.0095 46.74 29.60
(iv) Noise in Pose Decoder 0.0098 46.31 31.19
(v) Without Graph Learning 0.0092 45.36 31.78
(vi) Sequential before Graph 0.0091 48.13 30.54

(vii) Ours (Complete) 0.0087 49.06 32.26

Table 2: Ablation study of structural variants.

counterpart. Using bottom-to-top encoding performs better
(PA = 46.42) than top-to-bottom (PA = 44.81) encoding.
This could be because the chair legs are closer to the seat,
and fixing the seat earlier in the sequence can better predict
the chair arm and back.

Our standalone framework can predict parts better (PA =
45.36) than the B-DGL (PA = 39.00), highlighting the mer-
its of progressive assembly. It is noteworthy to observe that
initializing hidden states of the subsequent time-steps t > 1
negatively impacts part accuracy (PA = 46.74). This could
be because using random noise at each step better explores
structural variations than initializing them with the previous
hidden state. Also, exploring global structural variations
by introducing the noise in the hidden state (PA = 49.06)
results in better performance than part-wise randomness, i.e,
placing noise in the pose-decoder (PA = 46.31).

We also analyze the importance of different loss functions
by removing each separately and training with the remaining
losses. In Table 3, we observe that Lt is the most significant
for accurate part placement. Among the remaining losses,
Lr helps improve connectivity between parts (CA), and Ls

helps optimize the overall shape structure (SCD).

SCD ↓ PA ↑ CA ↑
(i) Without Ls 0.0098 48.62 30.85
(ii) Without Lt 0.0091 16.35 14.21
(iii) Without Lr 0.0078 48.72 29.85

(iv) Ours (Complete) 0.0087 49.06 32.26

Table 3: Removing individual loss functions.

Optimal Order for Assembly. As our assembly strategy
is progressive, studying the interplay between ordering and
the resulting part placement is crucial. However, the num-
ber of possible arrangements grows exponentially with the
number of parts. Theoretically, there could exist an order
which produces better assembly results than ours. Identify-
ing this global optimum ordering is beyond the scope of this
experiment. Instead, we consider a few intuitive choices and
determine the best one among those - i) we consider volume
ordering, i.e., parts ordered from minimum to maximum vol-

SCD ↓ PA ↑ CA ↑
(i) Volume order 0.0119 36.13 22.01

(ii) Group Connectivity Order 0.0118 36.62 22.07
(iii) Part Connectivity Order 0.0114 37.46 25.19

(iv) Central - Part Connectivity 0.0102 43.04 28.65
(v) Random order 0.0158 30.91 19.04

(vi) Top to Bottom Order 0.0087 49.06 32.26

Table 4: Ablation study of the different orders used for
assembling a shape.

ume, ii) we group similar parts together, start from a random
group and iteratively append neighbouring groups, iii) we
start from a random part and iteratively append neighbour-
ing parts (part-connectivity), iv) we follow part-connectivity,
however, beginning at the part with maximum neighbours,
v) and lastly, we evaluate random ordering.

The results in Table 4 show that among our considered
choices, the top-down ordering (CA = 32.26) of parts is the
most optimal and random arrangement performs the worst
(CA = 19.04). Among the other choices, part connectiv-
ity ensures better connectivity (CA = 25.19) compared to
group-wise ordering (CA = 22.07). Moreover, starting
from the most connected part further improves connectivity
accuracy (CA = 28.65). However, there is not much differ-
ence in following volume ordering (CA = 22.01) and group
connectivity ordering (CA = 22.07).

5. Conclusion and Future Work

We proposed a novel progressive approach to assemble
shapes given their part point clouds which can better predict
part locations and inter-part connectivity. We showed the
potency of our latent space by utilizing it to recover shape
structure. Furthermore, our experiments demonstrated that
part ordering could play a crucial role in assembly automa-
tion. Future works may develop a reordering framework
to arrange randomly-ordered parts into a consistent top to
bottom order. Another possible study could explore the ap-
plication of our latent space in retrieving part-connectivity.

We would also like to incorporate constraints such as
symmetry into our progressive strategy. In a chair, we could
assemble its back, followed by its seat and legs ensuring
global shape symmetry constraints at each step. This would
reduce the dimensionality of the assembly space.
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