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ABSTRACT

Recent works have shown that deep neural networks are vulnerable to adversarial
examples that find samples close to the original image but can make the model
misclassify. Even with access only to the model’s output, an attacker can em-
ploy black-box attacks to generate such adversarial examples. In this work, we
propose a simple and lightweight defense against black-box attacks by adding
random noise to hidden features at intermediate layers of the model at infer-
ence time. Our theoretical analysis confirms that this method effectively enhances
the model’s resilience against both score-based and decision-based black-box at-
tacks. Importantly, our defense does not necessitate adversarial training and has
minimal impact on accuracy, rendering it applicable to any pre-trained model.
Our analysis also reveals the significance of selectively adding noise to different
parts of the model based on the gradient of the adversarial objective function,
which can be varied during the attack. We demonstrate the robustness of our
defense against multiple black-box attacks through extensive empirical experi-
ments involving diverse models with various architectures. Code is available at
https://github.com/mail-research/randomized_defenses

1 INTRODUCTION

Modern deep neural networks have demonstrated remarkable performance in various complex tasks,
including image classification and face recognition, among others. However, prior works have
pointed out that deep learning models are sensitive to small changes in the input and can be fooled
by carefully chosen and imperceptible perturbations Szegedy et al. (2014); Goodfellow et al. (2015);
Papernot et al. (2016b); Madry et al. (2018). These adversarial attacks can be generally classified
into white-box and black-box attacks. In a white-box setting, strong attacks such as Projected Gra-
dient Descent (PGD) Madry et al. (2018) can generate effective adversarial examples by levering the
information inside the model. However, in practical scenarios such as machine learning as a service
(MLaas), the well-trained models and the training datasets are often inaccessible to the users, espe-
cially in the era of large models. Hence, query-based black-box attacks become the primary threats
in most real-world applications, where the adversary is assumed to have no knowledge of the model
architecture and parameters.

This paper proposes a lightweight, plug-and-play defensive method that can significantly decrease
the success rate of query-based black-box attacks, including both score-based and decision-based
attacks Ilyas et al. (2018; 2019); Andriushchenko et al. (2020); Guo et al. (2019); Al-Dujaili &
O’Reilly (2020); Liu et al. (2019); Chen & Gu (2020); Chen et al. (2020b); Rahmati et al. (2020).
Adversarial examples generated through query-based attacks involve iterative procedures that rely
on either local search techniques involving small incremental modifications to the input or optimiza-
tion methods leveraging estimated gradients of the adversary’s loss concerning the input. However,
the process of requesting numerous queries is time-consuming and sometimes may raise suspicions
with the presence of multiple similar queries. Hence, the objective of defense is to perplex the adver-
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sary when attempting to generate adversarial examples. Our proposed method accomplishes this by
introducing noise into the feature space. While Qin et al. (2021) study the robustness of randomized
input, this paper provides both theoretical analysis and empirical evidence to demonstrate improved
robustness of randomized features. Our analysis also highlights the importance of strategically intro-
ducing noise to specific components of the model based on the gradient of the adversarial objective
function, which can be dynamically adjusted throughout the attack process.

Our contributions can be summarized as follows:

• We investigate the impact of randomized perturbations in the feature space and its connec-
tion to the robustness of the model to black-box attacks.

• We design a simple yet effective and lightweight defense strategy that hampers the at-
tacker’s ability to approximate the direction toward adversarial samples. As a result, the
success rate of the attacks is significantly reduced.

• We extensively evaluate our approach through experiments on both score-based and
decision-based attacks. The results validate our analysis and demonstrate that our method
enhances the robustness of the randomized model against query-based attacks.

2 RELATED WORKS

2.1 ADVERSARIAL ATTACKS

Extensive research has been conducted on white-box attacks, focusing on the generation of adversar-
ial examples when the attacker possesses complete access to the target model. Over the years, vari-
ous notable methods have emerged as representative approaches in this field, including fast gradient
sign method (FGSM) Goodfellow et al. (2015), Jacobian-based saliency Map Attack (JSMA) Paper-
not et al. (2016a), and PGD Madry et al. (2018).

In contrast to white-box attacks, the black-box scenario assumes that the attacker lacks access to the
target model, making it a more challenging situation. However, this is also a more realistic setting
in real-world applications where the adversary would not have access to the model parameters. One
approach in black-box attacks involves utilizing white-box techniques on substitute models to create
adversarial examples, which can subsequently be applied to black-box target models Papernot et al.
(2017). However, the effectiveness of transfer-based attacks can vary significantly due to several
practical factors, such as the initial training conditions, model hyperparameters, and constraints
involved in generating adversarial samples Chen et al. (2017). This paper focuses on the defense
against query-based attacks instead.

2.2 QUERY-BASED BLACK-BOX ATTACKS

Query-based attacks can be largely divided into score-based attacks and decision-based attacks,
based on the accessible model output information. Score-based attacks leverage the output proba-
bility or logit of the targeted model, allowing the attacker to manipulate the scores associated with
different classes. On the other hand, decision-based queries provide the attacker with hard labels,
restricting the access to only the final predictions without any probability or confidence values.

We list the query-based attacks used in this paper below:

Natural Evolutionary Strategies (NES) Ilyas et al. (2018) is one of the first query-based attacks
that use natural evolutional strategies to estimate the gradient of the model with respect to an image
x. By exploring the queries surrounding x, NES effectively gauges the model’s gradient, enabling it
to probe and gain insights into the model’s behavior.

SignHunt Al-Dujaili & O’Reilly (2020) is another score-based attack, which flips the sign of the
perturbation based on the sign of the estimated gradient to improve the query efficiency.

Square attack Andriushchenko et al. (2020) is a type of score-based attack that differs from gra-
dient approximation techniques. Instead, it employs random search to update square-shaped regions
located at random positions within the images. This approach avoids relying on gradient information
and introduces a localized square modification to the image.
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RayS Chen & Gu (2020) is a decision-based attack that solves a discrete problem to find the di-
rection with the smallest distance to the decision boundary while using a fast check step to avoid
unnecessary searches.

SignFlip Chen et al. (2020b) is an ℓ∞ decision based attack that alternately projects the perturbation
to a smaller ℓ∞ ball and flips the sign of some randomly selected entries in the perturbation.

2.3 DEFENSIVE METHODS AGAINST QUERY-BASED ATTACKS

In the recent literature, several defensive solutions have been proposed to counter adversarial ex-
amples. One such solution involves the detection of malicious queries by comparing them with
previously observed normal queries Chen et al. (2020a); Li et al. (2022); Pang et al. (2020). This
approach aims to identify anomalous patterns in queries and flag them as potential adversarial exam-
ples. Additionally, adversarial training has also been utilized to enhance the model’s robustness Co-
hen et al. (2019); Wang et al. (2020); Sinha et al. (2017); Zhang et al. (2020). Adversarial training
involves training the model on both regular and adversarial examples to improve its ability to with-
stand adversarial attacks. However, it is computationally expensive, especially when dealing with
large and complex datasets. In some cases, adversarial training may also inadvertently harm the
model’s overall performance.

In contrast, this paper focuses on approaches that involve incorporating noise or randomness into the
model, thereby providing the adversary with distorted information. The underlying intuition behind
these defense mechanisms is to deceive the attacker by introducing perturbations in the model’s
prediction process. By altering certain signals, the defenses aim to mislead the attacker and divert
them from their intended direction. To achieve this, various techniques are employed to modify the
input data or manipulate the model’s internal workings. For instance, some defenses may introduce
random noise or distortion to the input samples Liu et al. (2017); He et al. (2019); Salman et al.
(2019), making them less susceptible to adversarial perturbations. This noise acts as a smokescreen,
confusing the attacker and making it harder for them to generate effective adversarial examples.

We list the defensive methods evaluated in this paper below:

Random Noise Defense (RND) Qin et al. (2021) is a lightweight defense that adds Gaussian noise
to the input for each query. This work also theoretically shows RND’s effectiveness against query-
based attacks. Byun et al. (2021) proposes Small Noise Defense (SND), whose randomization
method is identical to RND, thus reporting performance valuation for RND covers both of these
works.

Adversarial Attack on Attackers (AAA) Chen et al. (2022) directly optimizes the model’s logits
to confound the attacker towards incorrect attack directions.

3 METHOD

3.1 PROBLEM FORMULATIONS

Adversarial attack. Let f : Rd → RK be the victim model, where d is the input dimension, K is
the number of classes, fk(x) is the predicted score of class k for input x. Given an input example
(x, y), the goal of adversarial attack is to find a sample x′ such that

argmax
k

f(x′) ̸= y, s.t d(x, x′) ≤ ϵ, (1)

where d(x, x′) is distance between samples x and x′. In practice, the distance can be the ℓ2−norm,
∥x− x′∥2, or the ℓ∞−norm, ∥x− x′∥∞.

This adversarial task can be framed as a constrained optimization problem. More particularly, the
attacker tries to solve the following objective

min
x′
L(f(x′), y), s.t d(x, x′) ≤ ϵ, (2)

where L(., .) is a loss function designed by the attacker. In practice, a common loss function L is
the max-margin loss, as follows:

L(f(x), y) = fy(x)−max
i̸=y

fi(x). (3)
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Score-based attack. For the query-based attack, an attacker can only access the input and output of
the model; thus, the attacker cannot compute the gradient of the objective function with respect to
the input x. However, the attacker can approximate the gradient using the finite difference method:

∇̂L =
∑
u

L(f(x+ ηu), y)− L(f(x), y)
η

u, where u ∼ N (0, µI). (4)

Another approach to minimize the objective function is via random search. Specifically, the
attacker proposes an update u and computes the value of L of this update to determine if u
can help improve the value of the objective function. Formally, the proposed u is selected if
L(f(x+ u), y)− L(f(x), y) < 0, otherwise it is rejected.

Decision-based attack. In contrast to score-based attacks, hard-label attacks find the direction that
has the shortest distance to the decision boundary. The objective function of an untargeted hard-label
attack can be formulated as follows:

min
d

g(d)

where g(d) = min
{
r : argmax

k
f(x+ rd/∥d∥2) ̸= y

}
. (5)

This objective function can be minimized using binary search, in which the attacker queries the
model to find the distance r for a particular direction d. To improve the querying efficiency, binary
search can be combined with fine-grained search, in which the radius is iteratively increased until the
attacker finds an interval that contains g(d). Hence, the gradient of g(d) can also be approximated
by the finite difference method

∇̂g(d) =
∑
u

g(d+ ηu)− g(d)

η
u. (6)

Similar to the case of score-based attacks, the attacker can also search for the optimal direction.
Given the current best distance ropt, a proposed direction d is eliminated if it cannot flip the predic-
tion using the current best distance ropt; otherwise the binary search is used to compute g(d), which
is the new best distance.

Randomized model. In this work, we consider a randomized model frand : Rd → P(RK) that
maps a sample x ∈ Rd to a probability distribution on RK . Given an input x and an attack query,
the corresponding output is a vector drawn from frand(x). We assume that the randomized model
frand is ’nice’; that is, the mean and variance of frand(x) exist for every x.

Finally, we define adversarial samples for a randomized model. Since the model has stochasticity,
the prediction returned by the model of a sample x can be inconsistent at different queries; i.e.,
the same sample can be correctly predicted at one application of frand and be incorrectly predicted
later in another application of frand. For this reason, adversarial attacks are successful if the ob-
tained adversarial example can fool the randomized model in the majority of its applications on the
example.
Definition 1 (Attack Success on Randomized Model). Given a data point x with label y and a
positive real number ϵ, a point x′ is called adversarial samples in a closed ball of radius ϵ around x
with respect to the model frand if ∥x′ − x∥p < ϵ and

argmaxE[frand(x′)] ̸= y.

3.2 RANDOMIZED FEATURE DEFENSE

Our method is based on the assumption that the attacker relies on the model’s output to find the
update vector toward an adversarial example. Consequently, if the attacker receives unreliable feed-
back from the model, it will be more challenging for the attacker to infer good search directions
toward the adversarial sample.

In contrast to the previous inference-time randomization approaches, we introduce stochasticity
to the model by perturbing the hidden features of the model. Formally, let hl be the l−th layer
of the model, we sample an independent noise vector δ and forward hl(x) + δ to the next layer.
For simplicity, δ is sampled from Gaussian distribution N (0,Σ), where Σ is a diagonal matrix, or
N (0, νI), ν ∈ R. The detailed algorithm is presented in Algorithm 1.
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Algorithm 1 Randomized Feature Defense

Input: a model f , input data x,
noise statistics Σ, a set of perturbed layers
H = {hl0 , hl1 , . . . , hln}

Output: logit vector l
z0 ← x
for layer hi in the model do

if hi ∈ H then
δ ∼ N (0,Σ)
zi ← hi(zi−1) + δ

end if
end for
l← zn

Let frand be the proposed randomized model corre-
sponding to the original f . When the variance of in-
jected noise is small, we can assume that small noise
diffuses but does not shift the prediction. Particu-
larly, we can make the following assumption.
Assumption 1. Mean of the randomized model
frand with input x is exactly the prediction of the
original model for x

E[frand(x)] = f(x).

Given Assumption 1, by Definition 1, adversarial
samples of the original model are adversarial sam-
ples of the randomized model. Therefore, the direc-
tion that the attacker seeks is also that of the original
model. Recall that the attacker finds this direction
by either finite difference or random search.

In our method, when the model is injected with an independent noise, the value of objective L
is affected. If L(frand(x + ηu), y) − L(frand(x), y) oscillates among applications of frand, the
attacker is likely misled and selects a wrong direction. For random-search attacks, when the sign of
L(frand(x + ηu), y) − L(frand(x), y) and the sign of L(f(x + ηu), y) − L(f(x), y) are different,
the attacker chooses the opposite action to the optimal one. In other words, the attacker can either
accept a bad update or reject a good one in a random search.

3.3 ROBUSTNESS TO SCORE-BASED ATTACKS

In this section, we present the theoretical analysis of the proposed defense against score-based at-
tacks.
Theorem 1. Assuming the proposed random vector u is sampled from a Gaussian N (0, µI), the
model is decomposed into f = g ◦ h, and the defense adds a random noise δ ∼ N (0, νI) to
the output of h. At input x, the probability that the attacker chooses an opposite action positively
correlates with

arctan

(
−
(
2ν

µ

∥∇h(x)(L ◦ g)∥22
∥∇x(L ◦ f)∥22

)−0.5
)
.

This theorem states that the robustness of the randomized model is controlled by both (i) the ratio
between the defense and attack noises and (ii) the ratio of the norm of the gradient with respect to the
feature h(x) and the norm of the gradient with respect to the input x. Since arctan is monotonically

increasing, the model becomes more robust if the ratio 2ν
µ

∥∇h(x)(L◦g)∥2
2

∥∇x(L◦f)∥2
2

is high. Intuitively, the
perturbations added by the attacker and by the defense induce a corresponding noise in the output; if
the attack noise is dominated by the defense noise, the attacker cannot perceive how its update affects
the model. Note that the arctan function is bounded, which means at some point the robustness
saturates when the ratio increases.

While the first ratio is predetermined before an attack, the second ratio varies during the attack
when the input x is sequentially perturbed since it depends on the gradient of the objective function.
To understand this behavior of the randomized model during the attack, we perform the following
experiment. First, we compute the ratio of the norms of gradients at h(x) and x. To simulate an
attacker, we perform a single gradient descent step with respect to L. The distributions of the ratios
on the raw and perturbed images at different layers are shown in Figure 1. We can observe that these
ratios become higher when the data are perturbed toward the adversarial samples. In other words,
the randomized model is more robust during the attack. We also illustrate the accuracy under Square
attack when adding noise to each layer, verifying our analysis.

3.4 ROBUSTNESS TO DECISION-BASED ATTACKS

In decision-based attacks, the attacker finds the optimal direction dopt and the corresponding dis-
tance ropt to the decision boundary such that ropt is minimal. We use the objective function
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Figure 1: The ratio of the norm of the gradient of L at selected hidden layers and at input of VGG19
on CIFAR10 before and after perturbed. Full results are provided in the supplementary material.
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Figure 2: Distributions of the magnitude of the robustness to query-based attacks computed at input
and selected hidden layers of VGG19 on CIFAR10.

L(f(x), y) to understand how our method affects the decision-based attacks. Indeed, L measures
how close the prediction is to the true label: L ≤ 0 if the prediction is incorrect andL > 0 otherwise.

To estimate g(d), the attacker can use binary search. Similar to score-based attacks, when noise is
injected into the model, the function g(d) becomes stochastic, which eventually affects the attack.
Unfortunately, the distribution of g(d) (under binary search with randomness) does not have an
analytical form. Nevertheless, we can still use a similar analysis to the last section to understand
the robustness of our method. To avoid performing a binary search on uninformative directions, the
attacker relies on best-radius searching. Given the current best distance ropt, for every new direction
d, the attacker verifies if the distance along d to the boundary is shorter than ropt by querying
x + roptd/∥d∥2. When adding noise to features h(x) of f = g ◦ h and linearizing the function at
the current input x, we have
L(frand(x+ roptd/||d||2), y) ≈ L(g(h(x) + roptJh(x)d/||d||2 + δ), y) (7)

≈ L(f(x), y) + ropt∇xL(f(x), y)d/||d||2 +∇h(x)L(g(h(x)), y)δ
(8)

≈ (ropt − g(d))∇xL(f(x), y)d/||d||2 +∇h(x)L(g(h(x)), y)δ, (9)

where Jh(x) is the Jacobian matrix of h evaluated at x, since L(f(x), y) +
g(d)∇xL(f(x), y)d/||d||2 ≈ L(f(x + g(d)d/||d||2), y) = 0. If δ ∼ N (0, νI), the variance
of ∇h(x)L(g(h(x)), y)δ is ν∥∇h(x)L(g(h(x)), y)∥22. When this value is large, it can dominate the
other terms and increase the chance of flipping the sign of the loss function L. In other words, when
L has a high variance, the attacker is more likely to misjudge the direction.

3.5 THE EFFECT OF RANDOMIZED FEATURES ON ACCURACY

Let D be the data distribution, without any attack or defense, the accuracy of the model is
Acc(f) := E

(x,y)∼D
[1(f(x) = y)] = E

(x,y)∼D
[1(L(f(x), y) > 0)]. (10)

When injecting noise into the model, it becomes a robust, stochastic model frand : Rd → P(RK).

The clean accuracy of the randomized model is
Acc(frand) = E

(x,y)∼D
E

y′∼frand(x)
[1(y′ = y)] = E

(x,y)∼D
E

y′∼frand(x)
[1(L(y′, y) > 0)]. (11)

Adding noise δ2 ∼ N (0, ν2I) to the features at layer h of the model f = g ◦ h results in:
Acc(frand) = E

(x,y)∼D
E

δ∼N (0,ν2I)
[1(L(g(h(x) + δ2), y) > 0)] (12)

≈ E
(x,y)∼D

E
δ2∼N (0,ν2I)

[1(L(f(x), y) +∇h(x)(L ◦ g)δ2 > 0)] (13)

= E
(x,y)∼D

E
δ′2∼N (0,ν2)

[1(L(f(x), y)/∥∇h(x)(L ◦ g)∥2 + δ′2 > 0)]. (14)
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It means that the accuracy of a randomized model depends on the objective function and its gradient,
which vary for different data points. These ratios of L and its gradient computed at the input and
hidden layers are different. If L is small at samples that have a large gradient norm when noise is
injected at a layer, these samples will be likely misclassified while the correctly classified samples
have a low magnitude of robustness (i.e., ν∥∇h(x)(L ◦ g)∥22 is small, as discussed in Theorem 1
and Section 3.4). In contrast, if the gradient norm with respect to the randomized layer is large for
samples that have large L, the robustness of the model for the correctly classified samples will be
high; thus, adding noise to this layer makes the model more robust against black-box attacks.

We conduct the following experiment to understand how the defense affects the whole dataset. We
first compute the ratios ofL and its gradient for all samples and keep the top 99% values. Essentially,
the standard deviation of defensive noises that makes the accuracy drop by 1% is proportional to the
value at which 1% of the ratios in the dataset are smaller. The product of this value and the norm of
gradient represents the robustness of datasets, which are shown in Figure 2. We also illustrate the
accuracy under Square attack when adding noise to each layer.

We can observe that the ratio distributions when randomizing the input and the hidden features are
similar at the first few layers of the model; however, these ratios at the deeper layers of the model
are higher. This means that randomizing the model at these layers makes it more robust than adding
noise to the input layer when the defenders desire similar clean accuracy in the randomized models.

4 EXPERIMENTS

In this section, we evaluate the empirical performance of the proposed randomized feature defense.

4.1 EXPERIMENTAL SETUP

Datasets. We perform our experiments on two widely used benchmark datasets in adversarial ro-
bustness: CIFAR10 Krizhevsky & Hinton (2009) and ImageNet Russakovsky et al. (2015). We
randomly select 1000 images that contain every class from the studied dataset in each experiment.

Defenses. In addition to the proposed defense, we also include the related input defenses Qin et al.
(2021); Byun et al. (2021) in our evaluation. Note that, the empirical robustness comparison of
all adversarial defenses is beyond the scope of the paper since our objective is to theoretically and
empirically study the effectiveness of the randomized feature defense. We also evaluate AAA de-
fense Chen et al. (2022) against decision-based attacks and compare them with randomized defenses.

In all experiments, our defense randomizes only the penultimate layers of the base models, since
our theoretical observations in Section 3.3 (Figure 1), and empirical results, provided in Table 14
(Supplementary), show that randomizing a deeper layer is consistently more effective.

Attacks. For score-based attacks, we consider the gradient-estimation methods, NES Ilyas et al.
(2018), and the random-search methods, Square Andriushchenko et al. (2020), SignHunt Al-Dujaili
& O’Reilly (2020). For decision-based attacks, we consider RayS Chen & Gu (2020) and Sign-
Flip Chen et al. (2020b).

Models. We consider 6 victim models on ImageNet, including 2 convolution models that are
VGG19 Simonyan & Zisserman (2015) and ResNet50 He et al. (2016), 2 transformer models that
are ViT Dosovitskiy et al. (2021) and DeiT Touvron et al. (2021). For the experiments on CIFAR10,
we finetuned VGG19, ResNet50, ViT, DeiT with an input size of 224× 224.

Evaluation protocol. For a fair comparison, we report each defense’s robustness performance re-
sults at the corresponding configuration of hyperparameters that achieves a specific drop (i.e., ≈1%
or ≈2%) in clean-data accuracy. In practice, a defender always considers the trade-off between ro-
bustness and clean-data performance, with a priority on satisfactory clean-data performance; thus,
achieving higher robustness but a significant drop in clean-data accuracy is usually not acceptable.

4.2 PERFORMANCE AGAINST SCORE-BASED ATTACKS

On ImageNet, we report the accuracy under the attack of 6 models and 3 score-based attacks in Ta-
ble 1. As we can observe, while the attacks achieve close to 0% failure rate on the base models (i.e.,
without any defense), both randomized feature and input defenses significantly improve the models’
robustness against score-based attacks. Furthermore, for Square attack and SignHunt, which are
strong adversarial attack baselines, randomized feature defense consistently achieves better perfor-
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mance on all 6 models, which supports our theoretical analysis in Section 3. For instance, while the
base VGG19 models are severely vulnerable, our randomized feature defense achieves 22.2% in ro-
bust accuracy after 10000 query, also significantly better than the randomized input defense (17.8%
robust accuracy). On the transformer-based DeiT, our randomized feature defense has 69.1% ro-
bust accuracy under Square attack, while the robust accuracy of the randomized input defense is 2%
lower. For the NES attack, the randomized-feature VGG19 shows the best robustness. In summary,
randomized feature defense consistently achieves high robustness on most models except ResNet50
where the robustness is similar to randomized input defense.
Table 1: Defense Performance in ImageNet.
The clean-data accuracy of the robust models
is allowed to drop either ≈ 1% or ≈ 2%.

Model Method Acc Square NES SignHunt

1000 10000 1000 10000 1000 10000

ResNet50
Base 80.37 3.5 0.2 36.2 4.3 6.6 0.4

Input 79.18 (≈ 1%) 40.3 39.5 63.8 23.9 47.6 45.4
78.46 (≈ 2%) 41.1 39.8 69.4 41.5 49.3 47.2

Feature 79.70 (≈ 1%) 37.0 36.0 56.7 16.8 46.3 43.4
78.43 (≈ 2%) 42.0 41.5 65.6 40.6 51.3 49.3

VGG19
Base 74.21 0.1 0.0 19.6 0.0 0.4 0.0

Input 73.24 (≈ 1%) 7.7 6.9 32.1 1.5 18.3 17.0
71.43 (≈ 2%) 18.7 17.8 47.4 11.5 28.3 27.1

Feature 72.66 (≈ 1%) 22.4 21.6 50.1 18.5 34.6 32.9
71.21 (≈ 2%) 23.3 22.2 55.1 28.4 36.5 32.8

DeiT
Base 82.00 6.4 0.0 46.7 0.8 22.3 0.0

Input 80.10 (≈ 1%) 67.7 67.2 75.8 65.9 64.4 63.6
79.60 (≈ 2%) 66.6 66.0 75.7 67.1 64.9 64.3

Feature 80.80 (≈ 1%) 69.7 69.1 75.0 59.1 66.4 64.1
79.76 (≈ 2%) 69.3 69.0 75.1 65.3 66 64.3

ViT
Base 79.15 5.7 0.0 45.7 7.3 5.1 0.0

Input 78.28 (≈ 1%) 58.8 58.1 70.8 51.4 53.1 52.2
77.09 (≈ 2%) 61.3 60.9 70.6 59.2 53.7 52.7

Feature 78.20 (≈ 1%) 60.6 60.2 69.1 47.5 54.0 52.9
77.18 (≈ 2%) 63.7 62.9 72.2 58.1 57.0 55.3

Table 2: Defense Performance in CIFAR10.
The clean-data accuracy of the robust models
is allowed to drop either ≈ 2% or ≈ 4%.

Model Method Acc Square NES SignHunt

1000 10000 1000 10000 1000 10000

ResNet50
Base 97.66 0.8 0.1 71.7 21.7 3.7 0.2

Input 95.98 (≈ 2%) 50.5 48.8 93.1 85.4 26.8 26
93.42 (≈ 4%) 56.4 54.8 90.0 85.0 31.1 29.8

Feature 95.95 (≈ 2%) 54.9 52.8 93.2 86.2 32.5 30.6
93.48 (≈ 4%) 56.7 53.4 89.9 83.9 37.1 35.7

VGG19
Base 96.28 0.6 0.1 68.8 16.6 3.2 0.3

Input 94.92 (≈ 2%) 30.6 27.1 89.5 58.0 22.7 21.8
93.52 (≈ 4%) 42.2 39.8 90.3 68.4 27.5 26.8

Feature 94.93 (≈ 2%) 61.0 58.4 92.2 77.9 43.2 42.4
93.58 (≈ 4%) 64.2 62.8 91.2 80.1 49.2 46.9

DeiT
Base 98.40 3.2 0.0 81.9 34.2 7.9 0.2

Input 96.59 (≈ 2%) 66.9 67.6 95.2 90.0 40.2 39.2
94.81 (≈ 4%) 70.6 68.8 92.6 87.7 40.3 38.5

Feature 96.29 (≈ 2%) 69.1 67.9 94.1 88.3 45.7 43.4
94.91 (≈ 4%) 68.9 66.1 93.5 87.6 43.6 40.4

ViT
Base 97.86 5.1 0.0 84.8 43.6 6.1 0.0

Input 95.80 (≈ 2%) 63.0 61.2 93.5 87.0 34.8 33.3
93.40 (≈ 4%) 62.6 61.1 89.7 85.5 33.4 32.2

Feature 95.96 (≈ 2%) 63.9 62.7 93.7 85.6 42.5 40.7
93.39 (≈ 4%) 66.2 65.6 92.9 85.3 44.8 43.8

We also observe similar robustness results on CIFAR10 experiments with ResNet50, VGG19, DeiT,
and ViT for 3 attacks. As we can observe in Table 2, randomized feature and input defenses are
effective against score-based attacks. Similar to ImageNet, randomized feature defense achieves
significantly better robustness than randomized input defense in most experiments. For Square at-
tacks on ResNet50 and DeiT, while the best robustness is achieved by randomized input defense,
randomized feature defense is more robust when the defender sacrifices 2% clean-data accuracy.

Table 3: Robustness (higher means more robust) un-
der different values of µ. Small ν corresponds to
selected ν where clean accuracy is allowed to drop
by 2%, and Large ν corresponds to clean accuracy
drop of 4%.

Attack µ
VGG ViT

Small ν Large ν Small ν Large ν

Input Feature Input Feature Input Feature Input Feature

Square
0.05 30.6 61.0 42.2 64.2 63.0 63.9 62.6 66.2
0.1 47.4 65.8 54.6 65.5 69.3 70.2 68.8 69.6
0.2 32.1 59.7 43.9 64.0 56.1 58.0 56.8 58.6
0.3 27.0 54.9 38.1 59.7 47.1 51.9 47.7 50.4

NES
0.001 93.4 93.9 90.1 91.4 93.7 94.8 90.3 93.5
0.01 89.5 92.2 90.3 91.2 93.5 93.7 89.7 92.9
0.1 88.0 90.0 86.7 89.6 87.9 91.4 86.7 90.6
0.2 93.6 93.0 92.6 91.4 91.0 93.8 87.6 92.0

SignHunt
0.01 91.6 91.0 91.3 88.0 89.1 90.9 85.4 91.3
0.05 22.7 43.2 27.5 49.2 34.8 42.5 33.4 44.8
0.075 5.6 19.7 8.1 25.6 13.6 22.5 13.7 24.3
0.1 1.2 7.9 2.4 12.1 5.5 11.3 5.2 12.7

Dynamic Analysis of Robustness. As the
adversary increases the magnitude of pertur-
bation, the attack becomes more effective
since the misleading probability decreases as
shown in Theorem 1. The adversary can
vary the square size for Square attack, the
exploration step for NES, and the budget
for SignHunt (since SignHunt sets the finite-
difference probe to the perturbation bound).

Table 3 reports the robustness of the mod-
els under stronger attacks from these adver-
saries for different values of ν. We can ob-
serve that increasing the strength of the at-
tack leads to lower robustness among all the
defenses. However, at the selected defense
noise scales corresponding to the same clean
accuracy drop, our defense is still more robust

than randomized input defense; this improved robustness again can be explained by the analysis in
Section 3.3 and 3.5. A larger attack perturbation may also cause the approximation in the attack
to be less accurate, which leads to a drop in the attack’s effectiveness; for example, the robust-
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Table 4: Robustness
with adversarial training.

Square NES SignHunt

AT 32.5 67.6 31.7
Ours 37.6 44.1 41.7
Ours+AT 77.8 80.6 67.0

Table 5: Robustness against
decision-based attacks (CIFAR10)

Model Method Acc RayS SignFlip

ResNet50
Base 97.66 0.1 20.5
AAA 97.70 0.1 20.4
Input 93.52 12.0 85.5
Feature 92.10 14.4 82.5

VGG19
Base 96.28 0.0 6.4
AAA 96.30 0.1 5.7
Input 93.42 8.1 86.0
Feature 93.48 15.4 76.5

Table 6: Robustness in CIFAR10
at each layer (fixed ν).

Model Layer Square NES SignHunt GradNorm

VGG 1 56.7 87.8 21.5 1.324
4 52.5 84.2 18.7 0.842
12 63.0 89.7 29.4 2.514
15 50.6 87.7 37.4 1.710

ViT 1 77.3 94.8 26.1 0.615
4 75.3 94.4 28.0 0.462
8 65.8 91.6 26.9 0.324
11 48.3 86.5 23.1 0.214

Table 7: Defenses against adaptive attacks on CIFAR10

Attacks Methods
VGG19 ResNet50

Acc M = 1 M = 5 M = 10 Acc M = 1 M = 5 M = 10

QC=1000 QC=1000 QC=5000 QC=1000 QC=10000 QC=1000 QC=1000 QC=5000 QC=1000 QC=10000

Square Input 94.92 30.6 24.2 10.5 30.2 3.2 95.32 52.9 42.0 34.8 35.0 13.3
Feature 94.93 61.0 53.0 45.5 46.7 23.1 95.21 54.5 45.1 40.4 37.3 21.1

NES Input 94.92 89.5 93.4 82.1 94.4 78.8 95.32 92.4 94.0 91.3 93.9 90.7
Feature 94.93 92.2 94.8 88.4 94.5 86.0 95.21 91.8 93.8 90.8 94.0 90.4

SignHunt Input 94.92 22.7 15.9 10.4 23.3 7.6 95.32 29.9 17.6 13.5 21.1 9.4
Feature 94.93 43.2 27.1 23.0 31.7 17.0 95.21 35.1 17.3 16.4 21.5 11.3

ness increases from 89.6% to 91.4% when the NES’s perturbation magnitude increases in VGG19
experiments (similar observations in ViT).

Combined with Adversarial Training (AT). We evaluate the combination of our defense and AT
on CIFAR10/ResNet20 model against under score-based attacks with 1000 queries and observe
significantly improved robustness, as shown in Table 4.

4.3 PERFORMANCE AGAINST DECISION-BASED ATTACKS

Table 5 reports the performance of VGG19 and ResNet50 against 2 decision-based attacks on CI-
FAR10. Besides randomized feature and input defenses, we also include AAA defense, which opti-
mizes the perturbation that does not change the prediction. While AAA is optimized for score-based
attacks directly and thus is successful in fooling these attacks (as seen in Table 3 in Supplementary),
the results show that AAA is not effective in defending against decision-based attacks, while ran-
domized feature and input defenses improve the robustness. An interesting observation is that RayS
attack is more effective than score-based attacks although it only uses hard labels, even when there
are defenses.

4.4 RELATIONSHIP BETWEEN THE GRADIENT NORM AND THE ROBUSTNESS TO
SCORE-BASED ATTACKS

In Table 6, we provide the corresponding accuracy under attack on CIFAR10 with 1000 queries (for
when a single layer is randomized with a fixed value of ν) and the mean of the gradient norm at
that layer. As we can observe, as the gradient norm increases (also as we originally observed in
Figure 1), the robustness also increases, thus verifying our theoretical results.

4.5 PERFORMANCE AGAINST ADAPTIVE ATTACKS
We conduct experiments with adaptive attacks that apply Expectation Over Transformation
(EOT) Athalye et al. (2018) in which the attacker queries a sample M times and averages the outputs
to cancel the randomness. Table 7 show the robust accuracy of VGG19 and ResNet50 on CIFAR10
against EOT attack with M = 5 and M = 10. Note that with EOT, the number of updates in the
attack is M times less than that of a normal attack with the same query budget. For this reason,
we report the results for adaptive attacks with both 1000 queries and M × 1000 queries. We can
observe that EOT can mitigate the effect of randomized defenses even with the same number of
queries; however, feature defense still yields better performance.

5 CONCLUSION AND FUTURE WORK
In this work, we study the effectiveness of random feature defense against query-based attacks, in-
cluding score-based and decision-based attacks. We provide an analysis that connects the robustness
to the variance of noise and the local behavior of the model. Our empirical results show that random
defense helps improve the performance of the model under query-based attacks with a trade-off in
clean accuracy. Future works will be directed toward the analysis covering black-box attacks that
transfer adversarial samples from the surrogate model to the target model.
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APPENDIX

This Appendix provides additional details, analysis, and experimental results to support the main
paper. We begin by discussing the limitations in Section A and societal impacts in Section B. Then,
we provide the proof for Theorem 1 in the main paper in Section C. Next, the detailed experimental
setup is provided in Section D, which is followed by additional robustness experiments to demon-
strate the effectiveness of the proposed defense. Finally, we provide additional visualization of the
robust behavior of the models with randomized features in Section F.

A LIMITATIONS

As discussed, we focus on studying the effectiveness of the randomized feature defense for DNNs
against black-box attacks, including score-based and decision-based attacks. We do not include
black-box attacks that utilize the transferability from surrogate to target models since our threat
model does not make any assumptions about the network architecture and the training dataset.

Our proposed defense adds another layer of protection to DNNs against adversarial attacks, and
it would be interesting to study the adversarial robustness of the combination of our randomized
feature defense and existing defense strategies, including those that have been developed for transfer-
based attacks Pang et al. (2019); Tramèr et al. (2018); Yang et al. (2020). We leave these to future
works.

Similar to the related works on randomized defenses, our empirical evaluation has limitation for it is
designed to assess the relative effectiveness of randomized models. From the adversary perspective,
the attack should only need to make the system fail once, during the querying process. Correspond-
ingly, it means that the attack can query the model repeatedly, and by chance, the defense fails at
some point; however, this failure, equivalently meaning the attack is successful, is not due to the
perturbed input being an adversarial example but rather comes from the added randomness of the
defense. Here, there are 2 scenarios: (1) if the input (or the perturbed query) is far from the deci-
sion boundary, randomization is much less likely to shift the input to the other side of the boundary,
making this chance very low. On the other hand, (2) for input close to the decision boundary, this
“repeated” attack will be more effective, unfortunately; one potential solution is to preemptively stop
this attack if the system recognizes the same input is repeatedly forwarded to the model. We leave
this to future work and urge practitioners to research this inherent problem of randomized models.

In practice, an attack has a cost, and if the attack cost is higher than the potential gain, the attacker
will more likely stop; thus a defense should increase this cost as much as possible. A randomized
approach like ours increases the attack cost by confusing their optimization trajectory. Note that as
explained earlier, if the perturbed query is in scenario (1) (or the randomized radius is small enough),
our randomization would likely not make the attack successful due to chance; on the other hand, the
defense would make it more costly for the attack to push this query to scenario (2).

B SOCIETAL IMPACTS

Deep neural networks (DNN) rapidly transform our daily lives in various domains and applications.
Unfortunately, most well-trained DNNs are vulnerable to adversarial attacks, which decreases con-
fidence in their deployment. Among the existing adversarial attacks, query-based attacks pose a
severe threat to users since these attacks are effective and only require access to the model’s feed-
back; the attackers do not know the trained parameters or model architectures.

Our work tackles this defense challenge against query-based attacks by proposing a lightweight ad-
versarial defense for existing DNNs. We conduct a detailed theoretical analysis of our defense and
show its superior performance compared to other randomized defenses in extensive empirical ex-
periments across a wide range of DNN architectures, query-based attacks, and benchmark datasets.
Most importantly, our method can be directly integrated into any existing off-the-shelf DNN. In
summary, the proposed randomized feature defense can boost the adversarial robustness of existing
DNNs against most query-based attacks, further improving the users’s confidence when using them
in practice.
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C PROOF OF SECTION 3.2

Theorem 1. Assuming the proposed random vector u is sampled from a Gaussian N (0, µI), the
model is decomposed into f = g ◦ h, and the defense adds a random noise δ ∼ N (0, νI) to
the output of h. At input x, the probability that the attacker chooses an opposite action positively
correlates with

arctan

(
−
(
2ν

µ

∥∇h(x)(L ◦ g)∥22
∥∇x(L ◦ f)∥22

)−0.5
)
.

Proof. For score-based attacks, the attacker finds the direction by computingL(f(x+u))−L(f(x)).
When applying randomized defense, the direction instead relies on L(frand(x+u))−L(frand(x)).
As discussed in Section 3, the probability that the attacker chooses an opposite action is

P
[
L(frand(x+ u))− L(frand(x))
L(f(x+ u))− L(f(x))

< 0

]
. (15)

If the defense adds a random noise δ ∼ N (0, νI) to the output of layer h of the model f = g ◦ h,
we have L(frand(x)) = L(g(h(x) + δ). Since δ and u are small, we can linearly approximate the
objection function

L(f(x+ u)) ≈ L(f(x)) +∇x(L ◦ f)⊺u, (16)
L(g(h(x) + δ) ≈ L(f(x)) +∇h(x)(L ◦ g)⊺δ, (17)

L(g(h(x+ u) + δ) ≈ L(g(h(x) + Jh(x)u+ δ) (18)
≈ L(f(x)) +∇h(x)(L ◦ g)⊺Jh(x)u+∇h(x)(L ◦ g)⊺δ (19)

= L(f(x)) +∇x(L ◦ f)⊺u+∇h(x)(L ◦ g)⊺δ, (20)

where∇h(x)(L ◦ g) is the gradient of L ◦ g evaluated at h(x),∇x(L ◦ f) is the gradient of L ◦ f at
x, Jh(x) is the Jacobian matrix of h at x.

At a different application of frand, the randomized model samples a new noise vector. Let δ1, δ2 be
the sampled noises when querying L(frand(x+u)) and L(frand(x)), the ratio can be approximated
by

L(frand(x+ u))− L(frand(x))
L(f(x+ u))− L(f(x))

≈
∇x(L ◦ f)⊺u+∇h(x)(L ◦ g)⊺δ1 −∇h(x)(L ◦ g)⊺δ2

∇x(L ◦ f)⊺u
(21)

= 1 +
∇h(x)(L ◦ g)⊺(δ1 − δ2)

∇x(L ◦ f)⊺u
. (22)

Since δ1 and δ2 are independent, we have δ1 − δ2 ∼ N (0, 2νI), thus

∇h(x)(L ◦ g)⊺(δ1 − δ2) ∼ N (0, 2ν∥∇h(x)(L ◦ g)∥22), (23)

∇x(L ◦ f)⊺u ∼ N (0, µ∥∇x(L ◦ f)∥22). (24)

The noises δ1, δ2 added by the defense and the noise u added by the attacker are independent, there-
fore the ratio of two independent normal variables ∇h(x)(L◦g)⊺(δ1−δ2)

∇x(L◦f)⊺u follows Cauchy distribution

with location 0 and scale
√

2ν
µ

∥∇h(x)(L◦g)∥2

∥∇x(L◦f)∥2
. In this case, the probability that the attacker is fooled

can be approximated by

P
[
L(frand(x+ u))− L(frand(x))
L(f(x+ u))− L(f(x))

< 0

]
≈ P

[∇h(x)(L ◦ g)⊺(δ1 − δ2)

∇x(L ◦ f)⊺u
< −1

]
(25)

=
1

π
arctan

(
−
(
2ν

µ

∥∇h(x)(L ◦ g)∥22
∥∇x(L ◦ f)∥22

)−0.5
)

+
1

2
.

(26)
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C.1 ANALYSIS OF THE APPROXIMATION ERROR

Due to the high nonlinearity of neural networks, it is difficult to have a complete analysis of the
convexity of the boundary. However, if the model is k1−Lipschitz, the change in the prediction
when a noise u is added is bounded by k1 and u.

||f(x+ u)− f(x)||22 ≤ k1||u||22.

If k1 is not too large, since ||u||22 is very small, in expectation the prediction of the randomized
models stays still. Furthermore, we empirically validate whether the majority of the perturbed inputs
belong to the original class, as shown in the experiment below.

For each input, we sample 20 pairs of perturbation with opposite directions. It’s similar to antithetic
sampling employed in Ilyas et al. (2018) for a better estimation of the effect of the injected noise.
Intuitively, if the majority of the perturbed inputs are still in the original class, the average of the
predictions is the same as the output of the original model. We also consider the extreme case (or
worst case) where an input is marked as misclassified if any of those 40 noise vectors misleads the
model. The table below shows the original accuracy, the average accuracy, and the extreme accuracy
on VGG19/CIFAR10. As can be observed in Table 8, the decrease in accuracy of the expected case
is trivial (0.37%); and even in the extreme case, this decrease is still small (2.3%) even in the extreme
case. This supports our assumption.

Table 8: The accuracy of randomized defense

Acc Expected Acc Extreme Acc

96.28 95.91 93.95

The perturbation added by the defense induces a negligible effect on the prediction of the model;
since µ is constrained by the adversarial constraint (i.e., within the Lp ball), it is typically smaller
than ν, thus inducing even small impact than ν on the prediction. Furthermore, if the gradient of the
loss function L(x) with respect to the input is k2−Lipschitz continuous, we can bound the error of
the approximation by k2 and the norm of the noise u

L(x+ u) ≤ L(x) +∇xL · u+
1

2
k2||u||22.

If k and the noise are small, the error is also small. This assumption is also used in Qin et al. (2021)
for their analysis. We also provided the error of the first-order approximation in Section F.1. The
histogram of the error implies that the added noise is small enough for a close approximation, thus
our analysis is valid.

D EXPERIMENTAL SETUP

D.1 DATASET

In this work, we conduct experiments on two widely used datasets in adversarial attacks, CIFAR10
and ImageNet. We randomly selected 1000 images per dataset such that the test sets cover all classes,
each of which has equal size.

• CIFAR101 consists of 60, 000 images from 10 different classes where the training set has
50, 000 images and the test set has 10, 000 images.

• ImageNet (ILSVRC) 20122 is a large-scale dataset that consists of 1000 classes. The
training set includes 1, 281, 167 images, the validation set includes 50, 000 images, and the
test set has 100, 000 images.

For all experiments, we resize the images to 224× 224 resolution.

1https://www.cs.toronto.edu/˜kriz/cifar.html
2https://www.image-net.org/download.php
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D.2 MODELS

As discussed in the main text, we consider 4 models that have various architectures, including
ResNet50 He et al. (2016), VGG19 Simonyan & Zisserman (2015), ViT base Dosovitskiy et al.
(2021), DeiT base Touvron et al. (2021). We use the pretrained weights from timm package3 for
ImageNet, and finetune ResNet50, VGG19, ViT base, DeiT base for CIFAR10.

D.3 IMPLEMENTATION OF THE BLACK-BOX ATTACKS

We perform experiments on 3 score-based black box attacks (Square attack Andriushchenko et al.
(2020), NES Ilyas et al. (2018), and Signhunter Al-Dujaili & O’Reilly (2020)) and 2 decision-
based attacks (RayS Chen & Gu (2020) and SignFlip Chen et al. (2020b)). For ℓ∞ attacks, we find
adversarial samples within the ℓ∞ ball of radius 0.05, for ℓ2 attacks we set the radius to 5. The
detailed hyperparameters of each attack are as follows:

• Square attack: The initial probability of pixel change is 0.05 for ℓ∞ attack and 0.1 for ℓ2
attack.

• NES: We estimate the gradient by finite difference with 60 samples for ℓ∞ attack and 30
for ℓ2 attack. The step size of finite difference is 0.01 and 0.005, and the learning rate is set
to 0.005 and 1 for ℓ∞ and ℓ2 attack, respectively.

D.4 EVALUATION

According to Section 3, a sample is considered as adversarial if it can fool the model in the majority
of its application. Since the randomized model has stochasticity, for any datapoint there is a chance
that the prediction is flipped at some application. Therefore, an attacker can stop the attack before
finding the true adversarial sample. To alleviate this issue, when deciding whether to stop the attack,
the query is repeated multiple times, and the attack is considered to be successful if the prediction
is consistently flipped in most of the runs. The experiment applies 9 query runs for verification, and
these extra runs are not included in the total number of queries.

E ADDITIONAL EXPERIMENTS

E.1 PERFORMANCE AGAINST ℓ2 ATTACKS

We provide the results of randomized feature defense against ℓ2 attacks on CIFAR10 in Table 9. As
we can observe, ℓ2 attacks are quite successful in fooling the model; however, randomized feature
defense improves the robustness of the models to these attacks.

Table 9: The robustness against ℓ2 attacks on CIFAR10.

Model Method Acc Square NES SignHunter

1000 10000 1000 10000 1000 10000

VGG19 Base 96.28 13.5 3.0 72.9 50.7 44.2 11.2
Feature 93.58 85.3 82.8 91.4 87.9 87.1 85.7

ViT Base 97.86 48.5 28.6 87.8 73.5 60.7 30.3
Feature 93.38 88.2 88.1 92.7 90.1 86.4 85.7

E.2 PERFORMANCE AGAINST DECISION-BASED ATTACKS

Table 10 shows the performance of the model on ImageNet under decision-based attacks. Similar to
CIFAR10, randomized feature defense is effective against decision-based attacks while AAA Chen

3https://github.com/huggingface/pytorch-image-models

16

https://github.com/huggingface/pytorch-image-models


Published as a conference paper at ICLR 2024

et al. (2022) defense is not helpful in this case, since decision-based attacks only rely on the label
that the model returns and AAA defense keeps the output label the same. We also provide the results
for RayS on ViT/CIFAR10 in Table 11.

Table 10: The robustness against decision-based attacks on ImageNet.

Model Method Acc RayS SignFlip

VGG19

Base 74.21 0.1 1.0
AAA 74.24 0.4 0.8
Input 71.43 6.6 53.3
Feature 71.21 10.0 46.9

ViT

Base 79.15 1.7 9.7
AAA 79.14 2.2 9.7
Input 77.09 41.3 70.3
Feature 77.18 41.0 70.1

AAA’s Performance against score-based attacks. We also provide the evaluation of AAA under
score-based attacks in Table 12. Since AAA is optimized for score-based attacks directly, it is
successful in fooling the attack. However, under a general setting where the defender does not know
the type of attack is currently performed (a more realistic scenario), AAA failed miserably as shown
above, while our defense performs well regardless of the attack.

E.3 PERFORMANCE AGAINST WHITE-BOX ATTACKS

As mentioned in the main paper, similar to previous works Byun et al. (2021); Qin et al. (2021);
Chen et al. (2022), our threat model focuses on defending against black-box, query-based attacks,
as it is a more realistic scenario in practice. Nevertheless, in this section, we provide an additional
study about the performance of our defense against white-box attacks, those that require access to
the model’s architecture and its parameters. We evaluate the performance of our method against
C&W Carlini & Wagner (2017) and PGD Madry et al. (2018) with ℓ∞ constraint ϵ = 0.03. As
observed in Table 13, the proposed defense can boost the robustness against these white-box attacks
while having a negligible degradation in clean accuracy. We conjecture that adding stochasticity to
the model can transform it into a smoothed classifier and therefore reduce the adversarial effect.

E.4 ROBUSTNESS CHARACTERISTICS OF LAYERS

As discussed in Section 3.3 in the main paper, the gradient norm varies during the sequence of
queries of an attack on an input. Figure 1 suggests that, in deeper layers, the ratio of the gradient
norm increases during the attack, which is related to the model’s robustness as seen in Theorem 1;
thus the model becomes more resilient to black-box attacks. Here, we additionally provide the
performance evaluation on CIFAR10 with 1000 attack queries when each layer is perturbed alone
(with ν such that the clean accuracy drops within a similar threshold), as well as the mean rate of
change in the gradient norm’s ratios during the sequence of queries. Table 14 implies that deeper
layers induce higher change and lead to better robustness, which confirms our analysis.

Method RayS

Base 2.0
Input 16.0
Feature 17.5

Table 11: The Accuracy under RayS attack of ViT on CIFAR10.
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Table 12: Robustness against score-based attacks of AAA (CIFAR10).

Attack VGG19 ViT
Input AAA Feature Input AAA Feature

Square 18.7 27.1 23.3 61.3 66.6 63.7
NES 47.4 58.6 55.1 70.6 73.7 72.2

Table 13: Accuracy under white-box attacks of randomized feature defense on CIFAR10

Model Method Acc C&W PGD

VGG19 Base 96.28 7.35 3.71
Feature 94.93 34.93 6.06

ViT Base 97.86 39.23 1.65
Feature 95.96 55.11 26.01

E.5 PERFORMANCE WHEN THE ATTACK IS LUCKY

Our empirical experiments focus on evaluating whether the attack can truly find adversarial exam-
ples. For non-randomized models, when an attack arrives at the decision that x is an “adversarial”
example, x unquestionably is on the other side of the decision boundary. However, for a randomized
model, x could be still on the correct side of the decision boundary, but the added randomization
shifts it to the other side of the decision boundary; thus, in principle, x is still not an adversarial
example, and if we use 1 single application for evaluation, an attack could be lucky or a randomized
defense could be unlucky. Consequently, for a fair evaluation of the effectiveness of a defense, we
forward x multiple times and decide that it is an adversarial example if the majority of the results
say so, as seen in our paper.

Nevertheless, we understand that in the case where we ignore fair evaluation, the attack is allowed
to be lucky and just has to fool the defense once. Therefore, we also provide the experiments when
forwarding x only once in Table 15. As we can observe, our defense is still effective against the
attacks.

F BEHAVIOR OF MODELS WITH RANDOMIZED FEATURES

F.1 APPROXIMATION ERROR OF OUR ANALYSIS

In our theoretical analysis, we apply first-order approximation to study the behavior of the model.
To show that the error is negligible, we calculate the difference between the loss when the input is
shifted by a vector u and the value computed by first-order approximation. Figure 3 illustrates the

Table 14: Robustness (CIFAR10) at each layer with ν corresponding to ≈ 4% clean accuracy drop.

Model Layer Square NES SignHunt Change of
Ratio

VGG 1 41.0 90.7 28.7 0.959
8 68.9 90.7 46.4 1.273
12 63.3 89.4 46.1 1.364
15 55.9 87.4 41.1 1.318

ViT 1 67.5 89.7 17.6 1.089
4 69.0 90.2 24.0 1.692
8 69.5 89.8 37.2 1.751
11 78.0 92.7 43.9 1.728

18



Published as a conference paper at ICLR 2024

Table 15: The results of Square attack on ViT/ImageNet with one forward each iteration and budget
query of N .

Method Acc N=500 N=1000 N=5000 N=10000

Base 79.15 13.4 10.3 0.2 0.0
Input 78.28 48.0 46.6 44.8 44.0
Feature 78.20 48.2 47.0 45.7 44.8
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Figure 3: The error of first-order approximation of ViT on ImageNet at log10 scale.

histogram of the error of ViT on ImageNet at log10 scale, showing that our analysis is based on a
good approximation.

F.2 THE RATIO OF THE NORM OF THE GRADIENT

We report the ratio 2ν
µ

∥∇h(x)(L◦g)∥2
2

∥∇x(L◦f)∥2
2

before and after perturbed at hidden layers of VGG19 and ViT
on ImageNet/CIFAR10 in Figure 6 and 7. The results show that, on both datasets, when the per-
turbed sample moves close to adversarial samples, the probability that randomized feature defense
can fool the attacker increases while the probability of randomized input defense does not change.
This explains the effectiveness of randomized feature defense against score-based attacks. Figure 7
shows this ratio on ViT. On ImageNet, the robustness of the defense still increases during the at-
tack; however, on CIFAR10, such behaviors between the original and perturbed samples are not
significantly different.

We also include the ratio on ResNet50 and DeiT on CIFAR10 in Figure 4 and Figure 5. As can be
observed, the ratios on ResNet50 and DeiT do not increase much during the attack, leading to small
improvements.

F.3 THE MAGNITUDE OF THE ROBUSTNESS AT INPUT AND HIDDEN LAYERS

Figure 8 and 9 show the robustness of randomized feature and randomized input defenses by multi-
plying the norm of the gradient with the relative magnitude of the defense noise. As we can observe,
the robustness when injecting noise to the hidden layers is generally higher than when injecting
noise in the input. Such robustness behaviors are more visible in the deeper layers.
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Figure 4: The ratio of the norm of the gradient of L at hidden layers and at input of ResNet50 on
CIFAR10 before and after perturbed
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Figure 5: The ratio of the norm of the gradient of L at hidden layers and at input of DeiT on
CIFAR10 before and after perturbed
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Figure 6: The ratio of the norm of the gradient of L at hidden layers and at input of VGG19 on
ImageNet/CIFAR10 before and after perturbed
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Figure 7: The ratio of the norm of the gradient of L at hidden layers and at input of ViT on Ima-
geNet/CIFAR10 before and after perturbed
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Figure 8: Distributions of the magnitude of the robustness to query-based attacks computed at input
and hidden layers of VGG19 on ImageNet/CIFAR10
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Figure 9: Distributions of the magnitude of the robustness to query-based attacks computed at input
and selected hidden layers of ViT on ImageNet/CIFAR10
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