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Abstract

Recent advances in LLM-based decompilers have been shown effective to con-
vert low-level binaries into human-readable source code. However, there still
lacks a comprehensive benchmark that provides large-scale binary-source function
pairs, which is critical for advancing the LLM decompilation technology. Cre-
ating accurate binary-source mappings incurs severe issues caused by complex
compilation settings and widespread function inlining that obscure the correspon-
dence between binaries and their original source code. Previous efforts have either
relied on used contest-style benchmarks, synthetic binary–source mappings that
diverge significantly from the mappings in real world, or partially matched bi-
naries with only code lines or variable names, compromising the effectiveness
of analyzing the binary functionality. To alleviate these issues, we introduce
Decompile-Bench, the first open-source dataset comprising two million binary-
source function pairs condensed from 100 million collected function pairs, i.e.,
450GB of binaries compiled from permissively licensed GitHub projects. For the
evaluation purposes, we also developed a benchmark Decompile-Bench-Eval in-
cluding manually crafted binaries from the well-established HumanEval and MBPP,
alongside the compiled GitHub repositories released after 2025 to mitigate data
leakage issues. We further explore commonly-used evaluation metrics to provide a
thorough assessment of the studied LLM decompilers and find that fine-tuning with
Decompile-Bench causes a 20% improvement over previous benchmarks in terms
of the re-executability rate. Our code and data has been released in HuggingFace
and Github. https://github.com/albertan017/LLM4Decompile

1 Introduction

Decompilation transforms the compiled binaries into high-level source code, helping engineers
analyze program behaviors, uncover vulnerabilities, study malware, migrate legacy software,
etc [11, 46, 83, 12, 30, 28, 31]. Decompilation is inherently difficult due to the information loss during
the compilation process. Widely-adopted tools like Ghidra [32] and IDA [37] often fail to recover im-
portant details such as variable names [51, 84] and structural elements like loops and conditionals [76].
Motivated by the coding power of Large Language Models (LLMs) [71, 34, 68, 50, 64, 92, 75],
researchers have developed LLM-based decompilers that demonstrate significant improvements in
readability and accuracy of decompilation outputs [39, 7, 89, 40, 82, 58, 96, 59, 81, 74].

However, there lacks an open-source benchmark that provides large-scale binary-source function
pairs drawn from real-world release-level binaries, which potentially hinders further advancements
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of LLM decompilation technologies. Specifically, while commercial efforts like BinaryAI [43],
MLM [41], and ReCopilot [14] have assembled extensive private corpora, their closed-source nature
complicates the access from academia. In contrast, a large-scale and publicly available benchmark
would promote transparency, broaden participation, and accelerate progress in decompilation research.
However, creating accurate binary-source mappings faces two major challenges. First, reconstructing
the binary-source relationship often depends on DWARF debug information [18], which is rarely
available in publicly released binaries. Second, aggressive compiler optimizations and pervasive
function inlining [77] can obscure the correspondence between compiled binaries and their original
source, rendering incomplete and unreliable mapping by directly tracking DWARF debug information.
Previously, a group of researchers have used code contest benchmarks [76, 67] or developed tools to
synthesize binary-source mappings [22, 6]. Although these benchmarks are somewhat beneficial for
LLM-based decompilers, they differ significantly from real-world scenarios, raising concerns on their
practical applicability. Alternatively, other researchers focus on linking binaries with fragments of
source code. They tend to either target variable names and types [51, 84, 16], establishing connections
between binary functions and their corresponding named entities in the source code, or directly extract
line-level mappings from the DWARF debug information [57]. While these approaches provide
valuable partial information, they neither resolve the fundamental obscured mapping problem, nor
offer a complete understanding of binary functionality.

In this paper, we propose the first million-scale binary-source benchmark for real-world decompilation,
namely Decompile-Bench, a corpus of two million function-level binary–source pairs condensed
from 100 million collected pairs, i.e., 450 GB of binaries built from permissively licensed GitHub
projects [63]. We also propose a pipeline Compile-Trace-Filter framework (CTF framework), to
automate project builds, accurately trace each binary function back to its corresponding source code,
and rigorously filter out low-quality data. We then augment Decompile-Bench with Decompile-Bench-
Eval for the evaluation purposes with (1) manually crafted binaries drawn from two widely-used
code-completion benchmarks HumanEval [15] and MBPP [8] and (2) binaries compiled from GitHub
repositories published after 2025 for preventing potential data leakage issues.

Finally, we include three metrics commonly employed by recent LLM-based decompilers and
benchmark them on Decompile-Bench-Eval. We also compare previous decompilers against those
trained on Decompile-Bench, and find that Decompile-Bench collects high-quality binary-source
function pairs, e.g., having a 20% improvement on re-executability over previous benchmarks. Our
code and data has been released in HuggingFace2 and Github. Our main contributions can be
summarized as follows.

• Decompile-Bench. We propose the first million-scale benchmark for real-world decompilation
with two million binary-source function pairs. Our pipeline ensures precise mappings and filters
100 million raw function pairs down to two million high-quality ones.

• Decompile-Bench-Eval. We propose a leakage-resistant evaluation suite containing (1) hand-crafted
binaries from HumanEval and MBPP and (2) binaries built from GitHub repositories published
after 2025.

• Comprehensive evaluation. Our experiments demonstrate that fine-tuning with our benchmark
improves re-executability by over 20% compared to the previous benchmarks.

2 Related Work

Despite extensive work on binary-only benchmarks, e.g., compiler provenance [26], vulnerability
detection [52, 9, 65, 38], summarization [45, 88] and similarity search [80, 47, 72, 55], pairing
binaries with their original source code has received less attention.

Commercial efforts like BinaryAI [43], MLM [41], and ReCopilot [14] have collected large-scale
private binary–source corpora, yet their closed-source nature limit access from academia. For open-
source binary–source benchmarks, we categorize them into four groups (Figure1) as follows. Note
that since disassembling a binary to assembly is rather deterministic, we treat “binary” and “assembly”
as equivalent terms in this paper.

Code Contest Benchmarks. Built from programming-contest problems, these benchmarks [76, 67]
may include unit tests that verify whether decompiled output actually executes, and they typically
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Category

Benchmarks

Samples

Code Contest Synthetic

Decompile-Dataset [26] 

HumanEval-Decompile [11]

AnghaBench [27] ExeBench [28]

CSMith [48]

int func0(float num [], 

int size, float threshold){

int i, j

for (i = 0; i < size; i++)

  for (…) if (…)…}

struct of_device{int dummy; } ;

struct device {int dummy; } ;

struct device* bus_find_device

  (int /*<<< orphan*/ *,…) ; 

int /*<<< orphan*/ …;}a b

Fragment-Level Real-World Function-Level

Dire[9] Dirty [29] Resym [10]

Assemblage [30]

CodeCMR [53] Idioms [54]

Decompile-Bench

Game::Game(std::size_t grid_width, 

  std::size_t grid_height)

    : snake(grid_width, grid_height),

      snake2(grid_width, grid_height),

      engine(dev()), …

{ snake.setPosition(…)…}c d

Category

Benchmarks

Samples

Figure 1: Different types of binary–source benchmarks.

involve functions with simple variable names and standard types such as “int” or “float” (Figure1-a),
omitting user-defined types that are common in real-world scenarios.

Synthetic Mapping Benchmarks. Built on synthetic data, researchers [22, 6] develop
tools to generate synthetic types and dependencies, e.g., struct of_device {int dummy},
int /*<<< orphan*/ as in Figure1-b, to enable compilation. While these benchmarks have
motivated multiple LLM-driven decompilers [76, 7, 89, 44], their synthetic nature also raises issues
on decompiling real-world binaries. More details on these datasets are discussed in Appendix A.
Other works [13, 61] use Csmith [87] to randomly generate compilable C programs. Both approaches
do not represent real-data distributions.

Fragment-Level Benchmarks. These benchmarks focus on linking binaries with fragments of
source code including token-level mapping and line-level mapping. Specifically, token-level mapping
indicates that name/type recovery [51, 84, 16, 19, 69, 23, 54] only reconnects identifiers with the
source. It does not attempt to reconstruct control-flow structures, data-flow relationships, or high-level
abstractions. As a result, it fails to produce a standalone, compilable program, limiting its effectiveness
for downstream binary analysis tasks. A typical line-level mapping benchmark Assemblage [57]
includes detailed metadata and tools for a variety of binary-centric analyses. Although its primary
emphasis is on the binary side, it also offers partial binary-source mapping by tracing DWARF debug
information to link binary instructions back to their original source code lines. However, compiler
optimizations severely disrupt this process such that the line-to-line correspondences are largely lost.
As shown in Figure1-c, while one can still map a source code line to its binary via the Relative Virtual
Address (RVA), those RVAs may span different functions. Consequently, the original code context
around each line is lost and the function body becomes highly fragmented. While these benchmarks
provide useful partial insights, they do not deliver a full representation of binary functionality.

Real-World Function-Level Benchmarks. In these benchmarks, the complete function-level source
code including full function signatures, bodies, user-defined types, and names is extracted from real-
world GitHub repositories. Accordingly, binaries are built with standard toolchains and linked against
external libraries, closely replicating publicly released executable versions to form the real-world
binary-source function pairs. However, the existing real-world function-level benchmarks such as
CodeCMR [90] (with 60K pairs) and Idioms [25] (with 154K pairs) are both orders of magnitude
small for modern LLM training.

To conclude, there lacks a real-world function-level and publicly accessible large-scale benchmark to
promote transparency, attract more contributors, and foster progress in the decompilation research.

3 Decompile-Bench

In this section, we first introduce the CTF (Compile-Trace-Filter) framework, the pipeline used to
build our benchmark, and then provide statistics and analysis of Decompile-Bench.

3



(a) Compile

(b) Trace (c) Filter

Stack v2 GitHub

Pemissive 

C/C++ repos

Create

container

Docker

apt install 

dependecies

Clone

Revised Clang

-O{0,1,2,3} -g

find_package(...)->lib

Binary

Binary

Repo

Tree-sitter

Candidates

Code fragments

Read

DWARF

Path to SRC

Disassemble

Direct read SRC 

Functions

Binary-Source Mapping

Max

intersect

RepoSRC

ASM
In-Bin dedup

Cross-Bin dedupASM Functions

Figure 2: The CTF framework which (a) automates compilation, (b) precisely traces binary–source
mappings, and (c) rigorously filters out low-quality data.

3.1 CTF framework

Figure 2 illustrates the CTF framework we use to build Decompile-Bench. As mentioned, there
are two issues to link binaries back to their sources: (1) DWARF debug information is typically
stripped from production builds, and (2) heavy compiler optimizations and function inlining radically
transform code structure. They together make DWARF-only alignment incomplete and error-prone.
To address both issues, our CTF framework automates project compilation, precisely traces function-
level binary-source mappings, and applies robust filters to retain only high-quality pairs.

Automatic Compilation. Prior works (e.g., Dirty [16] and Idioms [25]) use tools like
GHCC [42] to inject optimization and debug flags by setting environment variables (e.g.,
env["MOCK_GCC_OVERRIDE_FLAGS"], env["CMAKE_CXX_FLAGS"]), expecting that the compiler
would recognize these settings. However, in reality, a substantial proportion of projects ignore
these environment flags. Additionally, compiling C/C++ projects is challenging due to numerous
dependencies and libraries not included in the projects, often requiring manual intervention. As a
result, direct compilation typically fails for most projects.

We fork Clang [77] to address the aforementioned issue. In particular, we patch its driver and
invocation logic to force our desired -O{0,1,2,3} and -g flags, then rebuild Clang and symlink
all compiler calls (e.g. env["CC"], /usr/bin/clang) to our patched compiler. For the missing
packages, we automatically parse CMakeLists.txt of each project for find_package(...) directives,
query GPT for the correct install commands, and cache a mapping from package name to install
recipe. During the build, we pre-install any missing libraries before invoking CMake. This end-to-end
toolchain guarantees consistent optimization/debug settings and includes DWARF debug information,
improving the overall compilation success rate. This toolchain also supports Makefiles, as detailed in
Appendix F.

Trace Binary-Source Correspondence. DWARF debug data records file paths and line numbers that
link line-level assembly back to source. In practice, however, compiler optimizations and function
inlining make these mappings incomplete, fragmented, or out of order. To solve this, we introduce the
Source-Trace algorithm for accurate function-level binary-source pairing. As shown in Algorithm 1,
our Source-Trace algorithm takes as input a binary B and its originating source project S, and
produces a mapping M from each binary function fb ∈ B to the corresponding complete source
function fs ∈ S.

For each binary function fb (Line 1), we extract all of its DWARF-reported source locations and
collect them into a set func_segment (Line 2). This replicates the “conventional” binary-source
mapping step as employed in previous works [89, 57], which yields only fragmented, unordered
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Algorithm 1 Pairing Binary Functions with Source Functions
Input: Binary project B, source project S
Output: Map M , containing the mapping between each binary function in B to a source function

1: for all binary function fb in B do
2: Extract DWARF information in fb to obtain corresponding source-code lines; group them as

func_segment
3: Candidates← ∅
4: for all source line ℓ in func_segment do
5: Use Tree-sitter on S to extract the complete source function fs containing ℓ
6: Candidates← Candidates ∪ {fs}
7: end for
8:

f∗
s ← arg max

fs∈Candidates

∣∣func_segment ∩ Lines(fs)
∣∣

9: M [fb]← f∗
s

10: end for
11: return M

snippets. For each line l in func_segment (Lines 3–7), we use Tree-sitter [20] to parse the project S,
locate the full source function surrounding that line, and add it to a candidate list. After parsing, each
candidate is a complete function (signature + body). We then compute the line intersection between
func_segment and each candidate function and choose the candidate with the largest overlap as the
true source match for fb (Line 8). At last, we record the mapping between fb and fs and return the
final mapping M for all functions in B (Lines 9-11).

This procedure fixes missing or reordered source code fragments by realigning them with clear
function boundaries, yielding precise binary–source function pairs. For validating the matching
algorithm, please refer to Appendix E.

Filter data. The raw mappings produced by our Source-Trace algorithm still contain a large amount
of noise, such as trivial system header functions, multiple binary functions pointing to the same
overloaded or template source function, and duplicate source functions. To enhance the quality of
Decompile-Bench, we therefore apply a three-stage filtering pipeline as follows.

(1) Project-scope filter. We remove any source function not actually defined in the target repository.
These are mostly trivial helpers, e.g., get() and set(), extracted from system or dependency headers,
which offer less value for decompilation. (2) In-binary deduplicator. Whenever several functions
within one binary claim the same source function (usually due to template instantiation), we keep
only the single best match, i.e., the one with the largest DWARF-segment intersection as computed in
Algorithm 1, Line 8, and discard the rest. (3) Cross-binary deduplicator. We apply MinHash-LSH [10]
to the remaining source functions and assemblies to eliminate near-duplicate, following standard
corpus-cleaning practices in LLM training [71, 63, 48, 5].

3.2 Data Statistics and Analysis

To ensure permissive licensing, we select the C/C++ GitHub repositories from the Stack V2 [63],
whose licenses are either approved by the Blue Oak Council [1] or flagged “Permissive” by Scan-
Code [2]. We further require at least one GitHub star for basic quality assurance [5] and the presence
of a CMakeLists.txt to streamline builds. Each project is then compiled at four optimization
levels (-O{0,1,2,3}). In total, we successfully built 3,961 repositories, yielding roughly 450 GB of
executables across 85K binaries and extracting about 100 million binary functions. This number far
exceeds the roughly 5 million source functions present across the projects, highlighting the need for
data filtering to improve the quality. The filtering statistics and examples are summarized in Figure 3.
In particular, Figure 3-a shows that 45% of binary functions are the system or dependency headers
associated with our collected repositories. Removing duplicates within each binary eliminates about
20% of data, and 32% of the binary functions are removed via cross-binary deduplicator (please refer
to Appendix B for detailed analysis). Finally, our compact benchmark retains only 2% of the raw data
(two million functions out of 100M). As shown on the Figure 3-b, removing codes from header files
or duplicates eliminates the vast majority (40% of all raw data) of short snippets (under five lines)
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that offer limited training information for an LLM decompiler. Figure 3-c shows representative cases
removed by the project-scope filter (upper subfigure) and the in-binary deduplicator (lower subfigure).
The project-scope filter mostly discards trivial helpers (e.g., get()), constructors, and destructors from
system or dependency headers. In-binary duplicates stem from template instantiation. In particular,
when a template is instantiated across multiple object files, the compiler emits separate, mangled
versions of identical logic (e.g., the code snippet of the lower subfigure of Figure 3-c is compiled
to 17 binary functions within the same binary). Although generated independently from the same
source, these duplicates offer no additional diversity. The ablation study of Section 5.3.2 further
affirms the effectiveness of this filtering step, which is consistent with prior studies [63, 48, 5], i.e.,
eliminating duplicates markedly improves performance across all experiments.

headers
45%

in-bin-dup
20%

cross-bin-dup
33%

clean
2%

(a) Filter statistics (b) 

T* operator=(T* p){ 

  if (p) 

    p->AddRef(); 

  if (_p) 

    _p->Release(); 

  _p = p; 

  return p;}

~vector(){

std::_Destroy(

this._M_start, 

this._M_finish,

_M_get_Tp_allocator());}

(c) Functions excluded by filters 

Vector

Destructor

Overload

Figure 3: (a) Filter statistics. (b) Length-frequency histogram. “Clean src” denotes filtered code,
while “raw asm” denotes unfiltered output. (c) Sample functions excluded by the filters.

Ethics. Our Decompile-Bench is composed solely of publicly available code from permissively
licensed GitHub repositories [63] (e.g. MIT, BSD, and Apache 2.0), which precludes large amount of
non-permissive libraries. Commercial software remains protected through obfuscation techniques that
render effective decompilation impossible, as demonstrated in previous research [76]. Additionally,
the benchmark serves for purely academic and educational purposes, supporting legitimate research
in binary analysis and reverse engineering education.

4 Decompile-Bench-Eval

In this section, we discuss the construction of Decompile-Bench-Eval with the commonly-used
evaluation metrics in decompilation.

4.1 Dataset

We first include two widely-used code-completion benchmarks, HumanEval [15] and MBPP [8],
which by convention must be held out of the training data of any LLM. Specifically, we translate each
Python solution and its test cases of the HumanEval and MBPP into C/C++ manually [76, 94]. Note
that unlike HumanEval-Decompile [76], which is restricted to C, our dataset offers language support
for both C and C++. At test time, we compile each sample into a binary at four optimization levels
(-O0—O3), decompile it back to source, and run the original tests to ensure correctness.

To augment the real-world applicability of Decompile-Bench-Eval, we also collect 121 GitHub
repositories created after 2025 with more than one star as in the Decompile-Bench. We ensure
permissive licenses, and then use the CTF framework to compile and clean each project. To eliminate
any overlap with known training corpora, we strip out “third-party”, “external”, and the submodule
directories. In total, this yields about 60K C/C++ new functions to alleviate the data leakage concerns.
We name this dataset as GitHub2025 in this paper. In addition, we include ProRec [73] for evaluation.
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4.2 Metrics

We evaluate decompilers using three core metrics: functionality recovery (Re-Executability [7]),
readability (R2I [27]), and text similarity (edit similarity [53]). We also include additional evaluation
metrics, i.e., embedding-based similarity [93] and CodeBLEU [70], in Appendix C.

Re-Executability. Re-executability measures whether the decompiled function’s functionality
matches that of the original source function, which is widely adopted in decompilation [76, 7, 89, 44,
29]. For source function s and decompiled function d, the decompiled function d is re-executable if
they produce identical outputs on all inputs. Formally,

ReExes(d) ⇐⇒ ∀x ∈ X, s(x) = d(x) (1)

In practice, we approximate the solution of ReExes(d) over a finite test set. Given the unit tests T ,
we define the Re-Executability for d as: ReExes(d) if ∀x ∈ T, s(x) = d(x). Re-executability is
also called the I/O accuracy [7] or pass rate [44].

R2I. Relative Readability Index (R2I) [27] is a metric devised for the relative, quantitative evaluation
of decompiled C code. Given a set of decompiler outputs, R2I produces a normalized score between
0 and 1. To compute R2I, we typically construct an abstract syntax tree (AST) [3] first and then
extract pre-defined features from the AST. At last, we calculate R2I with the feature weights.

Edit Similarity. Based on Levenshtein Distance [53], this metric captures the minimum number
of insertions, deletions, or substitutions needed to turn the generated code into the reference. It is a
popular measure in decompilation to assess readability [76, 7].

5 Experiments

5.1 Setups

We compiled our binaries on Ubuntu 20.04 targeting the Linux x64 architecture, using Clang-
19 with the C++17 standard. For fine-tuning, we initialized our model with the 1.3B and 6.7B
LLM4Decompile-End checkpoint [76]—a state-of-the-art LLM-based decompiler pre-trained on 15
billion tokens from ExeBench [6]. We adopt the sequence-to-sequence (S2S) [21, 79] prediction
as our training objective, following the practice in LLM-decompilers [76, 7, 44]. As a preliminary
study, we use 10% of the Decompile-Bench function pairs as the training data and train the studied
models using LLaMA-Factory library [95] with a batch size = 64 and learning rate = 5e−6
for one epoch (0.2B tokens). We name the resulting model as LLM4Decompile-DCBench. All the
experiments are performed on NVIDIA A800-80GB GPU clusters. Fine-tuning the 1.3B model takes
4 hours on 8 × A800, while the 6.7B model takes 1 day. For evaluation, we use the vllm [49] to
accelerate the generation (decompilation) process, with the max number of new generated tokens set
to 512. We employ greedy decoding to minimize randomness.

5.2 Baselines

We adopt IDA [37]—the most widely used traditional decompiler—as our primary baseline. We
also evaluate state-of-the-art commercial models GPT-4.1-mini [68] and Claude-Sonnet-4-reasoning.
LLM4Decompile-End [76] and Idioms [25] are included as our open-source baselines. Other LLM-
based decompilers like Nova [44], Ref-Decomp [29] do not illustrate their preprocessing approaches,
hindering our replications. Thus, they are not included for evaluations.

5.3 Results

5.3.1 Main Results

Table 1 reports the re-executability rate across optimization levels (O0–O3) on HumanEval and
MBPP. GPT-4.1-mini, although not explicitly trained for decompilation, demonstrates robust decom-
pilation performance, achieving average re-executability rates of 13.42% and 19.89% across the two
benchmarks. By fine-tuning the LLM4Decompile-End-1.3b on just 10% of our Decompile-Bench
data (i.e., LLM4Decompile-DCBench-1.3b), we improve re-executability of LLM4Decompile-End
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Table 1: Comparisons of different decompilers in terms of re-executability

Re-Executability Rates HumanEval MBPP

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

GPT-4.1-mini 21.95 11.58 10.07 10.06 13.42 31.37 16.74 16.64 14.79 19.89
IDA 18.60 19.81 17.69 16.77 18.22 25.62 25.05 23.72 23.57 24.49

Idioms-1.3b 30.56 16.10 12.63 12.36 17.91 33.97 20.47 18.13 17.30 22.47
LLM4Decompile-End-1.3b 26.22 12.81 14.03 13.42 16.22 29.16 16.99 17.92 18.07 20.54

LLM4Decompile-DCBench-1.3b 33.23 18.60 16.47 15.24 20.89 35.06 21.56 22.80 20.28 24.93
LLM4Decompile-DCBench-6.7b 61.59 30.18 34.15 32.01 39.48 58.32 39.58 39.73 37.06 43.67

Claude-Sonnet-4-reasoning 65.85 42.68 39.63 39.02 46.79 67.76 51.69 53.02 50.25 55.68

Table 2: Main comparison of different decompilers for R2I on evaluation benchmarks.
R2I HumanEval MBPP GitHub2025 ProRec

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG Score

GPT-4-1-mini 62.38 52.63 55.68 53.90 56.14 61.79 55.34 57.05 55.83 57.50 51.65 39.64 46.62 55.83 48.43 55.01
IDA 41.49 36.29 35.85 35.32 37.23 41.82 34.87 35.16 36.21 37.02 45.87 38.85 36.99 36.20 39.48 38.35

Idioms-1.3b 68.18 66.92 67.46 65.48 67.01 69.12 67.01 63.91 62.35 65.60 61.76 58.06 53.26 51.19 56.07 64.86
LLM4Decompile-End-1.3b 65.69 60.48 60.66 59.37 61.55 67.93 63.47 65.69 63.01 65.03 54.26 51.73 53.42 50.56 52.49 57.49

LLM4Decompile-DCBench-1.3b 68.93 68.74 69.03 67.76 68.62 69.13 70.97 68.03 67.79 68.98 64.40 65.72 61.74 63.31 63.79 65.73
LLM4Decompile-DCBench-6.7b 69.35 68.91 69.79 68.42 69.12 72.30 71.99 72.25 70.67 71.80 72.67 70.23 66.55 67.76 69.30 66.15

Claude-Sonnet-4-reasoning 61.09 54.94 55.65 55.28 56.74 64.78 60.62 61.53 61.71 62.16 55.70 43.88 45.04 51.71 49.08 57.38

Table 3: Main comparison of decompilers for Edit Similarity on evaluation benchmarks.
Edit Similarity HumanEval MBPP GitHub2025 ProRec

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG Score

GPT-4-1-mini 46.09 33.83 34.75 29.66 36.08 47.52 37.34 39.15 32.63 39.16 21.15 18.64 19.38 18.43 19.40 34.74
IDA 25.47 21.01 20.18 17.92 21.15 27.66 23.63 22.01 19.43 23.18 22.17 18.21 19.69 18.93 19.75 27.24

Idioms-1.3b 48.84 38.08 35.93 34.66 39.35 49.35 38.13 35.91 34.36 39.44 30.27 24.04 25.09 24.18 25.90 36.03
LLM4Decompile-End-1.3b 43.37 36.91 36.76 36.30 38.34 44.82 39.67 39.01 38.13 40.41 23.09 20.61 21.77 20.81 21.57 34.26

LLM4Decompile-DCBench-1.3b 54.36 43.54 44.21 42.78 46.22 56.38 48.14 46.76 45.79 49.28 30.99 29.21 30.23 27.59 29.51 38.85
LLM4Decompile-DCBench-6.7b 62.32 51.91 51.66 52.99 54.72 64.12 55.40 53.87 53.39 56.70 34.29 32.74 34.18 29.96 32.79 45.23

Claude-Sonnet-4-reasoning 60.75 48.45 47.12 46.40 50.68 64.64 54.27 53.10 51.98 55.99 36.29 32.80 33.12 31.32 33.38 41.99

to 20.89% on HumanEval (a 28.8% relative gain) and 24.93% on MBPP (a 21.4% gain) compared
with the baseline model, demonstrating the advantage of adopting the benchmark with real-world
binary-source function pairs.

The recent model Claude-Sonnet-4 achieves a high re-executability rate on HumanEval (46.79%),
demonstrating the power of large-scale commercial LLMs. Idioms shows promise on O0 optimiza-
tions (30.56% re-executability) but its performance degrades sharply on higher optimizations like
O2/O3 (~12%). This suggests its training data may lack sufficient examples of aggressively optimized
code, validating the effectiveness of our Automatic Compilation technique (Section 3.1) which
ensures that such cases are well represented. The LLM4Decompile-DCBench-6.7b model achieves a
39.48% re-executability rate, which is highly competitive with Claude’s 46.79%. It indicates that a
model trained on a small fraction (10%) of our high-quality data can approach the performance of a
massive commercial LLM trained on trillions of tokens.

Table2 shows the R2I performance for the studied decompilers. Note that R2I applies only to C
programs, so we report its scores exclusively on C functions. Although IDA deliver comparable
re-executability rates with LLM-based decompilers, its R2I readability index is only about 40, i.e.,
nearly half the 70 R2I achieved by LLM-based decompilers. The low R2I scores of conventional
decompilers highlight their poor readability and underscore the need for LLM-based decompilers to
produce more human-readable output for facilitating binary analysis.

Moreover, on the real-world decompilation test set GitHub2025, LLM4Decompile-DCBench-
1.3b trained on real-world binary–source function pairs delivers a 21.5% higher R2I score than
LLM4Decompile-End-1.3b, which was fine-tuned on synthetic data. This result highlights the impor-
tance of real-world training data for producing executable and readable decompiled code. We also
observe the similar gains in terms of edit similarity (Table 3), where LLM4Decompile-DCBench-1.3b
achieves a 36.8% improvement over the baseline LLM4Decompile-End-1.3b.

We also evaluate additional metrics, i.e., embedding-based similarity, CodeBLEU, and GPT evalua-
tion, and observe consistent trends as in Tables 1, 2, and 3 Please refer to Appendix C for details.
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5.3.2 Ablations

Following the setup in Section 5.1, we also perform a series of ablation studies by comparing
Decompile-Bench with other benchmarks via fine-tuning LLM4Decompile-End on an equal amount
of 200K binary–source function pairs drawn from two other sources, i.e., the 100M-pair raw corpus
of Decompile-Bench (Section 3.2) and ExeBench.

Table 4: Ablation study on training data for re-executability rate. The tag “+ExeBench” denotes that
the data come from ExeBench, whereas “+Decompile-Bench-raw” indicates the use of the unfiltered
Decompile-Bench as discussed in Section 3.2.

Re-Executability Rates HumanEval MBPP

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

LLM4Decompile-End 26.22 12.81 14.03 13.42 16.22 29.16 16.99 17.92 18.07 20.54
+Exebench 26.22 13.89 13.11 13.89 16.78 27.16 17.66 18.74 17.25 20.20
+Decompile-Bench-raw 24.70 13.41 13.11 12.20 15.86 26.49 16.48 15.40 14.32 18.17
+Decompile-Bench 33.23 18.60 16.47 15.24 20.89 35.06 21.56 22.80 20.28 24.93

Table 5: Ablation study on training data for R2I metric. Note that since R2I evaluates decompiled
code in a relative context quantitatively [27], its values can vary significantly for the same decompiler
when compared with different baselines.

R2I HumanEval MBPP GitHub2025

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

llm4decompile 51.01 55.54 57.90 53.83 54.57 54.14 55.10 57.61 56.15 55.75 47.21 45.15 51.78 50.68 48.71
+Exebench 50.74 56.77 56.62 54.47 54.40 55.67 55.28 57.09 55.39 56.11 48.47 46.35 48.42 48.65 47.97
+Decompile-Bench-raw 52.82 57.64 55.55 55.31 55.33 56.00 57.75 56.71 56.87 56.83 70.02 62.09 67.79 64.48 66.10
+Decompile-Bench 55.59 59.87 62.90 63.06 60.36 60.06 62.01 63.54 61.64 61.81 73.34 69.72 70.79 69.73 70.89

Table 6: Ablation study on training data for edit similarity.
Edit Similarity HumanEval MBPP GitHub2025

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

llm4decompile 43.37 36.91 36.76 36.30 38.34 44.82 39.67 39.01 38.13 40.41 23.09 20.61 21.77 20.81 21.57
+Exebench 43.36 35.30 34.99 34.74 37.10 45.46 39.91 38.99 38.43 40.69 22.70 20.30 21.43 20.52 21.24
+Decompile-Bench-raw 48.35 37.39 36.99 36.56 39.82 49.38 40.45 39.67 38.81 42.08 30.19 28.66 29.69 27.50 29.01
+Decompile-Bench 54.36 43.54 44.21 42.78 46.22 56.38 48.14 46.76 45.79 49.28 30.99 29.21 30.23 27.59 29.51

Table 4 summarizes the re-executability rate of LLM-decompilers trained on different benchmarks.
Since the base model LLM4Decompile-End is trained on ExeBench and additional training from the
same source does not provide further benefits, “LLM4Decompile-End+Exebench” model achieves
similar results to the base model LLM4Decompile-End. For the model trained on Decompile-Bench-
raw, although the data is sampled from real world, the low-quality nature leads to 2.2% and 11.4%
re-executability decline against to the base model. Compared to the Decompile-Bench-raw data,
fine-tuning with the clean and compact data from Decompile-Bench significantly improves the
re-executablility of the base model for over 20% as discussed in the main results.

Tables 5 and 6 report R2I and edit-similarity scores for LLM-based decompilers trained on different
benchmarks. The model using Decompile-Bench-raw outperforms ExeBench by about 2% on both
metrics for HumanEval and MBPP. However, the re-executability results in Table 4 indicate that these
small readability gains come at the cost of increased logical errors, namely hallucination [66, 56]i.e.,
the model produces plausible but incorrect results. By training on our Decompile-Bench, we achieve
around averaged 15% improvement in readability and similarity compared to LLM4Decompile-End
with markedly higher correctness.

5.4 Extending Decompile-Bench to Search and Other Tasks

The binary–source pairs in Decompile-Bench also directly support a binary–source search task. In our
preliminary experiments, an embedding model trained on just 10% of Decompile-Bench data achieves
a 27% recall@1 on Decompile-Bench-Eval where detailed results are provided in Appendix D.

In addition to binary-source search, as Decompile-Bench includes binaries from the same projects
built under different optimization settings, it naturally supports training binary-similarity-oriented

9



techniques [72, 62]. Moreover, since each binary is paired with its complete source function (signature
and body) in Decompile-Bench, variable names and types can be extracted to facilitate type-recovery
tasks [85, 73].

5.4.1 Case Study

(a) Source code
bool  bitmap_is_set_all(long long a1){

_DWORD *i; // [rsp+8h] [rbp-18h]
for ( i = *(_DWORD **)a1; (unsigned long long)i 

< *(_QWORD *)(a1 + 8); ++i ){
if ( *i != -1 ) return 0;}

return (*(_DWORD *)(a1 + 24) | *i) == -1;}

my_bool bitmap_is_set_all(const MY_BITMAP *map){
  my_bitmap_map *data_ptr= map->bitmap;
  my_bitmap_map *end= map->last_word_ptr;
  for (; data_ptr < end; data_ptr++)
    if (*data_ptr != 0xFFFFFFFF)
      return FALSE;
  return (*data_ptr|map->last_word_mask)==0xFFFFFFFF;}

(b) IDA Pro

bool bitmap_is_set_all(bitmap_t* bitmap) {
  uint64_t* current = bitmap->addr;
  uint64_t size_in_words=bitmap->size/sizeof(uint64_t);
  for (uint64_t i = 0; i < size_in_words; ++i) {
    if (current[i] != UINT64_MAX) {return false;}}
  return true;}

(c) GPT4.1-mini

bool bitmap_is_set_all(const struct bitmap *b){
  const struct bitmap_header *h = (const struct 
bitmap_header *)b;
  const unsigned int *p = (const unsigned int *)h;
  const unsigned int *end = (const unsigned int *)h->end;
  bool ret;
  if (p < end) {
    if (*p != 0xffffffff) {ret = false;} 
    else {p++;
      while (p < end) {
       ret = (*p++ | h->mask) == 0xffffffff;}}}
  else {ret = true;}
  return ret;}

bool bitmap_is_set_all(const struct bitmap *bitmap){
  const uint8_t *p = bitmap->data;
  const uint8_t *end = bitmap->end;
  while (p < end) {
    if (*p != UINT8_MAX) return false;
    p++;}
  return (*p | bitmap->mask) == UINT8_MAX;}

(d) LLM4Decompile-End

(f) LLM4Decompile-DCBench

Figure 4: A case study on a bitmap function with (a) source code and the decompilation results from
(b) IDA Pro, (c) GPT4.1-mini, (d) LLM4Decompile-End, and (e) LLM4Decompile-DCBench

Figure 4 presents a case study on a bitmap function and its corresponding decompilation results across
different tools. IDA Pro preserves the control flow but produces unreadable output, with complex
type conversions involving pointer arithmetic (e.g., (_DWORD *)(a1 + 24))) and generic variable
names. GPT-4.1-mini, on the other hand, excels at generating human-readable names and types
(e.g., bitmap_t bitmap close to the ground truth MY_BITMAP map) but often compromises logical
correctness, such as hallucinating a return true;, while ignoring the critical return comparison
logic. LLM4Decompile-End and LLM4Decompile-DCBench could recover correct control flow
and logic while producing meaningful identifiers.For example, LLM4Decompile-DCBench names a
variable const uint8_t *end = bitmap->end, which accurately reflects its functionality.

6 Conclusion

In this paper, we present Decompile-Bench, the first large-scale decompilation benchmark containing
two million function-level binary–source pairs, sourced from 100 million pairs in permissively
licensed GitHub projects. In particular, we develop the CTF framework, an automated pipeline that
compiles projects, traces each binary function to its source code, and rigorously filters out low-quality
examples. For evaluation purposes, we extend Decompile-Bench with Decompile-Bench-Eval, which
comprises (1) manually crafted binaries from the HumanEval and MBPP code-completion challenges
and (2) binaries compiled from GitHub repositories published after 2025 to prevent data leakage. We
then evaluate state-of-the-art LLM-based decompilers and traditional tools on Decompile-Bench-Eval.
The model trained on Decompile-Bench achieves a 20% improvement on re-executability rate over
prior benchmarks. It also shows consistent gains across additional studied metrics, underscoring the
effectiveness of our dataset for training LLM-based decompilers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions and scope is clearly defined in the abstract and intro-
duction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theory assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details have been provided in Section 5.1, and reproducible
codes are also provided in the GitHub link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The reproducible codes are provided in the GitHub link, the benchmarks have
been released in Hugging Face.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings are provided in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report results averaged over three runs and perform significance testing,
yielding p < 0.01 on the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the resources in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We discussed in Section 3.2 Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed in Section 3.2 Ethics.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discussed in Section 3.2 and in Ethics.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discussed in Section 3.2 and all the codes are from permissive libraries.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We discussed in Section 3.2 and all the codes are from permissive libraries.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Synthetic Datasets

A.1 AnghaBench

AnghaBench [22], as noted above, injects synthetic types and dependencies so that each function can
compile to an object file (not executable). As a result, both its source code and generated binaries
differ remarkedly from real-world programs, which limits its effectiveness when training decompilers
on real-world binaries.

A.2 Exebench

ExeBench [6] is the first publicly available dataset that pairs genuine C programs from GitHub with
runnable I/O examples. It has inspired the development of many LLM-based decompilers [7, 89].
However, despite its GitHub origins, ExeBench’s own analysis shows its executable codes exhibit
substantially lower complexity than typical C code. We confirmed this by re-running their experiments
using their original metrics as follows.

Cyclomatic Complexity. This metric measures the number of linearly independent paths through a
program, offering a quantitative measurement of its control-flow complexity [4].

Halstead’s Metrics. These metrics refer to a suite of measures introduced by Maurice Halstead that
estimates development and maintenance effort based on the counts of distinct operators and operands
in the code [35]. We use the Difficulty metric, it is the ratio of the number of unique operators to the
total number of operators in the program.

We compute these metrics on two data splits: the executable subset of ExeBench (Executable Data in
Figure 5), and a randomly selected collection from the full ExeBench to represent general GitHub
functions (GitHub Data in Figure 5), following the original ExeBench protocol [6]. Our replicated
results are summarized in Figure 5.

Figure 5: Code complexity for the executable subset of ExeBench and GitHub data. Note that the
Halstead Difficulty is normalized by factor of 10 for better visulization.

Figure 5 shows that the ExeBench’s executable subset with an average Cyclomatic Complexity of
2.1 and Halstead Difficulty of 10.5 is substantially simpler than the general GitHub data with an
average of 3.6 and 16.3 in terms of these two metrics respectively. The distribution gap between the
executable dataset and real-world code raises doubts about its value for training decompilers aiming
at real-world applications.

B Data Filtering

As noted in Section 3.2, our Decompile-Bench, aka. the “clean data”, retains only 2% of the original
100M “raw data”. In Figure 6, we compare Cyclomatic Complexity and Halstead Difficulty between
the raw and clean data. It shows that Decompile-Bench with an average Cyclomatic Complexity of
4.5 and Halstead Difficulty of 19.7 is significantly more complex than the unfiltered version with an
average of 3.3 and 11.9 in terms of the two metrics respectively. Notably, comparing Figure 6 and
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Figure 6: Code complexity for the raw data and clean data. The Halstead Difficulty is normalized by
factor of 10 for better visulization.

Figure 5 reveals that the complexity distribution of our Decompile-Bench closely aligns with that of
real-world GitHub code.

C Main Results for Other Metrics

We provide extra evaluation metrics for testing decompilers.

Embedding Similarity. Embedding similarity converts text into numerical vectors in a multi-
dimensional space, where semantically similar texts have closer vectors. We embed the decompiled
outputs and the source functions using a state-of-the-art model (i.e., CodeSage [93]) and compute
cosine similarity between their vectors. Table 7 presents the results.

Graph Similarity. It is often argued that code is not just natural language [36], which has led to the
development of various graph-based metrics to evaluate generated code. Specifically, CodeBLEU [70],
though somewhat controversial [24], is one of the most commonly-used code metrics and also
employed in decompilation [24]. CodeBLEU combines four evaluation aspects, i.e., BLEU score,
weighted n-gram match, syntactic match via abstract syntax tree (AST) subtree overlap, and semantic
match via data-flow graph comparison. Table 8 presents the results.

Table 7: Comparison of decompilers in terms of Codesage-embedding similarity.
Codesage-Embd Similarity HumanEval MBPP GitHub2025

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

GPT-4-1-mini 56.04 40.13 43.26 35.96 43.85 48.67 39.11 43.49 33.16 41.11 40.30 32.45 31.61 32.11 34.12
Ghidra 29.72 28.07 30.22 26.11 28.53 29.32 28.65 27.83 26.36 28.04 55.75 49.02 54.45 56.55 53.94

IDA 27.88 23.76 22.10 20.76 23.63 27.31 22.92 21.43 19.96 22.91 54.49 51.25 51.08 51.90 52.36
LLM4Decompile-End 48.09 42.50 41.86 41.99 43.61 44.54 40.90 40.30 39.44 41.30 57.60 57.35 55.82 55.49 56.57

LLM4Decompile-DCBench 59.01 51.10 50.86 50.17 52.79 53.61 47.71 46.73 45.73 48.45 62.30 64.84 64.08 60.73 62.98

Table 8: Comparison of decompilers in terms of CodeBLEU rates.
CodeBLEU HumanEval MBPP GitHub2025

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

GPT-4-1-mini 36.98 28.11 29.13 24.27 29.62 40.43 31.99 34.68 27.78 33.72 18.33 17.55 17.24 16.85 17.49
Ghidra 23.27 22.34 22.05 22.70 22.59 26.02 24.42 24.28 24.67 24.86 20.98 22.56 22.48 21.61 21.91

IDA 24.78 22.43 21.84 22.16 22.80 27.45 24.05 23.88 24.71 25.02 20.99 22.38 21.91 21.26 21.64
LLM4Decompile-End 32.46 27.71 26.67 26.10 28.24 34.66 29.33 28.73 28.36 30.27 21.80 22.15 21.69 21.06 21.68

LLM4Decompile-DCBench 39.09 29.97 30.09 29.96 32.28 42.35 35.80 35.02 28.36 35.35 25.41 25.39 24.57 22.86 24.56

As shown in Tables 7 and 8, we observe the same trends as in re-executability, R2I, and edit
similarity. LLM4Decompile-DCBench achieves an averaged 16.6% and 14.8% improvement on
embedding similarity and CodeBLEU over LLM4Decompile on all three test sets. In summary,
the LLM4Decompile-DCBench, trained on Decompile-Bench, delivers the strongest performance,
underscoring the value of using real-world data to train an LLM-based decompiler.
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We utilized GPT-4 as an expert judge to score the outputs from each decompiler on GitHub2025
with a scale of 1 (poor) to 100 (excellent) across three qualitative areas, i.e., variable name recovery,
control flow clarity, and type reconstruction with the prompt as shown in Figure 7.

You are an expert in reverse-engineering and decompiler evaluation.  I will give you a decompiled code snippet; your 
job is to evaluate it on three criteria:

    1. variable_naming: How well the decompiler recovered meaningful variable names.
    2. control_flow: How faithfully complex control-flow constructs (loops, branches, gotos) have been reconstructed.
    3. type_recovery: How accurately types (primitives, structs, pointers, arrays, etc.) were inferred.

    For each criterion:
    • Assign an integer score from 1 (very poor) to 100 (excellent).
    • Provide a one- or two-sentence rationale.

    Produce only a single JSON object, with exactly these fields:

    {
    "variable_naming": {
        "score": <int>,
        "rationale": "<string>"
    },
    "control_flow": {
        "score": <int>,
        "rationale": "<string>"
    },
    "type_recovery": {
        "score": <int>,
        "rationale": "<string>"
    }
    }

Do not include any extraneous keys and directly output the result without any explanation. 
The source code: {source code}.
Now evaluate this snippet: {decompiled code}

Figure 7: GPT-Judge prompt for evaluation on variable name recovery, control flow clarity, and type
reconstruction.

Table 9: GPT-Judge on variable naming, control flow and type recovery using Github2025.
GPT-Judge Varaiable Naming Control Flow Type Recovery

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

GPT-4-1-mini 48.99 42.24 43.07 39.98 43.57 63.25 50.09 50.41 50.10 53.46 55.69 45.18 46.75 44.93 48.14
IDA 33.66 27.16 29.49 28.99 29.83 63.28 59.42 60.35 60.62 60.92 63.53 60.37 62.29 61.67 61.97

LLM4Decompile-End 64.15 63.48 62.39 63.84 63.47 73.75 73.49 73.61 74.65 73.88 76.47 77.82 78.98 77.42 77.67
LLM4Decompile-DCBench 76.38 77.18 77.53 76.69 76.95 83.61 85.13 85.56 84.87 84.79 80.13 82.26 82.22 81.55 81.54

Table 9 summarizes the GPT evaluation results. IDA struggles with semantic richness, achieving
a variable naming score that is only 38.8% of our model’s. GPT fails on logical integrity, on
control flow recovery, it scores only 63.1% of our model’s. LLM4Decompile-DCBench significantly
outperform all baselines. Notably, it improves upon the strong LLM4Decompile-End base model by
21.2% in name recovery, 14.7% in control flow, and 5.0% in type reconstruction. In summary, this
comprehensive qualitative analysis demonstrates that while traditional tools preserve logic at the cost
of readability, and general LLMs sacrifice logic for readability, our approach successfully achieves
both. This makes our model’s output significantly more valuable for the practical tasks that reverse
engineers and vulnerability researchers care about.

Other Metrics Beyond the metrics we cover, prior work has also used techniques such as symbolic
execution [13], CodeAlign [24], D-Helix [97], human judgments [61], and GPT evaluation [76,
60, 86]. We leave these evaluation in future work due to their availability, heavy manual effort, or
costs. Likewise, name-recovery or type-focused scores, such as exact match [51, 16] or variable
similarity [17], are left out. In particular, these metrics only assess isolated elements of the decompiled
output, whereas our goal is to evaluate correctness and readability for the whole function.

D Binary-Source Search

Our binary–source benchmark is directly applicable to binary-to-source search, i.e., a core task in
third-party library detection, software composition analysis, etc [43, 90]. We train a binary–source
embedding model on 10% of our data using a conventional contrastive loss [93, 98]. In particular, we
strip out all assembly function names to prevent trivial matches.
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Table 10: Binary-source search results on Github data in Decompile-Bench-Eval.

Optimization Level O0 O1 O2 O3 AVG
Recall@1 32.5 24.7 28.1 22.8 27.0

For evaluation, we use the GitHub2025 dataset and split it into (1) a reference corpus of 17 K source
functions as our “search database”, and (2) a set of 66 K binary (assembly) functions, each of which
acts as a query. Each query is embedded and used to retrieve its closest matches by cosine similarity
from the source-function database. We then measure retrieval quality in terms of recall@k, i.e., the
fraction of queries whose true match appears within the top k retrieved results. Table 10 reports
recall@1 results using just 10% of the training data. We attain 27.0% recall@1, on par with the
results reported in state-of-the-art binary-source software component analysis tool BinaryAI [43],
which achieves 22.4% recall@1 under a larger search space of 32K. The promising results show
that Decompile-Bench can significantly assist researchers with binary–source search tasks and offers
potential applications in third-party library detection and software component analysis [43, 90, 91].

E Data Quality Analysis

To verify the correctness of binary-source matching, we conducted a two-part evaluation, i.e., a direct,
qualitative analysis and an indirect, empirical validation through downstream task performance.

E.1 Direct, Qualitative Evaluation

A key challenge is that a ground-truth one-to-one mapping often does not exist. Therefore, we
performed a rigorous qualitative evaluation, which we consider is rather fit and meaningful for this
task. We manually inspected a random sample of 1,000 pairs from our dataset. Our analysis confirmed
that Algorithm1 works as intended, with the observed “noise” falling into two distinct and expected
categories as follows.

Negligible Parser Noise (<0.1% of cases). In extremely rare instances, the source code parser (tree-
sitter) makes minor segmentation errors (e.g., with nested functions). These cases are statistically
insignificant and unlikely to impact training effectiveness.

Compiler-Induced Scope Mismatches (~25% of cases). A far more common scenario arises from
aggressive compiler optimizations, particularly function inlining. This results in a binary function
that correctly contains code from its primary source function plus code from other inlined functions.
This is not an algorithmic error but an authentic and unavoidable artifact of real-world compilation.
We consider these pairs to be valuable and necessary training data that guides the model to handle the
complexities of optimized binaries.

E.2 Indirect, Empirical Validation

Data quality could be directly reflected by its effectiveness in training. LLM4Decompile-DCBench,
which was fine-tuned on the dataset generated by Algorithm 1, achieved a 20% relative performance
gain over its base model. Such a significant improvement would be highly unlikely if the binary-
source pairs were noisy or incorrectly matched. This strong downstream result serves as powerful
empirical evidence that the pairs generated by our algorithm are of high quality and correctness.

F Adaptability of CTF Framework

We designed our pipeline to be modular, which makes our framework highly adaptable. First, for
other compiled languages, the core requirement is to adapt the compilation stage (inherently language
dependent) and the DWARF parser for the target language’s specific conventions. For instance, The
Rust language would require minimal changes, as its DWARF debug format is highly similar to
C/C++ [78]. The GO language would require a custom DWARF parser due to its unique format [33],
but our core tracing and alignment algorithms would remain applicable.
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Second, regarding build systems for C/C++, we successfully added support for projects using
Makefiles, which, along with CMake, represent the vast majority of C/C++ build systems. We
released 643K new data pairs (condensed from 12M pairs) from 2,600 permissive C/C++ projects.

G Discussion on Unit Test on Real-World Projects

Re-executability is a key challenge in decompilation evaluation for real-world projects, and we share
the view that it remains a significant challenge for real-world projects.

Re-executing GitHub test cases is notably absent from other recent, prominent decompilation works
(e.g., LLM4Decompile [76], Nova [44], Idioms [25]) and evaluation benchmarks (e.g., Assem-
blage [57], BinBench [19]). Resolving the difficulty of such an evaluation may deserve another
research paper.

In our own work, we invested significant effort in attempting to build a re-executability benchmark.
Our investigation revealed two fundamental and currently prohibitive obstacles. The first is pervasive
data leakage in existing test suites. Specifically, a common approach would be to leverage existing
projects with built-in test suites, such as Defects4C [1] benchmark, or well-tested codebases like
the Git or FFmpeg (which supports fuzzing to generate inputs). However, these famous and widely-
studied codebases are most likely part of the pre-training corpora for LLMs like GPT/Claude, and
are included in fine-tuning datasets for specialized models like LLM4Decompile/Idioms. Evaluating
such data would produce misleadingly high scores due to data leakage, failing to measure a model’s
true generalization capabilities. The second obstacle is the prohibitive cost of manual, leak-free
benchmark construction. Specifically, a more rigorous but extremely labor-intensive alternative is to
assemble a benchmark of truly unseen, real-world projects. We attempted this manually and shared
our experiences as follows.

Project discovery (10 min/repo). We search GitHub for post-2025 repositories whose top-level
folders or README mention test, demo or sample and manually verify the presence of sample
code and attempt compilation (which often fails).

Sample execution (30–60 min/repo). We understand the samples, run them, and capture the inputs
and outputs (execution frequently errors out).

Trace binary (30–60 min/repo). We map each sample’s function calls back to their source definitions
and match those to the compiled binary.

End-to-end automation (60+ min/repo). We build a Docker environment to reproducibly compile
the project with decompiled code, run the samples, and report pass/fail states (i.e., engineering
challenge).

A single author spent over three hours attempting to complete just the first three steps for one project,
encountering multiple failures before finding a suitable candidate. However, we still could not
stably automate the compilation and execution step (i.e., end-to-end automation), as it is an even
greater engineering challenge. It is worth noting that while unit test generation techniques can assist
in creating test cases during the project discovery phase, the subsequent challenges of automatic
compilation, test execution, and result collection remain significant obstacles.

While we believe building a real-world, leakage-free, and executable evaluation benchmark is a
critical direction for the decompilation community, it goes beyond the scope of this paper.

H Limitations

Due to resource constraints, we trained only 10% of the Decompile-Bench on a 1.3B model, which
took around 4 hours on an A800 × 8 setup. While a larger model trained on the full-scale data would
likely provide a comprehensive understanding of Decompile-Bench, it would require several months
of training, i.e., a computation cost that exceeds our budget. Moreover, decompilation at the project
scope would ideally be more effective. While Decompile-Bench records the project-level meta data,
this approach is heavily limited by the model’s sequence length and available computational power,
rendering it both extremely expensive and nearly unfeasible. Finally, legal concerns remain a critical
issue, as developing an effective decompiler might require to include non-permissive or commercial
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data, potentially violating legal frameworks and leading to misuse. Therefore, Decompile-Bench
strictly follow permissive license and discard large amount of non-permissive GitHub projects.
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