Under review as a conference paper at ICLR 2024

REVISITING KNOWLEDGE TRACING: A SIMPLE AND
POWERFUL MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge Tracing (KT) is a problem that assesses students’ knowledge mastery
(knowledge state) and predicts their future performance based on their interaction
history with educational resources. Current KT research is dedicated to enhancing
the performance of KT problems by integrating the most advanced deep learning
techniques. However, this has led to increasingly complex models, which reduce
model usability and divert researchers’ attention away from exploring the core is-
sues of KT. This paper aims to tackle the fundamental challenges of KT tasks,
including the knowledge state representation and the core architecture design, and
investigate a novel KT model that is both simple and powerful. We have revis-
ited the KT task and propose the ReKT model. First, taking inspiration from the
decision-making process of human teachers, we model the knowledge state of
students from three distinct perspectives: questions, concepts, and domains. Sec-
ond, building upon human cognitive development models, such as constructivism,
we have designed a Forget-Response-Update (FRU) framework to serve as the
core architecture for the KT task. The FRU is composed of just two linear re-
gression units, making it an extremely lightweight framework. Extensive compar-
isons were conducted with 22 state-of-the-art KT models on 7 publicly available
datasets. The experimental results demonstrate that ReKT outperforms all the
comparative methods in question-based KT tasks, and consistently achieves the
best (in most cases) or near-best performance in concept-based KT tasks. Further-
more, in comparison to other KT core architectures like Transformers or LSTMs,
the FRU achieves superior prediction performance with approximately only 38%
computing resources. Through an exploration of the ReKT model that is both
simple and powerful, is able to offer new insights to future KT research. Code is
available in the supplementary materials.

1 INTRODUCTION

Knowledge Tracing (KT) is a crucial task in online education systems. It assesses students’ knowl-
edge mastery (knowledge state) based on their interaction history with educational resources and
aims to predict their future performance. Effectively addressing KT task can assist teachers in gain-
ing insights into students’ learning progress, enabling them to tailor teaching strategies and offer
personalized guidance (Abdelrahman et al.,[2023).

Concept ID | Conceptname |ID| Conceptname
- a3
X

Question (4] - c Addition ¢, |Integer operations

Response X

c3 | Areaofacircle |cy Multiplication

cs | Area of a triangle

Lo H

H
' 1
1 N ne ne, ne; ney ne, ! ne nc, nes ne ncy
concent (0@ (o) @) @ B coneert 0@ (=) B @ @
|
i Concept (G \Z) (&) @AXNE) \aA2) &S Concept A2 (&) EARAE) \GN2) EAS)
i L
I . L

uestion i
e b

' Response X X 2 : iResponse) 4 X 2

Figure 1: A simple example of knowledge tracing, "Response” indicates the student’s answer.

Under review as a conference paper at ICLR 2024

As shown in Figure[I] the example of KT involves each question being associated with one or more
concepts. Students practice with different questions, and the aim of KT is to predict the probability of
them answering the next question correctly. Often, due to the lack of question information in certain
datasets, KT can be further categorized into question-based KT and concept-based KT for unifor-
mity. Additionally, to simplify the KT task, multiple concepts are sometimes amalgamated into a
new concept (Xiong et al.l 2016). Many methods (Shen et al., 2021} |Abdelrahman & Wang| 2022;
Liu et al.,[2023b) have been proposed for KT, which predict students’ future performance by tracing
their knowledge state. Thus, the key aspect of KT is effectively tracing and representing students’
knowledge state. However, most KT methods exclusively focus on modeling either question-based
KT or concept-based KT, without exploring their potential in both of these scenarios.

In recent years, with the advancement of deep learning technologies, KT models based on methods
such as Transformers (Ghosh et al) [2020; |Cui et al., [2023), graph neural networks (Tong et al.,
2020; Wu & Ling| 2023)), and contrastive learning (Lee et al.| 2022} [Yin et al.| 2023) have emerged
one after another. Although these works have made significant contributions to in-depth research on
KT, we have observed a strange phenomenon: the current mainstream of KT research seems to rely
on cutting-edge technologies from other domains to build complex models, while efforts to delve
deeper into the KT problem itself appear to have made limited progress. While works like LPKT
(Shen et al., 2021) and LBKT (Xu et al., [2023) explore the impact of various behaviors during
student learning processes, they often depend on specialized and intricate architectures, making it
challenging for subsequent research to derive substantial insights from them. We hope to Revisit
Knowledge Tracing (ReKT) and design a model that is as simple and powerful as possible.

We start by addressing the two fundamental challenges of the KT task: (1) How to represent a stu-
dent’s knowledge state from learning data; (2) How to design a core architecture that is as simple as
possible and suitable for KT. For the first challenge, in fact, long before we began using KT models
to solve this problem, teachers had already been engaged in a similar process. When teachers assess
a student’s ability to solve a specific question, they consider several key factors. First, they assess
the student’s previous performance on the same question. Second, they consider the student’s per-
formance on similar questions previously. Finally, if the student has not encountered this question
or similar ones before, the teacher consider the student’s overall historical performance. Inspired
by this process, we model student’s knowledge state from three distinct perspectives: questions,
concepts, and domains. Regarding the second challenge, drawing inspiration from human cogni-
tive development models (Bruner, |1966), which emphasizes that changes in human knowledge state
(Response) are mainly affected by two main psychological processes: internalization and forgetting.
Internalization emphasizes the updating (Update) process of knowledge state based on environmen-
tal stimuli, while forgetting (Forget) emphasizes the natural changing process of knowledge state
over time. Therefore, we model these core processes and design a lightweight core architecture
called FRU (Forget-Response-Update) for KT tasks.

Specifically, we propose ReKT, which is both simple and powerful. It traces student’s knowledge
state from three distinct perspectives: (1) It traces students’ question knowledge state from interac-
tion history limited to specific questions, indicating their mastery of specific questions; (2) It traces
students’ concept knowledge state from interaction history limited to specific concepts (where two
questions with the same concept are considered similar), indicating their mastery of questions en-
compassing those specific concepts; (3) It traces students’ domain knowledge state from their entire
interaction history, indicating their mastery of questions spanning the entire domain (i.e., overall
performance). We combine these three to comprehensively represent students’ knowledge state.
Furthermore, we’ve designed a lightweight core architecture called FRU for KT tasks. It first cal-
culates the forgetting of the student’s knowledge state based on the interval time, then responses
based on the knowledge state, and finally updates the knowledge state based on the learning inter-
action. It’s worth mentioning that FRU comprises only two linear regression units. Experimental
results on 7 publicly available datasets, comparing ReKT with 22 state-of-the-art KT models, in-
cluding question-based KT and concept-based KT, show that in most cases, ReKT significantly
outperforms other models. This demonstrates that even without relying on highly complex models
or cutting-edge technologies, by delving deeply into the characteristics of the KT task, it is possible
to construct a model that is both simple and powerful. We believe that ReKT has the potential to
offer a wealth of new inspiration and insights for future KT research.

Distinct Perspectives Analysis: In fact, purely from a model perspective, constructing the knowl-
edge state from the entire interaction history inherently encompasses the knowledge state con-

Under review as a conference paper at ICLR 2024

structed from limited interaction history. This is likely the reason why most KT models have failed
to construct knowledge states from a more nuanced perspective. However, constrained by the small
scale of KT datasets, complex model architectures like Transformers have struggled to bring signif-
icant benefits to KT (Ghosh et al.|[2020) and, naturally, have been unable to achieve the precision of
constructing knowledge states from a multi-perspective approach. Subsequent experiments in this
paper demonstrate the effectiveness of multi-perspective modeling of knowledge states.

2 RELATED WORK

KT was proposed by (Corbett & Anderson, |1994) in 1994. Classic knowledge tracing methods
can be categorized into bayesian-based methods such as BKT(Yudelson et al., [2013; |Khajah et al.
2014) and factor analysis-based methods such as LFA(Cen et al., 2006b), AFM(Cen et al., [2006al),
PFA(Pavlik Jr et al.| 2009), KTM(Vie & Kashima, |2019). In recent years, with the advancement
of deep learning, an increasing number of methods have been employed to tackle KT tasks. We
categorize the existing methods into the following two types based on the nature of the KT task:

Concept-based KT: This category of KT methods aims to predict the student’s mastery of specific
concepts. DKT (Piech et al.l[2015) is regarded as a representative method for concept-based KT, uti-
lizing an LSTM to construct the student’s knowledge state. DKVMN (Zhang et al.| 2017) employs
a dynamic key-value memory network to capture the student’s knowledge state. SAKT (Pandey &
Karypis| [2019) models the relationship between students and concepts using self-attention mecha-
nisms to derive the knowledge state. SKVMN (Abdelrahman & Wang, [2019) employs an enhanced
LSTM for modeling students’ knowledge state and updates it based on students’ responses to rele-
vant questions. GKT (Nakagawa et al., 2019) propagates a student’s knowledge state over a graph
structure. SKT (Tong et al.l 2020) takes into account various relationships between concepts to sim-
ulate the propagation of knowledge states. ATKT (Guo et al.l 2021) utilizes adversarial learning to
represent students’ knowledge states in a more robust manner. CL4KT (Lee et al.| [2022) designs
various data augmentation strategies to enhance the representational capacity of the knowledge state.

Question-based KT: Building upon concept-based KT, this category of methods includes addi-
tional question information to predict a student’s performance on specific questions. AKT (Ghosh
et al.l 2020) is considered a representative method for question-based KT, utilizing a context-aware
Transformer architecture to account for forgetting behavior in tracing students’ knowledge state.
SAINT (Choit et al., 2020a) constructs the student’s knowledge state entirely using the Transformer
framework. GIKT (Yang et al., [2021) employs GCN(Kipf & Welling, 2017) to uncover relation-
ships between questions and concepts, and incorporates an interactive module to capture students’
knowledge states. DIMKT (Shen et al., [2022) extensively mines question difficulty information to
model the student’s knowledge state. simpleKT (Liu et al., |2023b) simplifies AKT to trace stu-
dents’ knowledge state. DTransformer (Yin et al.l [2023) employs contrastive learning to maintain
a stable knowledge state. AT-DKT (Liu et al.,|2023a) enhances knowledge state representation by
introducing two extra tasks related to question design.

Connections and Differences: These approaches all utilize the student’s entire interaction history to
construct the knowledge state. Their modeling approaches focus on creating more complex models
to capture effective knowledge states. ReKT also relies on the entire interaction history as one
of the sources for modeling the knowledge state. However, unlike the others, ReKT’s modeling
approach does not involve building more complex models. Instead, ReKT deeply mines the student’s
interaction history information and constructs the knowledge state from different perspectives.

3 METHOD

ReKT’s overall framework is depicted in Figure 2] We will present the problem formulation of KT
and then detail the various modules of ReKT.

3.1 PROBLEM FORMULATION

The KT task can be defined as follows: Given a student’s interaction history sequence L =
{(q1,¢1,71), (g2, c2,72), ..., (¢, ct, 7¢) }, wWhere g; is the question at time ¢, ¢; signifies the concept
associated with question ¢, and r; € {0, 1} shows if the student’s response to g; is correct. KT’s aim

Under review as a conference paper at ICLR 2024

(x,¥) = x:question, y: concept q,: question at time t, ¢,: concept at time ¢, r,: response at time t
[a2 {69 {6 — [@2) f—w— @3 }—[@2]

Example

My Laved F—{@ren - @en - —facsecol— = —{ @eeo —faumens]

Representation | Xy l—-l X, |—-| X3 |—>

Question
X.
knowledge state
Concept
X X.
knowerigsstate
Domain
knowledge state | X1 |

'|X|2|'|X‘3|—‘

Figure 2: The overall framework of ReKT. ReKT constructs the question and concept knowledge
states from the interaction history limited to the current question and concept. Additionally, it con-
structs the domain knowledge state using the entire interaction history.

is to predict the probability of the student answering the next question ¢, correctly. For concept-
based KT, which lacks specific question data, concepts are treated as equivalent representations of
questions(Zhang et al., [2017; |[Nagatani et al., 2019). So, the goal is to predict the probability of the
student answering the next concept c;1 correctly. Please note that if a question involves multiple
concepts, we combine them into a new concept(Xiong et al.,[2016).

3.2 REPRESENTATION OF QUESTIONS, CONCEPTS AND RESPONSES

Effectively representing questions, concepts, and responses is important for KT, and establishing
their relationships forms a highly effective approach. Let’s denote the feature matrix as follows:
Q € R™*4 for questions, C' € R™* for concepts, and R € R?*? for responses. Here, n represents
the total number of questions, m is the total number of concepts, and d signifies the feature di-
mension. Inspired by the classic psychological measurement theory of Rasch (Rasch, [1993), which
explicitly employs scalars to represent question difficulty. For the current question ¢, and its as-
sociated concept ¢y 1, their feature representation E; 1 = Qq,,, +Cc, , +dif fq, ., * Ve, ,,. Here,
Qg,,, denotes the g;11-th row of Q, C.,,, corresponds to the c;y1-th row of C, dif f,, ., repre-
sents the difficulty of g;1 and is a scalar, and V., € R1xd captures the extent of variation of the
question with respect to its concept. For any given moment ¢ within the interaction history L, where
Ly = (g, ¢, 1), the feature representation X for L, is calculated as X; = F; + R,,, where R,,
corresponds to the r;-th row of R.

3.3 REPRESENTATION OF KNOWLEDGE STATE

The representation of a student’s knowledge state is the most fundamental issue in KT, and
ReKT constructs three types of knowledge states for a student from the interaction history L =
(q1,¢1,71), (g2, C2,72), ..., (g, Ct, T¢): question, concept, and domain knowledge state. For the cur-
rent question ¢, and its corresponding concept ¢4 1:

For the aspect of question knowledge state: We construct it from the interaction history L?H limited
to the current question g1 . Here, Lgu =U ; L;,if g == g1, < t+1 | represents the union
operation. The feature representation of LtQJrl is denoted as Xg_l, as shown in Figure [2| where

X EH = { X3, X:_s}. As shown in the example, they all include the current question 3. Thus, the

question knowledge state h?H = FRU (Xfil U X¢+1). The FRU architecture is shown in Figure
and we’ll provide a detailed explanation of it in the next section. Note the inclusion of an added
term, X, 1, here. This serves the purpose of informing the FRU about the current time, i.e., t + 1.

For the aspect of concept knowledge state: We construct it from the interaction history LtCJrl limited
to the current concept c;+;. Here, Lﬁ_1 = Uj Lj;if c; == ¢441,7 < t+ 1. The feature repre-
sentation of L\, is denoted as X} ,, as shown in Figure[2] where X, = {X1, X3, X;_s}. As

Under review as a conference paper at ICLR 2024

shown in the example, they all include the current concept 2. Therefore, the concept knowledge
state h$, ‘1 = FRU (XSrl U X¢41). The inclusion of X1 here also aims to inform the FRU about
the current moment. The FRU here is distinct from the earlier mentioned FRU parameter.

For the aspect of domain knowledge state: We construct it from the entire interaction his-
tory L. The feature representation of L is denoted as X, as shown in Flgure 2l where X =
{X1,X2,X5,... Xi—s,..., X} Therefore, the domain knowledge state ht+1 =FRU (X U Xt+1)
Consistent with the above, here X1 is used to inform the FRU of the current moment, and the FRU
parameters here are independent of the previous FRU’s parameters.

3.4 FRU FRAMEWORK

Inspired by human cognitive development models (Bruner,

1966)), we design a lightweight core architecture called FRU () merval time
(Forget-Response-Update) for KT tasks, as shown in Figure[3] s
It first takes into account the process of students forgetting —". —’—.

. . . llpdate Update Update
their knowledge state, then responses to specific questions y,_ —] mm X~ rorges XH/"_’
based on knowledge state, and ultimately updates the knowl- - . "

edge state based on response accuracy. Specifically, let the cur-

rent moment be ¢, the last relevant moment is ¢ — « (this allows Figure 3: FRU framework.
FRU to handle time series with varying intervals), Z;_, €

R'*9 represents the knowledge state at the time ¢ — . First,

we remember that the interval time c is represented by features as I, € R!*?, then at the current mo-
ment ¢, the degree of forgetting of Z;_, can be calculated as f; = Szgmozd([Zt o ® I)W1 +b1),
where W7 and b; are all learnable parameters. Then the knowledge state of the current response
Response; = f, x Z;_,. Finally, the student will update the knowledge state according to
the feature representation X; of current interaction, then the student’s current knowledge state
Zy = Response; + Tanh([Response; & X|Wa + b2), Among them, W5 and b are all learn-
able parameters. The subsequent processing flow can be deduced by analogy.

We record the interaction sequence input by FRU as Xf = {..., Xi—a, X}, then FRU can be ab-
stracted as: Response; = FRU (Xt§). Clearly, the FRU framework is very lightweight, as it consists
of only two linear regression units. However, it aligns remarkably well with students’ cognitive
learning processes, and subsequent experiments will demonstrate its effectiveness.

3.5 PREDICTION AND TRAINING

For the question E;;; that needs to be answered after feature representation and the students’
three knowledge states h?ﬂ, hg_1 and hp ,, then the student’s current final knowledge state

Hyp = h 41 @ hEy @ h{ . It's worth noting that here we use concatenation rather than attention
mechanisms to combine them, as we consider that different knowledge states play distinct roles.
Finally, based on the student’s current knowledge state H; 1, we predict the student’s response y;.+1
for answering F 1, in other words, y;+1 = Sigmoid(WyReLU (W5[E¢11 © Hiy1] + b3) + by),
where W3, bs, Wy and b4 are all learnable parameters. The knowledge tracing loss Losskr is
computed as follows:

T-1

Lossgr = — Z(nﬂlogytﬂ + (1 = re41)0log(1 — ye11))
=1

Here, T represents the total number of time steps, and ;11 denotes the actual response result from
the student at time step ¢ + 1. We use Adam(Kingma & Bal 2015) to optimize model parameters.

33 99

Table 1: Summary statistics of processed datasets. indicates there is no question information.

ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi

Student 4,160 5,000 19,840 1,706 331 5,000 5,000
Question 15,680 36,056 - 1,150 633 11,775 26,706

Concept 167 242 100 86 106 1.837 1,050
Interaction 207,659 717,188 683,801 153,324 91,133 1,156,254 597,124

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 DATASETS

We evaluated the performance of ReKT on 7 publicly available commonly used datasets: ASSIST(9,
ASSIST12, ASSIST15, ASSIST17, Statics2011, EdNet, and Eedi. The statistical information for
these datasets is provided in Table [T} and detailed introductions and processing method for each
dataset can be found in Appendix [A]

4.2 BASELINE

In order to assess the performance of ReKT, we compared it against baseline models of concept-
based KT and question-based KT, respectively. Detailed introductions to each model can be found
in Appendix B} Specific execution approaches for each model will also be clarified in Appendix [B]

4.2.1 CONCEPT-BASED KT BASELINE

BKT(Corbett & Anderson, [1994). DKT(Piech et al., 2015). DKVMN(Zhang et al. [2017).
DKT+(Yeung & Yeung, 2018). KQN(Lee & Yeung, 2019). DeepIRT(Yeung, 2019).
DKT+forgetting(Nagatani et al., 2019). SAKT(Pandey & Karypis, [2019). GKT(Nakagawa et al.,
2019). AKT-concept(Ghosh et al.,|2020). SAINT-concept(Choi et al., [2020a). ATKT(Guo et al.,
2021). CL4KT(Lee et al., 2022).

4.2.2 QUESTION-BASED KT BASELINE

KTM(Vie & Kashima, 2019). AKT(Ghosh et al.,, 2020). SAINT(Choi et al) 2020a).
PEBG+DKT(Liu et al.,[2020). GIKT(Yang et al.|2021). CDKT(Dai et al.,[2022)). DIMKT(Shen
et al} [2022). QIKT(Chen et al.,[2023). simpleKT(Liu et al., [2023b). AT-DKT(Liu et al., 2023a).
DTransformer(Yin et al., [2023).

4.3 EXPERIMENTAL SETTING

We implemented ReKT using PyTorch(Paszke et al.,|2019). For each dataset, we split 80% of all the
sequences as the training set, 20% as the test set(Yang et al [2021} |Yin et al.| [2023)). The learning
rate was set to 0.002, batch size to 80, and feature dimension d to 128. Additionally, we applied
L2 regularization to the model weights with a decay coefficient of le-5. Sequences with a length
of less than 3 were removed. To handle variable sequence lengths, all sequences were padded to a
consistent length of 200. To mitigate overfitting, we introduced a dropout rate of 0.4. ReKT was
trained on a Linux server with two 2.00GHz Intel(R) Xeon(R) CPUs and a Nvidia Tesla P100-PCIE-
16GB GPU. Consistent with prior research(Song et al.| 202152022} N1 et al.| 2023} |Sun et al., 2023}
Zhao et al., 2023), we employed the Area Under the Curve (AUC) as the primary evaluation metric,
with Accuracy (ACC) serving as the secondary metric. We repeated the experiment five times and
reported the average performance(Su et al., 2018).

4.4 EXPERIMENTAL RESULTS

Table 2: Comparison of ReKT-concept and concept-based KT baseline on 7 datasets. Best results in
bold, next best underlined. * indicates t-test p-value < 0.05 compared to the second best result.

Model ASSIST09 ASSISTI12 ASSISTI15 ASSIST17 Statics2011 EdNet Eedi

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

BKT 0.7180 0.6922 0.6613 0.7096 0.6739 0.7423 0.6519 0.6290 0.7444 0.7973 0.6737 0.7018 0.6828 0.6680
DKT 0.7684 0.7297 0.7328 0.7367 0.7323 0.7536 0.7188 0.6673 0.8483 0.8275 0.7006 0.7129 0.7629 0.7182
DKVMN 0.7629 0.7266 0.7228 0.7329 0.7310 0.7540 0.7142 0.6639 0.8363 0.8224 0.6975 0.7120 0.7590 0.7162
DKT+ 0.7783° 07337 07373 0.7350 0.7304 0.7542 07095 0.6622 0.8718" 0.8270 0.7028 0.6698 0.7484 0.7079
KQN 0.7546 0.7249 0.7230 0.7330 0.7263 0.7544 0.7065 0.6611 0.8031 0.7969 0.6909 0.7117 0.7583 0.7143
DeepIRT 0.7657 0.7279 0.7253 0.7345 0.7283 0.7530 0.7174 0.6647 0.8408 0.8262 0.6997 0.7124 0.7609 0.7173
DKT+forgetting 07717 0.7295 0.7362 0.7359 0.7529 0.7607 0.7165 0.6665 0.8467 08182 0.7018 0.7159* 0.7642 0.7186
SAKT 0.7564 0.7192 0.7296 0.7348 0.7436 0.7558 0.7079 0.6596 0.8092 0.8111 0.6956 0.7115 0.7556 0.7123
GKT 0.7666 0.7290 0.7261 0.7333 0.7289 0.7528 0.7203 0.6685 0.8384 0.8224 0.6943 0.7104 0.7618 0.7170
AKT-concept 07668 0.7280 0.7384" 0.7390 0.7312 0.7557 0.7157 0.6637 0.8384 0.8204 0.6987 0.7111 0.7626 0.7166
SAINT-concept ~ 0.7487 ~ 0.7140 0.7289 0.7353 0.7365 0.7572 0.7013 0.6560 0.7598 0.7940 0.6974 0.7096 0.7589 0.7130
ATKT 0.7735 0.7332 0.7347 0.7363 0.7311 0.7555 0.7198 0.6699 0.8175 0.7991 0.7027 0.7109 0.7663 0.7195
CLAKT 07626 0.7275 0.7236 0.7331 0.7310 0.7549 0.7139 0.6615 0.8251 0.8170 0.6965 0.7118 0.7583 0.7147

ReKT-concept ~ 0.7737 0.7340" 0.7359 0.7385 0.7531° 0.7624" 0.7237° 0.6690 0.8546 0.8319" 0.7096~ 0.7153 0.7693" 0.7208"

Under review as a conference paper at ICLR 2024

Concept-based KT Performance: We modify ReKT by removing question from its input, chang-
ing from (q¢, ¢t, r¢) to (ct, r¢). Here, E; = C.,. As questions are absent, question knowledge state
isn’t traced in this setup. We call this adapted version ReKT-concept. We compare its performance
with the concept-based KT baseline, as shown in Table 2] We can found: (1) Compared with other
concept-based KT baseline models, ReKT-concept consistently achieves the best (in most cases) or
nearly the best performance across all datasets. This underscores ReKT’s remarkable capability in
effectively tracing the knowledge states of students; (2) Notably, the performance of DKT+ excels
on certain datasets (e.g., ASSIST09 and Statics2011), attributed to its assumption of uniform recent
responses among students. However, this assumption doesn’t truly capture the students’ knowledge
states; rather, it observes a certain response pattern. While DKT+’s performance thrives when a
dataset adheres to this pattern, its efficacy substantially declines when the dataset deviates from
it (as seen in ASSIST17 and Eedi). In contrast, ReKT-concept consistently performs well across
all datasets, indicating its genuine ability to trace students’ knowledge states; (3) The promising
DKT+forgetting performance emphasizes the essential role of incorporating knowledge state forget-
ting mechanisms in KT models; (4) In most scenarios, AKT-concept outperforms SAINT-concept,
implying that the sole application of the Transformer architecture yields marginal improvements
for KT. The context-aware Transformer architecture introduced by AKT more effectively captures
students’ knowledge states; (5) The commendable performance of ATKT suggests that adversarial
training is beneficial for enhancing the generalization capability of KT models.

Table 3: Comparison of ReKT and question-based KT baseline on 6 datasets. Best results in bold,
next best underlined. * indicates t-test p-value < 0.05 compared to the second best result.

Model ASSIST09 ASSISTI2 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC
KT™M 0.7190 0.7020 0.7093 0.7245 0.7248 0.6686 0.8157 0.8071 0.7583 0.7293 0.7035 0.6792
AKT 0.7850 0.7429 0.7830 0.7599 0.7572 0.6916 ~ 0.8718 0.8376 ~ 0.7616 ~ 0.7372 0.7882 0.7340
SAINT 0.7515 0.7134 0.7643 0.7477 0.7537 0.6894 0.8279 0.8110 0.7621 0.7370 0.7866 0.7293
PEBG+DKT 0.7738 0.7329 0.7518 0.7495 0.7619 0.6949 0.8655 0.8368 0.7571 0.7366 0.7853 0.7310
GIKT 0.7726 0.7301 0.7672 0.7506 0.7723 0.6989 0.8834 0.8428 0.7640 0.7366 0.7924 0.7362
CDKT 0.7733 07297 0.7720 0.7547 0.7709 0.7019 0.8872 0.8510 0.7645 0.7386 0.7920 0.7360
DIMKT 0.7704 0.7310 0.7621 0.7484 0.7682 0.6993 0.8897 0.8501 0.7623 0.7368 ~ 0.7908 0.7338
QIKT 0.7801 0.7377 07707 0.7529 0.7645 0.6985 0.8817 0.8482 0.7579 0.7327 0.7932 0.7363

simpleKT 0.7772 0.7315 0.7786 0.7571 0.7570 0.6899 0.8614 0.8350 0.7627 0.7373 0.7885 0.7307
AT-DKT 0.7671 07293 0.7425 0.7405 0.7265 0.6702 0.8687 0.8386 0.7039 0.7136 0.7649 0.7180
DTransformer 0.7646 0.7223 0.7672 0.7515 0.7538 0.6898 0.8686 0.8513 0.7501 0.6954 0.7531 0.7315
ReKT 0.7917° 0.7449" 0.7852° 0.7609° 0.7814" 0.7102° 0.8967° 0.8568" 0.7752" 0.7447° 0.7971" 0.7397"

Question-based KT Performance: Table [3|presents a performance comparison between ReKT and
other question-based KT baseline models. Due to the unavailability of question data in ASSIST15,
it is not applicable to question-based KT. We can draw the following conclusions from Table |3} (1)
Compared to other question-based KT baseline models, ReKT demonstrates significantly superior
performance. This highlights the excellence of ReKT, despite its inherent simplicity; (2) It is evident
that AKT demonstrates powerful performance, but it relies on a specialized architecture: Context-
Aware Transformer. However, this architecture is highly complex. In comparison, FRU is partic-
ularly simple; (3) The impressive performance of GIKT and CDKT underscores the advantageous
role of effectively representing questions in enhancing the performance of KT models; (4) Overall
sound performance of DIMKT suggests the utility of incorporating question difficulty information
within the KT framework; (5) The consistent performance of QIKT indicates the effectiveness of
modeling students’ knowledge state around the questions; (6) Comparing ReKT with simpleKT,
despite the simplicity of simpleKT in comparison, ReKT exhibits significant performance improve-
ment over simpleKT. Moreover, ReKT’s architecture is not overly complex. It achieves a balance of
high efficiency and model simplicity, a characteristic that simpleKT does not fulfill.

Table 4: Performance comparison of ReKT ablation study. ”Q” means question knowledge state,
”C” means concept knowledge state, and ”D”” means domain knowledge state. Best results in bold.

ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Vv 0.6801 0.6745 0.7056 0.7208 0.7251 0.6641 0.7915 0.8120 0.7423 0.7275 0.6608 0.6584
0.7694 0.7285 0.7691 0.7504 0.7455 0.6834 0.8603 0.8325 0.7390 0.7272 0.7467 0.7053
0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385

0.7701 0.7274 0.7691 0.7502 0.7462 0.6840 0.8592 0.8335 0.7459 0.7296 0.7449 0.7035
0.7815 0.7380 0.7780 0.7582 0.7803 0.7094 0.8955 0.8562 0.7745 0.7444 0.7946 0.7382
0.7915 0.7440 0.7846 0.7607 0.7793 0.7093 0.8962 0.8566 0.7689 0.7426 0.7965 0.7394

0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397

Q C D

AN
AN N
AN A A

Under review as a conference paper at ICLR 2024

Ablation Study: In this section, we explore the influence of various knowledge states on ReKT.
Specifically, in question, concept, and domain knowledge states, we select one or two of them as
variants to contrast with ReKT for ablation experiments. The ablation experiments for the ReKT-
concept are shown in Table[7] while the ablation experiments for ReKT are shown in Table[d] Please
note that ReKT-concept, as it does not include questions, does not trace the question knowledge state.
We can observe: (1) When tracing only one knowledge state, the performance of question, concept,
and domain knowledge states shows an increasing trend. This is evident as the interaction history
data they utilize also increases in the same order. The model evidently benefits from more data, thus
leading to better performance with domain knowledge state; (2) Tracing two knowledge states, as
opposed to one, results in a notable performance improvement. Furthermore, the performance of
question + domain knowledge state is not always inferior to concept + domain knowledge state (as
observed in ASSIST17 and EdNet). This indicates that across different datasets, each knowledge
state plays a significant role; (3) Tracing all three of these knowledge states (ReKT) yields significant
improvements in performance across all datasets compared to tracing only one or two knowledge
states. This undoubtedly demonstrates the effectiveness of these three knowledge states and validates
the effectiveness of the proposed multi-perspective modeling.

Table 5: Performance of different core architectures for question-based KT. ”AKT-Transformer”
means context-aware Transformer architecture in AKT, which modifies the calculation of basic
Transformer attention scores to consider the forgetting behavior of students based on contextual
information. ”Rank” reports the average rank across all datasets (AUC ranks). Best results in bold.

ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC ‘ Rank

Core Architecture

#params FLOPs

LSTM 0.7811 0.7384 0.7747 0.7566 0.7723 0.7033 0.8791 0.8451 0.7650 0.7382 0.7951 0.7377 | 2.5 | 165.121K 2.643G
GRU 0.7837 0.7381 0.7762 0.7558 0.7720 0.7035 0.8785 0.8461 0.7658 0.7383 0.7957 0.7368 | 2.0 | 132.097K 2.115G

Transformer 0.7635 0.7231 0.7648 0.7483 0.7594 0.6944 0.8638 0.8382 0.7612 0.7362 0.7808 0.7267 | 5.0 | 627.841K 9.963G
AKT-Transformer 0.7738 0.7336 0.7765 0.7567 0.7623 0.6935 0.8768 0.8454 0.7615 0.7363 0.7903 0.7344 | 3.7 | 627.841K 9.963G

FRU 0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385 | 1.8 | 98.817K 1.567G

Core architecture performance for KT: In this section, we will explore the performance of dif-
ferent core architectures on KT. Specifically, we will compare FRU with four commonly used core
architectures in KT: LSTM, GRU, Transformer, and AKT-Transformer (Ghosh et al., [2020), while
only tracing domain knowledge state (as is the practice in most KT research). The results for
question-based KT are shown in Table [5] and the results for concept-based KT can be found in
Appendix [D} Details on the computing resources and ranking methodology are clarified in Ap-
pendix [Dl We can conclude the following: (1) In terms of an overall performance comparison, in
question-based KT, FRU as the core architecture achieves the best performance in most cases. In
concept-based KT, FRU also demonstrates commendable performance. This suggests that the pro-
posed FRU architecture is highly suitable for KT; (2) When comparing the number of parameters and
computing resources, FRU requires significantly fewer parameters and computing resources. FRU
achieves excellent performance with approximately 38% of the computing resources compared to
other core architectures. This undoubtedly proves the lightweight nature of FRU and highlights its
simplicity and effectiveness as the core architecture; (3) Considering the average rank, FRU per-
forms the best in question-based KT and ranks relatively well in concept-based KT. This indicates
that FRU maintains strong competitiveness throughout, despite it is very simple. The time and
space complexity analysis of FRU can be found in Appendix[G] We also explain the differences and
advantages of FRU over other architectures in Appendix

Table 6: Performance of different core architectures for ReKT. ”AKT-Transformer” means context-
aware Transformer architecture in AKT, which modifies the calculation of basic Transformer atten-
tion scores to consider the forgetting behavior of students based on contextual information. Model
names are formed from core architecture initials. Best results in bold.

. ASSIST09 ASSISTI2 ASSISTI7 Statics2011 EdNet Ecdi
Model - Core Architecture ;o™ Acc AUC ~ ACC ~ AUC ACC AUC ACC AUC ACC AUC ACC ‘#P“m‘“s FLOPs
ReKT-L LST™ 07874 07443 07794 07591 07766 07061 03825 0848 07722 07435 07968 07383 | 0.592M 9.425G
ReKT-G GRU 07933 07465 07835 07607 07790 07073 08823 08493 07745 07441 07982 07404 | 0461M 7.332G
ReKT-T Transformer 07620 07238 07536 07420 07638 0.6958 08322 08254 07679 07387 07793 07205 | 1.454M 23.078G
ReKT-A AKT-Transformer 0.7702 07318 07669 07510 07656 0.6965 0.8602 08381 07680 07400 07892 07338 | 1454M 23.078G
ReKT(ours) FRU 07917 07449 07852 07609 07814 07102 08967 0.8568 07752 07447 07971 07397 | 0263M 4.175G

Choice of Different Core Architectures for ReKT: In this section, we discuss the impact of
different core architectures on ReKT and analyze the advantages brought by FRU. Specifically,

Under review as a conference paper at ICLR 2024

we compare four commonly used core architectures in KT: LSTM, GRU, Transformer, and AKT-
Transformer, and their performance is shown in Table[6] The same experiments on ReKT-concept
are presented in Appendix [E] Please note the difference between this experiment and the previous
one: this experiment, in the context of ReKT, traces students’ knowledge states from multiple per-
spectives, while the previous experiment, like most research, only traced domain knowledge states.
From Table [6] we can draw the following conclusions: (1) Their performance follows the order of
FRU, GRU, LSTM, AKT-Transformer, and Transformer in descending order, clearly demonstrat-
ing the effectiveness of FRU. In addition, simpler methods appear to be more effective. This could
be attributed to the introduction of multiple perspectives, which provides more comprehensive in-
formation for these simplified models, while excluding unnecessary information or noise; (2) It
also indicates that LSTM modeling outperforms AKT-Transformer or Transformer, consistent with
much research (Long et al., 2021} |Liu et al., 2023b)) showing that architectures based on LSTM
tend to perform better than those based on Transformers. This may be because LSTM aligns bet-
ter with the characteristics of knowledge states: continuity and dynamic updates. Additionally, the
small scale of the KT dataset may limit the benefits from Transformers; (3) AKT-Transformer con-
sistently outperforms Transformer, highlighting the importance of considering student knowledge
forgetting behavior. Transformer performs the poorest, indicating that a pure Transformer has lim-
ited improvements for KT; (4) When comparing parameters and FLOPs, ReKT achieves optimal
performance with minimal resources, highlighting its simplicity and effectiveness.

T+N in concept-based KT T+N in concept-based KT T+N in question-based KT T+N in question-based KT
0.73 0.785 0.8

0.77
0.72 0.775 \ =
0 — T U o~ o o —
E & 2, \ 207% 2
07 075 0755 | ——————— 0.78
0.69 074 0.745 077

T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5
ASSIST17 Eedi ASSIST17 Eedi
DKT —DKT+forget DKT —DKT+forget —AKT —CDKT —DIMKT —AKT —CDKT —DIMKT
—AKT-concept —ReKT-concept —AKT-concept —ReKT-concept QIKT —ReKT QIKT —ReKT

Figure 4: Performance (AUC) of T+N predictions on ASSIST17 and Eedi.

T+N Prediction: In order to simulate real-world scenarios and assess the stability of ReKT in
tracing knowledge states, we conducted T+N prediction experiments. Assuming the current time is
T, this experiment aimed to predict not only a student’s performance in the next time step T + 1,
but also their performance at subsequent time steps 7'+ 2, 7'+ 3, ..., T 4+ N. If the model performs
well in this situation, it indicates a more stable ability to trace knowledge states. As depicted in
Figure 4} we compare ReKT with models that perform well on concept-based KT and question-
based KT, respectively. The following observations were made: (1) As the number of time steps
N in T + N increased, the performance of all models exhibited a downward trend. However, for
smaller IV values, the impact on ReKT was comparatively smaller; (2) Notably, whether in concept-
based KT or question-based KT, AKT demonstrated a rapid decline in performance, indicating an
unstable ability to trace knowledge states; (3) Across all scenarios, ReKT consistently achieved the
best performance. This underscores the fact that ReKT maintains a strong level of stability while
retaining its simplicity and effectiveness. Appendix [F]provides more detailed T+N experiments. We
also illustrate the advantages of ReKT in tracing students’ knowledge state in Appendix|[l]

5 CONCLUSION

In this paper, we revisit knowledge tracing and propose a simple and powerful model, ReKT. Firstly,
inspired by the decision-making process of human teachers, we model students’ knowledge states
from three distinct perspectives: questions, concepts, and domains. Secondly, drawing inspiration
from human cognitive development models, we design a lightweight FRU architecture as the core
framework for KT tasks, comprising only two linear regression units. When compared to 22 state-of-
the-art KT models on 7 publicly available datasets, the results indicate that ReKT achieves optimal
performance in most cases, whether in question-based KT or concept-based KT. This underscores
that, even without relying on complex models or cutting-edge technology, by delving deeper into the
characteristics of KT tasks, one can design models that are both simple and powerful. We believe
that ReKT has the potential to offer a wealth of new inspiration and insights for future KT research.

Under review as a conference paper at ICLR 2024

REFERENCES

Ghodai Abdelrahman and Qing Wang. Knowledge tracing with sequential key-value memory net-
works. In Proceedings of the 42nd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 175-184. Association for Computing Machinery, 2019.

Ghodai Abdelrahman and Qing Wang. Deep graph memory networks for forgetting-robust knowl-
edge tracing. IEEE Transactions on Knowledge and Data Engineering, 2022.

Ghodai Abdelrahman, Qing Wang, and Bernardo Nunes. Knowledge tracing: A survey. ACM
Comput. Surv., 55(11):1-37, 2023.

Anirudhan Badrinath, Frederic Wang, and Zachary Pardos. pybkt: An accessible python library
of bayesian knowledge tracing models. In Proceedings of the 14th International Conference on
Educational Data Mining. International Educational Data Mining Society, 2021.

Jerome Seymour Bruner. Toward a theory of instruction. Harvard University Press, 1966.

Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis—a general method for
cognitive model evaluation and improvement. In International Conference on Intelligent Tutoring
Systems, pp. 164—175. Springer, 2006a.

Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis—a general method for
cognitive model evaluation and improvement. In International Conference on Intelligent Tutoring
Systems, pp. 164—175. Springer, 2006b.

Jiahao Chen, Zitao Liu, Shuyan Huang, Qiongqiong Liu, and Weiqi Luo. Improving interpretability
of deep sequential knowledge tracing models with question-centric cognitive representations. In
Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, 2023.

Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha,
Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value com-
putation for knowledge tracing. In Proceedings of the Seventh ACM Conference on Learning @
Scale, pp. 341-344. Association for Computing Machinery, 2020a.

Youngduck Choi, Youngnam Lee, Dongmin Shin, Junghyun Cho, Seoyon Park, Seewoo Lee, Jineon
Baek, Chan Bae, Byungsoo Kim, and Jaewe Heo. Ednet: A large-scale hierarchical dataset
in education. In International Conference on Artificial Intelligence in Education, pp. 69-73.
Springer, 2020b.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction, 4(4):253-278, 1994.

Jiajun Cui, Zeyuan Chen, Aimin Zhou, Jianyong Wang, and Wei Zhang. Fine-grained interaction
modeling with multi-relational transformer for knowledge tracing. ACM Transactions on Infor-
mation Systems, 41(4):1-26, 2023.

Huan Dai, Yue Yun, Yupei Zhang, Wenxin Zhang, and Xuequn Shang. Contrastive deep knowl-
edge tracing. In International Conference on Artificial Intelligence in Education, pp. 289-292.
Springer, 2022.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge tracing. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2330-2339. Association for Computing Machinery, 2020.

Xiaopeng Guo, Zhijie Huang, Jie Gao, Mingyu Shang, Maojing Shu, and Jun Sun. Enhancing
knowledge tracing via adversarial training. In Proceedings of the 29th ACM International Con-
ference on Multimedia, pp. 367-375. Association for Computing Machinery, 2021.

Mohammad Khajah, Rowan Wing, Robert V Lindsey, and Michael Mozer. Integrating latent-factor
and knowledge-tracing models to predict individual differences in learning. In Proceedings of the
7th International Conference on Educational Data Mining, pp. 99—106. International Educational
Data Mining Society, 2014.

10

Under review as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Jinseok Lee and Dit-Yan Yeung. Knowledge query network for knowledge tracing: How knowledge
interacts with skills. In LAK19: 9th International Learning Analytics and Knowledge Conference,
pp- 491-500, 2019.

Wonsung Lee, Jaeyoon Chun, Youngmin Lee, Kyoungsoo Park, and Sungrae Park. Contrastive
learning for knowledge tracing. In Proceedings of the ACM Web Conference 2022, pp. 2330—
2338. Association for Computing Machinery, 2022.

Yunfei Liu, Yang Yang, Xianyu Chen, Jian Shen, Haifeng Zhang, and Yong Yu. Improving knowl-
edge tracing via pre-training question embeddings. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pp. 1577-1583. Morgan Kaufmann, 2020.

Zitao Liu, Qiongqgiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi Luo, and Jian Weng. En-
hancing deep knowledge tracing with auxiliary tasks. In Proceedings of the ACM Web Conference
2023, pp. 4178-4187. Association for Computing Machinery, 2023a.

Zitao Liu, Qionggiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simplekt: a simple but
tough-to-beat baseline for knowledge tracing. In International Conference on Learning Repre-
sentations, 2023b.

Ting Long, Yunfei Liu, Jian Shen, Weinan Zhang, and Yong Yu. Tracing knowledge state with indi-
vidual cognition and acquisition estimation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 173—182. Association for
Computing Machinery, 2021.

Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen, and Tomoko Ohkuma.
Augmenting knowledge tracing by considering forgetting behavior. In Proceedings of the 28th
international conference on World Wide Web, pp. 3101-3107. International World Wide Web
Conferences Steering Committee, 2019.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: model-
ing student proficiency using graph neural network. In IEEE/WIC/ACM International Conference
on Web Intelligence, pp. 156—163. Association for Computing Machinery, 2019.

Qin Ni, Tingjiang Wei, Jiabao Zhao, Liang He, and Chanjin Zheng. Hhskt: A learner—question
interactions based heterogeneous graph neural network model for knowledge tracing. Expert
Systems with Applications, 215:119334, 2023.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. In Proceedings
of the 12th International Conference on Educational Data Mining, pp. 384-389. International
Educational Data Mining Society, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8026—-8037. Curran Associates, Inc., 2019.

Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. Performance factors analysis — a new alter-
native to knowledge tracing. In International Conference on Artificial Intelligence in Education,
pp- 531-538. Springer, 2009.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas,
and Jascha Sohl-Dickstein. Deep knowledge tracing. In Advances in Neural Information Pro-
cessing Systems, pp. 505-513. Curran Associates, Inc., 2015.

Georg Rasch. Probabilistic models for some intelligence and attainment tests. MESA Press, 1993.

11

Under review as a conference paper at ICLR 2024

Shuanghong Shen, Qi Liu, Enhong Chen, Zhenya Huang, Wei Huang, Yu Yin, Yu Su, and Shijin
Wang. Learning process-consistent knowledge tracing. In Proceedings of the 27th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1452-1460. Association
for Computing Machinery, 2021.

Shuanghong Shen, Zhenya Huang, Qi Liu, Yu Su, Shijin Wang, and Enhong Chen. Assessing
student’s dynamic knowledge state by exploring the question difficulty effect. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 427-437. Association for Computing Machinery, 2022.

Xiangyu Song, Jianxin Li, Yifu Tang, Taige Zhao, Yunliang Chen, and Ziyu Guan. Jkt: A joint
graph convolutional network based deep knowledge tracing. Information Sciences, 580:510-523,
2021.

Xiangyu Song, Jianxin Li, Qi Lei, Wei Zhao, Yunliang Chen, and Ajmal Mian. Bi-clkt: Bi-graph
contrastive learning based knowledge tracing. Knowledge-Based Systems, 241:108274, 2022.

Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Chris Ding, Si Wei, and
Guoping Hu. Exercise-enhanced sequential modeling for student performance prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2435-2443. AAAI Press, 2018.

Jianwen Sun, Shangheng Du, Zhi Liu, Fenghua Yu, Sannyuya Liu, Qing Li, and Xiaoxuan Shen.
Weighted heterogeneous graph-based three-view contrastive learning for knowledge tracing in
personalized e-learning systems. IEEE Transactions on Consumer Electronics, 2023.

Shiwei Tong, Qi Liu, Wei Huang, Zhenya Hunag, Enhong Chen, Chuanren Liu, Haiping Ma, and
Shijin Wang. Structure-based knowledge tracing: An influence propagation view. In 2020 IEEE
international conference on data mining (ICDM), pp. 541-550. IEEE, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998—-6008. Curran Associates, Inc., 2017.

Jill-Jénn Vie and Hisashi Kashima. Knowledge tracing machines: Factorization machines for knowl-
edge tracing. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 750-757,
2019.

Kevin H Wilson, Yan Karklin, Bojian Han, and Chaitanya Ekanadham. Back to the basics: Bayesian
extensions of irt outperform neural networks for proficiency estimation. In Proceedings of the 9th
International Conference on Educational Data Mining, pp. 539-544. International Educational
Data Mining Society, 2016.

Tangjie Wu and Qiang Ling. Self-supervised heterogeneous hypergraph network for knowledge
tracing. Information Sciences, 624:200-216, 2023.

Xiaolu Xiong, Siyuan Zhao, Eric G Van Inwegen, and Joseph E Beck. Going deeper with deep
knowledge tracing. In Proceedings of the 9th International Conference on Educational Data
Mining, pp. 545-550. International Educational Data Mining Society, 2016.

Bihan Xu, Zhenya Huang, Jiayu Liu, Shuanghong Shen, Qi Liu, Enhong Chen, Jinze Wu, and Shijin
Wang. Learning behavior-oriented knowledge tracing. In Proceedings of the 29th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2789-2800. Association
for Computing Machinery, 2023.

Yang Yang, Jian Shen, Yanru Qu, Yunfei Liu, Kerong Wang, Yaoming Zhu, Weinan Zhang, and
Yong Yu. Gikt: a graph-based interaction model for knowledge tracing. In Machine Learning
and Knowledge Discovery in Databases, pp. 299-315. Springer, 2021.

Chun-Kit Yeung. Deep-irt: Make deep learning based knowledge tracing explainable using item re-
sponse theory. In Proceedings of the 12th International Conference on Educational Data Mining,
pp. 683-686. International Educational Data Mining Society, 2019.

12

Under review as a conference paper at ICLR 2024

Chun-Kit Yeung and Dit-Yan Yeung. Addressing two problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of the fifth annual ACM conference on learn-
ing at scale, pp. 1-10, 2018.

Yu Yin, Le Dai, Zhenya Huang, Shuanghong Shen, Fei Wang, Qi Liu, Enhong Chen, and Xin Li.
Tracing knowledge instead of patterns: Stable knowledge tracing with diagnostic transformer. In
Proceedings of the ACM Web Conference 2023, pp. 855-864. Association for Computing Ma-
chinery, 2023.

Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. Individualized bayesian knowl-
edge tracing models. In International Conference on Artificial Intelligence in Education, pp.
171-180. Springer, 2013.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory networks
for knowledge tracing. In Proceedings of the 26th International Conference on World Wide Web,
pp. 765-774. International World Wide Web Conferences Steering Committee, 2017.

Weizhong Zhao, Jun Xia, Xingpeng Jiang, and Tingting He. A novel framework for deep knowl-
edge tracing via gating-controlled forgetting and learning mechanisms. Information Processing
& Management, 60(1):103114, 2023.

13

Under review as a conference paper at ICLR 2024

A DETAILS OF DATASETS

We conducted experiments using the following 7 datasets to evaluate the performance of ReKT:

. ASSISTOﬂ Collected from the ASSISTments online educational platform during 2009-
2010.

. ASSISTI Gathered from the same ASSISTments platform during 2012-2013.
. ASSISTlﬂ An updated version of ASSISTO09 data, released in 2015.

. ASSISTI?E]: Also collected from the ASSISTments online educational platform.
. StaticsZ()llE} Collected from a college-level engineering course on statics.

. EdNetﬂ A dataset collected by Santa(Choi et al.,2020b)), an online tutoring platform, from
2017 to 2019.

. Eedﬂ Used for the NeurIPS 2020 Education Data Mining Challenge, collected by the
online education platform Eedi from 2018 to 2020.

Based on previous research, for the ASSIST series datasets, we removed scaffold questions and
records without concepts(Ghosh et al., 2020). Additionally, multiple concepts were merged into
new concepts(Xiong et al.l [2016)). For the ASSIST15 dataset, records with an isCorrect” field not
equal to O or 1 were removed(Abdelrahman & Wang| 2019). In the case of Statics2011, original
question indexes and step indexes were combined into a new question index. If the same question
was answered consecutively, only the first answer was retained. Moreover, due to the large scale
of ASSIST12, EdNet, and Eedi datasets, and limitations in computational resources, we randomly
sampled records from 5000 students(Yang et al., 2021)). The statistical information for these datasets
is provided in Table[I}

B DETAILS OF BASELINE

In order to assess the performance of ReKT, we compared it against baseline models of concept-
based KT and question-based KT, respectively.

B.1 CONCEPT-BASED KT BASELINE

BKT(Corbett & Anderson, [1994)): The first knowledge tracing method employs hidden markov
models to trace students’ knowledge states for each concept. We conducted experiments based on
the official open-source code of (Badrinath et al.| 2021).

DKT(Piech et all [2015): The first deep learning-based knowledge tracing model that employs
LSTM to trace students’ knowledge states. We conducted experiments by running their official
open-source code.

DKVMN(Zhang et al., 2017): Utilizes a dynamic key-value memory network to model students’
knowledge states. We conducted experiments by running their official open-source code.

DKT+(Yeung & Yeung| 2018): Enhances DKT by addressing inconsistent knowledge states and
irrecoverable inputs. We conducted experiments by running their official open-source code.

KQN(Lee & Yeung, 2019): Predicts students’ performance using knowledge states and concept
encoders. As there was no official open-source code available, we reimplemented their model using
PyTorch.

Uhttps://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
Zhttps://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
*https://sites.google.com/view/assistmentsdatamining/dataset
Shttps://pslcdatashop.web.cmu.edu/DatasetInfo?datasetld=507
®https://github.com/riiid/ednet

"https://eedi.com/projects/neurips-education-challenge

14

Under review as a conference paper at ICLR 2024

DeepIRT(Yeung, |2019): Introduces Item Response Theory (IRT)(Wilson et al 2016) to DKVMN
for improved interpretability of predictions. We conducted experiments by running their official
open-source code.

DKT+forgetting(Nagatani et al.;, |2019): Augments DKT by incorporating various behavioral fea-
tures to consider forgetting in student knowledge states. As there was no official open-source code
available, we reimplemented their model using PyTorch.

SAKT(Pandey & Karypisl 2019): The pioneering self-attention mechanism-based knowledge trac-
ing model that attempts to capture the relationship between students and concepts to represent
knowledge states. We conducted experiments by running their official open-source code.

GKT(Nakagawa et al.,[2019): The first graph-based knowledge tracing model that propagates stu-
dents’ knowledge states within the proposed graph. As there was no official open-source code
available, we reimplemented their model using PyTorch.

AKT-concept(Ghosh et al.,[2020): A variant of AKT where inputs are limited to concepts (exclud-
ing questions). We conducted experiments by making modifications to the inputs of the official
open-source code of AKT.

SAINT-concept(Choi et al., 2020a): A variant of SAINT where inputs are limited to concepts (ex-
cluding questions). As there was no official open-source code available, we reimplemented their
model using PyTorch and conducted experiments by modifying the inputs.

ATKT(Guo et al. [2021): Enhances the generalization capability of knowledge tracing models
through adversarial training. We conducted experiments using their official open-source code and
during the experimentation, we identified a bug within their code. This bug resulted in unintended
data leakage. We proceeded to rectify this error by implementing necessary modifications.

CL4KT(Lee et al.,2022)): Introduces multiple data augmentation strategies and employs contrastive
learning to alleviate sparsity in student-interaction data. We conducted experiments by running their
official open-source code.

B.2 QUESTION-BASED KT BASELINE

KTM(Vie & Kashimal [2019): Modeling students’ knowledge states using Factorization Machines.
We conducted experiments by running their official open-source code.

AKT(Ghosh et al.l 2020): Introduces the Rasch method for representing questions and proposes
a context-aware Transformer architecture to simulate students’ forgetting behavior for knowledge
state tracing. We conducted experiments by running their official open-source code.

SAINT(Choi et al} 2020a): Fully employs a Transformer (Vaswani et al., 2017) architecture to
model students’ knowledge states. As there was no official open-source code available, we reimple-
mented their model using PyTorch.

PEBG+DKT(Liu et al., |2020): Enhances DKT by deeply exploring the relationship between ques-
tions and concepts to obtain pre-trained question representations. We conducted experiments by
running their official open-source code.

GIKT(Yang et al.,[2021)): Utilizes Graph Convolutional Networks (GCN) to aggregate relationships
between questions and concepts, along with a historical review module to trace students’ knowledge
states. We referenced their official open-source code(TensorFlow) and reimplemented their model
using PyTorch.

CDKT(Dai et al.,[2022): Enhances DKT by employing contrastive learning to learn informative
question representations. As there was no official open-source code available, we reimplemented
their model using PyTorch.

DIMKT(Shen et al.| 2022)): Explores question difficulty information and its relationship with stu-
dents’ knowledge states. We referenced their official open-source code(TensorFlow) and reimple-
mented their model using PyTorch.

15

Under review as a conference paper at ICLR 2024

QIKT(Chen et al., 2023)): Designs question-sensitive cognitive representations for modeling student
knowledge states and combines IRT for improved interpretability. We reimplemented their model
by referring to their official open-source code.

simpleKT(L1u et al., [2023b): A simplified version of AKT, which simplifies the architecture of
AKT without sacrificing too much performance. We reimplemented their model by referring to
their official open-source code.

AT-DKT(Liu et al.l [2023a): Enhances DKT by introducing two additional question-related tasks.
We reimplemented their model by referring to their official open-source code.

DTransformer(Yin et al., 2023): Builds a knowledge state from questions to the knowledge level
and maintains stable knowledge states using contrastive learning. We conducted experiments by
running their official open-source code.

C PERFORMANCE COMPARISON OF REKT-CONCEPT ABLATION STUDY

Table 7: Performance comparison of ReKT-concept ablation study. ”C” means concept knowledge
state, and ”’D” means domain knowledge state. Best results in bold.

c D ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC
Vv 0.7493 07157 0.7159 0.7267 0.7395 0.7570 0.6771 0.6392 0.8044 0.8084 0.6722 0.7060 0.7134 0.6887

Vv 07680 0.7321 0.7295 0.7354 0.7271 0.7544 0.7156 0.6653 0.8513 0.8293 0.7041 0.7132 0.7661 0.7187
Vv Vv 07737 07340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208

D DIFFERENT CORE ARCHITECURE FOR CONCEPT-BASED KT

Table 8: Performance of different core architectures for concept-based KT. ”AKT-Transformer”
means context-aware Transformer architecture in AKT, which modifies the calculation of basic
Transformer attention scores to consider the forgetting behavior of students based on contextual
information. ”Rank” reports the average rank across all datasets (AUC ranks). Best results in bold.

Core Architect ASSIST09 ASSISTI2 ASSIST1S ASSIST17 Statics2011 EdNet Eedi Rank | #params FLOPS
ore Archifecture - Ayc ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC | % params N
LSTM 0.7684 07297 07328 07367 07323 07536 07188 0.6673 0.8483 08275 07006 07129 07629 07182 | 2.4 | 165.121K 2.643G
GRU 07674 07314 07389 07397 07331 07568 0.7192 0.6686 08428 0.8258 07037 07136 07654 07180 | 2.0 | 132.097K 2.115G
Transformer 07487 0.7140 07289 07353 07365 0.7572 07013 0.6560 0.7598 07940 0.6974 07096 07589 07130 | 4.4 | 627.841K 9.963G
AKT-Transformer 07668 07280 0.7384 07390 07312 07557 07157 06637 0.8384 08204 0.6987 07111 07626 07166 | 3.6 | 627.841K 9.963G
FRU 07680 07321 07295 07354 07271 07544 07156 06653 08513 0.8293 07041 07132 07661 07187 | 26 | 98817K 1.567G

Computing Resources: We use the number of parameters and FLOPs as reference computing
resources. Additionally, we compare the resource utilization of FRU with two widely used core
structures in knowledge tracing: LSTM and Transformer. Therefore, the computing resources
required for FRU are approximately ((98.817/165.121 + 1.567/2.643)/2 + (98.817/627.841 +
1.567/9.963))/2 ~ 38% times that of the other architectures.

Rank: We use AUC as the ranking metric, taking the average ranking of each core architecture
across all datasets.

E CHOICE OF DIFFERENT CORE ARCHITECTURES FOR REKT-CONCEPT

The performance of different core architectures for ReKT-concept is presented on Table[0] From Ta-
ble [} we can observe the following conclusions for ReKT-concept, which align closely with those
for ReKT: (1) The performance of various core architectures follows the order of FRU, LSTM,
AKT-Transformer, and Transformer, gradually decreasing in performance. Furthermore, when trac-
ing student learning data at multiple different time intervals, FRU outperforms LSTM, undoubt-
edly showcasing the scalability of the FRU design; (2) Sequential modeling methods like FRU and
LSTM outperform attention-based modeling methods such as AKT-Transformer and Transformer;
(3) AKT-Transformer consistently outperforms Transformer, emphasizing the importance of consid-
ering student knowledge forgetting behavior; (4) ReKT-concept requires significantly fewer param-

16

Under review as a conference paper at ICLR 2024

Table 9: Performance of different core architectures for ReKT-concept. ”AKT-Transformer” means
context-aware Transformer architecture in AKT, which modifies the calculation of basic Trans-
former attention scores to consider the forgetting behavior of students based on contextual infor-
mation. Model names are formed from core architecture initials. Best results in bold.

Model Core Architecture ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi #params FLOPs
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC P B

ReKT-concept-L LSTM 0.7685 0.7316 0.7352 0.7366 0.7493 0.7603 0.7196 0.6680 0.8363 0.8233 0.7080 0.7150 0.7679 0.7199 | 0.379M 6.034G

ReKT-concept-G GRU 0.7724 0.7328 0.7343 0.7368 0.7511 0.7618 0.7212 0.6687 0.8330 0.8182 0.7084 0.7149 0.7704 0.7229 | 0.296M 4.724G

ReKT-concept-T Transformer 0.7627 0.7271 0.7243 0.7323 0.7287 0.7553 0.7101 0.6574 0.7987 0.8100 0.6992 0.7125 0.7587 0.7144 | 1.239M 19.662G

ReKT-concept-A AKT-Transformer 0.7689 0.7306 0.7339 0.7367 0.7316 0.7561 0.7169 0.6656 0.8335 0.8220 0.7014 0.7121 0.7653 0.7183 | 1.239M 19.662G

ReKT-concept(ours) FRU 0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208 | 0.181M 2.871G

eters and has lower computational complexity compared to other variants. However, it outperforms
them in terms of performance, underscoring the simplicity and effectiveness of ReKT-concept.

T+Nin concept-based KT T+Nin concept-based KT T+Nin concept-based KT T+Nin concept-based KT

0.78 0.76 0.73
0.73

0076 \ Q 0.74 0072 ’\
2 2071 2072 k 207 &
<074 <Y 07 < 0.7

0.72 0.69 0.68 0.69

T+l T+2 T+3 T+4 T+45 T+l T+#2 T+3 T+4 T+5 THL T2 TH3 T+ 45 T+l T+2 T+3 T+4 T+5
ASSIST09 ASSIST12 ASSIST15 ASSIST17
DKT —DKT+forget DKT —DKT+forget DKT —DKT+forget DKT —DKT+forget

—AKT-concept —ReKT-concept —AKT-concept —ReKT-concept —AKT-concept —ReKT-concept —AKT-concept —ReKT-concept

T+N in concept-based KT T+N in concept-based KT T+N in concept-based KT

0.9 0.72 0.77
0085 007t —— gom \
=) % S 07 _— —— =)
< 08 < 0.69 <0.75
0.75 0.68 0.74
T+l T+2 T3 T+4 T+45 T+l T+2 T3 T+4 T+45 T+l T+2 T+3 T+4 T+5
Statics2011 EdNet Eedi
DKT —DKT+forget DKT —DKT+forget DKT —DKT+forget

—AKT-concept —ReKT-concept

—AKT-concept —ReKT-concept

—AKT-concept —ReKT-concept

Figure 5: Performance (AUC) of T+N predictions in concept-based KT across all datasets.

T+Nin question-based KT

T+Nin question-based KT

T+Nin question-based KT

T+Nin question-based KT

0.8 0.79 0785 0.91
Lo78 ~ T 077 k 00778 \ 0 0.88 %
=] = 50.765 \
o076 — R R ————— 075y ——m—————— o085
0.74 0.73 0.745 0.82
T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5
ASSIST09 ASSIST12 ASSIST17 Statics2011
—AKT CDKT —DIMKT AKT —CDKT —DIMKT —AKT CDKT —DIMKT AKT —CDKT —DIMKT
QIKT —ReKT QIKT —ReKT QIKT —ReKT QIKT —ReKT
T+N in question-based KT T+Nin question-based KT
0.78 0.8
— —
0077 0079
e — =] \
< <o.78
0.74 0.77
T+l T+2 T+3 T+4 T45 T+l T+#2 T+3 T+4 T45
EdNet Eedi
AKT —CDKT —DIMKT AKT —CDKT —DIMKT
QIKT —ReKT QIKT —ReKT

Figure 6: Performance (AUC) of T+N predictions in question-based KT across all datasets.

F T+N PREDICTION

For the concept-based KT models, referring to Table 2] it is evident that the models with better
performance include DKT+, DKT+forgetting, AKT-concept, and ATKT. However, due to DKT+’s
reliance on recent response data to optimize the model, it is not suitable for T+N predictions. Ad-
ditionally, we excluded ATKT from the T+N comparison due to identified errors in its code. DKT
serves as a crucial baseline model for comparison in this study, hence its inclusion in the T+N eval-
uation.

For the question-based KT models, referring to Table [3] the models demonstrating better perfor-
mance are AKT, CDKT, DIMKT, and QIKT.

17

Under review as a conference paper at ICLR 2024

For the concept-based KT, Figure [5] illustrates the T+N experiments conducted across all datasets.
Likewise, for the question-based KT, Figure[6]illustrates the T+N experiments conducted across all
datasets(excluding ASSIST15 due to a lack of question information). It is evident that across nearly
all datasets, whether at the concept-based KT or question-based KT, as elucidated in the ”T+N Pre-
diction” section, ReKT consistently demonstrates remarkable stability in performance. Furthermore,
it is worth noting that ReKT not only exhibits a slower rate of decline but also significantly outper-
forms other models in terms of performance, underscoring ReKT’s exceptional ability to uphold
simplicity and effectiveness while retaining remarkable stability.

G THE TIME AND SPACE COMPLEXITY OF FRU

FRU is shown in Figure[3] We denote the time step as 7', and for simplicity, we set the hidden layer
dimension to be consistent as d. For any time step ¢t € [1,7T], Response; € Rixd X, ¢ RI*xd
Z, e R4 T, e RIxd,

Learnable parameters of FRU: The parameters that FRU learn are only W, € R?¥x4 p, ¢ R1*4,
Wy € R24%d p, e R1X4 then the total number of learnable parameters of FRU is 2d * d + 1 % d +
2dxd+1xd=4d> + 2d.

Time complexity of FRU: The complexity of calculating f; is O(1 * 2d x d + 1 * d), the complexity
of calculating Response; is O(1 * d), and the complexity of calculating the update value (that is,
Tanh([Response; ® X¢]Wa + ba)) is O(1 x 2d * d + 1 * d), and the complexity of calculating Z;
is O(1 = d). Then the complexity of one time step is O((2d* + d) + d + (2d* + d) + d), that is,
O(4d? + 4d). Then the time complexity of FRU is O(4Td? + 4Td).

Space complexity of FRU: The space complexity of Response;, X;, Z;, and I, is all O(1 x d).
Considering the total time step, their combined space complexity is O (7 * 4 * 1« d). In addition, the
number of learnable parameters of FRU is 4d? + 2d, so the space complexity of FRU is O(4Td +
4d? + 2d).

H THE DIFFERENCES AND ADVANTAGES BETWEEN FRU AND MLP, RNN,
LSTM, AND GRU

The differences between FRU and MLP:

* FRU is a sequence model, similar to recurrent neural networks such as RNN, while MLP
is a model that processes structured data.

* Both linear regression units of FRU have only one change, not multiple.
The differences between FRU and RNN, GRU, and LSTM:

* FRU reduces the output transformation layer.

e Compared with RNN, FRU considers the forgetting process at each moment; compared
with LSTM and GRU, their gates (such as LSTM’s forgetting and input gates) are con-
nected in parallel; FRU’s foget-response-update is in series.

e When calculating the current state, LSTM additionally uses global state updates, and GRU
makes additional changes. FRU, on the other hand, directly relies on the state of the previ-
ous moment without involving additional changes.

* FRU considers the case of processing sequences with non-uniform time intervals.
e FRU has fewer learnable parameters than LSTM and GRU.

The Advantages of FRU:
» Experimental results show that as the core architecture of KT, FRU is simpler than other

methods and can maintain equivalent or better performance while using less computing
resources.

* FRU is able to handle sequences with non-uniform time intervals.

18

Under review as a conference paper at ICLR 2024

I VISUAL ANALYSIS

@ O @ L Aegel X

10

----- 06

00

1:448-85 2:475-52 3:784-78 4:448-85 5:786-78 6:496-82 7:786-78 8:784-78 9:786-78 10:607-69 11:786-78 12:448-85 13:785-78 14:784-78 15:448-85

Figure 7: A case study of DKT-Q for tracing students’ knowledge state.

O @ L Aol XX

p ---

786 --
> -

1:448-85 2:475-52 3:784-78 4:448-85 5:786-78 6:496-82 7:786-78 8:784-78 9:786-78 10:607-69 11:786-78 12:448-85 13:785-78 14:784-78 15:448-85

1.0

Figure 8: A case study of ReKT for tracing students’ knowledge state.

One of the most interesting applications of knowledge tracing is probably tracing students’ knowl-
edge states. Once a student’s knowledge state is accurately captured, teachers can provide targeted
guidance to address their weaknesses in understanding. In this section, we randomly selected stu-
dents’ interaction sequences on the ASSIST17 dataset for 15 time steps to compare the tracing of
students’ knowledge states between DKT-Q and ReKT. DKT-Q is a variant of DKT where the input
is changed from concepts to questions, as shown in Figure [7]and Figure [8] The y-axis represents
specific questions, differentiated by different colored circles. The x-axis represents student interac-
tions (time step, question and question related concept). If the student answered the current question
correctly, the corresponding circle is displayed. If the student answered incorrectly, an additional
white circle is added to indicate the difference. The value of each element in the matrix represents
the student’s mastery of a specific question at the corresponding time step. As shown in Figure[7]
DKT-Q can hardly trace the mastery of question 785 by the student (indicated by minimal changes
in the student’s mastery of question 785). This is because there is only one interaction about it in
the interaction sequence (at time step ¢ = 13). However, considering that question 785 is related to
concept 78, and the student has actually practiced numerous exercises related to concept 78 (at time
steps t = 3,5,7,8,9,11), it is intuitive to expect that the student’s understanding of question 785
should improve. However, DKT-Q cannot capture this, whereas ReKT can trace the improvement in
the student’s mastery of question 785 as they continuously practice exercises related to concept 78
(as shown in Figure[8). In addition, during time steps ¢t = 5,7, 9, 11, the student practices question
786 continuously. Intuitively, regardless of whether the student answers correctly or incorrectly, the
student should gain knowledge from it (improving the mastery of question 786). However, DKT-
Q shows a decrease in the student’s mastery of question 786 at time steps t = 9, 11, which goes
against intuition. On the other hand, ReKT can continuously traces the improvement in the student’s
mastery of question 786. This shows the advantage of ReKT in tracing students’ knowledge state.
Through the visualization results, teachers can clearly understand the student’s mastery of certain
questions and provide targeted exercises. For example, if it is observed that students have a low level
of mastery of question 786 in the early stages of learning, the teacher can promptly provide targeted
training to the students on this question.

19

	Introduction
	Related Work
	Method
	Problem Formulation
	Representation of questions, concepts and responses
	Representation of knowledge state
	FRU framework
	Prediction and training

	Experiments
	Datasets
	Baseline
	Concept-based KT Baseline
	Question-based KT Baseline

	Experimental setting
	Experimental results

	CONCLUSION
	Details of datasets
	Details of baseline
	Concept-based KT baseline
	Question-based KT baseline

	Performance comparison of ReKT-concept ablation study
	Different Core Architecure for Concept-based KT
	Choice of Different Core Architectures for ReKT-concept
	T+N prediction
	The time and space complexity of FRU
	The differences and advantages between FRU and MLP, RNN, LSTM, and GRU
	Visual analysis

