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ABSTRACT

Knowledge Tracing (KT) is a problem that assesses students’ knowledge mastery
(knowledge state) and predicts their future performance based on their interaction
history with educational resources. Current KT research is dedicated to enhancing
the performance of KT problems by integrating the most advanced deep learning
techniques. However, this has led to increasingly complex models, which reduce
model usability and divert researchers’ attention away from exploring the core is-
sues of KT. This paper aims to tackle the fundamental challenges of KT tasks,
including the knowledge state representation and the core architecture design, and
investigate a novel KT model that is both simple and powerful. We have revis-
ited the KT task and propose the ReKT model. First, taking inspiration from the
decision-making process of human teachers, we model the knowledge state of
students from three distinct perspectives: questions, concepts, and domains. Sec-
ond, building upon human cognitive development models, such as constructivism,
we have designed a Forget-Response-Update (FRU) framework to serve as the
core architecture for the KT task. The FRU is composed of just two linear re-
gression units, making it an extremely lightweight framework. Extensive compar-
isons were conducted with 22 state-of-the-art KT models on 7 publicly available
datasets. The experimental results demonstrate that ReKT outperforms all the
comparative methods in question-based KT tasks, and consistently achieves the
best (in most cases) or near-best performance in concept-based KT tasks. Further-
more, in comparison to other KT core architectures like Transformers or LSTMs,
the FRU achieves superior prediction performance with approximately only 38%
computing resources. Through an exploration of the ReKT model that is both
simple and powerful, is able to offer new insights to future KT research. Code is
available in the supplementary materials.

1 INTRODUCTION

Knowledge Tracing (KT) is a crucial task in online education systems. It assesses students’ knowl-
edge mastery (knowledge state) based on their interaction history with educational resources and
aims to predict their future performance. Effectively addressing KT task can assist teachers in gain-
ing insights into students’ learning progress, enabling them to tailor teaching strategies and offer
personalized guidance (Abdelrahman et al., 2023).
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Figure 1: A simple example of knowledge tracing, ”Response” indicates the student’s answer.
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As shown in Figure 1, the example of KT involves each question being associated with one or more
concepts. Students practice with different questions, and the aim of KT is to predict the probability of
them answering the next question correctly. Often, due to the lack of question information in certain
datasets, KT can be further categorized into question-based KT and concept-based KT for unifor-
mity. Additionally, to simplify the KT task, multiple concepts are sometimes amalgamated into a
new concept (Xiong et al., 2016). Many methods (Shen et al., 2021; Abdelrahman & Wang, 2022;
Liu et al., 2023b) have been proposed for KT, which predict students’ future performance by tracing
their knowledge state. Thus, the key aspect of KT is effectively tracing and representing students’
knowledge state. However, most KT methods exclusively focus on modeling either question-based
KT or concept-based KT, without exploring their potential in both of these scenarios.

In recent years, with the advancement of deep learning technologies, KT models based on methods
such as Transformers (Ghosh et al., 2020; Cui et al., 2023), graph neural networks (Tong et al.,
2020; Wu & Ling, 2023), and contrastive learning (Lee et al., 2022; Yin et al., 2023) have emerged
one after another. Although these works have made significant contributions to in-depth research on
KT, we have observed a strange phenomenon: the current mainstream of KT research seems to rely
on cutting-edge technologies from other domains to build complex models, while efforts to delve
deeper into the KT problem itself appear to have made limited progress. While works like LPKT
(Shen et al., 2021) and LBKT (Xu et al., 2023) explore the impact of various behaviors during
student learning processes, they often depend on specialized and intricate architectures, making it
challenging for subsequent research to derive substantial insights from them. We hope to Revisit
Knowledge Tracing (ReKT) and design a model that is as simple and powerful as possible.

We start by addressing the two fundamental challenges of the KT task: (1) How to represent a stu-
dent’s knowledge state from learning data; (2) How to design a core architecture that is as simple as
possible and suitable for KT. For the first challenge, in fact, long before we began using KT models
to solve this problem, teachers had already been engaged in a similar process. When teachers assess
a student’s ability to solve a specific question, they consider several key factors. First, they assess
the student’s previous performance on the same question. Second, they consider the student’s per-
formance on similar questions previously. Finally, if the student has not encountered this question
or similar ones before, the teacher consider the student’s overall historical performance. Inspired
by this process, we model student’s knowledge state from three distinct perspectives: questions,
concepts, and domains. Regarding the second challenge, drawing inspiration from human cogni-
tive development models (Bruner, 1966), which emphasizes that changes in human knowledge state
(Response) are mainly affected by two main psychological processes: internalization and forgetting.
Internalization emphasizes the updating (Update) process of knowledge state based on environmen-
tal stimuli, while forgetting (Forget) emphasizes the natural changing process of knowledge state
over time. Therefore, we model these core processes and design a lightweight core architecture
called FRU (Forget-Response-Update) for KT tasks.

Specifically, we propose ReKT, which is both simple and powerful. It traces student’s knowledge
state from three distinct perspectives: (1) It traces students’ question knowledge state from interac-
tion history limited to specific questions, indicating their mastery of specific questions; (2) It traces
students’ concept knowledge state from interaction history limited to specific concepts (where two
questions with the same concept are considered similar), indicating their mastery of questions en-
compassing those specific concepts; (3) It traces students’ domain knowledge state from their entire
interaction history, indicating their mastery of questions spanning the entire domain (i.e., overall
performance). We combine these three to comprehensively represent students’ knowledge state.
Furthermore, we’ve designed a lightweight core architecture called FRU for KT tasks. It first cal-
culates the forgetting of the student’s knowledge state based on the interval time, then responses
based on the knowledge state, and finally updates the knowledge state based on the learning inter-
action. It’s worth mentioning that FRU comprises only two linear regression units. Experimental
results on 7 publicly available datasets, comparing ReKT with 22 state-of-the-art KT models, in-
cluding question-based KT and concept-based KT, show that in most cases, ReKT significantly
outperforms other models. This demonstrates that even without relying on highly complex models
or cutting-edge technologies, by delving deeply into the characteristics of the KT task, it is possible
to construct a model that is both simple and powerful. We believe that ReKT has the potential to
offer a wealth of new inspiration and insights for future KT research.

Distinct Perspectives Analysis: In fact, purely from a model perspective, constructing the knowl-
edge state from the entire interaction history inherently encompasses the knowledge state con-
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structed from limited interaction history. This is likely the reason why most KT models have failed
to construct knowledge states from a more nuanced perspective. However, constrained by the small
scale of KT datasets, complex model architectures like Transformers have struggled to bring signif-
icant benefits to KT (Ghosh et al., 2020) and, naturally, have been unable to achieve the precision of
constructing knowledge states from a multi-perspective approach. Subsequent experiments in this
paper demonstrate the effectiveness of multi-perspective modeling of knowledge states.

2 RELATED WORK

KT was proposed by (Corbett & Anderson, 1994) in 1994. Classic knowledge tracing methods
can be categorized into bayesian-based methods such as BKT(Yudelson et al., 2013; Khajah et al.,
2014) and factor analysis-based methods such as LFA(Cen et al., 2006b), AFM(Cen et al., 2006a),
PFA(Pavlik Jr et al., 2009), KTM(Vie & Kashima, 2019). In recent years, with the advancement
of deep learning, an increasing number of methods have been employed to tackle KT tasks. We
categorize the existing methods into the following two types based on the nature of the KT task:

Concept-based KT: This category of KT methods aims to predict the student’s mastery of specific
concepts. DKT (Piech et al., 2015) is regarded as a representative method for concept-based KT, uti-
lizing an LSTM to construct the student’s knowledge state. DKVMN (Zhang et al., 2017) employs
a dynamic key-value memory network to capture the student’s knowledge state. SAKT (Pandey &
Karypis, 2019) models the relationship between students and concepts using self-attention mecha-
nisms to derive the knowledge state. SKVMN (Abdelrahman & Wang, 2019) employs an enhanced
LSTM for modeling students’ knowledge state and updates it based on students’ responses to rele-
vant questions. GKT (Nakagawa et al., 2019) propagates a student’s knowledge state over a graph
structure. SKT (Tong et al., 2020) takes into account various relationships between concepts to sim-
ulate the propagation of knowledge states. ATKT (Guo et al., 2021) utilizes adversarial learning to
represent students’ knowledge states in a more robust manner. CL4KT (Lee et al., 2022) designs
various data augmentation strategies to enhance the representational capacity of the knowledge state.

Question-based KT: Building upon concept-based KT, this category of methods includes addi-
tional question information to predict a student’s performance on specific questions. AKT (Ghosh
et al., 2020) is considered a representative method for question-based KT, utilizing a context-aware
Transformer architecture to account for forgetting behavior in tracing students’ knowledge state.
SAINT (Choi et al., 2020a) constructs the student’s knowledge state entirely using the Transformer
framework. GIKT (Yang et al., 2021) employs GCN(Kipf & Welling, 2017) to uncover relation-
ships between questions and concepts, and incorporates an interactive module to capture students’
knowledge states. DIMKT (Shen et al., 2022) extensively mines question difficulty information to
model the student’s knowledge state. simpleKT (Liu et al., 2023b) simplifies AKT to trace stu-
dents’ knowledge state. DTransformer (Yin et al., 2023) employs contrastive learning to maintain
a stable knowledge state. AT-DKT (Liu et al., 2023a) enhances knowledge state representation by
introducing two extra tasks related to question design.

Connections and Differences: These approaches all utilize the student’s entire interaction history to
construct the knowledge state. Their modeling approaches focus on creating more complex models
to capture effective knowledge states. ReKT also relies on the entire interaction history as one
of the sources for modeling the knowledge state. However, unlike the others, ReKT’s modeling
approach does not involve building more complex models. Instead, ReKT deeply mines the student’s
interaction history information and constructs the knowledge state from different perspectives.

3 METHOD

ReKT’s overall framework is depicted in Figure 2. We will present the problem formulation of KT
and then detail the various modules of ReKT.

3.1 PROBLEM FORMULATION

The KT task can be defined as follows: Given a student’s interaction history sequence L =
{(q1, c1, r1), (q2, c2, r2), ..., (qt, ct, rt)}, where qt is the question at time t, ct signifies the concept
associated with question qt, and rt ∈ {0, 1} shows if the student’s response to qt is correct. KT’s aim
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Figure 2: The overall framework of ReKT. ReKT constructs the question and concept knowledge
states from the interaction history limited to the current question and concept. Additionally, it con-
structs the domain knowledge state using the entire interaction history.

is to predict the probability of the student answering the next question qt+1 correctly. For concept-
based KT, which lacks specific question data, concepts are treated as equivalent representations of
questions(Zhang et al., 2017; Nagatani et al., 2019). So, the goal is to predict the probability of the
student answering the next concept ct+1 correctly. Please note that if a question involves multiple
concepts, we combine them into a new concept(Xiong et al., 2016).

3.2 REPRESENTATION OF QUESTIONS, CONCEPTS AND RESPONSES

Effectively representing questions, concepts, and responses is important for KT, and establishing
their relationships forms a highly effective approach. Let’s denote the feature matrix as follows:
Q ∈ Rn×d for questions, C ∈ Rm×d for concepts, and R ∈ R2×d for responses. Here, n represents
the total number of questions, m is the total number of concepts, and d signifies the feature di-
mension. Inspired by the classic psychological measurement theory of Rasch (Rasch, 1993), which
explicitly employs scalars to represent question difficulty. For the current question qt+1 and its as-
sociated concept ct+1, their feature representation Et+1 = Qqt+1

+Cct+1
+ diffqt+1

∗Vct+1
. Here,

Qqt+1
denotes the qt+1-th row of Q, Cct+1

corresponds to the ct+1-th row of C, diffqt+1
repre-

sents the difficulty of qt+1 and is a scalar, and Vct+1
∈ R1×d captures the extent of variation of the

question with respect to its concept. For any given moment t within the interaction history L, where
Lt = (qt, ct, rt), the feature representation Xt for Lt is calculated as Xt = Et + Rrt , where Rrt
corresponds to the rt-th row of R.

3.3 REPRESENTATION OF KNOWLEDGE STATE

The representation of a student’s knowledge state is the most fundamental issue in KT, and
ReKT constructs three types of knowledge states for a student from the interaction history L =
(q1, c1, r1), (q2, c2, r2), ..., (qt, ct, rt): question, concept, and domain knowledge state. For the cur-
rent question qt+1 and its corresponding concept ct+1:

For the aspect of question knowledge state: We construct it from the interaction history LQ
t+1 limited

to the current question qt+1. Here, LQ
t+1 =

⋃
j Lj , if qj == qt+1, j < t+1.

⋃
represents the union

operation. The feature representation of LQ
t+1 is denoted as XQ

t+1, as shown in Figure 2, where
XQ

t+1 = {X3, Xt−δ}. As shown in the example, they all include the current question 3. Thus, the
question knowledge state hQ

t+1 = FRU (XQ
t+1 ∪Xt+1). The FRU architecture is shown in Figure 3,

and we’ll provide a detailed explanation of it in the next section. Note the inclusion of an added
term, Xt+1, here. This serves the purpose of informing the FRU about the current time, i.e., t+ 1.

For the aspect of concept knowledge state: We construct it from the interaction history LC
t+1 limited

to the current concept ct+1. Here, LC
t+1 =

⋃
j Lj ,if cj == ct+1, j < t + 1. The feature repre-

sentation of LC
t+1 is denoted as XC

t+1, as shown in Figure 2, where XC
t+1 = {X1, X3, Xt−δ}. As
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shown in the example, they all include the current concept 2. Therefore, the concept knowledge
state hC

t+1 = FRU (XC
t+1 ∪Xt+1). The inclusion of Xt+1 here also aims to inform the FRU about

the current moment. The FRU here is distinct from the earlier mentioned FRU parameter.

For the aspect of domain knowledge state: We construct it from the entire interaction his-
tory L. The feature representation of L is denoted as X , as shown in Figure 2, where X =
{X1, X2, X3, . . .Xt−δ, . . . , Xt}. Therefore, the domain knowledge state hD

t+1 = FRU (X ∪Xt+1).
Consistent with the above, here Xt+1 is used to inform the FRU of the current moment, and the FRU
parameters here are independent of the previous FRU’s parameters.

3.4 FRU FRAMEWORK

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡−𝛼 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡+𝛽
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Figure 3: FRU framework.

Inspired by human cognitive development models (Bruner,
1966), we design a lightweight core architecture called FRU
(Forget-Response-Update) for KT tasks, as shown in Figure 3.
It first takes into account the process of students forgetting
their knowledge state, then responses to specific questions
based on knowledge state, and ultimately updates the knowl-
edge state based on response accuracy. Specifically, let the cur-
rent moment be t, the last relevant moment is t−α (this allows
FRU to handle time series with varying intervals), Zt−α ∈
R1×d represents the knowledge state at the time t − α. First,
we remember that the interval time α is represented by features as Iα ∈ R1×d, then at the current mo-
ment t, the degree of forgetting of Zt−α can be calculated as ft = Sigmoid([Zt−α ⊕ Iα]W1 + b1),
where W1 and b1 are all learnable parameters. Then the knowledge state of the current response
Responset = ft ∗ Zt−α. Finally, the student will update the knowledge state according to
the feature representation Xt of current interaction, then the student’s current knowledge state
Zt = Responset + Tanh([Responset ⊕ Xt]W2 + b2), Among them, W2 and b2 are all learn-
able parameters. The subsequent processing flow can be deduced by analogy.

We record the interaction sequence input by FRU as Xξ
t = {..., Xt−α, Xt}, then FRU can be ab-

stracted as: Responset = FRU (Xξ
t ). Clearly, the FRU framework is very lightweight, as it consists

of only two linear regression units. However, it aligns remarkably well with students’ cognitive
learning processes, and subsequent experiments will demonstrate its effectiveness.

3.5 PREDICTION AND TRAINING

For the question Et+1 that needs to be answered after feature representation and the students’
three knowledge states hQ

t+1, hC
t+1 and hD

t+1, then the student’s current final knowledge state
Ht+1 = hQ

t+1 ⊕ hC
t+1 ⊕ hD

t+1. It’s worth noting that here we use concatenation rather than attention
mechanisms to combine them, as we consider that different knowledge states play distinct roles.
Finally, based on the student’s current knowledge state Ht+1, we predict the student’s response yt+1

for answering Et+1, in other words, yt+1 = Sigmoid(W4ReLU(W3[Et+1 ⊕ Ht+1] + b3) + b4),
where W3, b3, W4 and b4 are all learnable parameters. The knowledge tracing loss LossKT is
computed as follows:

LossKT = −
T−1∑
t=1

(rt+1logyt+1 + (1− rt+1)log(1− yt+1))

Here, T represents the total number of time steps, and rt+1 denotes the actual response result from
the student at time step t+ 1. We use Adam(Kingma & Ba, 2015) to optimize model parameters.

Table 1: Summary statistics of processed datasets. ”-” indicates there is no question information.

ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi

# Student 4,160 5,000 19,840 1,706 331 5,000 5,000
# Question 15,680 36,056 - 1,150 633 11,775 26,706
# Concept 167 242 100 86 106 1,837 1,050

# Interaction 207,659 717,188 683,801 153,324 91,133 1,156,254 597,124
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4 EXPERIMENTS

4.1 DATASETS

We evaluated the performance of ReKT on 7 publicly available commonly used datasets: ASSIST09,
ASSIST12, ASSIST15, ASSIST17, Statics2011, EdNet, and Eedi. The statistical information for
these datasets is provided in Table 1, and detailed introductions and processing method for each
dataset can be found in Appendix A.

4.2 BASELINE

In order to assess the performance of ReKT, we compared it against baseline models of concept-
based KT and question-based KT, respectively. Detailed introductions to each model can be found
in Appendix B. Specific execution approaches for each model will also be clarified in Appendix B.

4.2.1 CONCEPT-BASED KT BASELINE

BKT(Corbett & Anderson, 1994). DKT(Piech et al., 2015). DKVMN(Zhang et al., 2017).
DKT+(Yeung & Yeung, 2018). KQN(Lee & Yeung, 2019). DeepIRT(Yeung, 2019).
DKT+forgetting(Nagatani et al., 2019). SAKT(Pandey & Karypis, 2019). GKT(Nakagawa et al.,
2019). AKT-concept(Ghosh et al., 2020). SAINT-concept(Choi et al., 2020a). ATKT(Guo et al.,
2021). CL4KT(Lee et al., 2022).

4.2.2 QUESTION-BASED KT BASELINE

KTM(Vie & Kashima, 2019). AKT(Ghosh et al., 2020). SAINT(Choi et al., 2020a).
PEBG+DKT(Liu et al., 2020). GIKT(Yang et al., 2021). CDKT(Dai et al., 2022). DIMKT(Shen
et al., 2022). QIKT(Chen et al., 2023). simpleKT(Liu et al., 2023b). AT-DKT(Liu et al., 2023a).
DTransformer(Yin et al., 2023).

4.3 EXPERIMENTAL SETTING

We implemented ReKT using PyTorch(Paszke et al., 2019). For each dataset, we split 80% of all the
sequences as the training set, 20% as the test set(Yang et al., 2021; Yin et al., 2023). The learning
rate was set to 0.002, batch size to 80, and feature dimension d to 128. Additionally, we applied
L2 regularization to the model weights with a decay coefficient of 1e-5. Sequences with a length
of less than 3 were removed. To handle variable sequence lengths, all sequences were padded to a
consistent length of 200. To mitigate overfitting, we introduced a dropout rate of 0.4. ReKT was
trained on a Linux server with two 2.00GHz Intel(R) Xeon(R) CPUs and a Nvidia Tesla P100-PCIE-
16GB GPU. Consistent with prior research(Song et al., 2021; 2022; Ni et al., 2023; Sun et al., 2023;
Zhao et al., 2023), we employed the Area Under the Curve (AUC) as the primary evaluation metric,
with Accuracy (ACC) serving as the secondary metric. We repeated the experiment five times and
reported the average performance(Su et al., 2018).

4.4 EXPERIMENTAL RESULTS

Table 2: Comparison of ReKT-concept and concept-based KT baseline on 7 datasets. Best results in
bold, next best underlined. * indicates t-test p-value < 0.05 compared to the second best result.

Model ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

BKT 0.7180 0.6922 0.6613 0.7096 0.6739 0.7423 0.6519 0.6290 0.7444 0.7973 0.6737 0.7018 0.6828 0.6680
DKT 0.7684 0.7297 0.7328 0.7367 0.7323 0.7536 0.7188 0.6673 0.8483 0.8275 0.7006 0.7129 0.7629 0.7182

DKVMN 0.7629 0.7266 0.7228 0.7329 0.7310 0.7540 0.7142 0.6639 0.8363 0.8224 0.6975 0.7120 0.7590 0.7162
DKT+ 0.7783∗ 0.7337 0.7373 0.7350 0.7304 0.7542 0.7095 0.6622 0.8718∗ 0.8270 0.7028 0.6698 0.7484 0.7079
KQN 0.7546 0.7249 0.7230 0.7330 0.7263 0.7544 0.7065 0.6611 0.8031 0.7969 0.6909 0.7117 0.7583 0.7143

DeepIRT 0.7657 0.7279 0.7253 0.7345 0.7283 0.7530 0.7174 0.6647 0.8408 0.8262 0.6997 0.7124 0.7609 0.7173
DKT+forgetting 0.7717 0.7295 0.7362 0.7359 0.7529 0.7607 0.7165 0.6665 0.8467 0.8182 0.7018 0.7159∗ 0.7642 0.7186

SAKT 0.7564 0.7192 0.7296 0.7348 0.7436 0.7558 0.7079 0.6596 0.8092 0.8111 0.6956 0.7115 0.7556 0.7123
GKT 0.7666 0.7290 0.7261 0.7333 0.7289 0.7528 0.7203 0.6685 0.8384 0.8224 0.6943 0.7104 0.7618 0.7170

AKT-concept 0.7668 0.7280 0.7384∗ 0.7390 0.7312 0.7557 0.7157 0.6637 0.8384 0.8204 0.6987 0.7111 0.7626 0.7166
SAINT-concept 0.7487 0.7140 0.7289 0.7353 0.7365 0.7572 0.7013 0.6560 0.7598 0.7940 0.6974 0.7096 0.7589 0.7130

ATKT 0.7735 0.7332 0.7347 0.7363 0.7311 0.7555 0.7198 0.6699 0.8175 0.7991 0.7027 0.7109 0.7663 0.7195
CL4KT 0.7626 0.7275 0.7236 0.7331 0.7310 0.7549 0.7139 0.6615 0.8251 0.8170 0.6965 0.7118 0.7583 0.7147

ReKT-concept 0.7737 0.7340∗ 0.7359 0.7385 0.7531∗ 0.7624∗ 0.7237∗ 0.6690 0.8546 0.8319∗ 0.7096∗ 0.7153 0.7693∗ 0.7208∗
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Concept-based KT Performance: We modify ReKT by removing question from its input, chang-
ing from (qt, ct, rt) to (ct, rt). Here, Et = Cct . As questions are absent, question knowledge state
isn’t traced in this setup. We call this adapted version ReKT-concept. We compare its performance
with the concept-based KT baseline, as shown in Table 2. We can found: (1) Compared with other
concept-based KT baseline models, ReKT-concept consistently achieves the best (in most cases) or
nearly the best performance across all datasets. This underscores ReKT’s remarkable capability in
effectively tracing the knowledge states of students; (2) Notably, the performance of DKT+ excels
on certain datasets (e.g., ASSIST09 and Statics2011), attributed to its assumption of uniform recent
responses among students. However, this assumption doesn’t truly capture the students’ knowledge
states; rather, it observes a certain response pattern. While DKT+’s performance thrives when a
dataset adheres to this pattern, its efficacy substantially declines when the dataset deviates from
it (as seen in ASSIST17 and Eedi). In contrast, ReKT-concept consistently performs well across
all datasets, indicating its genuine ability to trace students’ knowledge states; (3) The promising
DKT+forgetting performance emphasizes the essential role of incorporating knowledge state forget-
ting mechanisms in KT models; (4) In most scenarios, AKT-concept outperforms SAINT-concept,
implying that the sole application of the Transformer architecture yields marginal improvements
for KT. The context-aware Transformer architecture introduced by AKT more effectively captures
students’ knowledge states; (5) The commendable performance of ATKT suggests that adversarial
training is beneficial for enhancing the generalization capability of KT models.

Table 3: Comparison of ReKT and question-based KT baseline on 6 datasets. Best results in bold,
next best underlined. * indicates t-test p-value < 0.05 compared to the second best result.

Model ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

KTM 0.7190 0.7020 0.7093 0.7245 0.7248 0.6686 0.8157 0.8071 0.7583 0.7293 0.7035 0.6792
AKT 0.7850 0.7429 0.7830 0.7599 0.7572 0.6916 0.8718 0.8376 0.7616 0.7372 0.7882 0.7340

SAINT 0.7515 0.7134 0.7643 0.7477 0.7537 0.6894 0.8279 0.8110 0.7621 0.7370 0.7866 0.7293
PEBG+DKT 0.7738 0.7329 0.7518 0.7495 0.7619 0.6949 0.8655 0.8368 0.7571 0.7366 0.7853 0.7310

GIKT 0.7726 0.7301 0.7672 0.7506 0.7723 0.6989 0.8834 0.8428 0.7640 0.7366 0.7924 0.7362
CDKT 0.7733 0.7297 0.7720 0.7547 0.7709 0.7019 0.8872 0.8510 0.7645 0.7386 0.7920 0.7360

DIMKT 0.7704 0.7310 0.7621 0.7484 0.7682 0.6993 0.8897 0.8501 0.7623 0.7368 0.7908 0.7338
QIKT 0.7801 0.7377 0.7707 0.7529 0.7645 0.6985 0.8817 0.8482 0.7579 0.7327 0.7932 0.7363

simpleKT 0.7772 0.7315 0.7786 0.7571 0.7570 0.6899 0.8614 0.8350 0.7627 0.7373 0.7885 0.7307
AT-DKT 0.7671 0.7293 0.7425 0.7405 0.7265 0.6702 0.8687 0.8386 0.7039 0.7136 0.7649 0.7180

DTransformer 0.7646 0.7223 0.7672 0.7515 0.7538 0.6898 0.8686 0.8513 0.7501 0.6954 0.7531 0.7315
ReKT 0.7917∗ 0.7449∗ 0.7852∗ 0.7609∗ 0.7814∗ 0.7102∗ 0.8967∗ 0.8568∗ 0.7752∗ 0.7447∗ 0.7971∗ 0.7397∗

Question-based KT Performance: Table 3 presents a performance comparison between ReKT and
other question-based KT baseline models. Due to the unavailability of question data in ASSIST15,
it is not applicable to question-based KT. We can draw the following conclusions from Table 3: (1)
Compared to other question-based KT baseline models, ReKT demonstrates significantly superior
performance. This highlights the excellence of ReKT, despite its inherent simplicity; (2) It is evident
that AKT demonstrates powerful performance, but it relies on a specialized architecture: Context-
Aware Transformer. However, this architecture is highly complex. In comparison, FRU is partic-
ularly simple; (3) The impressive performance of GIKT and CDKT underscores the advantageous
role of effectively representing questions in enhancing the performance of KT models; (4) Overall
sound performance of DIMKT suggests the utility of incorporating question difficulty information
within the KT framework; (5) The consistent performance of QIKT indicates the effectiveness of
modeling students’ knowledge state around the questions; (6) Comparing ReKT with simpleKT,
despite the simplicity of simpleKT in comparison, ReKT exhibits significant performance improve-
ment over simpleKT. Moreover, ReKT’s architecture is not overly complex. It achieves a balance of
high efficiency and model simplicity, a characteristic that simpleKT does not fulfill.

Table 4: Performance comparison of ReKT ablation study. ”Q” means question knowledge state,
”C” means concept knowledge state, and ”D” means domain knowledge state. Best results in bold.

Q C D ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

√
0.6801 0.6745 0.7056 0.7208 0.7251 0.6641 0.7915 0.8120 0.7423 0.7275 0.6608 0.6584√
0.7694 0.7285 0.7691 0.7504 0.7455 0.6834 0.8603 0.8325 0.7390 0.7272 0.7467 0.7053√
0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385

√ √
0.7701 0.7274 0.7691 0.7502 0.7462 0.6840 0.8592 0.8335 0.7459 0.7296 0.7449 0.7035√ √
0.7815 0.7380 0.7780 0.7582 0.7803 0.7094 0.8955 0.8562 0.7745 0.7444 0.7946 0.7382√ √
0.7915 0.7440 0.7846 0.7607 0.7793 0.7093 0.8962 0.8566 0.7689 0.7426 0.7965 0.7394

√ √ √
0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397
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Ablation Study: In this section, we explore the influence of various knowledge states on ReKT.
Specifically, in question, concept, and domain knowledge states, we select one or two of them as
variants to contrast with ReKT for ablation experiments. The ablation experiments for the ReKT-
concept are shown in Table 7, while the ablation experiments for ReKT are shown in Table 4. Please
note that ReKT-concept, as it does not include questions, does not trace the question knowledge state.
We can observe: (1) When tracing only one knowledge state, the performance of question, concept,
and domain knowledge states shows an increasing trend. This is evident as the interaction history
data they utilize also increases in the same order. The model evidently benefits from more data, thus
leading to better performance with domain knowledge state; (2) Tracing two knowledge states, as
opposed to one, results in a notable performance improvement. Furthermore, the performance of
question + domain knowledge state is not always inferior to concept + domain knowledge state (as
observed in ASSIST17 and EdNet). This indicates that across different datasets, each knowledge
state plays a significant role; (3) Tracing all three of these knowledge states (ReKT) yields significant
improvements in performance across all datasets compared to tracing only one or two knowledge
states. This undoubtedly demonstrates the effectiveness of these three knowledge states and validates
the effectiveness of the proposed multi-perspective modeling.

Table 5: Performance of different core architectures for question-based KT. ”AKT-Transformer”
means context-aware Transformer architecture in AKT, which modifies the calculation of basic
Transformer attention scores to consider the forgetting behavior of students based on contextual
information. ”Rank” reports the average rank across all datasets (AUC ranks). Best results in bold.

Core Architecture ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi Rank # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

LSTM 0.7811 0.7384 0.7747 0.7566 0.7723 0.7033 0.8791 0.8451 0.7650 0.7382 0.7951 0.7377 2.5 165.121K 2.643G
GRU 0.7837 0.7381 0.7762 0.7558 0.7720 0.7035 0.8785 0.8461 0.7658 0.7383 0.7957 0.7368 2.0 132.097K 2.115G

Transformer 0.7635 0.7231 0.7648 0.7483 0.7594 0.6944 0.8638 0.8382 0.7612 0.7362 0.7808 0.7267 5.0 627.841K 9.963G
AKT-Transformer 0.7738 0.7336 0.7765 0.7567 0.7623 0.6935 0.8768 0.8454 0.7615 0.7363 0.7903 0.7344 3.7 627.841K 9.963G

FRU 0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385 1.8 98.817K 1.567G

Core architecture performance for KT: In this section, we will explore the performance of dif-
ferent core architectures on KT. Specifically, we will compare FRU with four commonly used core
architectures in KT: LSTM, GRU, Transformer, and AKT-Transformer (Ghosh et al., 2020), while
only tracing domain knowledge state (as is the practice in most KT research). The results for
question-based KT are shown in Table 5, and the results for concept-based KT can be found in
Appendix D. Details on the computing resources and ranking methodology are clarified in Ap-
pendix D. We can conclude the following: (1) In terms of an overall performance comparison, in
question-based KT, FRU as the core architecture achieves the best performance in most cases. In
concept-based KT, FRU also demonstrates commendable performance. This suggests that the pro-
posed FRU architecture is highly suitable for KT; (2) When comparing the number of parameters and
computing resources, FRU requires significantly fewer parameters and computing resources. FRU
achieves excellent performance with approximately 38% of the computing resources compared to
other core architectures. This undoubtedly proves the lightweight nature of FRU and highlights its
simplicity and effectiveness as the core architecture; (3) Considering the average rank, FRU per-
forms the best in question-based KT and ranks relatively well in concept-based KT. This indicates
that FRU maintains strong competitiveness throughout, despite it is very simple. The time and
space complexity analysis of FRU can be found in Appendix G. We also explain the differences and
advantages of FRU over other architectures in Appendix H.

Table 6: Performance of different core architectures for ReKT. ”AKT-Transformer” means context-
aware Transformer architecture in AKT, which modifies the calculation of basic Transformer atten-
tion scores to consider the forgetting behavior of students based on contextual information. Model
names are formed from core architecture initials. Best results in bold.

Model Core Architecture ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ReKT-L LSTM 0.7874 0.7443 0.7794 0.7591 0.7766 0.7061 0.8825 0.8486 0.7722 0.7435 0.7968 0.7383 0.592M 9.425G
ReKT-G GRU 0.7933 0.7465 0.7835 0.7607 0.7790 0.7073 0.8823 0.8493 0.7745 0.7441 0.7982 0.7404 0.461M 7.332G
ReKT-T Transformer 0.7629 0.7238 0.7536 0.7420 0.7638 0.6958 0.8322 0.8254 0.7679 0.7387 0.7793 0.7205 1.454M 23.078G
ReKT-A AKT-Transformer 0.7702 0.7318 0.7669 0.7510 0.7656 0.6965 0.8602 0.8381 0.7680 0.7409 0.7892 0.7338 1.454M 23.078G

ReKT(ours) FRU 0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397 0.263M 4.175G

Choice of Different Core Architectures for ReKT: In this section, we discuss the impact of
different core architectures on ReKT and analyze the advantages brought by FRU. Specifically,
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we compare four commonly used core architectures in KT: LSTM, GRU, Transformer, and AKT-
Transformer, and their performance is shown in Table 6. The same experiments on ReKT-concept
are presented in Appendix E. Please note the difference between this experiment and the previous
one: this experiment, in the context of ReKT, traces students’ knowledge states from multiple per-
spectives, while the previous experiment, like most research, only traced domain knowledge states.
From Table 6, we can draw the following conclusions: (1) Their performance follows the order of
FRU, GRU, LSTM, AKT-Transformer, and Transformer in descending order, clearly demonstrat-
ing the effectiveness of FRU. In addition, simpler methods appear to be more effective. This could
be attributed to the introduction of multiple perspectives, which provides more comprehensive in-
formation for these simplified models, while excluding unnecessary information or noise; (2) It
also indicates that LSTM modeling outperforms AKT-Transformer or Transformer, consistent with
much research (Long et al., 2021; Liu et al., 2023b) showing that architectures based on LSTM
tend to perform better than those based on Transformers. This may be because LSTM aligns bet-
ter with the characteristics of knowledge states: continuity and dynamic updates. Additionally, the
small scale of the KT dataset may limit the benefits from Transformers; (3) AKT-Transformer con-
sistently outperforms Transformer, highlighting the importance of considering student knowledge
forgetting behavior. Transformer performs the poorest, indicating that a pure Transformer has lim-
ited improvements for KT; (4) When comparing parameters and FLOPs, ReKT achieves optimal
performance with minimal resources, highlighting its simplicity and effectiveness.
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Figure 4: Performance (AUC) of T+N predictions on ASSIST17 and Eedi.

T+N Prediction: In order to simulate real-world scenarios and assess the stability of ReKT in
tracing knowledge states, we conducted T+N prediction experiments. Assuming the current time is
T , this experiment aimed to predict not only a student’s performance in the next time step T + 1,
but also their performance at subsequent time steps T + 2, T + 3, ..., T +N . If the model performs
well in this situation, it indicates a more stable ability to trace knowledge states. As depicted in
Figure 4, we compare ReKT with models that perform well on concept-based KT and question-
based KT, respectively. The following observations were made: (1) As the number of time steps
N in T + N increased, the performance of all models exhibited a downward trend. However, for
smaller N values, the impact on ReKT was comparatively smaller; (2) Notably, whether in concept-
based KT or question-based KT, AKT demonstrated a rapid decline in performance, indicating an
unstable ability to trace knowledge states; (3) Across all scenarios, ReKT consistently achieved the
best performance. This underscores the fact that ReKT maintains a strong level of stability while
retaining its simplicity and effectiveness. Appendix F provides more detailed T+N experiments. We
also illustrate the advantages of ReKT in tracing students’ knowledge state in Appendix I.

5 CONCLUSION

In this paper, we revisit knowledge tracing and propose a simple and powerful model, ReKT. Firstly,
inspired by the decision-making process of human teachers, we model students’ knowledge states
from three distinct perspectives: questions, concepts, and domains. Secondly, drawing inspiration
from human cognitive development models, we design a lightweight FRU architecture as the core
framework for KT tasks, comprising only two linear regression units. When compared to 22 state-of-
the-art KT models on 7 publicly available datasets, the results indicate that ReKT achieves optimal
performance in most cases, whether in question-based KT or concept-based KT. This underscores
that, even without relying on complex models or cutting-edge technology, by delving deeper into the
characteristics of KT tasks, one can design models that are both simple and powerful. We believe
that ReKT has the potential to offer a wealth of new inspiration and insights for future KT research.
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A DETAILS OF DATASETS

We conducted experiments using the following 7 datasets to evaluate the performance of ReKT:

• ASSIST091: Collected from the ASSISTments online educational platform during 2009-
2010.

• ASSIST122: Gathered from the same ASSISTments platform during 2012-2013.

• ASSIST153: An updated version of ASSIST09 data, released in 2015.

• ASSIST174: Also collected from the ASSISTments online educational platform.

• Statics20115: Collected from a college-level engineering course on statics.

• EdNet6: A dataset collected by Santa(Choi et al., 2020b), an online tutoring platform, from
2017 to 2019.

• Eedi7: Used for the NeurIPS 2020 Education Data Mining Challenge, collected by the
online education platform Eedi from 2018 to 2020.

Based on previous research, for the ASSIST series datasets, we removed scaffold questions and
records without concepts(Ghosh et al., 2020). Additionally, multiple concepts were merged into
new concepts(Xiong et al., 2016). For the ASSIST15 dataset, records with an ”isCorrect” field not
equal to 0 or 1 were removed(Abdelrahman & Wang, 2019). In the case of Statics2011, original
question indexes and step indexes were combined into a new question index. If the same question
was answered consecutively, only the first answer was retained. Moreover, due to the large scale
of ASSIST12, EdNet, and Eedi datasets, and limitations in computational resources, we randomly
sampled records from 5000 students(Yang et al., 2021). The statistical information for these datasets
is provided in Table 1.

B DETAILS OF BASELINE

In order to assess the performance of ReKT, we compared it against baseline models of concept-
based KT and question-based KT, respectively.

B.1 CONCEPT-BASED KT BASELINE

BKT(Corbett & Anderson, 1994): The first knowledge tracing method employs hidden markov
models to trace students’ knowledge states for each concept. We conducted experiments based on
the official open-source code of (Badrinath et al., 2021).

DKT(Piech et al., 2015): The first deep learning-based knowledge tracing model that employs
LSTM to trace students’ knowledge states. We conducted experiments by running their official
open-source code.

DKVMN(Zhang et al., 2017): Utilizes a dynamic key-value memory network to model students’
knowledge states. We conducted experiments by running their official open-source code.

DKT+(Yeung & Yeung, 2018): Enhances DKT by addressing inconsistent knowledge states and
irrecoverable inputs. We conducted experiments by running their official open-source code.

KQN(Lee & Yeung, 2019): Predicts students’ performance using knowledge states and concept
encoders. As there was no official open-source code available, we reimplemented their model using
PyTorch.

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
4https://sites.google.com/view/assistmentsdatamining/dataset
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
6https://github.com/riiid/ednet
7https://eedi.com/projects/neurips-education-challenge
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DeepIRT(Yeung, 2019): Introduces Item Response Theory (IRT)(Wilson et al., 2016) to DKVMN
for improved interpretability of predictions. We conducted experiments by running their official
open-source code.

DKT+forgetting(Nagatani et al., 2019): Augments DKT by incorporating various behavioral fea-
tures to consider forgetting in student knowledge states. As there was no official open-source code
available, we reimplemented their model using PyTorch.

SAKT(Pandey & Karypis, 2019): The pioneering self-attention mechanism-based knowledge trac-
ing model that attempts to capture the relationship between students and concepts to represent
knowledge states. We conducted experiments by running their official open-source code.

GKT(Nakagawa et al., 2019): The first graph-based knowledge tracing model that propagates stu-
dents’ knowledge states within the proposed graph. As there was no official open-source code
available, we reimplemented their model using PyTorch.

AKT-concept(Ghosh et al., 2020): A variant of AKT where inputs are limited to concepts (exclud-
ing questions). We conducted experiments by making modifications to the inputs of the official
open-source code of AKT.

SAINT-concept(Choi et al., 2020a): A variant of SAINT where inputs are limited to concepts (ex-
cluding questions). As there was no official open-source code available, we reimplemented their
model using PyTorch and conducted experiments by modifying the inputs.

ATKT(Guo et al., 2021): Enhances the generalization capability of knowledge tracing models
through adversarial training. We conducted experiments using their official open-source code and
during the experimentation, we identified a bug within their code. This bug resulted in unintended
data leakage. We proceeded to rectify this error by implementing necessary modifications.

CL4KT(Lee et al., 2022): Introduces multiple data augmentation strategies and employs contrastive
learning to alleviate sparsity in student-interaction data. We conducted experiments by running their
official open-source code.

B.2 QUESTION-BASED KT BASELINE

KTM(Vie & Kashima, 2019): Modeling students’ knowledge states using Factorization Machines.
We conducted experiments by running their official open-source code.

AKT(Ghosh et al., 2020): Introduces the Rasch method for representing questions and proposes
a context-aware Transformer architecture to simulate students’ forgetting behavior for knowledge
state tracing. We conducted experiments by running their official open-source code.

SAINT(Choi et al., 2020a): Fully employs a Transformer (Vaswani et al., 2017) architecture to
model students’ knowledge states. As there was no official open-source code available, we reimple-
mented their model using PyTorch.

PEBG+DKT(Liu et al., 2020): Enhances DKT by deeply exploring the relationship between ques-
tions and concepts to obtain pre-trained question representations. We conducted experiments by
running their official open-source code.

GIKT(Yang et al., 2021): Utilizes Graph Convolutional Networks (GCN) to aggregate relationships
between questions and concepts, along with a historical review module to trace students’ knowledge
states. We referenced their official open-source code(TensorFlow) and reimplemented their model
using PyTorch.

CDKT(Dai et al., 2022): Enhances DKT by employing contrastive learning to learn informative
question representations. As there was no official open-source code available, we reimplemented
their model using PyTorch.

DIMKT(Shen et al., 2022): Explores question difficulty information and its relationship with stu-
dents’ knowledge states. We referenced their official open-source code(TensorFlow) and reimple-
mented their model using PyTorch.
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QIKT(Chen et al., 2023): Designs question-sensitive cognitive representations for modeling student
knowledge states and combines IRT for improved interpretability. We reimplemented their model
by referring to their official open-source code.

simpleKT(Liu et al., 2023b): A simplified version of AKT, which simplifies the architecture of
AKT without sacrificing too much performance. We reimplemented their model by referring to
their official open-source code.

AT-DKT(Liu et al., 2023a): Enhances DKT by introducing two additional question-related tasks.
We reimplemented their model by referring to their official open-source code.

DTransformer(Yin et al., 2023): Builds a knowledge state from questions to the knowledge level
and maintains stable knowledge states using contrastive learning. We conducted experiments by
running their official open-source code.

C PERFORMANCE COMPARISON OF REKT-CONCEPT ABLATION STUDY

Table 7: Performance comparison of ReKT-concept ablation study. ”C” means concept knowledge
state, and ”D” means domain knowledge state. Best results in bold.

C D ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

√
0.7493 0.7157 0.7159 0.7267 0.7395 0.7570 0.6771 0.6392 0.8044 0.8084 0.6722 0.7060 0.7134 0.6887√
0.7680 0.7321 0.7295 0.7354 0.7271 0.7544 0.7156 0.6653 0.8513 0.8293 0.7041 0.7132 0.7661 0.7187

√ √
0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208

D DIFFERENT CORE ARCHITECURE FOR CONCEPT-BASED KT

Table 8: Performance of different core architectures for concept-based KT. ”AKT-Transformer”
means context-aware Transformer architecture in AKT, which modifies the calculation of basic
Transformer attention scores to consider the forgetting behavior of students based on contextual
information. ”Rank” reports the average rank across all datasets (AUC ranks). Best results in bold.

Core Architecture ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi Rank # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

LSTM 0.7684 0.7297 0.7328 0.7367 0.7323 0.7536 0.7188 0.6673 0.8483 0.8275 0.7006 0.7129 0.7629 0.7182 2.4 165.121K 2.643G
GRU 0.7674 0.7314 0.7389 0.7397 0.7331 0.7568 0.7192 0.6686 0.8428 0.8258 0.7037 0.7136 0.7654 0.7180 2.0 132.097K 2.115G

Transformer 0.7487 0.7140 0.7289 0.7353 0.7365 0.7572 0.7013 0.6560 0.7598 0.7940 0.6974 0.7096 0.7589 0.7130 4.4 627.841K 9.963G
AKT-Transformer 0.7668 0.7280 0.7384 0.7390 0.7312 0.7557 0.7157 0.6637 0.8384 0.8204 0.6987 0.7111 0.7626 0.7166 3.6 627.841K 9.963G

FRU 0.7680 0.7321 0.7295 0.7354 0.7271 0.7544 0.7156 0.6653 0.8513 0.8293 0.7041 0.7132 0.7661 0.7187 2.6 98.817K 1.567G

Computing Resources: We use the number of parameters and FLOPs as reference computing
resources. Additionally, we compare the resource utilization of FRU with two widely used core
structures in knowledge tracing: LSTM and Transformer. Therefore, the computing resources
required for FRU are approximately ((98.817/165.121 + 1.567/2.643)/2 + (98.817/627.841 +
1.567/9.963))/2 ≈ 38% times that of the other architectures.

Rank: We use AUC as the ranking metric, taking the average ranking of each core architecture
across all datasets.

E CHOICE OF DIFFERENT CORE ARCHITECTURES FOR REKT-CONCEPT

The performance of different core architectures for ReKT-concept is presented on Table 9. From Ta-
ble 9, we can observe the following conclusions for ReKT-concept, which align closely with those
for ReKT: (1) The performance of various core architectures follows the order of FRU, LSTM,
AKT-Transformer, and Transformer, gradually decreasing in performance. Furthermore, when trac-
ing student learning data at multiple different time intervals, FRU outperforms LSTM, undoubt-
edly showcasing the scalability of the FRU design; (2) Sequential modeling methods like FRU and
LSTM outperform attention-based modeling methods such as AKT-Transformer and Transformer;
(3) AKT-Transformer consistently outperforms Transformer, emphasizing the importance of consid-
ering student knowledge forgetting behavior; (4) ReKT-concept requires significantly fewer param-
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Table 9: Performance of different core architectures for ReKT-concept. ”AKT-Transformer” means
context-aware Transformer architecture in AKT, which modifies the calculation of basic Trans-
former attention scores to consider the forgetting behavior of students based on contextual infor-
mation. Model names are formed from core architecture initials. Best results in bold.

Model Core Architecture ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ReKT-concept-L LSTM 0.7685 0.7316 0.7352 0.7366 0.7493 0.7603 0.7196 0.6680 0.8363 0.8233 0.7080 0.7150 0.7679 0.7199 0.379M 6.034G
ReKT-concept-G GRU 0.7724 0.7328 0.7343 0.7368 0.7511 0.7618 0.7212 0.6687 0.8330 0.8182 0.7084 0.7149 0.7704 0.7229 0.296M 4.724G
ReKT-concept-T Transformer 0.7627 0.7271 0.7243 0.7323 0.7287 0.7553 0.7101 0.6574 0.7987 0.8100 0.6992 0.7125 0.7587 0.7144 1.239M 19.662G
ReKT-concept-A AKT-Transformer 0.7689 0.7306 0.7339 0.7367 0.7316 0.7561 0.7169 0.6656 0.8335 0.8220 0.7014 0.7121 0.7653 0.7183 1.239M 19.662G

ReKT-concept(ours) FRU 0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208 0.181M 2.871G

eters and has lower computational complexity compared to other variants. However, it outperforms
them in terms of performance, underscoring the simplicity and effectiveness of ReKT-concept.
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Figure 5: Performance (AUC) of T+N predictions in concept-based KT across all datasets.
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Figure 6: Performance (AUC) of T+N predictions in question-based KT across all datasets.

F T+N PREDICTION

For the concept-based KT models, referring to Table 2, it is evident that the models with better
performance include DKT+, DKT+forgetting, AKT-concept, and ATKT. However, due to DKT+’s
reliance on recent response data to optimize the model, it is not suitable for T+N predictions. Ad-
ditionally, we excluded ATKT from the T+N comparison due to identified errors in its code. DKT
serves as a crucial baseline model for comparison in this study, hence its inclusion in the T+N eval-
uation.

For the question-based KT models, referring to Table 3, the models demonstrating better perfor-
mance are AKT, CDKT, DIMKT, and QIKT.
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For the concept-based KT, Figure 5 illustrates the T+N experiments conducted across all datasets.
Likewise, for the question-based KT, Figure 6 illustrates the T+N experiments conducted across all
datasets(excluding ASSIST15 due to a lack of question information). It is evident that across nearly
all datasets, whether at the concept-based KT or question-based KT, as elucidated in the ”T+N Pre-
diction” section, ReKT consistently demonstrates remarkable stability in performance. Furthermore,
it is worth noting that ReKT not only exhibits a slower rate of decline but also significantly outper-
forms other models in terms of performance, underscoring ReKT’s exceptional ability to uphold
simplicity and effectiveness while retaining remarkable stability.

G THE TIME AND SPACE COMPLEXITY OF FRU

FRU is shown in Figure 3. We denote the time step as T , and for simplicity, we set the hidden layer
dimension to be consistent as d. For any time step t ∈ [1, T ], Responset ∈ R1×d, Xt ∈ R1×d,
Zt ∈ R1×d, Iα ∈ R1×d.

Learnable parameters of FRU: The parameters that FRU learn are only W1 ∈ R2d×d, b1 ∈ R1×d,
W2 ∈ R2d×d, b2 ∈ R1×d, then the total number of learnable parameters of FRU is 2d ∗ d+ 1 ∗ d+
2d ∗ d+ 1 ∗ d = 4d2 + 2d.

Time complexity of FRU: The complexity of calculating ft is O(1 ∗ 2d ∗ d+ 1 ∗ d), the complexity
of calculating Responset is O(1 ∗ d), and the complexity of calculating the update value (that is,
Tanh([Responset ⊕Xt]W2 + b2)) is O(1 ∗ 2d ∗ d+ 1 ∗ d), and the complexity of calculating Zt

is O(1 ∗ d). Then the complexity of one time step is O((2d2 + d) + d + (2d2 + d) + d), that is,
O(4d2 + 4d). Then the time complexity of FRU is O(4Td2 + 4Td).

Space complexity of FRU: The space complexity of Responset, Xt, Zt, and Iα is all O(1 ∗ d).
Considering the total time step, their combined space complexity is O(T ∗4∗1∗d). In addition, the
number of learnable parameters of FRU is 4d2 + 2d, so the space complexity of FRU is O(4Td +
4d2 + 2d).

H THE DIFFERENCES AND ADVANTAGES BETWEEN FRU AND MLP, RNN,
LSTM, AND GRU

The differences between FRU and MLP:

• FRU is a sequence model, similar to recurrent neural networks such as RNN, while MLP
is a model that processes structured data.

• Both linear regression units of FRU have only one change, not multiple.

The differences between FRU and RNN, GRU, and LSTM:

• FRU reduces the output transformation layer.
• Compared with RNN, FRU considers the forgetting process at each moment; compared

with LSTM and GRU, their gates (such as LSTM’s forgetting and input gates) are con-
nected in parallel; FRU’s foget-response-update is in series.

• When calculating the current state, LSTM additionally uses global state updates, and GRU
makes additional changes. FRU, on the other hand, directly relies on the state of the previ-
ous moment without involving additional changes.

• FRU considers the case of processing sequences with non-uniform time intervals.
• FRU has fewer learnable parameters than LSTM and GRU.

The Advantages of FRU:

• Experimental results show that as the core architecture of KT, FRU is simpler than other
methods and can maintain equivalent or better performance while using less computing
resources.

• FRU is able to handle sequences with non-uniform time intervals.
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I VISUAL ANALYSIS

Figure 7: A case study of DKT-Q for tracing students’ knowledge state.

Figure 8: A case study of ReKT for tracing students’ knowledge state.

One of the most interesting applications of knowledge tracing is probably tracing students’ knowl-
edge states. Once a student’s knowledge state is accurately captured, teachers can provide targeted
guidance to address their weaknesses in understanding. In this section, we randomly selected stu-
dents’ interaction sequences on the ASSIST17 dataset for 15 time steps to compare the tracing of
students’ knowledge states between DKT-Q and ReKT. DKT-Q is a variant of DKT where the input
is changed from concepts to questions, as shown in Figure 7 and Figure 8. The y-axis represents
specific questions, differentiated by different colored circles. The x-axis represents student interac-
tions (time step, question and question related concept). If the student answered the current question
correctly, the corresponding circle is displayed. If the student answered incorrectly, an additional
white circle is added to indicate the difference. The value of each element in the matrix represents
the student’s mastery of a specific question at the corresponding time step. As shown in Figure 7,
DKT-Q can hardly trace the mastery of question 785 by the student (indicated by minimal changes
in the student’s mastery of question 785). This is because there is only one interaction about it in
the interaction sequence (at time step t = 13). However, considering that question 785 is related to
concept 78, and the student has actually practiced numerous exercises related to concept 78 (at time
steps t = 3, 5, 7, 8, 9, 11), it is intuitive to expect that the student’s understanding of question 785
should improve. However, DKT-Q cannot capture this, whereas ReKT can trace the improvement in
the student’s mastery of question 785 as they continuously practice exercises related to concept 78
(as shown in Figure 8). In addition, during time steps t = 5, 7, 9, 11, the student practices question
786 continuously. Intuitively, regardless of whether the student answers correctly or incorrectly, the
student should gain knowledge from it (improving the mastery of question 786). However, DKT-
Q shows a decrease in the student’s mastery of question 786 at time steps t = 9, 11, which goes
against intuition. On the other hand, ReKT can continuously traces the improvement in the student’s
mastery of question 786. This shows the advantage of ReKT in tracing students’ knowledge state.
Through the visualization results, teachers can clearly understand the student’s mastery of certain
questions and provide targeted exercises. For example, if it is observed that students have a low level
of mastery of question 786 in the early stages of learning, the teacher can promptly provide targeted
training to the students on this question.
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