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ABSTRACT

We propose HyDance, a transformer based diffusion network utilizing both the
temporal and frequency domain representations of dance sequences for music-
driven dance generation. Existing dance generation methods primarily use tempo-
ral domain representations of dances, which results in the network losing the fre-
quency domain characteristics of the dance sequences. This manifests in overly
smooth generated dance sequences, resulting in dance movements that lack dy-
namism. From an aesthetic perspective, such overly smooth movements are per-
ceived as lacking expressiveness and the sense of power. To address this issue, we
propose HyDance, which incorporates independent temporal feature encoders and
frequency domain feature encoders. The model employs a shared-weight hybrid
feature encoder, enabling the complementary extraction of motion information
from both domains. By introducing compact frequency domain representation
into the dance generation framework, our method mitigates the oversmoothing
problem in generated dance sequences and achieves improved spatial and tempo-
ral alignment in the generation results. Experiments show that our method gener-
ates more expressive dance movements than existing methods and achieves better
alignment with the music beats.

Figure 1: HyDance generates physically plausible and smoothly flowing dances conditioned on
music. During the training stage, our model utilizes dance sequences represented in two different
forms, which allows for better capture of motion details and results in more realistic dance generation
compared to previous methods.

1 INTRODUCTION

In the field of human motion synthesis, dance synthesis represents a specialized research direction
worthy of exploration. As an art form, dance contains rich semantic information derived from
human aesthetics, and a method capable of effectively generating high-quality dance sequences that
conform to specified conditions possesses a wide range of applications, including content creation
areas such as video production and game cutscenes.
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Furthermore, in terms of motion characteristics, dances feature a diverse range of movements. Com-
pared to common human motions such as walking or running, the differences between various dance
movements are more pronounced, and transitions between motions are more frequent. This includes
a substantial number of transitions between high-frequency and low-frequency dance movements,
which presents a greater challenge to the generation capabilities of the model.

In this paper, we aims to generate detailed 3D dance sequences that conform to human aesthetic stan-
dards of dance movements, given a piece of music. In recent years, with advancements in generative
model technologies, researchers have made significant progress in the field of dance sequence syn-
thesis. However, previous work primarily relies on the temporal joint rotation representation during
model training, which limits the model’s performance due to the sparsity of motion representation.
As a result, the generated dance sequences often exhibit overly smooth characteristics, lacking the
fine dynamics present in real dance performances. In the field of motion representation learning,
in addition to directly using joint rotation representations, structured representations learn to extract
essential features from the motions, thereby creating a more compact feature space. Such represen-
tations generally help to improve the dynamic performance of the motion sequences generated by
the model. Recent work named PAE (Starke et al., 2022) proposes using an autoencoder structure,
introducing frequency domain transformations as inductive bias to capture the periodic features of
human motion from unstructured motion sequences. This approach has achieved good results in
synthesis tasks with relatively simple motion categories, producing flexible and lively motions with
smooth transitions between high and low-frequency actions. However, for dances, encoding only
the periodic features of the dance sequences is not sufficient to fully restore the intricate details of
the dance performance.

In terms of model design, while the capabilities of transformer models have been validated across
many fields, recent research(Piao et al., 2024; Park & Kim, 2022; Guo et al., 2023; Tian et al.,
2023) has highlighted certain learning biases inherent in transformer models. This issue specifically
refers to the fact that the self-attention mechanism tends to capture low-frequency features in the
data and can easily overlook high-frequency features. Researchers, through in-depth studies of the
mechanisms of transformers, have found that self-attention layers often exhibit low-pass filtering
characteristics, tending to capture tokens that appear consistently in the context. For dance sequence
data, high-frequency motion features typically appear at the transitions between dance movements
or in the detailed movements of limbs within a segment of dance. Since these movements are not
choreographically designed and the transitions between dance movements can vary widely, they
do not frequently occur in dance sequences. This means that high-frequency features of dance
sequences usually do not affect the overall direction or general trajectory of the dance movements
but do impact the expressiveness and the sense of power in the dance movements. The relatively low
energy of high-frequency features in the dance generation results demonstrates the oversmoothing
of dance in the frequency domain.

To address this issue, we propose HyDance, a novel dance generation framework that combines
frequency domain representation with temporal joint rotation representation of dance sequences to
generate high-quality dance sequences. We follow PAE to obtain the motion manifolds of dances
and then use it to build the frequency domain representations of dance sequences. Because of the
more compact feature space in learned motion manifolds of dances, integrating this frequency do-
main representation helps the model reduce the probability of sampling meaningless samples. To
compensate for the limitations of frequency domain representation in encoding non-periodic dance
movement features, we design the model to accept both frequency domain motion representation and
temporal joint rotation motion representation, thereby allowing the model to acquire complemen-
tary motion information from both representations. The generated dance sequences achieve richer
transitions and are more expressive compared to existing methods.

To summarize, our contributions include the following:

1) We introduce the frequency domain representation of dance sequences into the dance gen-
eration framework, proposing HyDance, a dance generation framework that combines fre-
quency domain and temporal representations for high-quality dance generation.

2) A Dual-Domain Hybrid Encoder that helps the dance generation framework effectively
utilize the additional information to optimize the dance generation results.
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3) Experiments demonstrate that our method generates dances that better align with human
aesthetic standards, featuring more expressive movements and more natural transitions.

2 RELATED WORK

2.1 HUMAN MOTION SYNTHESIS

Human motion synthesis is a topic of significant interest among researchers in computer vision.
Earlier motion synthesis methods typically used GAN models. (Habibie et al., 2022) employs mo-
tion matching techniques to acquire reference motion sequences and refines these motion sequences
through a GAN model to synthesize body pose sequences that conform to speech. (Hernandez et al.,
2019) uses past motion sequences and leverages a GAN model to predict subsequent motion se-
quences, achieving consistent body poses and root translations in the synthesized motion sequences.
Additionally, VAEs have been widely used in many works for motion synthesis. (Guo et al., 2022)
proposes using motion snippet codes as motion representations within the model and employs a
VAE model to achieve text-to-motion generation.

In recent years, as diffusion models have demonstrated powerful generation capabilities, there has
been significant progress in numerous works that employ these models. (Tevet et al., 2023) achieves
Text-Conditioned Motion Synthesis with a Diffusion framework and obtains high-quality motion
generation results. (Dabral et al., 2023) uses a diffusion-based motion generation framework and
can leverage textual or musical conditioning information to control the generation process, offering
multimodal generation capabilities. (Chen et al., 2023) first maps motions to low-dimensional latent
codes using a VAE and then uses these latent codes as input to a diffusion model, thereby achieving
motion synthesis with lower computational requirements. (Zhang et al., 2024b) separately constructs
global trajectory and local pose modules, leveraging the generation capabilities of diffusion models
to achieve 3D motion reconstruction from monocular video frames.

2.2 MUSIC DRIVEN DANCE GENERATION

Synthesizing dance sequences that match the style and rhythm of given music and have high
motion quality is a topic of significant interest among researchers. Various methods, including
sequence-based models, GANs, VAEs, and diffusion models, have been proposed to tackle this
task. Sequence-based dance generation models usually employ transformer-based models to gen-
erate dance sequences in an autoregressive manner. (Li et al., 2021) utilizes a transformer-based
model, taking initial short motion sequences and music features as input, and generates dance se-
quences by predicting the next motion frame-by-frame in an autoregressive manner. (Sun et al.,
2022) introduces a bank of latent codes to constrain generated dance sequences to remain close to
ground truth dance sequences, thereby reducing error accumulation due to the autoregressive gener-
ation approach in sequence-based models and alleviating the motion freezing problem when gener-
ating long dance sequences. (Kim et al., 2022) uses a GAN architecture with a transformer encoder
as the discriminator and a transformer decoder as the generator, enabling style-controlled dance gen-
eration through the use of style codes. (Siyao et al., 2022) first uses a VQ-VAE to map motions to a
codebook, and then builds a GPT-based model to arrange motion codes according to control infor-
mation and convert them into dance sequences. (Tseng et al., 2023) introduces a Diffusion model for
dance generation, and (Li et al., 2024) achieves a balance between global choreographic patterns and
local motion quality through a coarse-to-fine two-step diffusion framework. (Zhang et al., 2024a)
divides the complete noisy motion sequence into short segments and uses a cross-attention mecha-
nism to fuse information from preceding and following short segments during the denoising process,
generating more coherent dance sequences. (Bhattacharya et al., 2024) achieved the generation of
dance sequences that closely align with musical beats by separately generating short sequences of
beat poses corresponding to the music beats and repetition poses between these beat pose sequences.
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3 METHOD

3.1 PRELIMINARIES

Diffusion model. Diffusion models(Ho et al., 2020), a class of generative models, have gained
significant attention due to their ability to generate high-quality samples. We follow DDPM (Ho
et al., 2020) and built a transformer-based model to generate dance sequences. Diffusion models
consist of two primary process, the forward diffusion process and the reverse denoising process.
The forward diffusion process is defined as a Markov noising process operate by gradually adding
noise {zt}Tt=0to the initial data d0 according to a predefined schedule, which can be simplified into
one step as:

q(zt|d0) = N (
√
αtd0, (1− αt)I) (1)

where αt ∈ (0, 1) is accumulated noise decay factors. As t gradually increases, αt converges to zero,
allowing us to approximate the result as zT ∼ N (0, 1). The reverse denoising process typically
employs a neural network, which in our case is a Transformer-based model, to progressively remove
the noise and thereby recover the data d̂0. By incorporating classifier-free guidance(Ho & Salimans,
2022), we can generate dance sequences that conform to the musical conditions.

frequency domain feature extractor. We follow the basic network structure of PAE(Starke et al.,
2022) to construct our frequency domain feature extractor. PAE uses stacked 1D convolution layers
to transform the original joint rotation representations of dance sequences into latent variables w
that have m channels. It then calculates the latent parameterization f, a, b, s for each latent channel
using a differentiable FFT layer. During the decoding process, these latent parameterization along
with the motion sequence window length T are used to reconstruct the latent variables,

ŵ = a · sin
(
2π · (f · T − s)

)
+ b (2)

Then, we use stacked 1D convolutional layers to decode the latent variables back into motion se-
quences. After the training of frequency domain feature extractor is completed, we use a sliding
window approach to apply the extractor to the full dance sequence, obtaining the latent parameteri-
zation f, a, b, s of motion clips within each window. The latent parameterization is then used as the
encoding result for the center motion frame of each window. Through this approach, we encode the
original motion sequence into a structured frequency domain representation.

Representation. For a music sequence of L frames, we follow (Li et al., 2021) and extract music
features m ∈ RL×35 using librosa (Mcfee et al., 2015). The extracted music features consist of 35
channels, including a 1-dim envelope, 20-dim MFCC, 12-dim chroma, 1-dim one-hot peaks, and
1-dim one-hot beats.

For dance sequences, we use both temporal and frequency domain motion representations. For the
temporal domain representation, we follow (Tseng et al., 2023) and represent the motion sequence
as d ∈ RL×151, which includes: (1) 4-dim contact label indicating whether the heels and toes of the
left foot and right foot are in contact with the ground; (2) 3-dim root translation; (3) 144-dim joint
rotation, represented in a 6-DOF (Zhou et al., 2019) format. For the frequency domain represen-
tation, we represent the dance sequences as df ∈ RL×32×4, which includes 32 channels of latent
variables. Each latent channel contains four parameters f, a, b, s per motion frame, representing the
latent parameterization of the motion sequence segment within the window centered on the current
frame.

3.2 DUAL-DOMAIN DANCE GENERATION FRAMEWORK

Given a music feature sequence, our goal is to generate a dance sequence dg ∈ RL×151. We
construct a Transformer-based diffusion framework that includes separate temporal and frequency
domain encoders, a shared-weight hybrid encoder, and a dance decoder. The hybrid encoder allows
the model to acquire complementary motion information from different representations, thereby
enabling our framework to achieve higher quality dance generation.

3.3 LOSS

Loss for training frequency domain feature extractor. We divide the training of our overall dance
generation framework into two parts. The first step is the training of the frequency domain feature
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extractor, and the second step is the training of the dance generation model. During the training of
the frequency domain feature extractor, for a dance sequence d we obtain the reconstructed dance
sequence d̂ through the encoding and decoding process as described in chapter 3.1, and calculate
the reconstruction error as follows:

Lrecon = E[||d− d̂||22] (3)

we observed that using only a simple reconstruction loss would lead to a significant loss of non-
periodic motion features in the reconstructed motion sequences. Therefore, we introduced a part of
the geometric loss similar to (Tevet et al., 2023) to encourage the joint positions of reconstructed
motion sequences to match the joint positions of the original motion sequences. FK(·) denotes the
forward kinematic process that converts joint rotations into joint positions and (i) denotes the index
of motion frame.

Ljoint =
1

N

N∑
i=1

||FK(d(i))− FK(d̂(i))||22 (4)

Loss for training dance generation model. During the training of the dance generation model, our
model learns to estimate d̂ to reverse the forward diffusion process. We denote the model parameters
as θ and optimize these parameters using the loss function introduced by (Ho et al., 2020), and we
denote it as Lsimple. We follow (Tseng et al., 2023) by not only using a simple reconstruction loss
but also incorporating multiple auxiliary losses, including joint position loss Ljoint as shown in
Equation 4, velocity loss Lvel, and foot velocity loss Lcontact.

Lsimple = Ed,t[||d− d̂θ(zt, t,m)||22] (5)

Lvel =
1

N − 1

N−1∑
i=1

||(d(i+1) − d(i))− (d̂(i+1) − d̂(i))||22 (6)

Lcontact =
1

N − 1

N−1∑
i=1

||(FK(d̂(i+1))− FK(d̂(i))) · b̂(i)||22 (7)

where b̂i represents the binary foot contact labels predicted by the model. The foot velocity loss
Lcontact enhances the physical plausibility of the generated dance sequences by penalizing the foot
velocities in frames where the feet should be stationary.These losses encourage the generated results
to be more physically plausible from different perspectives.

In addition, we introduce an extra motion decoding loss as shown in Equation 8. In the network,
the frequency domain representation of the motion sequence df passes through the motion decoder
to obtain the reconstructed temporal representation of the dance sequence d̂f , allowing the hybrid
encoder to effectively integrate frequency domain and temporal motion representations, and enabling
the motion decoder to utilize the unified motion representation to decode the dance sequence.

Lf2m = Ed,t[||d− d̂f (zt, t,m)||22] (8)

In summary, our overall training loss is expressed as a weighted sum of the aforementioned losses,
as shown below:

L = λsimpleLsimple + λjointLjoint + λvelLvel + λcontactLcontact + λf2mLf2m (9)

3.4 MODEL

Our dance generation framework is illustrated in Fig. 2. We incorporated the pre-trained frequency
domain feature extractor into our framework. During training, we first use the frequency domain
feature extractor to compute the frequency domain representation of the motion sequence. Then,
we obtain the noisy temporal and frequency domain representations dt,d

f
t of the motion sequence

through a forward diffusion process. Along with the music condition c and time step t, we input
dt,d

f
t into the model together. The motion sequences in both representations are processed sepa-

rately through independent temporal and frequency domain encoders with self-attention layers, fol-
lowed by a shared-weight hybrid encoder. We aim to map both representations of dance sequences
into a common feature space, enabling the motion decoder to incorporate motion information from
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Figure 2: An overview of our HyDance framework. HyDance learns to generate dance sequences
conditioned on music by processing dance sequences in two different representations.

both the frequency domain representation and the temporal joint rotation representation to generate
dance sequences. To achieve this, we designed a hybrid encoder, as shown in Fig 3. Both repre-
sentations of dance sequences are mapped to a common feature space through the hybrid encoding
process. Finally, the noisy motion sequences in two different representations, are fed into the dance
decoder together with the unified motion feature sequences obtained from the hybrid encoder. The
motion decoder includes cross-attention layers and FiLM(Perez et al., 2018) layers to obtain the
generated dance sequence d̂.

Figure 3: An illustration of the Dual-Domain Hybrid Encoder. The Dual-Domain Hybrid Encoder
performs unified encoding of the frequency domain representations and the temporal representation
of dance sequences. The output of the unified encoding is then used as the keys and values in the
cross-attention layer of the dance decoder.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. In our experiments, we tested our method using the open source dataset AIST++ (Li et al.,
2021), which contains paired music and dance sequences. The AIST++ dataset contains 1,408 dance
sequences recorded in joint rotation and root translation representations. The dance sequences in the
AIST++ dataset vary in length, ranging from 7.4 seconds to 48 seconds.

Implementation details. In our experiments, the length of both motion representations and music
features is 128 frames, with a frame rate of 30 frames per second, corresponding to a duration of
approximately 4.3 seconds. We used the Adan optimizer during training and set the learning rate
to 1e-4. The training of the model consists of two stages. Prior to training the dance generation
framework, we first train the frequency domain feature extractor with the same data used for the
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dance generation framework. Once the frequency domain feature extractor is trained, we freeze
its weights and then train the dance generation framework. During this training stage, we employ
an exponential moving average (EMA)(Klinker, 2011) strategy. In the second stage of training,
our model has 64.5M trainable parameters and was trained on four NVIDIA 3090 GPUs for 2000
epochs, with a batch size of 32.

4.2 RESULTS

We compare our method with FACT(Li et al., 2021), Bailando(Siyao et al., 2022), EDGE(Tseng
et al., 2023), and BADM(Zhang et al., 2024a). FACT is an sequence-based dance generation model
based on a transformer model; Bailando is also a sequence-based dance generation model that com-
bines a VQ-VAE model with a transformer model; EDGE is a diffusion dance generation framework
utilizing a transformer-based model; and we also compared with BADM, which uses a transformer-
based diffusion framework similar to EDGE, incorporating both preceding and subsequent sequence
information into the generation process by segmenting the motion sequence. Furthermore, we eval-
uated the quality of dance generation by our method and selected methods under conditions of
fast-paced and slow-paced music. We used librosa (Mcfee et al., 2015) to calculate the BPM(Beat
Per Minute) values of the music in the AIST++ test set and divided the test set into two equally-sized
subsets based on these BPM values. The corresponding results are presented in Table 2.

Figure 4: Visualization of generated dance sequence. Our method is capable of generating dance
sequences that are more expressive and feature more natural and diverse transitions.

Physical plausibility. We adopt the Physical Foot Contact(PFC) score(Tseng et al., 2023) as one
of the metrics to measure the quality of the dance sequences. The motivation behind the PFC score
is that high-quality dances should possess good physical plausibility. The PFC score is based on
the observation that, in dances, the acceleration of the dancer’s center of mass must be supported
by contact with the ground through either one or both feet. Because dance movements differ from
general human movements and often involve foot sliding, which can be an element of choreography,
the PFC score provides a better evaluation of the physical plausibility of dance sequences compared
to simply calculating foot sliding related metrics, and reflects the quality of the generated dance
sequences. As shown in the Table 1, HyDance achieves an improvement of 0.278 over EDGE in the
PFC metric, and shows improvements of 0.996, 0.496, and 0.166 respectively over FACT, Bailando,
and BADM. This demonstrates that HyDance produces dance sequences with better motion quality.

Beat alignment score. We follow(Siyao et al., 2022) to compute the Beat Alignment Score(BAS)
to measure the alignment of the generated dance sequences with the beat of the music. The BAS
score reflects the temporal distance between dance beats and the beats of the conditioning music,
where dance beats are defined by the local minima of joint velocities.

Diversity. Following (Siyao et al., 2022; Li et al., 2021), we computed the diversity metric, which
quantifies the average feature distance of the generated dance sequences in both kinetic (DIVk)
and geometric (DIVg) feature spaces. To mitigate the impact of irregular jittering present in some
generated dance results that can inflate diversity scores, we adopted the approach from (Tseng et al.,
2023), taking results with DIV scores that are closer to the ground truth as being superior.
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Table 1: Compare with SOTAs on AIST++ test set. ↓ means lower is better, ↑ means higher is better,
and → means closer to the ground truth is better.

Method PFC↓ Beat Align Score↑ DIVk → DIVg → Ours Win Rate

Ground Truth 1.332 0.2463 9.41 7.28 48.81%

FACT 2.254 0.2209 10.85 6.14 75.00%
Bailando 1.754 0.2332 7.92 7.72 73.80%
EDGE 1.536 0.2281 9.48 5.72 72.61%
BADM 1.424 0.2366 8.29 6.76 62.50%

HyDance(Ours) 1.258 0.2710 7.61 5.30 N/A

Table 2: Quantitative evaluation on subsets of AIST++ test set with different BPMs.

Method Low BPMs

PFC↓ BAS↑ DIVk → DIVg → Ours Win Rate

Ground Truth 1.243 0.2641 7.31 7.57 50.00%

Bailando 1.721 0.2238 7.28 6.64 88.10%
EDGE 1.524 0.2566 8.32 5.82 78.57%

HyDance(Ours) 1.102 0.2625 7.96 5.26 N/A

Method High BPMs

PFC↓ BAS↑ DIVk → DIVg → Ours Win Rate

Ground Truth 1.524 0.2138 8.42 6.40 47.62%

Bailando 1.851 0.2471 7.32 6.43 64.28%
EDGE 1.764 0.2240 8.62 4.62 69.05%

HyDance(Ours) 1.545 0.2776 8.06 5.65 N/A

User study. Human audience appreciation is a key aspect when evaluating dance sequences. To
better evaluate the dance generation results of our method, we conducted a user study to qualitatively
compare the dance quality generated by our method with that of other methods. The study involved
14 participants, each of whom watched 24 pairs of randomly picked videos of generated dances, with
each pair containing a dance generated by our method and another dance generated by a different
method. Participants were asked to select the video that “have higher quality dance movements,
more akin to dances performed by human dancers”, or to choose the option indicating that the
quality of the dances was too close to determine a difference. We calculated the win rate of our
method relative to others based on the user study results, which are presented in Table 1.

frequency domain transformation analysis. We further illustrate the impact of high-frequency
information in dance sequences on the perception of dance movements by performing frequency
domain transformation analysis on the generated dance sequences. Through our observations of
previous methods’ dance generation results, we noted that the movements produced by these meth-
ods tend to be overly smooth. This issue becomes more evident when using the generated dance
sequences to drive more realistic human models such as SMPL(Loper et al., 2015). We compare the
frequency domain transformation results of dance sequences generated by our method with those

8
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Table 3: Comparison of our method with SOTAs in terms of FID metrics.

Method FIDk ↓ FIDg ↓

Ground Truth 17.10 10.60

FACT 35.35 22.11
Bailando 28.16 9.62
EDGE 42.16 22.12

HyDance(Ours) 58.53 21.25

generated by EDGE, and find that the energy of high-frequency components is usually lower, as
shown in Fig.5. This indicates that the high-frequency features in the dance sequences are not well
preserved, leading to dance movements that appear overly smooth and lack expressiveness. To il-
lustrate this issue more intuitively, we applied a low-pass filter to the dance sequences generated
by our method and the ground truth dance sequences, then rendered them and compared the visual
presentation before and after the filtering operation. Please refer to the video in the supplementary
material for this comparison.

FID results. Fréchet Inception Distance(FID) is a widely used metric for the overall evaluation of
generative models. FID quantifies the difference between the empirical distribution of the gener-
ated results and the ground truth distribution. Previous works(Li et al., 2021; Siyao et al., 2022) on
dance generation use the FID metric to assess the quality of generated dance sequences. FACT(Li
et al., 2021) proposed extracting different motion features from dance sequences to compute FIDk

and FIDg metrics. However, EDGE(Tseng et al., 2023) pointed out that the reliability of this met-
ric for assessing dance sequence generation quality is questionable. Through experiments, EDGE
demonstrated that although some generated dance sequences achieved the best performance in the
FIDg metric, they received pretty low ratings in user evaluations, suggesting that this metric may
not reliably reflect the quality of dance generation results on the AIST++ dataset. For the FIDk

metric, EDGE found through evaluations of models trained for different durations that, although the
user evaluation performance of the dance generation results gradually improved, the FIDk metric
did not show a similar trend. Therefore, the FID metric may not reliably reflect the quality of dance
generation results on the AIST++ dataset. We present the comparison results of our method with
other methods in terms of the FID metric in Table 3.

Figure 5: Frequency spectrum plot of generated dance sequences. We compare the frequency do-
main analysis results of dance sequences generated by our method and EDGE. Notice that the ampli-
tudes of higher frequencies are generally lower in the generation results of EDGE, resulting in overly
smooth and less detailed dance sequences. This aligns with our assumption that high-frequency fea-
tures in dance sequences influence the expressiveness of the final dance performance.
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Table 4: Ablation study results.

Method PFC↓ Beat Align Score↑ DIVk → DIVg → Ours Win Rate

Ground Truth 1.332 0.2463 9.41 7.28

HyDance 1.258 0.2710 7.61 5.30
w/o Freq.-Domain
representaions

2.108 0.2395 4.01 3.99 78.57%

w/o Dual-Domain
Hybrid Encoder

1.314 0.2608 4.81 5.29 61.90%

4.3 ABLATION STUDY

In this section, we perform ablation studies to validate the the following components: (1). frequency
domain motion representations, (2). the Dual-Domain Hybrid Encoder.

frequency domain motion representations. In this part of experiments, we removed the frequency
domain motion representations from the input to the model and accordingly removed the frequency
domain feature extractor and frequency domain encoder from the dance generation framework. The
results after removing these components are shown in the second row of Table 4. The PFC score
significantly increased, indicating a substantial decrease in the physical plausibility of the gener-
ated dance sequences. Additionally, the BAS score also dropped considerably, indicating poorer
alignment of the dance sequences with the music beats. Moreover, the DIVk and DIVg metrics
also showed a significant decrease, indicating a decline in the diversity of the generated dance se-
quences.These experiments demonstrate that the frequency domain dance representation helps im-
prove the quality of the generated dance sequences as well as spatial-temporal alignment.

Dual-Domain Hybrid Encoder. The Dual-Domain Hybrid Encoder helps the dance generation
framework utilize the frequency domain motion representation more effectively. As shown in Table
4, when we removed this component from the framework, the performance of the generated dance
sequences slightly degraded in terms of physical plausibility and beat alignment, indicating that
the model can improve the quality of generated dance sequences through the Dual-Domain Hybrid
Encoder.

5 CONCLUSION

In this paper, we propose HyDance. We argue that the high-frequency features in dance sequences
contain numerous motion details, which are important for determining whether the final dance per-
formance is close to that of a human dancer. We find that previous works focus only on the temporal
features of dance, neglecting the dynamic features in the frequency domain, which leads to generated
dances lacking dynamic performance and expressiveness. Therefore, we combine both frequency
domain and temporal features to generate dance movements. To fuse these features more effectively,
we introduce the HyDance network. Our method is validated on public datasets, achieving state-of-
the-art performance, and ablation experiments further demonstrate the effectiveness of the proposed
modules.

Limitations and future work. Although our method generates dance sequences with improved ex-
pressiveness and details, we also note in our experiments that the root node displacement trajectories
in the dance sequences generated by our method are not adequately represented. We believe that the
possible reason for this issue is that the frequency-domain feature extractor in the framework focuses
more on local periodic features of the dances, leading to poor capture of the root node displacement
characteristics. Therefore, a meaningful direction for future work could be to explore better ways to
encode dance sequences, ensuring that both global displacement features and local dance movement
features are well captured.
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