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ABSTRACT

Despite recent advancements in video large multimodal models (video-LMMs),
accurate temporal grounding remains a key challenge. In this work, we intro-
duce Temporal Preference Optimization (TPO)—a post-training framework that
unlocks superior temporal reasoning in video-LMMs without requiring human
annotations. TPO enables preference modeling by manipulating video inputs to
generate contrastive responses, ensuring that preferred responses are more tem-
porally grounded than dis-preferred ones. Through preference learning, TPO
enhances the model’s capability for more comprehensive video understanding with
better temporal reasoning. Extensive experiments on LongVideoBench, MLVU,
and Video-MME demonstrate that TPO significantly improves temporal grounding
across multiple video-LMMs. Notably, LLaVA-Video-TPO achieves state-of-the-
art performance among 7B models on Video-MME, establishing TPO as a scalable
and effective solution for advancing temporal understanding in video analysis.

1 INTRODUCTION

Recent advances in video large multimodal models (video-LMMs) (Wang et al., 2024b; Achiam et al.,
2023; Reid et al., 2024) represents a significant step toward general video understanding. While
image-based LMMs (Hong et al., 2024; Bai et al., 2023; Lu et al., 2024) primarily focus on spatial
reasoning, video-LMMs face the additional complexity of modeling temporal dependencies—a
critical aspect for capturing the dynamic nature of video content.

Most existing video-LMMs are trained through supervised finetuning with video–question–answer
pairs, without explicit mechanisms for temporal grounding. Consequently, temporal alignment is
only acquired implicitly, and models often struggle to localize the precise moments that support
their responses (Chen et al., 2024a; Zhang et al., 2024d). Recent efforts (Ren et al., 2024; Chen
et al., 2024b; Li et al., 2023a; Huang et al., 2024; Wang et al., 2024a) have sought to improve
grounding by enriching textual responses with structured temporal information and incorporating
explicit segment-level annotations into training. While providing stronger supervision, it relies on
additional temporal annotations, which are costly to obtain and difficult to scale to large datasets.

We introduce Temporal Preference Optimization (TPO), a post-training framework that enhances
temporal grounding in video-LMMs without requiring manual annotations. TPO generates contrastive
supervision by prompting a model with the same query on both original and corrupted videos:
responses from relevant frames are treated as preferred, while those from irrelevant or incomplete
frames are dispreferred, forming a natural preference hierarchy. A lightweight post-filtering step
removes noisy or ambiguous samples, yielding a clean preference dataset. This dataset is then used
to refine temporal grounding through Direct Preference Optimization (Rafailov et al., 2024), which
improves temporal reasoning while preserving pretrained knowledge. By automatically injecting
temporal preferences through simple input transformations, TPO provides a scalable and robust
solution for advancing temporal reasoning tasks.

We conducted extensive experiments on three challenging multimodal video understanding bench-
marks, and the results clearly demonstrate that TPO significantly enhances the temporal ground-
ing capabilities of video-LMMs. Specifically, TPO achieves performance gains of 2.9% on
LongVideoBench (Wu et al., 2024), 3.1% on MLVU (Zhou et al., 2024a), and 2.5% on Video-
MME (Fu et al., 2024), when applied to the strong base model LongVA-7B (Zhang et al., 2024b).
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Query: What was caught from the rectangular pool?

The green fish.
LMM

The orange fish.

[Query, Response]

Post Filtering
[Query, Response]

≻
Maximum likelihood

Relevant Frames

Irrelevant Frames

(b)

(a)

LMM

Video LMM

Figure 1: Temporal Preference Optimization. (a) The model self-generates preference data by
producing contrastive responses to well-grounded versus perturbed (irrelevant or incomplete) video
clips. (b) An LLM-based post-filtering step removes noisy or misaligned samples, and the refined
preference data is then used in preference optimization. Through this self-improvement process, the
model learns to favor temporally consistent responses, ultimately strengthening temporal reasoning.

Furthermore, even when integrated with the state-of-the-art large-scale pretrained video-LMM,
LLaVA-Video, TPO still delivers a 2.3% improvement, establishing LLaVA-Video-TPO as the
top-performing 7B model on the Video-MME benchmark.

2 TEMPORAL PREFERENCE OPTIMIZATION

While prior works focus primarily on aligning LLM outputs with human preferences, our approach
uniquely aligns model outputs with intrinsic temporal preferences in videos. To achieve this, we
propose Temporal Preference Optimization (TPO) (Fig. 2), a framework that enhances video-LMMs’
temporal reasoning by explicitly incorporating temporal modeling into the optimization process.
TPO generates preference pairs through contrasts between meticulously manipulated video inputs
(Sec. 2.1). To further enhance the preference data quality, we introduce a rule-based post-filtering
step (Sec. 2.2). Finally, Direct Preference Optimization (Sec. 2.3) is leveraged to optimize the model
towards temporally preferred outputs without compromising its original pretrained capabilities.

2.1 TEMPORAL PREFERENCE MODELING

Query Generation. Given a video V, we first sample a segment containing a set of frames Sa,
which may be a subset of the video or the entire sequence of frames. To generate descriptive context,
we employ CogVLM2 (Hong et al., 2024), an image-based LMM, to generate captions for each frame
in Sa. These captions serve as the foundation for constructing targeted questions. To ensure diversity
and relevance, we design multiple question types and use a structured question-generation prompt to
incorporate the generated captions, as shown in Fig. 9 (Appendix). This prompt is then processed by
a LLM (GPT-4o-mini) to produce a set of candidate questions specifically tailored to the sampled
video frames, resulting in a set of questions Sq. This approach ensures that the generated questions
are contextually relevant that allows precise control over subsequent response generation.

Preferred Response Generation. Preferred responses in the curated dataset are expected to be
strongly grounded in the corresponding temporal content. To achieve this, we use the question set
Sq along with their corresponding frame set Sa as input to the video-LMM. Given the provided
video frames are highly relevant to the query, we create conditions that maximize the likelihood of
generating a high-quality, temporally grounded response. This process guarantees that the preferred
responses align with the ideal characteristics for effective temporal grounding in video-LMMs.
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Query: What might the person be preparing 
to do next while holding the keys? 

Dis-preferred Response

The person is likely to unlock a car and enter the 
vehicle.

Preferred Response

The person, looking at the window who might be  
preparing to leave.

Query: What benefits are associated with 
local sourcing as highlighted in the video?

Dis-preferred Response

The video highlights more flexibility, greater control, 
reduced costs, more revenues, good for the 
community and environment friendly.

Preferred Response

The video highlights more revenue, being respected 
and well-off businesses.

Video LMM

Video LMM

xd

xd xd

Figure 2: To ensure strong temporal grounding, we generate preferred responses using the full
relevant frame set Sa. For dis-preferred responses, we introduce: (a) Generation with Irrelevant
Information, where all relevant frames are excluded. (b) Generation with Incomplete Information,
where only a partial subset of relevant frames is used. These manipulated clips create contrastive
response pairs, highlighting differences between well-grounded and manipulated video content. This
contrast serves as a learning signal to enhance the model’s temporal reasoning.

Dis-Preferred Response Generation. In our preference dataset, dispreferred responses are those
that the model is trained to avoid—outputs that fail to temporally localize the evidence in the video.
These serve as hard negative examples for temporal reasoning, highlighting cases where the model
struggles to align its predictions with the actual video content. To generate these dis-preferred
responses, we manipulate the video inputs to simulate imperfect temporal grounding. As illustrated
in Fig. 2, we introduce two strategies for constructing the input frame set Sb used in dis-preferred
response generation:

(a) Generation with Irrelevant Information: To simulate an extreme failure case where the model
misses all relevant frames, we construct Sb by excluding the relevant frame set Sa and instead
sampling from the remaining frames of the video. This ensures that Sb contains only irrelevant
content, forcing the model to generate a response based on unrelated visual information.

(b) Generation with Incomplete Information: Simulating the model can only consume partial
relevant information, Sb is randomly sampled as a subset of Sa. This setup introduces gaps in the
temporal context, making it harder for the model to fully comprehend the key event in the query.

Unlike preferred responses, which are grounded in fully relevant video segments, these manipulated
setups introduce ambiguity and noise by partially or completely omitting critical visual content.
As a result, the model is forced to rely on incomplete or misleading information, making temporal
reasoning errors and hallucinations more likely. This intentional contrast between preferred and dis-
preferred responses serves as a strong learning signal, helping refine the model’s ability to distinguish
and accurately localize events in time, ultimately enhancing its temporal reasoning capabilities.

2.2 LLM-BASED POST-FILTERING

Although we design the preferred responses to be higher quality than the dis-preferred responses, this
distinction is not always guaranteed due to the limitations of the base video-LMMs. In some cases,
errors in response generation may lead to misaligned preference pairs, where the preferred response
contains noise or the dis-preferred response is of better quality than expected.

To enhance data quality and reduce noise, we introduce a post-filtering pipeline with an LLM
(GPT-4o-mini). Specifically, we provide the model with the key frame captions of Sa, along with
their corresponding queries and preference data pairs, and instruct it to filter out samples that meet
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predefined criteria (detailed prompts are shown in Fig. 10 in the Appendix). The filtering rules
target cases where: 1) The dis-preferred response is of higher quality than the preferred response.
2) The preferred response is factually incorrect or misaligned with the video content. 3) The query
is ambiguous, making preference ranking unreliable. By incorporating this post-filtering step, we
effectively eliminate potential noisy cases, resulting in a refined, higher-quality dataset that better
supports effective model optimization and improves temporal grounding performance.

2.3 TRAINING OBJECTIVE

The generated preference dataset is leveraged to optimize the temporal grounding capabilities of
video-LMMs using Direct Preference Optimization (DPO) (Rafailov et al., 2024), selected for its
robustness and effectiveness in preference-based learning.

Given the preference dataset D (V, q, r+, r−) and a video-LMM πθ, the DPO loss is defined as:

LDPO(πθ;πref ) = −E(V,q,r+,r−)∼D

[
logσ(β(log

πθ(r
+|V, q)

πref (r+|V, q)
− log

πθ(r
−|V, q)

πref (r−|V, q)
))

]
(1)

where σ is the sigmoid function. This objective drives the model to assign higher probabilities to
preferred outputs, aligning its behavior more closely with human judgments, while preventing the
model from deviating too much from its pretrained distribution.

To better align the model with the preferred responses, we incorporate a supervised fine-tuning objec-
tive into the DPO training framework. This combined objective is controlled by the hyperparameter
α, following (Chen et al., 2021; Deng et al., 2024; Chen et al., 2023).

LSFT (πθ) = −E(V,q,r+,r−)∼D log πθ(r
+|V, q) (2)

L(πθ;πref ) = LDPO + αLSFT (3)

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Evaluation Benchmarks We evaluate TPO and baselines on three widely recognized benchmarks
in multimodal video understanding. Video-MME (Fu et al., 2024) offers a comprehensive multi-
modal evaluation across diverse video lengths, spanning from 11 seconds to 1 hour. LongVideoBench
(Wu et al., 2024) emphasizes reasoning tasks within extended video contexts. MLVU (Zhou et al.,
2024a) supports multitask evaluation specifically designed for long-form video understanding.

Models We test the effectiveness of TPO on two popular video-LMMs, LongVA-7B (Zhang et al.,
2024b) and LLaVA-Video-7B (Zhang et al., 2024e), deriving the following models:

• LongVA-TPO: optimized based on LongVA-7B (Zhang et al., 2024b), a capable video-LMM with
the long-context video understanding capability transferred from language.

• LLaVA-Video-TPO: optimized based on LLaVA-Video-7B (Zhang et al., 2024e), the current
state-of-the-art 7B video-LMM.

In the main text, all ablation studies and analyses are conducted using LongVA-TPO by default;
additional ablation results are provided in the appendix.

Implementation Details For the video source in preference dataset generation, we manually curated
200 keywords to retrieve 8k videos from the internet, ensuring diversity and coverage. For each
video, we sampled 32 frames. To simulate irrelevant information, we randomly selected 4 consecutive
frames as Sa and used the remaining 28 frames as Sb. To simulate incomplete information, we instead
used all 32 frames as Sa and uniformly removed 16 frames to form Sb. Using this pipeline, we created
10k preference data pairs for LongVA-TPO using our established pipeline. For LLaVA-Video-TPO,
we employ a subset of the original LLaVA-Video-178K dataset, which was used for supervised
fine-tuning (SFT), to generate TPO data, resulting in a total of 10K preference data pairs.
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Model Size LongVideo MLVU Video-MME

Bench (M-avg) Short Medium Long Average

GPT-4o - 66.7 64.6 80.0/82.8 70.3/76.6 65.3/72.1 71.9/77.2

Video-LLaVA 7B 39.1 47.3 45.3/46.1 38.0/40.7 36.2/38.1 39.9/41.6
PLLaVA 7B 40.2 - - - - -
Qwen-VL-Max - - 42.2 55.8/57.6 49.2/48.9 48.9/47.0 51.3/51.2
ShareGPT4Video 8B 39.7 46.4 48.3/53.6 36.3/39.3 35.0/37.9 39.9/43.6
InternVL-Chat-V1.5 20B 51.2 50.4 50.7/52.4 60.2/61.7 46.4/49.1 45.6/46.6
VideoChat2 7B 39.3 47.9 48.3/52.8 37.0/39.4 33.2/39.2 39.5/43.8
LongLLaVA 7B - 56.3 61.9/66.2 51.4/54.7 45.4/50.3 52.9/57.1
Video-CCAM 14B - 63.1 62.2/66.0 50.6/56.3 46.7/49.9 53.2/57.4
NVILA 7B 57.7 70.1 75.7/77.6 62.2/69.0 54.8/63.3 64.2/70.0
Qwen2-VL 7B 55.6 - - - - 63.3/69.0
Apollo 7B 58.5 70.9 - - - 61.3/63.3
MiniCPM-o-2.6 7B - - 75.4/78.3 63.9/69.1 52.2/56.3 63.9/67.9
LongVILA 7B 57.1 - 69.0/72.9 58.3/64.9 53.0/57.4 60.1/65.1
LiveCC 7B - - 74.8/76.6 63.9/70.3 53.7/64.1 64.1/70.3
Qwen2.5-VL 7B 56.0 70.2 - - - 65.1/71.6

LongVA-7B 7B 51.3 58.8 61.1/61.6 50.4/53.6 46.2/47.6 52.6/54.3
LLaVA-Video-7B 7B 58.2 70.8 - - - 63.3/69.7

LongVA-TPO 7B 54.2 61.7 63.1/66.6 54.8/55.3 47.4/47.9 55.1/56.6
LLaVA-Video-TPO 7B 60.1 71.1 76.8/78.7 64.6/69.4 55.4/66.4 65.6/71.5

Table 1: Results on LongVideoBench (Wu et al., 2024), MLVU (Zhou et al., 2024a) and Video-MME
(Fu et al., 2024) compared with state-of-the-art models. The Video-MME results are presented in the
format “w/o subs / w/ subs”.

The model is trained on 8 Nvidia A100 80GB GPUs, with a batch size of 64. For the preference
optimization on LongVA, we set the KL-divergence weight β = 0.3 and the SFT loss weight α = 0.5,
while for LLaVA-Video, we set the KL-divergence weight β = 0.2 and the SFT loss weight α = 1.
To ensure information consistency, we use the same sampled 32 frames for both data generation and
model training. We train the model on our curated data for 1 epoch. It takes about 4 hours for TPO to
perform on LongVA-7B with a learning rate of 4e−6 and also about 4 hours for LLaVA-Video-7B
with a learning rate of 3e−7. During data preparation, we employ the GPT-4o-mini (text-only input)
for question curation and post-filtering. This choice balances cost-effectiveness with efficiency,
facilitating a streamlined and scalable data processing workflow.

3.2 RESULTS

The comparisons between TPO and current state-of-the-art video-LMMs on LongVideoBench (Wu
et al., 2024), MLVU (Zhou et al., 2024a), and Video-MME (Fu et al., 2024) are presented in
Table 1. With the introduction of TPO, both the LongVA-TPO and LLaVA-Video-TPO models
significantly outperform their corresponding baselines 2.5% and 2.3% on the Video-MME benchmark,
demonstrating the efficacy of our TPO pipeline. After TPO on LLaVA-Video-7B, our LLaVA-Video-
TPO model outperforms all 18 baseline models in the table, including the concurrent work, as well
as several 14B and 20B models, achieving state-of-the-art results on video understanding. The
original LongVA model performed worse than Video-CCAM (Fei et al., 2024) and LongLLaVA
(Yin Song and Chen Wu and Eden Duthie, 2024) on the Video-MME benchmark. However, after
incorporating TPO, it successfully outperformed these competitive baselines on Video-MME. Overall,
LLaVA-Video-TPO achieves the strongest 7B model on Video-MME, setting a new state-of-the-art
performance on video comprehension.

Besides, we compare TPO against three different training strategies on LongVA in Table 2:

• SFTSelf: Supervised fine-tuning using the self-generated data. For a fair comparison, we utilize the
same preferred response in our curated preference dataset to optimize LongVA.

• SFTLLM: Supervised fine-tuning using the LLM-generated data. Following the commonly used
data curation pipeline (Chen et al., 2024a; Zhang et al., 2024d). We employ LLM (GPT-4o-mini) to
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Model LongVideoBench MLVU Video-MME

(M-avg) Short Medium Long Average

LongVA-7B 51.3 58.8 61.1/61.6 50.4/53.6 46.2/47.6 52.6/54.3
+ SFTSelf 52.7 58.9 62.6/67.7 52.4/52.7 46.8/47.4 53.9/55.9
+ SFTLLM 53.1 59.9 63.7/64.9 52.6/54.3 46.3/47.9 54.2/55.7
+ Hound-DPO† 52.8 59.1 62.2/65.8 52.4/54.8 46.1/46.3 53.6/55.6
+ Hound-DPO∗ 52.6 59.3 63.1/65.9 50.8/54.7 47.2/47.0 53.7/55.9

LongVA-TPO 54.2 61.7 63.1/66.6 54.8/55.3 47.4/47.9 55.1/56.6

Table 2: Results of LongVA-TPO on LongVideoBench (Wu et al., 2024), MLVU (Zhou et al., 2024a)
and Video-MME (Fu et al., 2024) benchmarks compared to baseline methods mentioned in 3.2. The
Video-MME results are presented in the format “w/o subs / w/ subs”. The results for LongVA and
LongVA+Hound-DPO† (Zhang et al., 2024c;b) are based on publicly available checkpoints, while
LongVA+Hound-DPO∗ is reproduced using our collected video datasets.

generate responses given the query and the video captions, which are subsequently used to perform
supervised fine-tuning on LongVA. We use the same video data as TPO for fair comparison.

• Hound-DPO (Zhang et al., 2024c): Applying Direct Preference Optimization (DPO) (Rafailov et al.,
2024) to video-LMMs, Hound-DPO leverages LLM to rate preference data, resulting in a dataset of
17k samples. In contrast, TPO relies on a smaller, self-generated preference dataset, offering a more
streamlined alternative. Besides, to ablate the data source’s effect, we also implement Hound-DPO
based on our collected dataset with the same data scale.

The results consistently indicate that LongVA-TPO achieves superior performance, with improve-
ments of 2.9%, 3.1%, and 2.5% on LongVideoBench (Wu et al., 2024), MLVU (Zhou et al., 2024a),
and Video-MME, respectively. These findings underscore TPO’s capacity to enhance the general
video understanding capabilities of a pre-trained video-LMM.

Compared to SFTSelf, LongVA-TPO achieves a consistent performance gain of 1.2% to 2.8% by
utilizing carefully designed temporal preference pairs. Furthermore, LongVA-TPO outperforms
SFTLLM, demonstrating the effectiveness and stability of our self-training paradigm. When compared
to Hound-DPO (Zhang et al., 2024c), LongVA-TPO achieves a significant performance improvement
by modeling temporal preference priors. However, LongVA-TPO achieves comparable performance
compared to SFT methods on the Video-MME-short subset, which aligns with TPO’s design fo-
cus—enhancing temporal reasoning in longer videos.
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Figure 3: (a) Performance of LongVA-TPO vs. LongVA on MLVU across input lengths. LongVA-
TPO consistently benefits from increased input length, whereas LongVA’s performance declines when
inputs exceed 64 frames. (b) The consistently improved performance of LongVA-TPO when scaling
the data. The performance on the Video-MME benchmark is evaluated without subtitles.
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3.3 ANALYSIS

Effect of Input Frame Count We evaluate the performance of LongVA-TPO and LongVA across
input lengths from 16 to 128 frames (Fig. 3(a)). While LongVA’s performance drops at 128 frames
compared to 64, LongVA-TPO continues to improve with longer sequences, consistently benefit from
longer input. This demonstrates LongVA-TPO’s robustness to extended inputs and its capacity to
localize relevant information within long sequences, underscoring the effectiveness of TPO.

Effect of Dataset Sizes Scalability is a critical metric in the evaluation of algorithms in the era of
large-scale models, reflecting an algorithm’s performance as data volume expands. To assess this,
we evaluate LongVA-TPO on across incremental sizes of 2k, 5k, and 10k. As shown in Fig. 3(b),
performance improves consistently with larger datasets across all three benchmarks, demonstrating
superior scalability. This pattern highlights TPO’s robustness and adaptability in larger data contexts,
suggesting its potential to deliver enhanced results when scaled to larger datasets.

Effect of Post-Filtering As a critical component of the TPO framework, post-filtering effectively
reduces noise and enhances data quality. After post-filtering, we manually reviewed 200 preference
pairs and found that 96.5% satisfied our criteria—where the preferred response was both more
appropriate than the dispreferred one and accurately answered the question based on the video
content. To further assess its impact, we conducted experiments comparing the performance of
LongVA-TPO with and without post-filtering. The results, presented in Fig. 4 (a), demonstrate that
post-filtering consistently improves performance across multiple benchmarks.

Effect of Different Data Mix Ratio In TPO, we design two different kinds of manipulated schema
for the dis-preferred response generation. To evaluate their individual effects and the benefit of
combining them, we conducted an ablation study while keeping the dataset size fixed. We tested
mixing ratios of 10:0, 8:2, 5:5, 2:8, and 0:10 between generation with irrelevant and incomplete
information. As shown in Fig. 4(b), performance peaks with a 5:5 ratio. The balanced data distribution
effectively integrates different type of temporal information, leading to superior performance.

Needle-in-a-Haystack (NIAH) The NIAH task challenges models to detect rare events within long
videos. Following Zhang et al. (2024b), we frame the task using the same five image-based question
answerings (QAs), where images are embedded within a 3-hour-long video, and the model is tasked
with answering the corresponding image QA. We report results in Fig. 5. While LongVA, optimized
for long-context processing, significantly outperforms LLaVA-NeXT-Video (Zhang et al., 2024d) on

LongVA
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Figure 4: (a) Post-filtering consistently improves performance across multiple benchmarks on
LongVA. (b) Performance of TPO across different training data mix ratios, varying the proportion of
negative responses generated from incomplete versus irrelevant video segments.
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LongVA LongVA-TPO

Figure 5: Performance comparison of LongVA and LongVA-TPO on the needle-in-a-haystack task
across varying input video lengths (horizontal axis) and temporal depths (vertical axis). Heatmaps
indicate improved temporal grounding capability of LongVA-TPO.

the NIAH task (refer to Fig. 4 in Zhang et al. (2024b)), our LongVA-TPO model still demonstrates
superior performance, achieving even better results in long-context temporal localization.

3.4 QUALITATIVE ANALYSIS

The qualitative analysis of LongVA-TPO and LongVA on two videos from the Video-MME bench-
mark is provided in Fig. 6. In the first example, which involves a temporal localization and OCR
task, LongVA-TPO accurately localizes the relevant information within the video and providing
the correct answer to the OCR question. In the second example, a video discussing the Moon’s
formation, LongVA misinterprets the video content by relating it to the Earth’s formation. In contrast,
LongVA-TPO successfully comprehends and captures the key details of the video’s content.

4 RELATED WORK

Video Large Multimodal Models (video-LMMs) Recently, significant efforts have extended
large language models (Achiam et al., 2023; Reid et al., 2024) into the visual domain, leading to
the development of both proprietary (Achiam et al., 2023; Reid et al., 2024) and and open-source
video-LMMs (Wang et al., 2024b; Liu et al., 2024a; Li et al., 2024b; Shen et al., 2024; Lin et al., 2023;
Chen et al., 2024c; Yao et al., 2024; Fu et al., 2025; Abdin et al., 2024; Laurençon et al., 2024; Chen
et al., 2025c;a; Bai et al., 2025). Early work emphasized video-text instruction-tuning datasets (Chen
et al., 2024a; Zhang et al., 2024e; Liu et al., 2023; Park et al., 2023; Zhang et al., 2024d), but their
reliance on synthetic captions limits their effectiveness in capturing visual-temporal dynamics. Other
studies have focused on extending pretrained video-LMMs for long contexts (Zhang et al., 2024b;
Liu et al., 2024d; Yin Song and Chen Wu and Eden Duthie, 2024; Liu et al., 2024b;c; Shu et al.,
2024; Islam et al., 2025), while multimodal interleaved datasets (Li et al., 2024c; Lin et al., 2024)
and mixed training strategies (Zohar et al., 2024b; Li et al., 2024a) have been explored to enhance
video-LMM performance. However, the post-training stage for video-LMMs remains underexplored.
Recent efforts like LLaVA-Hound (Zhang et al., 2024c) builds preference datasets by ranking model
outputs with LLM but fall short in leveraging the temporal information inherent in video. In contrast,
our work pioneers post-training strategies that explicitly incorporate temporal priors.

Temporal grounding is crucial for comprehending the video modality, particularly in long-form
videos. Prior work has explored diverse strategies, including dense captioning (Wang et al., 2021;
Yeung et al., 2018; Yang et al., 2023), highlight detection (Lei et al., 2021; Moon et al., 2023), and
temporal video grounding (Gao et al., 2017; Yuan et al., 2019; Xiao et al., 2024), among others.
Recent advancements have introduced temporal-aware designs in video-LMMs (Ren et al., 2024;
Chen et al., 2024b; Li et al., 2023a; Huang et al., 2024; Wang et al., 2024a) and agentic systems with
temporal grounding capabilities have emerged (Wang et al., 2025a). Besides, reinforcement learning
(Shao et al., 2024) has been recently applied to temporal grounding Chen et al. (2025b); Wang et al.
(2025b;c); Li et al. (2025). Despite providing explicit temporal supervision, these methods require
additional temporal annotations, which are costly and often impractical at large scales.
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👇

Query: How much did sales increase at Dunkin' Donuts locations situated near the scent marketing dispensers?

LongVA: There is no specific information provided about the sales increase at Dunkin' Donuts locations near scent 
marketing dispensers. The text on the board does not mention any figures or percentages related to sales increases.

LongVA-TPO: …sales increased by 29% at Dunkin' Donuts locations near scent marketing dispensers.

Query: Describe the video in detail.

LongVA: … It features a series of images and text that seem to illustrate the process of celestial bodies colliding and 
forming into larger bodies, possibly leading to the formation of planets like Earth. The text suggests that new 
supercomputer simulations are being used to better understand the history of Earth and the Moon. …

LongVA-TPO: The video discusses the use of supercomputer simulations to study the formation and evolution of 
celestial bodies, specifically focusing on the Moon's formation. It highlights how these simulations can help researchers 
better understand the history of Earth and the Moon by modeling the gravitational interactions between various 
bodies in space over time. …

Figure 6: Qualitative comparison between LongVA-TPO and LongVA on videos from Video-MME.

Proximal Policy Optimization (Ouyang et al., 2022; Stiennon et al., 2020; Ziegler et al., 2019) and
Direct Preference Optimization (Rafailov et al., 2024) are two widely used implementations of
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Ziegler et al., 2019),
serving as key algorithms in preference learning and post-training. In image-LMMs, Sun et al. (2023)
improved model’s visual capability by incorporating image captions into the reward model. Similarly,
Ahn et al. (2024b) fine-tuned multimodal models using Reinforcement Learning from AI Feedback.
Other approaches distilled GPT-4V’s preferences directly from sampled responses (Li et al., 2023b;
Gunjal et al., 2024) or leveraged text as an intermediate modality, using captions and other descriptive
information to extract preferences for images (Zhao et al., 2023) and videos (Zhang et al., 2024c).
Furthermore, Pi et al. (2024); Zhou et al. (2024b); Deng et al. (2024) advanced preference learning in
image-LMMs by curating preference data through image input manipulation.

Self-Training in Foundation Models To reduce reliance on large annotated datasets, several works
have explored self-improvement and self-training methods (Huang et al., 2022; Ho et al., 2022).
Zelikman et al. (2022) introduced Self-Taught Reasoners, which leverage generated chain-of-thought
rationales to enhance LLMs’ complex reasoning capabilities. For images, BPO (Pi et al., 2024),
STIC (Deng et al., 2024) and POVID (Zhou et al., 2024b) improve image-LMMs responses by
incorporating visual priors. For videos, Video-STaR (Zohar et al., 2024a) uses existing labels as weak
supervision while Ahn et al. (2024a) explores iterative self-improvement in preference optimization.

5 CONCLUSION

We introduced Temporal Preference Optimization (TPO), a scalable post-training framework that
enhances temporal grounding in video-LMMs. By contrasting between the preference responses
from the well-grounded and manipulated video clips, TPO effectively captures the intricate temporal
dependencies required for video understanding. Extensive experiments across three challenging
benchmarks—LongVideoBench, MLVU, and Video-MME—demonstrated TPO’s robust improve-
ments, achieving state-of-the-art performance. By integrating multi-granularity temporal preferences,
TPO offers a robust and efficient solution for advancing temporal reasoning in multimodal tasks. One
future direction is scaling the preference data to improve coverage and diversity, thereby enhancing
TPO’s generalizability. Additionally, while this work focuses on LongVA-7B and LLaVA-Video-7B
as representative Video-LMMs, applying TPO to a broader range and larger scale of video-LMMs
would provide insights into its adaptability and performance across different architectures.
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A REPRODUCIBILITY STATEMENT

We have uploaded the source code and data to the supplementary materials. To ensure reproducibility,
we release the full TPO pipeline (scripts and source code), the curated preference dataset (videos,
queries, and preference responses/pairs), together with configuration files, prompts, and exact com-
mands to reproduce all tables and figures. By providing these resources, we aim to facilitate the
replication of our results and support further advancements in this area of research.

B USE OF LARGE LANGUAGE MODELS (LMMS)

In this work, LMMs are used only for polishing the manuscript, with all outputs verified and corrected
by humans.

C APPENDIX OVERVIEW

This document provides more details of our approach and additional experimental results, organized
as follows:

• § D More Implementation Details of TPO.

• § E More Details of the Preference Dataset Curation.

• § F More Ablations on LLaVA-Video

• § G More Examples in the Preference Dataset.

• § H More Qualitative Examples.

D IMPLEMENTATION DETAILS

We conduct Temporal Preference Optimization (TPO) on LongVA (Zhang et al., 2024b) and LLaVA-
Video (Zhang et al., 2024e), two state-of-the-art video-LMMs. The two TPO models are trained
using 8 Nvidia A100 80GB GPUs, with a batch size of 64. For preference optimization, we set the
KL-divergence weight (β) to 0.3 and the supervised fine-tuning (SFT) loss weight (α) to 0.5 for
LongVA-TPO and we set the KL-divergence weight (β) to 0.2 and the supervised fine-tuning (SFT)
loss weight (α) to 1 for LLaVA-Video-TPO. We employ full fine-tuning for both the multimodal
projector and the language model while keeping the visual encoder frozen, using a learning rate of
4 × 10−6 for LongVA-TPO and 3 × 10−7 for LLaVA-Video-TPO. The training is performed on
a curated dataset of 10k samples for one epoch for LongVA-TPO and 10k samples for one epoch
for LLaVA-Video-TPO. A cosine learning rate scheduler with a warm-up ratio of 0.1 is utilized
(Loshchilov & Hutter, 2016). The entire TPO fine-tuning process takes approximately 4 hours on
both two models.

For evaluation, we adopt the protocol outlined by LongVA (Zhang et al., 2024b) and LLaVA-
Video (Zhang et al., 2024e), leveraging the official lmms-eval repository (Zhang et al., 2024a) to
assess our model’s performance on three benchmarks. For LongVA-TPO, we set the parameter
max frames num = 128 across all three benchmarks. For LLaVA-Video-TPO, we set the parame-
ter max frames num = 96 for the Video-MME benchmark and max frames num = 128 for
the rest of the benchmarks.

E PREFERENCE DATASET CURATION

We manually curated a set of 200 keywords assisted with GPT-4o-mini (Achiam et al., 2023), which
were utilized to retrieve 8,000 videos from the internet, forming a diverse and comprehensive dataset.
Using this dataset, we further developed 10,000 queries paired with their corresponding preference
responses, covering a broad range of tasks. The detailed prompts for preference dataset curation are
provided in Fig. 9 and Fig. 10. For LLaVA-Video, we sampled a subset of 10k QA pairs from the
LLaVA-Video-178k dataset with the negative responses only curated by incomplete videos.
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Figure 7: The distribution of lengths for 8K
crawled videos.

Figure 8: The distribution of question types for
10K curated preference dataset for LongVA-TPO.

The distribution of video lengths in our collected dataset is presented in Fig. 7. The distribution
of tasks is illustrated in Fig. 8, encompassing Temporal Reasoning (8.7%), Action Reasoning
(12.4%), Causal Reasoning (11.1%), Information Extraction (18.0%), Descriptive Questions (12.8%),
Summarization (7.5%), Object Reasoning (14.9%), and Spatial Reasoning (13.5%).

F ABLATIONS ON LLAVA-VIDEO

We apply both SFTself and SFTLLM strategies on LLaVA-Video-7B (Zhang et al., 2024e). Notably,
all training strategies (including TPO) utilize a subset of the LLaVA-Video SFT dataset. Simply
continuing SFT training on a subset does not lead to performance boost. The observed gains from
our method highlight that the improvement stems from the design of TPO itself, rather than from the
scale of the training data.

Model LongVideoBench Video-MME (w/o subs)

Short Medium Long Average

LLaVA-Video 58.2 - - - 63.3
+SFTself 57.9 76.1 61.7 53.6 62.8
+SFTLLM 58.5 76.0 59.9 52.1 62.6

LLaVA-Video-TPO 60.1 76.8 64.6 55.4 65.6

G PREFERENCE DATASET EXAMPLES

We provide three additional examples of preference datasets, as illustrated in Fig. 11. For instance, in
Example (a), the task involves an OCR-based query aimed at retrieving the quote located beneath a
mural. The dis-preferred response incorrectly identifies the relevant frame, failing to locate the quote
below the mural and instead referencing another frame containing the phrase “Forward, Warrior.” In
contrast, the preferred response accurately identifies the corresponding frame based on the question.
This is achieved by leveraging the highly relevant sub-video segment provided to the video-LMM,
enabling the correct extraction of both the quote and its attribution.

For Example (b), the task involves summarizing information by identifying the four levels depicted
in a pyramid diagram. The dis-preferred response, based on irrelevant video clips, provides incorrect
names and an incorrect order for the four levels. In contrast, the preferred response accurately
identifies both the correct names and the proper order of the four levels, demonstrating a better
understanding of the context and alignment with the video content.

For Example (c), the task involves a high-level descriptive query requiring a summary of the exercise
routine depicted in the video. The dis-preferred response, relying only on down-sampled frames,
omits significant key information and provides an incomplete summary. In contrast, the preferred
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response accurately summarizes the entire exercise routine, offering both detailed and correctly
ordered information, thereby demonstrating a comprehensive understanding of the video content.

H QUALITATIVE ANALYSIS EXAMPLES

We provide three additional qualitative analysis examples from the Video-MME dataset (Fu et al.,
2024), as illustrated in Fig. 12. Example (a) involves an information extraction and optical character
recognition (OCR) task, where the question asks for the total number of measurements involved
in chip manufacturing. The original LongVA model failed to accurately locate the relevant frame
containing the necessary information, resulting in an incorrect response. In contrast, our LongVA-
TPO model, enhanced through temporal preference optimization, successfully identified the pertinent
frame within the lengthy input and provided the correct answer to the question.

Example (b) involves a high-level video understanding and information extraction task, where the
question asks for the main topic introduced in the video. The original LongVA model failed to capture
the overarching theme, instead responding with an unrelated term, “Criminal Trial,” mentioned
elsewhere in the video. In contrast, our LongVA-TPO model effectively identified the video’s central
theme and accurately provided the correct topic introduced in the content.

Example (c) involves an object reasoning task, where the question asks what the three curved lines
extending from the bottom upward symbolize. The original LongVA model failed to interpret
the representation accurately, erroneously stating that the lines represent three stages of the water
cycle, which was a hallucination. In contrast, our LongVA-TPO model successfully understood the
symbolic meaning of the three curved lines as representing evaporation, providing a correct and
detailed response.

<Video Caption>

Using the caption of a video, create a question-answer pair that focuses on <Task Prompt>.

Please generate a question tailored to the given caption. If it’s inappropriate to generate
↪→ such question, please output None.

Output format:
Q: <question>
A: <answer>

Figure 9: Detailed prompt for the query generation given the video captions.

<Video Caption>

Question: <Query>
Answer1: <Preferred Answer>
Answer2: <Dis-Preferred Answer>

Task1: You are given a question, the golden answer and related captions. Is answer1 better
↪→ than answer2? Please answer with Yes or No or Equally.

Task2: Please check if this question and Answer1 contradicts to any part of the golden
↪→ caption or this question might have another answer different from the given answer.
↪→ Please respond with Yes or No.

Task3: Is the Answer1 is correct given the question and golden caption? Please respond with
↪→ Yes or No.

Figure 10: Detailed prompt for the post-filtering process for the preference data pairs.
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Query: What quote is featured below the mural in the video, and who is it attributed to?

Dis-preferred Response: The quote below the mural is "Forward, Warrior!" and it is attributed to a woman.

Preferred Response: The quote below the mural in the video is "I appeal to all of you to get into this great 
revolution that's sweeping this nation. Get in and stay in the streets of every city, every village and hamlet of this 
nation until true freedom comes, until the revolution of 1776 is complete." This quote is attributed to John Lewis.

Query: What are the four levels represented in the pyramid diagram of the wine tasting guide, and how do they 
classify wine quality?

Dis-preferred Response: The pyramid diagram in the wine tasting guide represents four levels of 
wine quality classification: AOC, IGP, Vin de Pays, and Vins. These levels are arranged in a 
descending order of quality …

Preferred Response: The pyramid diagram in the wine tasting guide represents four levels of wine quality 
classification: AOC, VDQS, IGP, and Vin. The pyramid structure indicates that each level is a subset of the 
one above it, with AOC being the highest and Vin being the lowest. …

Query: Describe the exercise routine depicted in the video, including the name of the exercises, the number of 
repetitions, and any additional instructions provided.

Dis-preferred Response: The video shows a man performing a mountain climber exercise, which involves 
kicking the feet back as the hands touch the floor. He also does a walkout push-up, which involves lifting the 
body off the ground and then returning to the starting position. The video provides the number of repetitions for 
each exercise, which are 10 to 12 reps.

Preferred Response: The video shows a man performing a variety of exercises in a gym. He starts by 
lifting a dumbbell over his head, then proceeds to do mountain climbers, burpees, kettlebell swings, and 
push-ups. The video also includes a summary of the workout, which includes the following exercises and 
repetitions: 1. Dumbbell Squat Press (10-12 reps) 2. Mountain Climbers (10-12 reps) 3. Burpees (10-12 
reps) 4. Kettlebell Swings (10-12 reps) 5. Walkout Push-ups (10-12 reps). The man is wearing a black 
shirt and shorts, and he appears to be in good physical shape.

(a)

(b)

(c)

Figure 11: Examples from the preference dataset.
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Query: Based on the video, what is the total number of measurements involved in chip manufacturing?

LongVA: The video shows a sequence of images with the text \"270 measures\" at different stages of chip 
manufacturing. This suggests that there are 270 measurements involved in the process of chip 
manufacturing as depicted in the video.

LongVA-TPO: The video states that there are 200 measurements involved in chip manufacturing.

Query: What topic is introduced in the video?

LongVA: The video introduces the topic of \“Criminal Trial\” with a humorous and animated approach. It 
features a courtroom setting … The characters are drawn in a cartoonish style, which adds to the comedic 
effect.

LongVA-TPO: The video introduces the topic of the roles of different people in a courtroom.

Query: According to the video, what do the three curved lines extending from bottom up symbolize?

LongVA: The three curved lines extending from bottom up in the image are likely representing the three 
main stages of the water cycle: evaporation, condensation, and precipitation. These stages are typically 
depicted in educational materials to illustrate how water changes state and moves through the 
environment.

LongVA-TPO: The three curved lines extending from bottom up in the image symbolize the process of 
evaporation. They represent the upward movement of water vapor as it transitions from a liquid state to a 
gaseous state, rising into the atmosphere. This is a key part of the water cycle and demonstrates the 
concept visually.

(a)

(b)

(c)

Figure 12: Additional qualitative examples from Video-MME (Fu et al., 2024).
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