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ABSTRACT

Neural operators have shown promise in learning solution maps of partial differ-
ential equations (PDEs), but they often struggle to generalize when test inputs lie
outside the training distribution, such as novel initial conditions, unseen PDE co-
efficients or unseen physics. Prior works address this limitation with large scale
multi physics pretraining followed by fine tuning, but this still requires examples
from the new dynamics, falling short of true zero shot generalization. In this
work, we propose a method to enhance generalization at test-time, i.e, without
modifying pretrained weights. Building on DISCO, which provides a dictionary
of neural operators trained across different dynamics, we introduce a neural op-
erator splitting strategy that, at test time, searches over compositions of training
operators to approximate unseen dynamics. On challenging out-of-distribution
tasks including parameter extrapolation and novel combinations of physics phe-
nomena, our approach achieves state-of-the-art zero shot generalization results,
while being able to recover the underlying PDE parameters. These results under-
score test-time computation as a key avenue for building flexible, compositional,
and generalizable neural operators.

1 INTRODUCTION

Neural surrogates ( s ; s ; s ; s
) and neural operators ( ; R

, ) offer powerful data driven tools for modeling spatlotemporal dynamlcs

and systems governed by partial differential equations (PDEs). Their main limitation, however, is

sensitivity to distribution shifts at test time, i.e., when the dynamics are out-of-distribution (OOD).

Such shifts can arise from variations in initial conditions ( s ), error accumulation
during autoregressive rollouts ( , ; , ; , ),
changes in PDE parameters ( s ; s ), or fundamentally different
underlying dynamics ( , ; ) ; ) )-

We focus on the parametric setting ( s ), where a neural surrogate is trained

to emulate families of physical dynamics parameterized by varying coefficients, with the goal of
generalizing across a range of parameter values. Our interest lies in assessing the ability of such
surrogates to extrapolate—either to parameter values never encountered during training or to novel
compositions of dynamics seen individually during training—while having access to only limited
observation data for adaptation.

To address fallures under OOD conditions, many recent frameworks ( ;

, ) adopt a pretrain—then—finetune paradigm. While often effectlve this
strategy breaks down when very limited data are available for finetuning ( , ), and
the models face fundamental limitations due to their lack of compositionality, remaining constrained
by the diversity of the pretraining distribution.

Meta-learning ( ; , ) offers an alternative, aiming to learn shared
representatlons that can be raprdly adapted to new parameter regimes ( , ;

, , ). However these approaches have yet to
scale rellably to diverse phys1cal systems ( , ), and parameter
adaptation has been shown to be unstable under dlstrlbutron shlfts ( , ).
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To overcome these limitations, we propose a novel test-time adaptation approach for neural sur-
rogates that increases expressivity and predictive quality while keeping model weights fixed. Our
method approximates unobserved dynamics as a sum of neural ODE operators learned during train-
ing. The framework consists of three components: (1) a pretrained DISCO ( , ), a
scalable framework that infers a neural ODE operator from each training trajectory and encodes it
in a shared, compact latent space; (2) an efficient beam search over the discrete operators discov-
ered during training, which identifies a suitable decomposition of the unknown dynamics; and (3)
operator splitting ( , ), used both during the search and rollout to approximate the sum
of differentiable terms through successive compositions. This test-time strategy comes at a higher
computational cost, but enables to better adapt when faced with unseen dynamics.

We evaluate our method against existing approaches on two challenging OOD zero-shot scenarios:
(1) when the PDE coefficients lie outside the training distribution, and (2) when the spatiotempo-
ral dynamics result from combinations of physical processes that were observed only individually
during training. Our results show that the proposed approach outperforms other methods in both
zero-shot settings. Our key contributions are as follows:

* We propose a novel test-time generalization strategy for evolving PDEs that combines neu-
ral operators with operator splitting to approximate OOD spatiotemporal dynamics.

* We adapt a beam search procedure to efficiently combine pretrained operators, balancing
accuracy and computational cost, and provide corresponding test-time scaling laws.

* We demonstrate state-of-the-art zero-shot generalization across diverse nonlinear PDEs and
tasks—including parameter extrapolation and operator composition—outperforming adap-
tive neural operator methods and transformer-based architectures.

* Analyzing the resulting operator decompositions provide insight into the unseen dynamics
by enabling zero-shot PDE parameter estimation.

* To the best of our knowledge, this is the first work to tackle test-time generalization for
predicting PDEs.

2 RELATED WORK

Surrogate models for PDEs. With the goal of accelerating simulation-based workflows, and sup-
ported by growing collections of datasets ( , ; s ; s
) surrogate models ( ; ; ;
, ) have gradually 1mpr0ved their pretralmng performance and achieve bet-
ter results than training from scratch when fine-tuned on out-of-distribution PDEs. In contrast, our
approach operates at test time without updating the model weights.

Meta-learning strategies for dynamical systems. Meta-learning strategies aim at rapidly adapt-
ing to new tasks (e.g., unseen PDE coefficients) by leveraging shared weights across tasks. However,
many methods make restrictive assumptions, such as knowing the new PDE coefficients ( ,

), PDE symmetries ( , ), or affine predictability ( , ). In
GEPS, ( ); ( ) adapt a shared operator to unseen physics, but
this still requires fine-tuning a neural operator, which can be costly, especially in far OOD scenarios.
In contrast, our approach builds on DISCO ( , ), which encodes the training set into a
latent space of neural operators from the trajectory data only, and can generalize to unseen complex
physics phenomena and PDE parameters well beyond the training range.

Test-time strategies. Methods to improve model performance at test time (i.e., after pretralnlng)
have emerged with the scaling of large language models ( , ;

). In Best-of-N, the model generates multiple candidate outputs and selects the best one ac-
cording to a predefined criterion or reward ( , ). Beam search extends this idea
by maintaining and refining a set of promising output sequences as the model generates them (

, ). Similarly, our approach allocates additional compute at test time by exploring different
compositions of operators seen during training and selecting the one that best fits the beginning of
the test-time trajectory. To our knowledge, this is the first work to introduce test-time strategies for
evolving dynamical systems governed by PDEs, and we further provide test-time compute scaling
laws ( , ) in this context.
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3 PROBLEM SETTING

Data-driven models for evolving unknown PDEs are typically trained on trajectories with varying

PDE class, coefficients, and initial conditions, with the goal of generalizing to unseen scenarios.

While prior works have focused on novel initial conditions under a fixed PDE, we consider the more

challenging setting of generalization to unseen PDE coefficients or even entirely new PDE classes.

This setting relates to approaches such as MPP ( , ) and DISCO ( ,
), but we restrict the diversity of training physics to better evaluate OOD generalization.

Parametric PDE setting. We consider a family of parametric PDEs of the form

K
Oyu = Zuk Fio(u, Vou, Vu,...),
i=1
where u(z,t) is the solution field, p = (p1, ..., K ) € M is a parameter vector, and {F;} denote
fundamental physics operators (e.g., advection, diffusion, reaction). During training, parameters are
drawn from a sparse distribution P"™"(11), where only one operator is present at a time. Concretely,
each sample takes the form u = (0,..., uk,...,0), with exactly one nonzero component py €
Main | restricted to a prescribed training range.

OOD challenges. This setup naturally induces two distinct types of OOD scenarios at test time:

* Parameter Extrapolation: Parameters remain sparse but take values outside the convex hull
of training ranges: fuest = (0, ..., >, ..., 0) with u¥** ¢ conv(MF*").
* Operator Composition: Multiple operators are simultaneously present, though each pa-

rameter still lies within its training range: fiest = (1, - -, g ) with several p; # 0 and
i € conv(MYam),

For illustration, consider the advection—diffusion equation 0;u + ¢ d,u = D 0O, u, with advection
speed ¢ and diffusion coefficient D. Training covers pure advection (¢ € [0,1], D = 0) and pure
diffusion (¢ = 0,D € [0, 1]) separately. At test time, parameter extrapolation may involve ¢ =
2.5, D = 0, while operator composition may involve ¢ = 0.5, D = 0.3.

Zero-shot prediction task. Given this OOD setting, our task is to predict rollout trajectories in
a zero-shot manner using only the observed dynamics at test time. Specifically, we observe L
consecutive snapshots of a test trajectory uL:l with temporal discretization At, which characterize
the underlying dynamics that were never seen during training. From these observations alone, we
must predict the subsequent H snapshots ﬁtLesf LLAH without any parameter updates or training on
this specific system. Performance is evaluated using the normalized relative mean squared error
(NRMSE) against the ground truth:

NRMSE (10, fireq) — L est = estll2

[[tthest] |2
4 METHOD
4.1 CONSTRUCTING A DICTIONARY OF OPERATORS
The DISCO framework ( , ) learns to predict PDE evolution by discovering appro-

priate differential operators from trajectory context. It consists of two main components: a hyper-
network ), that processes spatiotemporal context, and a small operator network fy that performs
the actual time integration. Given a trajectory context 1!, DISCO operates through:
L+1
ol =t +/ fo(ut)dt, with 6=, (ul),
L

where 1),, is a transformer with learnable parameters «, and fy is a U-Net whose parameters 6 are
dynamically generated by the hypernetwork. After pretraining, we extract a dictionary of neural
operators by encoding for each trajectory i from the training set: {fy, = ¥, (u}'L)}. To simplify
notation, we denote f; = fp,. This dictionary of operators fi, ..., f; will form the foundation of
our test-time search strategy.
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Figure 1: Test-time generalization through neural operator splitting. During pretraining (left),
DISCO learns operators for different physics—e.g., reaction dynamics (green) and diffusion+kill
dynamics (red)—with a hypernetwork generating corresponding operator weights 6;,0;. At test
time (right), on OOD dynamics, e.g., reaction-diffusion dynamics, our method searches the operator
space 0 to identify combinations approximating the new dynamics (e.g. foop ~ fi, + fi,), and
uses operator splitting to evolve u? — u!*! through sequential operator applications.

4.2 OPERATOR COMPOSITION SEARCH

Given a test trajectory ulk governed by unknown dynamics, our goal is to approximate the un-
derlying system by composing operators from our dictionary {f1,...,fn}. We seek a subset
S = {fi,s fins---, fi,, } such that the sum f;, + fi, + --- + f;  best approximates the test dy-
namics. In practice, this sum is implemented through operator splitting as detailed in Section 4.3.

Optimization objective. We define £(S) = 717 37" NRMSE(ul!, i) as the prediction
loss when us1ng subset S, where ufeftl is the prediction obtained by applying operator splitting with
the operators in S starting from ul,,. Our test-time adaptation seeks for the discrete minimizer of

this objective S* = argmingcy, . v} £(9)-

Search Strategies. Since an exhaustive search over all 2V possible subsets is intractable, we in-
vestigate two complementary strategies that balance exploration with computational efficiency.

Uniform Sampling: As a baseline, we uniformly sample subsets of size m ~ Uniform(1, M) by
randomly selecting m operators from our dictionary, where M is a small maximum subset size. We
evaluate 7" random trials, giving a computational complexity of O(T"). See Algorithm 2 for more
details.

Beam Search: We use beam search to efficiently explore operator combinations while maintaining
computational tractability. Starting with the top-B single operators (B is the beam width), we itera-
tively expand each candidate by adding one more operator and keep only the B best combinations:

By = top-B operators from { f1,..., fx},
Bt1 =top-Bfrom {SU{f;}: S € B,}.

Here, B, contains singletons, 31 pairs, B> triples, and so on. The computational complexity is
O(BN) per iteration. When B = 1, this reduces to greedy sequential selection. To prevent excessive
operator combinations, we impose both a minimum relative improvement threshold to continue the
search and a maximum composition length of M. The pseudo-code is detailed in Algorithm 1.

4.3  OPERATOR SPLITTING FOR NEURAL OPERATORS

To implement the sum f;, + fi, + --- + f;, in practice, we employ neural operator splitting.
For two operators f1 + fa, Lie splitting sequentially applies each operator over the full time step:
altl = Ao fAt(ub), where fA! represents integrating operator f; for time At. Strang splitting
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Algorithm 1 Beam Search Operator Composition

Require: Test trajectory uLil, operator dictionary {fi, ..., fx }, beam width B, max iterations M,
Improvement threshold 7
Ensure: Best operator subset S*
1: Initialize beam: By = top-B operators from { f1, ..., fx } ranked by L({f;})
2: form=0to M —1do
3:  Candidates = 0)

4. foreach S € B,, do

5: for each f; € {f1,...,fn}\ S do
6: Add S U {f;} to Candidates

7: end for

8:  end for

9:  By,+1 = top-B from Candidates ranked by £(-)
10:  if relative improvement < 7 or m = M — 1 then

11: break
12:  end if
13: end for

14: return argmingcz L(S5)

uses a symmetric pattern for higher accuracy: a/t! = fAt/ 25 foto fy At/ 2(u ). This reduces
the approximation error from O(At?) to O(At3) ( , , ). For multiple
operators, we extend these patterns while maintaining computatlonal tractability. This is to the best
of our knowledge the first application of operator splitting in the context of neural PDE surrogates.

5 EXPERIMENTS

We evaluate our test-time search strategy on two challenging OOD scenarios, using distinct bench-
marks to systematically assess the capabilities of operator composition and test-time adaptation.

We begin by describing the experimental setup and training dataset (Section 5.1). We then evaluate
extrapolation performance to unseen PDE parameter ranges, demonstrating how test-time search
enables robust generalization beyond the training distribution (Section 5.2). Next, we assess our
method’s ability to handle novel compositions of physical processes in (Section 5.3). We also ana-
lyze how our approach benefits from increased computational budget during test-time search, show-
ing consistent performance improvements, and demonstrate its capacity for parameter identification
in previously unseen dynamical systems.

5.1 EXPERIMENTAL SETTING

Datasets. We design three benchmark datasets that systematically evaluate compositional gener-
alization capabilities across different physics regimes and spatial dimensions. Each training dataset
enforces strict separation of physical processes as described in Section 3, with operators learned
exclusively from trajectories containing individual physics components, never their combinations.

1D Advection-Diffusion. Our first benchmark focuses on linear transport phenomena governed
by % = Dgi — cg“ on a periodic domain of length [ = 16 with 256 spatial discretization
points. Training data consists exclusively of single-physics trajectories: pure advection with speeds

€ [0.01, 1.0] and zero diffusion (D = 0), or pure diffusion with coefficients D € [0.001, 1.0] and
zero advection (¢ = 0). Each trajectory contains 100 temporal snapshots spanning 7" = 10 seconds.

1D Combined Equation. The second dataset examines the nonlinear advection-diffusion-
dispersion equation: %—7; + a%“ — B2y 81:2 + ~y2u 613 = 0, where «, (3, and v quantify the strength
of nonlinear advection, diffusion, and dispersion effects, respectively. Training isolates each phys-
ical mechanism with parameter combinations (¢, 0,0), (0, 3,0), and (0,0, ), where coefficients
are sampled uniformly from o € [0,1], 8 € [0,0.4], and v € [0,1]. We generate 8,192 training
trajectories for each physics across 128 parameter configurations, with each trajectory containing
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Figure 2: Test-time generalization on Gray-Scott equations. Our neural operator search correctly
predicts an unseen, non-trivial dynamics (compare first and second rows), which differs substantially
from the pure reaction (third row) or pure diffusion (fourth row) seen during training, demonstrating
that our method, based on combining simple operators, can capture complex phenomena.

250 temporal snapshots on a 256-point spatial grid over T' = 4 seconds and a periodic domain of
length I = 16. We employ the solver from ( , ) to generate the trajectories.

2D Reaction-Diffusion. Our most challenging benchmark is the Gray-Scott reaction-diffusion
equation from The Well ( , ):

% = DaV?A—0AB?> + F(1 - A),
%’f = DpV?B +5AB* — (F +k)B.

This system models the spatiotemporal evolution of two chemical species parameterized by diffusion
coefficients D 4, Dp, reaction strength ¢, feed rate F' for species A, and kill rate k for species B.
We construct training data using two operator types: (1) diffusion-kill operators with fixed diffusion
coefficients D4 = 2 x 107%, D = 1 x 107°, disabled reaction (§ = 0, F = 0), and kill rates
k spanning 20 values in {0.051,0.052,0.053,...,0.069,0.070}; (2) pure reaction operators with
disabled diffusion (D4 = Dp = 0), unit reaction strength (§ = 1), zero kill rate (k = 0), and feed
rates F' taking 20 values in {5,10,...,95,100} x 10~3. The spatial domain employs a 128 x 128
grid with periodic boundary conditions. We generate 512 trajectories per parameter configuration,
using clustered gaussians as initial conditions, simulating 50 seconds and retaining 50 temporal
snapshots. We employ the solver from ( ) to generate the dataset.

Implementation. We use the following hyperparameters for our test-time search strategies. Uni-
form: 7' = 100 combinations for advection-diffusion and combined equation, 7' = 200 for Gray-
Scott, with maximum composition length M = 3. Beam: We subsample N = 256 operators
(advection-diffusion), N = 96 operators (combined equation), and N = 40 operators (Gray-Scott).
We use beam width B = 4 for advection-diffusion and combined equation, B = 8 for Gray-Scott,
maximum composition length M = 5, and improvement threshold of 5%.

Baselines. We compare against state-of-the-art approaches across different methodological cate-
gories. All methods are trained from scratch on the same training datasets designed for this study.
We use the next-step prediction as the learning objective. DISCO (Original) ( , ):
We validate that our framework systematically improves upon the original DISCO approach, which
performs predictions by encoding out-of-distribution trajectories and directly predicting dynamics
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without test-time adaptation. MPP ( , ): We compare against the Axial Vision
Transformer ( , ) architecture designed for multiple physics pretraining, representing
current state-of-the-art performance in large-scale physics foundation models. Zebra (

): We include this autoregressive transformer inspired by language modehng While prlmarlly
designed for one-shot and few-shot adaptation, Zebra provides a valuable comparison as a generative
model that requires significantly higher computational resources than MPP. GEPS ( ,

): We compare against this meta-learning framework designed for efficient few-shot adaptation
to changing dynamics. We train it using an environment-based perspective ( , ;

, ). This method employs LoRA-based adaptation ( , ), making it an
excellent comparison point for efficient weight fine-tuning approaches.

Test Evaluation. We evaluate all methods by unrolling predictions over H = 34 steps for the
advection-diffusion equation, H = 50 steps for the combined equation, and H = 32 steps for Gray-
Scott. All experiments use a history of L = 16 snapshots as context, either for direct prediction
(MPP, Zebra, original DISCO) or for adaptation (GEPS and our framework). We report the average
NRMSE over the entire predicted trajectory as the primary evaluation metric.

5.2 PARAMETER EXTRAPOLATION

Setting. In this section, we investigate extrapolation capabilities on advection-diffusion systems
by testing higher advection speeds ¢ € [1, 3] and higher diffusion coefficients D € [1,3]. While
higher advection speeds present significant challenges for classical numerical solvers due to trans-
port dominance, higher diffusion coefficients generally provide better numerical stability through
smoothing effects. We also examine extrapolation performance for the nonlinear advection term
a € [1,2] and dispersion coefficient v € [1, 2] in the combined equation.

Results. Table 1 shows that our test-time operator composition strategy consistently improves
upon the original DISCO by orders of magnitude across all benchmarks, demonstrating that neural
operator splitting can extract substantially greater generalization capabilities from pretrained models
compared to direct out-of-distribution encoding. The beam search variant achieves the strongest per-
formance, with improvements ranging from 11x on advection speed extrapolation to over 200x on
diffusion coefficient tasks. Among the baselines, GEPS shows competitive performance on non-
linear advection and reasonable results on diffusion tasks, but exhibits instability on dispersion
extrapolation. We observed that GEPS fine-tuning often leads to diverging operators during roll-
out in out-of-distribution settings, consistent with previous findings on gradient-based adaptation
methods ( , ). Zebra particularly struggles on advection-diffusion tasks, which we
attribute to limitations in discrete tokenization for capturing the high-frequency dynamics present
in our fractal-based initial conditions. MPP provides robust but modest performance across tasks,
never excelling in these extrapolation scenarios.

Table 1: Zero-shot performance on PDE parameter extrapolation. Average NRMSE over H
predicted steps (lower is better) on PDEs with coefficients outside the training range. With fixed
weights (no finetuning), standard models struggle to generalize, whereas applying our adaptive op-
erator splitting method to DISCO yields drastic improvements without retraining.

Advection Diffusion Combined Equation
Method Adv. speed ¢ Diffusion D  Nonlin. Adv. @« Dispersion y
MPP 0.588 0.409 0.134 0.369
Zebra 1.07 1.579 0.128 0.448
GEPS 0.848 0.267 0.0203 0.782
DISCO (Original) 0.768 0.159 0.0887 1.007
Ours (Uniform) 0.113 0.0546 0.0266 0.0700
Ours (Beam) 0.0517 0.002 0.0159 0.0215
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Figure 3: Zero-shot performance on advection-diffusion combinations. (a): Single forward pass
of the pretrained model. (b): Our test-time method with operators obtained via beam search. Error
is the NRMSE averaged over 34 steps.

5.3 PHYSIcS COMPOSITION

Setting. We evaluate the compositional capabilities of neural operators by testing their ability
to combine previously isolated physical processes. For the advection-diffusion system, test cases
combine both mechanisms with coefficients sampled uniformly from ¢ € [0,1] and D € [0,1],
representing dynamics never seen during training where only individual processes were present.

For the combined equation dataset, we test four types of multi-physics compositions: (1) nonlinear
advection + diffusion with o € [0,1], 8 € [0,0.4]; (2) nonlinear advection + dispersion with o €
[0,1],~ € [0, 1]; (3) diffusion + dispersion with 5 € [0,0.4],~v € [0, 1]; and (4) all three processes
combined with a € [0,1], 8 € [0,0.4],~ € [0,1]. Each test case represents a novel composition of
operators that were learned in isolation during training.

For the Gray-Scott system, we evaluate compositional generalization using 1,600 test trajectories
spanning the full parameter space defined by the Cartesian product of feed rates F' and kill rates &
from the training distribution, but combining reaction and diffusion processes that were separated
during training.

Table 2: Zero-shot generalization to unseen PDE combinations. Average NRMSE over H pre-
dicted steps (lower is better) on unseen combinations of physical phenomena (i.e., operators). Dur-
ing training, models see each phenomenon individually (e.g., pure nonlinear advection). At test
time, multiple phenomena appear simultaneously (e.g., nonlinear advection + dispersion). With
fixed weights (no finetuning), standard models struggle to generalize, whereas DISCO with adap-
tive operator splitting achieves substantial gains without retraining.

Method Adv.+Diff. | Nonlin.Adv.+Diff. Nonlin.Adv.+Disp. Diff.+Disp. All Three | React.+Diff.
MPP 0.270 0.050 0.105 0.0914 0.128 0.191
Zebra 0.89323 0.0223 0.241 0.069 0.193 0.127
GEPS 0.0392 0.0389 0.249 0.229 0.265 0.128
DISCO (Original) 0.170 0.085 0.100 0.120 0.164 0.245
Ours (Uniform) 0.043 0.068 0.103 0.043 0.0753 0.0898
Ours (Beam) 0.0150 0.0565 0.0489 0.007 0.0364 0.0889

Results. Table 2 shows that our method achieves the best performance on 5 out of 6 composition
tasks, with significant improvements over the original DISCO approach. For instance, on diffusion
+ dispersion, our beam method outperforms DISCO by over 17x, while on advection + diffusion,
we achieve a 10x improvement. The beam search variant consistently outperforms uniform sam-
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pling, indicating that efficient search over operator compositions is crucial for identifying effective
decompositions of new dynamics.

Among baselines, we observe distinct performance patterns. Zebra achieves the strongest perfor-
mance on nonlinear advection + diffusion, while our method still improves upon DISCO. GEPS
demonstrates competitive performance on combinations like advection + diffusion but struggles
with more complex compositions involving dispersion terms, often exhibiting rollout instabilities
after finetuning. MPP provides consistent but modest performance across all tasks.

Figure ?? illustrate these quantitative results through qualitative rollout predictions. For the Gray-
Scott system, our method successfully predicts the complex reaction-diffusion patterns that emerge
from our operator composition, closely matching the ground truth dynamics. Similarly, in Figure 3
for advection-diffusion combinations, our approach better recovers the combination of transport and
diffusive effects compared to the original DISCO.

Test-time scaling laws. Figure 4 shows that as we increase the number of trials, both fitting er-
ror and prediction error consistently decrease following power-law-like decay, with improved fit
error directly correlating with better prediction accuracy. Beyond prediction accuracy, our method
enables interpretable parameter identification by inspecting the selected operator combinations and
summing their true underlying PDE coefficients. The right panel shows that as predictive accu-
racy improves with more computation, parameter estimation accuracy for both advection speed and
diffusion coefficient also improves systematically.

Fit and Prediction Errors Parameter Estimation Errors
B ~®= Fit Error =A - Advection Speed (v) Error
B ~M- Prediction Error Diffusion (D) Error
S~m - -
Semo_
.
= =
o o A<
B e— Freo] T~
~
0. ~
\. \A\
\. \A"“'-A
1e-03 e "A
10 100 200 500 1000 10 100 200 500 1000
Number of Trials Number of Trials

Figure 4: Test-time scaling laws. (Left) Performance of our adaptive operator splitting method
measured as an average NRMSE over 34 predicted steps (lower is better), as a function of the
compute at test-time. (Right) Mean Absolute Error (MAE) for PDE parameter identification as a
function of the number of optimization trials, showing convergence to accurate parameter estimates
with increased sampling.

6 CONCLUSION

We introduce a method for predicting unknown dynamical systems governed by unseen PDEs at
test time, without modifying the model weights. Our approach builds on a pretrained DISCO
model ( , ), which identifies a collection of operators from the training data. At
test time, it searches for the best combination of these operators, using operator splitting, to fit
the observed out-of-distribution trajectory. While standard surrogate models struggle with zero-
shot generalization, our method achieves state-of-the-art performance, approaching the accuracy of
models operating in-distribution.

The main limitation of our approach lies in the operator splitting itself, which requires composing
operators with matching input and output domains. Future work will investigate generalization
across dimensionality (e.g., 2D to 3D), spatial domains (e.g., different grid structures), and physical
fields (e.g., velocity, momentum, density).
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A DATASET DETAILS

A.1 ADVECTION-DIFFUSION

We generate synthetic trajectories for the 1D advection-diffusion equation

Ju ou 0%u

_— J'_ V— = Di 1

ot Ox Ox? M
with periodic boundary conditions, where v is the advection speed and D is the diffusion coefficient.
The dataset uses analytical solutions computed via Fourier spectral methods to avoid numerical
errors.

Physical Parameters. During training, we generate 50% pure advection cases (v ~
Uniform(0.01, 1.0), D = 0) and 50% pure diffusion cases (v = 0, D ~ Uniform(0.001, 1.0)).

Initial Conditions. We generate complex initial conditions using Fractaloid with random phase
patterns, which create self-similar signals with power-law spectra. These patterns are constructed as
trigonometric polynomials

degree

uo(x) = Y agk P sin(k6 + o), 2)
k=1

where a; are independent Gaussian coefficients and ¢, are random phases. We use degree = 256
and power is sampled uniformly in [1, 4], then normalize each initial condition to zero mean and unit
variance. For testing, we fix the power to 3.

Analytical Solutions. We compute exact solutions using Fourier spectral methods. In spectral
space, the solution evolves as @(k,t) = (k) exp(—Dk?t) exp(—ikuvt), which we transform back
to physical space via inverse FFT. The spatial domain has length L = 16.0 with n, = 256 grid
points, evolved over n; = 100 time steps to final time 7" = 10.0.
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A.2 COMBINED-EQUATION

We follow the dataset generation approach of ( ), with key distinctions in the
physics formulation for training data generation and the exclusion of forcing terms. The combined
equation is governed by the following PDE:

Oyt + Oy (qu? — BOyu + yOppu) = 0, 3)

subject to periodic boundary conditions and initial conditions

J
ug(z) =Y Ajsin(2rlz/l + ). (4)

Jj=1

This formulation combines three fundamental physical mechanisms: nonlinear advection (cu?),
linear diffusion (—£0,u), and dispersion (vJ,,u). For each initial condition, we sample the
Fourier mode coefficients: A; ~ Uniform([—0.5,0.5]), ¢; ~ Uniform({1,2,3,4,5}), and ¢; ~
Uniform([0, 27]) with J = 5 modes.

Training dataset The training data is generated using parameter combinations («, 0, 0), (0, 3, 0),
and (0, 0,). The coefficients are sampled uniformly from « € [0,1], 8 € [0,0.4], and v € [0, 1].
We generate 8,192 training trajectories for each isolated physics across 128 parameter configura-
tions. Each trajectory contains 250 temporal snapshots on a 256-point spatial grid over T = 4
seconds with a periodic domain of length | = 16.

A.3 REACTION-DIFFUSION

Our most challenging benchmark is the Gray-Scott reaction-diffusion system from The Well (

bl ):
% = DAV2A - 6AB? + F(1 - A), ®)
OB ) ,
Sp = DBV*B+3AB — (F 4 k)B. (6)

This system models the spatiotemporal evolution of two chemical species parameterized by diffusion
coefficients D 4, D g, reaction strength 9, feed rate F' for species A, and kill rate k for species B.

Training Data Generation. We construct training data using two types of operator. First, diffusion-
kill operators use fixed diffusion coefficients D4 = 2 x 1075, D = 1 x 10~°, disabled reaction
terms (§ = 0, F' = 0), and kill rates k spanning 20 values in {0.051,0.052,...,0.070}. Second,
pure reaction operators disable diffusion (D4 = Dp = 0), set unit reaction strength (6 = 1), zero
kill rate (k = 0), and vary feed rates F' across 20 values in {5,10,...,100} x 1073,

The spatial domain employs a 128 x 128 grid with periodic boundary conditions. We generate 512
trajectories per parameter configuration, simulating 50 seconds and retaining 50 temporal snapshots
using the solver from ( ).

Initial Conditions. To ensure fair evaluation of dynamics identification and extrapolation capabili-
ties, we address the distinct field characteristics produced by reaction versus diffusion dynamics. We
begin with clustered Gaussian initial conditions, then evolve them for a random duration between
0 and 100 seconds using the full reaction-diffusion dynamics. The resulting evolved states serve as
initial conditions for generating the isolated reaction and diffusion training trajectories. This proce-
dure mitigates potential frequency bias across all methods and enables the assessment of operator
learning rather than initial condition adaptation.

B IMPLEMENTATION DETAILS

B.1 DISCO IMPLEMENTATION
Hyperparameters We use the recommended default configuration from ( ) with

targeted modifications for our experiments. For the transformer encoder, we employ a hidden di-
mension of 128, patch sizes of 8 in 1D and 8 x 8 in 2D, and 4 encoder blocks with 4 attention
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heads each using relative position bias. We introduce a bottleneck projection layer that reduces the
128-dimensional transformer output to C' channels, where C' = {2, 3,2} for advection-diffusion,
combined-equation, and reaction-diffusion respectively. This bottleneck layer is inserted before
DISCO’s original MLP decoder, representing a minimal architectural change that improves gener-
alization across initial conditions.

For the neural ODE component, we select the RK4 solver with problem-specific integration time
spans: dt = {0.1,0.016,0.016} for advection-diffusion, combined-equation, and reaction-diffusion
respectively. We apply periodic boundary conditions and configure the operator network with 8 base
channels and a 2x bottleneck multiplier for efficient ODE parameter prediction from transformer
representations.

We train models for 300,000 iterations on advection-diffusion and combined-equation tasks, and
100,000 iterations for reaction-diffusion. We use AdamW optimizer with a base learning rate of
3 x 1074, cosine annealing scheduler, and weight decay of 1 x 1074,

B.2 TRAINING RECIPE

The original DISCO training procedure uses the operator to predict the frame immediately follow-
ing the input encoder sequence. We found that increasing input diversity to the operator network
produces more robust operators that generalize across different initial conditions.

We therefore propose an alternative training strategy based on contextual learning. For advection-
diffusion equations, we sample two trajectories that follow identical dynamics: we encode trajectory
1 with the hypernetwork to obtain an operator, then apply this operator to predict the next timestep
of trajectory 2. This in-context approach draws inspiration from ( ).

For Combined-equation and Gray-Scott systems, we adopt an environment-based training paradigm
to enable fair comparison with GEPS ( ). We assume knowledge of which trajec-
tories belong to the same environment and implement a codebook updated via exponential moving
average following ( ). During training, we randomly select either the encoder-derived
code (50% probability) or the corresponding environment code from the codebook (50% probabil-
ity), ensuring the encoder learns meaningful representations while maintaining environment consis-
tency.

Algorithm 2 Random Operator Composition Search

1:L

s » operator dictionary { f1, ..., fx }, number of trials N5, maximum

Require: Test trajectory u.
composition length M
Ensure: Best operator subset S*
1: Initialize best operator subset S* = {argming,crr, o1 LHfi})}
2: Initialize best loss L* = L(.5*)
3: for i = 1 to Nyjas do

4:  Sample composition length m ~ Uniform({1,2,...,M?})

5:  Sample operator subset S; ~ Uniform(subsets of {f1, ..., fn} with size m)
6:  Compute loss £; = L(S;)

7. if L; < L* then

8: S* = SZ

9: L= [,i

10:  end if

11: end for

12: return S*

B.3 BASELINES
MPP We use the recommended default hyperparameters with periodic boundary conditions and

6 encoder blocks, employing a hidden dimension of 384 for 2D experiments, and train for 100,000
iterations using AdamW optimizer with a learning rate of 5 x 10~ and batch size of 64.
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Zebra We use recommended defaults, and used respectively 64, 32, 256 tokens to encode each
frame in advection-diffusion, combined-equaiton, reaction-diffusion. We train the model without
in-context example, using a maximum history length of 50 frames, 66, and 32 frames respectively
for advection, combined equation, reaction-diffusion. We use random sampling with a temperature
of 0.1 at inference.

Zebra We adopt the recommended default configuration, using 64, 32, and 256 tokens respectively
to encode each frame for advection-diffusion, combined-equation, and reaction-diffusion tasks. We
train without in-context examples, employing maximum history lengths of 50, 66, and 32 frames for
advection-diffusion, combined-equation, and reaction-diffusion respectively. At inference, we use
random sampling with a temperature of 0.1.

GEPS We use the CNN1D and CNN2D implementations from the original codebase, training for
100,000 steps with AdamW optimizer and cosine learning rate scheduling. Since GEPS requires
environment information during training, we provide labels indicating which trajectories belong
to the same environment. At inference, we address rollout instabilities by performing multiple
optimization runs (100, 500, and 2000 gradient steps) and report the best test set performance across
these attempts.

C QUALITATIVE RESULTS

Combined equation We can see in Figure 5, 6, 7, 8 that our test-time operator splitting strat-
egy demonstrates remarkable capability in matching ground truth dynamics over extended rollouts,
despite operating out-of-distribution and being trained solely for single-step prediction. The model
maintains high fidelity predictions throughout the majority of the 100-step rollout, with some er-
ror accumulation becoming visible after approximately 70 timesteps, which is expected for such
long-horizon extrapolation tasks.

Reaction diffusion We provide an augmented comparison of the dynamics seen during training
with the second channel in Figure 9. We also show additional comparisons of predictions and ground
truths in Figure 10, 11, 12.
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Neural Operator Splitting Results - Sample 1\nRelative L2 Error: 0.025286
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Figure 5: OOD trajectory prediction on diffusion+dispersion equations. We select operators
using beam search and autoregressively unroll dynamics for 100 timesteps. The top panels show
ground truth (left) and model predictions (right). The bottom panel displays error evolution through-
out the rollout and compares the final prediction against ground truth.
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Neural Operator Splitting Results - Sample 1\nRelative L2 Error: 0.052594
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Figure 6: OOD trajectory prediction on nonlinear advection+dispersion. We select operators
using beam search and autoregressively unroll dynamics for 100 timesteps. The top panels show
ground truth (left) and model predictions (right). The bottom panel displays error evolution through-
out the rollout and compares the final prediction against ground truth.
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Neural Operator Splitting Results - Sample 1\nRelative L2 Error: 0.089377
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Figure 7: OOD trajectory prediction on nonlinear advection+dispersion+diffusion. We select
operators using beam search and autoregressively unroll dynamics for 100 timesteps. The top panels
show ground truth (left) and model predictions (right). The bottom panel displays error evolution
throughout the rollout and compares the final prediction against ground truth.

18



Under review as a conference paper at ICLR 2026

Neural Operator Splitting Results - Sample 1\nRelative L2 Error: 0.096596

Ground Truth Evolution\n(Sampled Time Steps) Neural Predictions\n(Sampled Time Steps)
0.8 > 0.8 J
9 9
0.6 8 0.6 8
0.4 7 0.4 7
6 6
0.2 5 0.2 5
| 5t P 5t
E} = s N\ =
0.0 42 0.0 4 / 48
| F F
-0.21 3 -0.2 1 3
2 2
-0.44 —0.44
1 1
-0.64 0.6 4
0 ) 0
-0.84 -0.8 4
T v T T T T T v T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Space Space
Ground Truth\nSpatiotemporal Error Evolution &\nFinal Comparison
250 - — Relative L2 Error
2 —— GTFinal 3
0.8 10-1 — = Pred Final
200 0.6
0.4
150 g
0.2 5 10— o
o w107 2
g 3 »
& 0.0 %} E
® i
100 -02 &
04 10
-0.6
0 20 40 60 80 0 50 100 150 200 250
Time Time Step

Figure 8: OOD trajectory prediction on nonlinear advection+diffusion. We select operators
using beam search and autoregressively unroll dynamics for 100 timesteps. The top panels show
ground truth (left) and model predictions (right). The bottom panel displays error evolution through-
out the rollout and compares the final prediction against ground truth.
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Prediction with Test-Time Strategy
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Figure 9: OOD trajectory prediction on Gray-Scott equations. Visualization of operator splitting
decomposition for Gray-Scott reaction-diffusion dynamics. The top section compares our test-time
strategy predictions (blue box) against ground truth for the full reaction-diffusion system, showing
species A (yellow-green) and B (red-blue) concentrations. The bottom section displays the kind
of dynamics seen during training: pure reaction terms (green/brown) and diffusion with kill terms
(red/orange) for both species.
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Sample 0 | Composition: [7, 20] | Error: 0.1204 | Both Channels
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Figure 10: OOD trajectory prediction on Gray-Scott equations. The first two rows show ground
truth (top) and predicted (second) concentrations for species A. The bottom two rows display ground
truth (third) and predicted (bottom) concentrations for species B.
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Sample 55 | Composition: [22, 14] | Error: 0.0779 | Both Channels
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Figure 11: OOD trajectory prediction on Gray-Scott equations. The first two rows show ground
truth (top) and predicted (second) concentrations for species A. The bottom two rows display ground
truth (third) and predicted (bottom) concentrations for species B.
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Sample 62 | Composition: [22, 9] | Error: 0.0832 | Both Channels
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Figure 12: OOD trajectory prediction on Gray-Scott equations. The first two rows show ground
truth (top) and predicted (second) concentrations for species A. The bottom two rows display ground
truth (third) and predicted (bottom) concentrations for species B.
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