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Abstract
In many unpaired image domain translation problems, e.g., style transfer or super-
resolution, it is important to keep the translated image similar to its respective
input image. We propose the extremal transport (ET) which is a mathematical
formalization of the theoretically best possible unpaired translation between a pair
of domains w.r.t. the given similarity function. Inspired by the recent advances in
neural optimal transport (OT), we propose a scalable algorithm to approximate ET
maps as a limit of partial OT maps. We test our algorithm on toy examples and on
the unpaired image-to-image translation task. The code is publicly available at

https://github.com/milenagazdieva/ExtremalNeuralOptimalTransport

(a) Handbag → shoes (128×128). (b) Celeba (female) → anime (64×64).

Figure 1: (Nearly) extremal transport with our Algorithm 1.
Higher w yields bigger similarity of x and T (x) in ℓ2.

1 Introduction
The unpaired translation task [72, Fig. 2] is to find a map x 7→ T (x), usually a neural network,
which transports the samples x from the given source domain to the target domain. The key challenge
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here is that the correspondence between available data samples x from the source and y from target
domains is not given. Thus, the task is ambiguous as there might exist multiple suitable T .

Figure 2: Learned transport map (w = 2) in
’Accept’ task.

When solving the task, many methods regular-
ize the translated samples T (x) to inherit spe-
cific attributes of the respective input samples
x. In the popular unpaired translation [72, Fig.
9] and enhancement [69, Equation 3] tasks for
images, it is common to use additional unsuper-
vised identity losses, e.g., ∥T (x)−x∥1, to make
the translated output T (x) be similar to the input
images x. The same applies, e.g., to audio trans-
lation [51]. Therefore, the learning objectives
of such methods usually have two components.
The first component is the domain loss (main) enforcing the translated sample T (x) to look like
the samples y from the target domain. The second component is the similarity loss (regularizer,
optional) stimulating the translated T (x) to inherit certain attributes of input x. A question arises:
can one obtain the maximal similarity of T (x) to x but still ensure that T (x) is indeed from the
target domain? A straightforward "yes, just increase the weight of the similarity loss" may work but
only to a limited extent. We demonstrate this in Appendix C.
Contributions. In this paper, we propose the extremal transport (ET, M3.1) which is a rigorous
mathematical task formulation describing the theoretically best possible unpaired domain translation
w.r.t. the given similarity function. We explicitly characterize ET maps and plans by establishing
an intuitive connection to the nearest neighbors (NN). We show that ET maps can be learned as a
limit (M3.3) of specific partial optimal transport (OT) problem which we call incomplete transport
(IT, M3.2). For IT, we derive the duality formula yielding an efficient computational algorithm (M3.4).
We test our algorithm on toy 2D examples and high-dimensional unpaired image translation (M5).
Notation. We consider compact Polish spaces (X , ∥·∥X ), (Y, ∥·∥Y) and use P(X ),P(Y) to denote
the sets of Radon probability measures on them. We useM+(X ) ⊂ M(X ) to denote the sets of
finite non-negative and finite signed (Radon) measures on X , respectively. They both contain P(X )
as a subset. For a non-negative µ ∈M+(X ), its support is denoted by Supp(µ) ⊂ X . It is a closed
set consisting of all points x ∈ X for which every open neighbourhood A ∋ x satisfies µ(A) > 0.
We use C(X ) to denote the set of continuous functions X → R equipped with ∥ · ∥∞ norm. Its
dual space isM(X ) equipped with the ∥ · ∥1 norm. A sequence µ1, µ2, · · · ∈ M(X ) is said to be
weakly-* converging to µ∗ ∈M(X ) if for every f ∈ C(X ) it holds that limn→∞

∫
X f(x)dµn(x) =∫

X f(x)dµ
∗(x). For a probability measure π ∈ P(X × Y), we use πx ∈ P(X ) and πy ∈ P(Y) to

denote its projections onto X ,Y , respectively. Disintegration of π yields dπ(x, y) = dπx(x)dπ(y|x),
where π(y|x) denotes the conditional distribution of y ∈ Y for a given x ∈ X . For µ, ν ∈ M(Y),
we write µ ≤ ν if for all measurable A ⊂ Y it holds that µ(A) ≤ ν(A). For a measurable map
T : X → Y , we use T♯ to denote the associated pushforward operator P(X )→ P(Y).

2 Background on Optimal Transport
In this section, we give an overview of the OT theory concepts related to our paper. For details on OT,
we refer to [62, 65, 56], partial OT - [22, 10].
Standard OT formulation. Let c : X × Y → R be a continuous cost function. For P ∈ P(X ),
Q ∈ P(Y), the OT cost between them is given by

Cost(P,Q)
def
= inf

T♯P=Q

∫
X
c
(
x, T (x)

)
dP(x), (1)

where inf is taken over measurable T : X → Y pushing P to Q (transport maps), see Fig. 3a.
Problem (1) is called the Monge’s OT problem, and its minimizer T ∗ is called an OT map.

In some cases, there may be no minimizer T ∗ of (1). Therefore, it is common to consider Kan-
torovich’s relaxation:

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (2)

where inf is taken over π ∈ P(X × Y) satisfying πx = P and πy = Q, respectively. A minimizer
π∗ ∈ Π(P,Q) in (2) always exists and is called an OT plan. A widely used example of OT cost for
X = Y = Rd is the Wasserstein-1 distance (W1), i.e., OT cost (2) for c(x, y) = ∥x− y∥.
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(a) Monge’s OT formulation. (b) Kantorovich’s OT formulation.
Figure 3: Classic optimal transport (OT) formulations.

To provide an intuition behind (2), we disintegrate dπ(x, y)=dπx(x)dπ(y|x):

inf
π∈Π(P,Q)

∫
X

{∫
Y
c(x, y)dπ(y|x)

}
dP(x)︸ ︷︷ ︸
=dπx(x)

, (3)

i.e., (2) can be viewed as an extension of (1) allowing to split the mass of input points x∼P (Fig. 3b).
With mild assumptions on P,Q, the OT cost value (2) coincides with (1), see [62, Theorem 1.33].
Partial OT formulation. Let w0,w1≥m≥0. We consider

inf
mπx≤w0P
mπy≤w1Q

∫
X×Y

c(x, y)d
[
mπ

]
(x, y), (4)

where inf is taken over π ∈ P(X × Y) satisfying the inequality constraints mπx ≤ w0P and
mπy ≤ w1Q. Minimizers π∗ of (4) are called partial OT plans (Fig. 4).

Figure 4: Partial optimal transport
formulation.

Here the inputs are two measures w0P and w1Q with
masses w0 and w1. Intuitively, we need to match a
m
w0

-th fraction mπx of the first measure w0P with a
m
w1

-th fraction mπy of the second measure w1Q (Fig.
4); choosing πx, πy is also a part of this problem. The
key difference from problem (4) is that the constraints
are inequalities. In the particular case m = w0 = w1,
problem (4) reduces to (2) as the inequality constraints
can be replaced by equalities.

3 Main Results
First, we formulate the extremal transport (ET) problem (M3.1). Next, we prove that ET maps can be
recovered as a limit of incomplete transport (IT) maps (M3.2, 3.3). Then we propose an algorithm to
solve the IT problem (M3.4). We provide the proofs for all the theorems in Appendix F.

3.1 Extremal Transport Problem

Popular unpaired translation methods, e.g., [72, M3.1] and [33, M3], de-facto assume that available
samples x, y from the input and output domains come from the data distributions P,Q ∈ P(X ),P(Y).
As a result, in their optimization objectives, the domain loss compares the translated T (x) ∼ T♯P
and target samples y ∼ Q by using a metric for comparing probability measures, e.g., GAN loss [27].
Thus, the target domain is identified with the probability measure Q.

We pick a different approach to define what the domain is. We still assume that the available data
comes from data distributions, i.e., x ∼ P, y ∼ Q. However, we say that the target domain is the
part of Y where the probability mass of Q lives.2 Namely, it is Supp(Q) ⊂ Y . We say that a map T
translates the domains if Supp(T♯P)⊂Supp(Q). This requirement is weaker than the usual T♯P=Q.
Assume that c(x, y) is a function estimating the dissimilarity between x, y. We would like to pick
T (x) ∈ Supp(Q) which is maximally similar to x in terms of c(x, y). This preference of T can be
formalized as follows:

Cost∞(P,Q)
def
= inf

Supp(T♯P)⊂Supp(Q)

∫
X
c
(
x, T (x)

)
dP(x), (5)

where the inf is taken over measurable T : X → Y which map the probability mass of P to Supp(Q).
We say that (5) is the (Monge’s) extremal transport (ET) problem.

2Following the standard manifold hypothesis [21], real data distribution Q is usually supported on a small-
dimensional manifold M = Supp(Q) ⊂ [−1, 1]D occupying a tiny part of the ambient space [−1, 1]D .
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(a) Monge’s ET formulation. (b) Kantorovich’s ET formulation.
Figure 5: Extremal transport (ET) formulations.

Problem (5) is atypical for the common OT framework. For example, the usual measure-preserving
constraint T♯P = Q in (1) is replaced with Supp(T♯P) ⊂ Supp(Q) which is more tricky. Importantly,
measure Q can be replaced with any other Q′ ∈ P(Y) with the same support yielding the same inf .

Below we analyse the minimizers T ∗ of (5). We define c∗(x)
def
= miny∈Supp(Q) c(x, y). Here the min

is indeed attained (for all x ∈ X ) because c(x, y) is continuous and Supp(Q) ⊂ Y is a compact set.
The value c∗(x) can be understood as the lowest possible transport cost when mapping the mass of
point x to the support of Q. For any admissible T in (5), it holds (P-almost surely):

c∗(x) = min
y∈Supp(Q)

c(x, y) ≤ c
(
x, T (x)

)
. (6)

Proposition 1 (Continuity of c∗). It holds that c∗ ∈ C(X ).
As a consequence of Proposition 1, we see that c∗ is measurable. We integrate (6) w.r.t. x ∼ P and
take inf over all feasible T . This yields a lower bound on Cost∞(P,Q):

∫
X
c∗(x)dP(x) ≤

Cost∞(P,Q)︷ ︸︸ ︷
inf

Supp(T♯P)
⊂Supp(Q)

∫
X
c
(
x, T (x)

)
dP(x) . (7)

There exists admissible T making (7) the equality. Indeed, let NN(x)
def
= {y ∈ Supp(Q) s.t.

c(x, y) = c∗(x)} be the set of points y which attain min in the definition of c∗. These points are
the closest to x points in Q w.r.t. the cost c(x, y). We call them the nearest neighbors of x. From
this perspective, we see that (7) turns to equality if and only if T (x)∈NN(x) holds for P-almost all
x ∈ X , i.e., T maps points x∼P to their nearest neighbors in Supp(Q). We need to make sure that
such measurable T exists (Fig. 5a).
Theorem 1 (Existence of ET maps). There exists at least one measurable map T ∗ : X → Y
minimizing (5). For P-almost all x ∈ X it holds that T ∗(x) ∈ NN(x). Besides,

Cost∞(P,Q) =

∫
X
c∗(x)dP(x).

We say that Cost∞(P,Q) is the extremal cost because one can not obtain smaller cost when moving
the mass of P to Supp(Q). In turn, we say that minimizers T ∗ are ET maps.

One may extend the ET problem (8) in the Kantorovich’s manner by allowing the mass splitting and
stochastic plans:

Cost∞(P,Q)
def
= inf

π∈Π∞(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (8)

where Π∞(P,Q) are probability measures π ∈ P(X × Y) s.t. πx = P and Supp(πy) ⊂ Supp(Q).
To understand the structure of minimizers in (8), it is more convenient to disintegrate dπ(x, y) =
dπ(y|x)dπx(x):

Cost∞(P,Q) = inf
π∈Π∞(P,Q)

∫
X

∫
Y
c(x, y)dπ(y|x) dP(x)︸ ︷︷ ︸

=dπx(x)

. (9)

Thus, computing (8) boils down to computing a family of conditional measures π(·|x) minimizing
(8). As in (7), for any π ∈ Π∞(P,Q), it holds (for P-almost all x ∈ X ) that

c∗(x) = min
y∈Supp(Q)

c(x, y) ≤
∫
Y
c(x, y)dπ(y|x) (10)

because π redistributes the mass of P to Supp(Q). By integrating (10) w.r.t. x ∼ P = πx and taking
inf over all admissible plans π, we derive that

∫
X c

∗(x)dP(x) is a lower bound for (8). In particular,
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(a) Monge’s IT formulation. (b) Kantorovich’s IT formulation.
Figure 6: Incomplete transport (IT) formulations.

the bound is tight for π∗(y|x) = δT∗(x), where T ∗ is the ET map from our Theorem 1. Therefore,
the value (8) is the same as (5) but possibly admits more minimizers. We call the minimizers π∗ of
(8) the ET plans (Fig. 5b).

From (10) and the definition of NN(x), we see that minimizers π∗ are the plans for which π∗(y|x)
redistributes the mass of x among the nearest neighbors y ∈ NN(x) of x (for P-almost all x ∈ X ). As
a result, π∗(y|x) can be viewed as a stochastic nearest neighbor assignment between the probability
mass of P and the support of Q.

3.2 Incomplete Transport Problem
In practice, solving extremal problem (5) is challenging because it is hard to enforce Supp(T♯P) ⊂
Supp(Q). To avoid enforcing this constraint, we replace it and consider the following problem with
finite parameter w ≥ 1:

Costw(P,Q)
def
= inf

T♯P≤wQ

∫
X
c
(
x, T (x)

)
dP(x). (11)

We call (11) Monge’s incomplete transport (IT) problem (Fig. 6a). With the increase of w, admissible
maps T obtain more ways to redistribute the mass of P among Supp(Q). Informally, when w →∞,
the constraint T♯P ≤ wQ in (11) tends to the constraint Supp(T♯P) ⊂ Supp(Q) in (5), i.e., (11)
itself tends to ET problem (5). We will formalize this statement a few paragraphs later (in M3.3).

As in (1), problem (11) may have no minimizer T ∗ or even may have the empty feasible set. Therefore,
it is natural to relax problem (11) in the Kantorovich’s manner:

Costw(P,Q)
def
= inf

π∈Πw(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (12)

where the inf is taken over the set Πw(P,Q) of probability measures π ∈ P(X × Y) whose first
marginal is πx = P, and the second marginal satisfies πy ≤ wQ (Fig. 6b).

We note that IT problem (12) is a special case of partial OT (4) with w0 = m = 1 and w1 = w. In
(12), one may actually replace inf with min, see our proposition below.
Proposition 2 (Existence of IT plans). Problem (12) admits at least one minimizer π∗ ∈ Πw(P,Q).
We say that minimizers of (12) are IT plans. In the general case, Kantorovich’s IT cost (12) always
lower bounds Monge’s counterpart (11). Below we show that they coincide in the practically most
interesting Euclidean case.
Proposition 3 (Equivalence of Monge’s, Kantorovich’s IT costs). Let X ,Y ⊂ RD be two compact
sets, P ∈ P(X ) be atomless, Q∈P(Y). Then Monge’s (11) and Kantorovich’s (12) IT costs coincide.
However, it is not guaranteed that inf in Monge’s problem (11) is attained even in the Euclidean
case. Still for general Polish spaces X ,Y it is clear that if there exists a deterministic IT plan in
Kantorovich’s problem (12) of the form π∗ = [idX , T ∗], then T ∗ is an IT map in (11), and the IT
Monge’s (11) and Kantorovich’s (12) costs coincide. Henceforth, for simplicity, we assume that
X ,Y, c,P,Q are such that (11) and (12) coincide, e.g., those from Prop. 3.

IT problem (12) can be viewed as an interpolation between OT (2) and ET problems (8). Indeed,
when w = 1, the constraint πy ≤ Q is equivalent to πy = Q as there is only one probability measure
which is ≤ Q, and it is Q itself. Thus, IT (12) with w = 1 coincides with OT (2). In the next section,
we show that for w →∞ one recovers ET from IT.

3.3 Link between Incomplete and Extremal Transport

Now we connect incomplete (12) and extremal (8) transport tasks.
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Theorem 2 (IT costs converge to the ET cost when w →∞). Function w 7→ Costw(P,Q) is convex,
non-increasing in w ∈ [1,+∞) and

lim
w→∞

Costw(P,Q) = Cost∞(P,Q).

A natural subsequent question here is whether IT plans in (12) converge to ET plans (8) whenw →∞.
Our following result sheds the light on this question.
Theorem 3 (IT plans converge to ET plans when w →∞). Consider w1, w2, w3, · · · ≥ 1 satisfying
limn→∞ wn =∞. Let πwn ∈ Πwn(P,Q) be a sequence of IT plans solving (12) with w = wn,
respectively. Then it has a (weakly-*) converging sub-sequence. Every such sub-sequence of IT plans
converges to an ET plan π∗ ∈ Π∞(P,Q).

In general, there may be sub-sequences of IT plans converging to different ET plans π∗ ∈ Π∞(P,Q).
However, our following corollary shows that with the increase of weight w, elements of any sub-
sequence become closer to the set of ET plans.
Corollary 1 (IT plans become closer to the set of ET plans when w →∞). For all ε > 0 ∃w(ε) ∈
[1,∞) such that ∀w ≥ w(ε) and ∀ IT plan πw ∈ Πw(P,Q) solving Kantorovich’s IT problem (12),
there exists an ET plan π∗ which is ε-close to πw in W1, i.e., W1(π

∗, πw) ≤ ε.

Providing a stronger convergence result here is challenging, and we leave this theoretical question
open for future studies. Our Theorems 2, 3 and Corollary 1 suggest that to obtain a fine approximation
of an ET plan (w =∞), one may use an IT plan for sufficiently large finite w. In Appendix G.1, we
empirically demonstrate this observation through an experiment where the ground-truth deterministic
ET plan is analytically known. Below we develop a neural algorithm to compute IT plans.

3.4 Computational Algorithm for Incomplete Transport

To begin with, for IT (12), we derive the dual problem.
Theorem 4 (Dual problem for IT). It holds

Costw(P,Q)=max
f≤0

∫
X
f c(x)dP(x)+ w

∫
Y
f(y)dQ(y), (13)

where the max is taken over non-positive f ∈ C(Y) and f c(x)
def
= min

y∈Y

{
c(x, y)− f(y)

}
.

We call the function f potential. In the definition of f c, min is attained because c, f are continuous
and Y is compact. The function f c is called the c-transform of f .

The difference of formula (13) from usual c-transform-based duality formulas for OT (2), see [62,
M1.2], [65, M5], is that f is required to be non-positive and the second term is multiplied by w ≥ 1.
We rewrite the term

∫
X f

c(x)dP(x) in (13):∫
X
f c(x)dP(x) =

∫
X
min
y∈Y

{
c(x, y)− f(y)

}
dP(x) = inf

T :X→Y

∫
X

{
c
(
x, T (x)

)
− f(y)

}
dP(x). (14)

Here we use the interchange between the integral and inf [59, Theorem 3A]; in (14) the inf is
taken over measurable maps. Since (x, y) 7→ c(x, y)− f(y) is a continuous function on a compact
set, it admits a measurable selection T (x) ∈ argminy∈Y

{
c(x, y) − f(y)

}
minimizing (14), see

[2, Theorem 18.19]. Thus, inf can be replaced by min. We combine (14) and (13) and obtain an
equivalent saddle point problem:

Costw(P,Q) = max
f≤0

min
T :X→Y

L(f, T ), (15)

where the functional L(f, T ) is defined by

L(f, T ) def=
∫
X
c
(
x, T (x)

)
dP(x)−

∫
X
f
(
T (x)

)
dP(x) + w

∫
Y
f(y)dQ(y). (16)

Functional L(f, T ) can be viewed as a Lagrangian with f ≤ 0 being a multiplier for the constraint
T♯P− wQ ≤ 0. By solving (15), one may obtain IT maps.
Theorem 5 (IT maps are contained in optimal saddle points). Let f∗ be any maximizer in (13). If
π∗ ∈ Πw(P,Q) is a deterministic IT plan, i.e., it solves (12) and has the form π∗ = [idX , T

∗]♯P for
some measurable T ∗ : X → Y , then

T ∗ ∈ argmin
T :X→Y

L(f∗, T ).
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Algorithm 1: Procedure to compute the IT map between P and Q for transport cost c(x, y) and
weight w.
Input :distributions P,Q accessible by samples; mapper Tθ :X →Y; potential fψ :X →R−;

transport cost c : X × Y → R; weight w ≥ 1; number KT of inner iterations;
Output :approximate IT map (Tθ)#P ≤ wQ;
repeat

Sample batches X ∼ P, Y ∼Q;
Lf ← w · 1

|Y |
∑
y∈Y

fψ(y)− 1
|X|

∑
x∈X

fψ
(
Tθ(x)

)
;

Update ψ by using ∂Lf

∂ψ to maximize Lf ;
for kT = 1, 2, . . . ,KT do

Sample batch X ∼ P;
LT ← 1

|X|
∑
x∈X

[
c
(
x, Tθ(x)

)
− fψ

(
Tθ(x)

)]
;

Update θ by using ∂LT

∂θ to minimize LT ;

until not converged;

Our Theorem 5 states that in some optimal saddle points (f∗, T ∗) of (15) it holds that T ∗ is the IT
map between P,Q. In general, the arg infT set for an optimal f∗ might contain not only IT maps T ∗,
but other functions as well (fake solutions), see limitations in Appendix A.

We solve the optimization problem (15) by approximating the map T and potential f with neural
networks Tθ and fψ , respectively. To make fψ non-positive, we use x 7→ −|x| as the last layer. The
nets are trained using random batches from P,Q and stochastic gradient ascent-descent. We detail
the optimization procedure in Algorithm 1.

4 Related work

OT in generative models. A popular way to apply OT in generative models is to use the OT cost as
the loss function to update the generator [4, 28, 26], see [41] for a survey. These methods are not
relevant to our study as they do not learn an OT map but only compute the OT cost.
Recent works [43, 42, 61, 20, 5, 24, 29] are the most related to our study. These papers show
the possibility to learn the OT maps (or plans) via solving saddle point optimization problems
derived from the standard c-transform-based duality formulas for OT. The underlying principle of
our objective (15) is analogous to theirs. The key difference is that they consider OT problems (1),
(2) and enforce the equality costraints, e.g., T♯P = Q, while our approach enforces the inequality
constraint T♯P ≤ wQ allowing to partially align the measures. We provide a detailed discussion
of relation with these works as well as with the fundamental OT (2) and partial OT (4) literature
[22, 10, 62] in Appendix F, see bibliographic remarks after the proofs of Theorems 2, 4 and 5.

For completeness, we also mention other existing neural OT methods [25, 63, 49, 17, 39]. These
works are less related to our work because they either underperform compared to the above-mentioned
saddle point methods, see [40] for evaluation, or they solve specific OT formulations, e.g., entropic
OT [56, M4], which are not relevant to our study.
The papers [66, 47, 19] are slightly more related to our work. They propose neural methods for
unbalanced OT [14] which can also be used to partially align measures. As we will see in Appendix
B, UOT is hardly suitable for ET (8) as it is not easy to control how it spreads the probability mass.
Besides, these methods consider OT between small-dimensional datasets or in latent spaces. It is not
clear whether they scale to high-dimensions, e.g., images.
Discrete OT methods, including partial OT [11], are not relevant to us, see Appendix D for details.
Unpaired domain translation [3] is a generic problem which includes image super-resolution
[12], inpainting [71], style translation [34] tasks, etc. Hence, we do not mention all of the existing
approaches but focus on their common main features instead. In many applications, it is important to
preserve semantic information during the translation, e.g., the image content. In most cases, to do
this it is sufficient to use convolutional neural networks. They preserve the image content thanks to
their design which is targeted to only locally change the image [18]. However, in some of the tasks
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(a) Input, target measures. (b) IT map, w=3. (c) IT map, w= 3
2

. (d) IT map, w=1.

Figure 7: Incomplete transport (IT) maps learned by our Algorithm 1 in ’Wi-Fi’ experiment.

(a) Input measure. (b) IT map, w=8. (c) IT map, w=4. (d) IT map, w=2. (e) IT map, w=1. (f) Target measure.

Figure 8: PCA projections of input x∼P, mapped T (x)∼T♯P and target y∼Q test samples
(handbag→shoes experiment).

additional image properties must be kept, e.g., image colors in super-resolution. Typical approaches
to such problems are based on GANs and use additional similarity losses, e.g., the basic CycleGAN
[72] enforces ℓ1 similarity. Such methods are mostly related to our work. However, without additional
modifications most of these approaches only partially maintain the image properties, see [44, Figure
5]. As we show in experiments (Appendix C), IT achieves better similarity than popular CycleGAN,
StarGAN-v2 [15] methods, both default and modified to better preserve the image content.

5 Evaluation

In M5.1, we provide illustrative toy 2D examples. In M5.2, we evaluate our method on the unpaired
image-to-image translation task. Technical training details (architectures, learning rates, etc.) are
given in Appendix E. The code is written using PyTorch framework and is publicly available at

https://github.com/milenagazdieva/ExtremalNeuralOptimalTransport.

Transport costs. We experiment with the quadratic cost c(x, y) = ℓ2(x, y) as this cost already
provides reasonable performance. We slightly abuse the notation and use ℓ2 to denote the squared
error normalized by the dimension. Experiments with the perceptual cost are given in Appendix G.3.

5.1 Toy 2D experiments
In this section, we provide ’Wi-Fi’ and ’Accept’ examples in 2D to show how the choice of w affects
the fraction of the target measure Q to which the probability mass of the input P is mapped. In both
cases, measure P is Gaussian. In Appendix B, we demonstrate how other methods perform on these

’Wi-Fi’ and ’Accept’ toy examples.

In ’Wi-Fi’ experiment (Fig. 7), target Q contains 3 arcs. We provide the learned IT maps for
w ∈ [1, 32 , 3]. The results show that by varying w it is possible to control the fraction of Q to which
the mass of P will be mapped. In Fig. 7, we see that for w = 1 our IT method learns all 3 arcs. For
w = 3

2 , it captures 2 arcs, i.e., ≈ 2
3 of Q. For w = 3, it learns 1 arc which corresponds to ≈ 1

3 of Q.

In ’Accept’ experiment (Fig. 2), target Q is a two-line text. Here we put w = 2 and, as expected, our
method captures only one line of the text which is the closest to P in ℓ2.

5.2 Unpaired Image-to-image Translation
Here we learn IT maps between various pairs of datasets. We test w∈{1, 2, 4, 8} in all experiments.
For completeness, we consider bigger weights w ∈ {16, 32} in Appendix G.4.
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(a) IT results for textures → chairs (64×64). (b) IT results for ffhq → comics (128×128).
Figure 9: Unpaired Translation with our Incomplete Transport.

Experiment w = 1 w = 2 w = 4 w = 8
celeba → anime 0.297 0.154 0.133 0.094

handbag → shoes 0.368 0.320 0.259 0.252
textures → chairs 0.603 0.516 0.474 0.408

ffhq → comics 0.224 0.220 0.200 0.196

(a) Test ℓ2 transport cost of our learned IT maps.

Experiment w = 1 w = 2 w = 4 w = 8
celeba → anime 14.65 20.79 22.18 22.84

handbag → shoes 27.10 29.70 42.90 53.80
textures → chairs N/A N/A N/A N/A

ffhq → comics 20.95 22.38 22.77 23.67

(b) Test FID of our learned IT maps.
Table 1: Test ℓ2 cost and FID of our learned IT maps.

Image datasets. We utilize the following publicly available datasets as P,Q: celebrity faces [46],
aligned anime faces3, flickr-faces-HQ [36], comic faces4, Amazon handbags from LSUN dataset
[68], shoes [67], textures [16] and chairs from Bonn furniture styles dataset [1]. The sizes of datasets
are from 5K to 500K samples. We work with 64× 64 and 128× 128 images.

Train-test split. We use 90% of each dataset for training. The remaining 10% are held for test. All
the presented qualitative and quantitative results are obtained for test images.

Experimental results. Our evaluation shows that with the increase of w the images T̂ (x) translated
by our IT method become more similar to the respective inputs x w.r.t. ℓ2. In Table 1a, we quantify
this effect. Namely, we show that the test transport cost 1

Ntest

∑Ntest
n=1 c

(
x, T̂ (x)

)
decreases with the

increase of w which empirically verifies our Theorem 2.

We qualitatively demonstrate this effect in Fig. 1b, 1a, 9b, 9a and 8. In celeba (female)→ anime
(Fig. 1b), the hair and background colors of the learned anime images become closer to celebrity
faces’ colors with the increase of w. For example, in the 4th column of Fig. 1b, the anime hair color
changes from green to brown, which is close to that of the respective celebrity. In the 6th column,
the background is getting darker. In handbag→shoes (Fig. 1a), the color, texture and size of the
shoes become closer to that of handbag. Additionally, for this experiment we plot the projections of
the learned IT maps to the first 2 principal components of Q (Fig. 8). We see that projections are
close to Q for w = 1 and become closer to P with the increase of w. In ffhq→comics, the changes
mostly affect facial expressions and individual characteristics. In textures→chairs, the changes are
mostly related to chairs’ size which is expected since we use pixel-wise ℓ2 as the cost function.
Additional qualitative results are given in Appendix G.5 (Fig. 24, 25, 9a).

For completeness, we measure test FID [32] of the translated samples, see Table 1b. We do not
calculate FID in the handbag→chairs experiment because of too small sizes of the test parts of the
datasets (500 textures, 2K chairs). However, we emphasize that FID is not representative when w > 1.
In this case, IT maps learn by construction only a part of the target measure Q. At the same time, FID
tests how well the transported samples represent the entire target distribution and is very sensitive
to mode dropping [48, Fig. 1b]. Therefore, while the cost decreases with the growth of w, FID, on
the contrary, increases. This is expected since IT maps to smaller part of Q. Importantly, the visual
quality of the translated images T̂ (x) is not decreasing.

3kaggle.com/reitanaka/alignedanimefaces
4kaggle.com/datasets/defileroff/comic-faces-paired-synthetic-v2
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In Appendix C, we compare our IT method with other image-to-image translation methods and show
that IT better preserves the input-output similarity.

6 Potential Impact

Inequality constraints for generative models. The majority of optimization objectives in generative
models (GANs, diffusion models, normalizing flows, etc.) enforce the equality constraints, e.g.,
T♯P = Q, where T♯P is the generated measure and Q is the data measure. Our work demonstrates
that it is possible to enforce inequality constraints, e.g., T♯P ≤ wQ, and apply them to a large-scale
problem. While in this work we primarily focus on the image-to-image translation task, we believe
that the ideas presented in our paper have several visible prospects for further improvement and
applications. We list them below.

(1) Partial OT. Learning alignments between measures of unequal mass is a pervasive topic which
has already perspective applications in biology to single-cell data [66, 47, 19]. The mentioned works
use unbalanced OT [14]. This is an unconstrained problem where the mass spread is softly controlled
by the regularization. Therefore, may be hard to control how the mass is actually distributed. Using
partial OT which enforces hard inequality constraints might potentially soften this issue. Our IT
problem (12) is a particular case of partial OT (4). We believe that our study is useful for future
development of partial OT methods.

(2) Generative nearest neighbors. NNs play an important role in machine learning applications such
as, e.g., image retrieval [6]. These methods typically rely on fast discrete approximate NN [50, 35]
and perform matching with the latent codes of the train samples. In contrast, nowadays, with the
rapid growth of large generative models such as DALL-E [58], CLIP [57], GPT-3 [9], it becomes
relevant to perform out-of-sample estimation, e.g., map the latent vectors to new vectors which are
not present in the train set to generate new data. Our IT approach (for w → ∞) is a theoretically
justified way to learn approximate NN maps exclusively from samples. We think our approach might
acquire applications here as well, especially since there already exist ways to apply OT in latent
spaces of such models [20].

(3) Robustness and outlier detection. Our IT aligns the input measure P only with a part of the
target measure Q. This property might be potentially used to make the learning robust, e.g., ignore
outliers in the target dataset. Importantly, the choice of outliers and contamination level are tunable
via c(x, y) and w, but their selection may be not obvious. At the same time, the potential f∗ vanishes
on the outliers, i.e., samples in Supp(Q) to which the mass is not transported.

Proposition 4 (The potential vanishes at outliers). Under the assuptions of Theorem 5, the equality
f∗(y) = 0 holds for all y ∈ Supp(Q) \ Supp(T ∗♯P).

We empirically illustrate this statement in Appendix A. As a result of this proposition, a possible
byproduct of our method is an outlier-score f∗(y) for the target data. Such applications of OT are
promising and there already exist works [52, 7, 54] developing approaches to make OT more robust.

Limitations, societal impact. We discuss limitations, societal impact of our study in Appendix A.
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A Limitations

Transport costs. Our theoretical results hold true for any continuous cost function c(x, y), but our
experimental study uses ℓ2 as it already yields a reasonable performance in many cases. Considering
more semantically meaningful costs for image translation, e.g., perceptual [70], is a promising future
research direction.

Intersecting supports. ET is the nearest neighbor assignment (M3.1). Using ET may be unreasonable
when X = Y and Supp(P) intersects with Supp(Q). For example, if c(x, y) attains minimum over
y ∈ Y for a given x ∈ X at x = y, e.g., c = ℓ2, then there exists a ET plan satisfying π∗(y|x) = δx
for all x ∈ Supp(P) ∩ Supp(Q). It does not move the mass of points x in this intersection. We
provide an illustrative toy 2D example in Fig. 10b.

Limited diversity. It is theoretically impossible to preserve input-output similarity better than ET
maps. Still one should understand that in some cases these maps may yield degenerate solutions.
In Fig. 10a, we provide a toy 2D example of an IT map (w = 8) which maps all inputs to nearly
the same point. In Fig. 9a (texture→ chair translation), we see that with the increase of w the IT
map produces less small chairs but more large armchairs. In particular, when w = 8, only armchairs
appear, see Fig. 9a. This is because they are closer (in ℓ2) to textures due to having smaller white
background area.

(a) Limited diversity. The true ET map is degenerate:
it maps the entire P to a single vertex of the triangle Q.

The example shows the learned IT map with high
w = 20 approximating the ET map.

(b) Intersecting supports. The true ET map is the
identity map: it does not move the probability mass of
P. The example shows the learned IT map with high

w = 8 approximating the ET map.
Figure 10: Toy 2D examples showing two (potential) limitations of IT maps.

Unused samples. Doing experiments, we noticed that the model training slows down with the
increase of w. A possible cause of this is that some samples from Q become non-informative for
training (this follows from our Proposition 4). Intuitively, the part of Supp(Q) to which the samples
of P will not be mapped to is not informative for training. We illustrate this effect on toy ’Wi-Fi’
example and plot the histogram of values of f∗ in Fig. 11. One possible negative of this observation
is that the training of IT maps or, more generally, partial OT maps, may naturally require larger
training datasets.

(a) Surface of f∗

(trained with w = 1).
(b) Surface of f∗

(trained with w = 3
2

).
(c) Surface of f∗

(trained with w = 3).
(d) Histograms of values

of f∗(y) for y ∼ Q.

Figure 11: Illustration the unused samples. In Figures 11a, 11b, 11c, we visualize the surface of the
learned potential f∗ on the ’Wi-Fi’ example and w ∈ {1, 32 , 3}. In Figures 11b, 11c, the potential

vanishes on the arcs of Q to which the mass of P is not mapped, i.e., f∗(y) = 0. In Figure 11d, we
plot the distribution of values of f∗(y) for y ∼ Q. For w ∈ { 32 , 3}, we see large pikes around
f∗(y) = 0 further demonstrating that the potential equals to zero on a certain part of Q.
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Limited quantitative metrics. In experiments (M5), we use a limited amount of quantitative metrics.
This is because existing unpaired metrics, e.g., FID [32], KID [8], etc., are not suitable for our
setup. They aim to test equalities, such as T♯P = Q, while our learned maps disobey it by the
construction (they capture only a part of Q). Developing quality metrics for partial generative models
is an important future research direction. Meanwhile, for our method, we have provided a toy 2D
analysis (M5.1) and explanatory metrics (M5.2), such as the transport cost (Table 1a).

Inexistent IT maps. The actual IT plans between P,Q may be non-deterministic, while our approach
only learns a deterministic map T . Nevertheless, thanks to our Proposition 3, for every ϵ > 0 there
always exists a 1-to-1 map Tϵ♯P ≤ wQ which provides ϵ-sub-optimal cost

∫
X c

(
x, Tϵ(x)

)
dP(x) ≤

Costw(P,Q) + ϵ. Thus, IT cost (12) can be approached arbitrary well with deterministic transport
maps. A potential way to modify our algorithm is to learn stochastic plans is to add random noise z
to generator T (x, z) as input, although this approach may suffer from ignoring z, see [43, M5.1].

Fake solutions and instabilities. Lagrangian objectives such as (15) may potentially have optimal
saddle points (f∗, T ∗) in which T ∗ is not an OT map. Such T ∗ are called fake solutions [42] and
may be one of the causes of training instabilities. Fake solutions can be removed by considering OT
with strictly convex weak costs functions [43, Appendix H], see Appendix G.2 for examples.

Potential societal impact. Neural OT methods and, more generally, generative models are a
developing research direction. They find applications such as style translation and realistic content
generation. We expect that our method may improve existing applications of generative models and
add new directions of neural OT usage like outlier detection. However, it should be taken into account
that generative models can also be used for negative purposes such as creating fake faces.

B Toy 2D Illustrations of Other Methods

In this section, we demonstrate how the other methods perform in ’Wi-Fi’ and ’Accept’ experiments.
We start with ’Wi-Fi’. Assume that we would like to map P to the closest 2

3 -rd fraction of Q, i.e., we
aim to learn 2 of 3 arcs in Q, (as in Fig. 7c).

In Fig. 12d, we show the discrete partial OT (4) [11] with parameters w0 = m = 1,
w1 = 3

2 , corresponding to IT (12) with w = 3
2 . To obtain the discrete matching, we run

ot.partial.partial_wasserstein2 from POT5. As expected, it matches the input P with 2
3

of Q and can be viewed as the ground truth (coinciding with our Fig. 7c).

First, we show the GAN [27] endowed with additional ℓ2 loss with weight λ = 0.5 (in Fig. 12a). Next,
we consider discrete unbalanced OT [14] with the quadratic cost c = ℓ2. In Fig. 12b, we show the
results of the matching obtained by ot.unbalanced with parameters m = 1, reg = 0.1, regm = 1,
numItermax = 200000. Additionally, in Fig. 12c we show the result of neural unbalanced OT
method [66].6 To make their unbalanced setup maximally similar to our IT, we set to zero their
regularization parameters. The rest parameters are default except for λ0 = 0.02 (ℓ2 loss parameter),
λ2 = 5 (input and target measures’ variation parameter).

We see that GAN+ℓ2 (Fig. 12a) and unbalanced OT (Fig. 12b and 12c) indeed match P with only a
part of the target measure Q. The transported mass is mostly concentrated in the two small arcs of
Q which are closest to P w.r.t. ℓ2 cost. The issue here is that some mass of P spreads over the third
(biggest) arc of Q yielding outliers. This happens because unbalanced OT (GAN can be viewed as its
particular case) is an unconstrained problem: the mass spreading is controlled via soft penalization
(f -divergence loss term). The lack of hard constraints, such as those in partial OT (4) or IT (12),
makes it challenging to strictly control how the mass in unbalanced OT actually spreads.

For completeness, we also show the results of these methods applied to ’Accept’ experiment, see
Fig. 13. Here we tested various hyperparameters for these methods but did not achieve the desired
behaviour, i.e., learning only the text ’Accept’. Moreover, we noted that GAN+ℓ2 for large λ yields
undesirable artifacts (Fig. 13a). This is because GAN and ℓ2 losses contradict to each other and still
the models tried to minimize them both. We further discuss in Appendix C below.

5pythonot.github.io
6github.com/uhlerlab/unbalanced_ot
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(a) GAN+ℓ2. (b) Discrete unbalanced
OT.

(c) Scalable unbalanced
OT.

(d) Discrete Partial OT
(desired ground truth).

Figure 12: Transport maps learned by various methods in ’Wi-Fi’ experiment (Fig. 7a).

(a) GAN+ℓ2. (b) Discrete unbalanced
OT.

(c) Scalable unbalanced
OT.

(d) Discrete Partial OT
(desired ground truth).

Figure 13: Transport maps learned by various methods in ’Accept’ experiment.

C Comparison with Other Image-to-Image Translation Methods

Recall that ET by design is the best translation between a pair of domains w.r.t. the given dissimilarity
function c(x, y). Our IT maps with the increase of w provide better input-output similarity and
recover ET when w →∞ (M3.3). A reader may naturally ask: (a) How else can we recover ET maps?
(b) To which extent one can control the input-output similarity in existing translation methods? (c)
Can these methods be used to approximate ET? We discuss these aspects below.

Many translation methods are based on GANs, see [55, 3, 13] for a survey. Their learning objectives
are usually combined of several loss terms:

LTotal(T )
def
= LDom(T ) + λ · LSim(T ) + [other terms]. (17)

In (17), the domain lossLDom is usually the vanilla GAN loss involving a discriminator [27] ensuring
that the learned map x 7→ T (x) transforms inputs x ∼ P to the samples from the target data distri-
bution Q. The similarity loss LSim (with λ ≥ 0) is usually the identity loss

∫
X ∥x− T (x)∥1dP(x).

More generally, it can be an arbitrary unsupervised loss of the form
∫
X c

(
x, T (x)

)
dP(x) stimulat-

ing the output sample T (x) to look like the input samples x w.r.t. given dissimilarity function c,
e.g., ℓ1, ℓ2, ℓp, perceptual, etc. The other terms in (17) involve model-specific terms (e.g., cycle
consistency loss in CycleGAN) which are not related to our study.

When learning a model via optimizing (17), a natural way to get better similarity of x and T (x) in
(17) is to simply increase weight λ of the corresponding loss term. This is a straightforward approach
but it has a visible limitation. When λ is high, the term λ · LSim dominates over the other terms
such as LDom, and the model T simply learns to minimize this loss ignoring the fact that the output
sample should be from the target data distribution Q. In other words, in (17) there is a nasty trade-off
between T (x) belonging to the target data distribution Q and input-output similarity of x and T (x).
The parameter λ ≥ 0 controls this realism-similarity trade-off, and we study how it affects the learned
map T below.

We pick CycleGAN [72] as a base model for evaluation since it is known as one of the
principal models to solve the unpaired translation problem. We use c = ℓ1 as the similar-
ity loss as the CycleGAN’s authors originally used in their paper.7 We consider parameter
λ ∈ [0, 50, 100, 200, 250, 300, 350, 500].

7We also conducted a separate experiment to train CycleGAN with ℓ2 identity loss. However, in this case
CycleGAN’s training turned to be less stable and, importantly, yielded (mostly) worse FID. Surprisingly, we

17



Additionally, we perform comparison with a more recent StarGAN-v2 [15] model. By default,
StarGAN-v2 does not use any similarity loss and does not enforce the output to be similar to the
input. Therefore, analogously to CycleGAN, we endow the model with an additional ℓ1 similarity
loss and consider λ ∈ [0, 1, 10, 50, 100, 200, 500].
We train both models on celeba→ anime (64× 64) and handbags→ shoes (128× 128) translation
with various λ and report the qualitative and quantitative results below. In all the cases, we report
both ℓ2 and ℓ1 transport costs and FID on the test samples. Tables 2, 3, 4, 5 show transport costs and
FID of GANs. FID and ℓ2 metrics for our method are given in the main text (Tables 1b, 1a) and ℓ1
cost is given in Table 6 below. For convenience, we visualize (FID,Cost) pairs for our method and
GANs in Fig. 14.
Results and discussion (CycleGAN). Interestingly, we see that for CycleGAN adding small identity
loss λ = 50 yields not only decrease of the transport cost (compared to λ = 0), but some improvement
of FID as well. Still we see that the transport cost in CycleGAN naturally decreases with the increase
of weight λ. Unfortunately, this decrease is accompanied by the decrease of the visual image quality,
see Fig. 15. While for large λ the cost for CycleGAN is really small, the model is practically useless
since it poors image quality. For very large λ, CycleGAN simply learn the identity map, as expected.
For λ providing acceptable visual quality, CycleGAN yields a transport cost which is bigger than
that of standard OT (w = 1). Our result for w = 8 is unachievable for it. Note that in most cases
FID of our IT method is smaller than that of CycleGAN.
Results and discussion (StarGAN-v2). In the celeba→anime experiment, StarGAN-v2 results
are similar to CycleGAN ones. Our IT with w = 2 easily provides smaller transport cost (better
similarity) than StarGAN-v2. In the handbags→ shoes translation, we have encountered surprising
observations. We see that starting from λ = 10 the model fails to translate some of the handbags to
shoes, i.e., these handbags remain nearly unchanged. We notice the similar behaviour for vanilla GAN
in ’Accept’ experiment, see Fig. 13a. This explains the low cost for StarGAN-v2 model (λ ≥ 10).
Surprisingly to us, for λ = 10, FID metric is also low despite the fact that model frequently produces
failures, see the highlighted results in Fig. 16. Note that while FID is a widely used metric, it still
could produce misleading estimations which we observe in the latter case.
Additionally, we provide a large set of randomly generated images for λ = 10 to qualitatively show
that the stated issue is indeed notable, see Fig. 17. These failures demonstrate the limited practical
usage of the model. Our IT method does not suffer from this issue which we qualitatively demonstrate
on the same set of images for different weights w, see Fig. 25.

Experiment Cost λ = 0 λ = 50 λ = 100 λ = 200 λ = 250 λ = 300 λ = 350 λ = 500
celeba → anime

ℓ1
0.48 0.48 0.39 0.26 0.09 0.09 0.09 0.09

handbag → shoes 0.42 0.36 0.34 0.31 0.32 0.22 0.16 0.07
celeba → anime

ℓ2
0.33 0.32 0.24 0.11 0.01 0.02 0.02 0.01

handbag → shoes 0.51 0.43 0.41 0.35 0.37 0.22 0.14 0.02

Table 2: Test ℓ1 and ℓ2 transport cost of CycleGAN.

Experiment λ = 0 λ = 50 λ = 100 λ = 200 λ = 250 λ = 300 λ = 350 λ = 500
celeba → anime 22.9 20.8 35.2 88.8 122.2 123.5 120.0 122.8

handbag → shoes 27.8 23.4 23.6 37.4 38.5 105.6 144.9 152.9

Table 3: Test FID of CycleGAN.

Experiment Cost λ = 0 λ = 1 λ = 10 λ = 50 λ = 100 λ = 200 λ = 500
celeba → anime

ℓ1
0.672 0.355 0.210 0.076 0.050 0.030 0.029

handbag → shoes 0.562 0.465 0.244 0.087 0.068 0.054 0.048
celeba → anime

ℓ2
0.686 0.216 0.094 0.017 0.006 0.002 0.002

handbag → shoes 0.739 0.584 0.244 0.040 0.023 0.015 0.012

Table 4: Test ℓ1 and ℓ2 transport costs of StarGAN-v2.

Experiment λ = 0 λ = 1 λ = 10 λ = 50 λ = 100 λ = 200 λ = 500
celeba → anime 19.55 22.40 42.30 99.68 123.76 137.8 139.11

handbag → shoes 25.45 45.13 22.36 131.8 149.8 155.8 158.8

Table 5: Test FID of StarGAN-v2.

observed higher test transport costs (both ℓ2 and ℓ1). Therefore, not to overload the exposition, we decided to
keep only the experiment with CycleGAN trained with ℓ1 identity loss.
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(a) Test ℓ2 transport cost. (b) Test ℓ1 transport cost.
Figure 14: Comparison of test FID and transport costs (ℓ2 and ℓ1) of our IT method and CycleGAN.

Experiment w = 1 w = 2 w = 4 w = 8
celeba → anime 0.447 0.309 0.275 0.225

handbag → shoes 0.327 0.328 0.263 0.264
Table 6: Test ℓ1 transport cost of our IT maps (learned with ℓ2 transport cost).

Concluding remarks. Our algorithm with w →∞ allows us to achieve better similarity without the
decrease of the image quality. At the same time, GANs fail to do this when λ→∞. Why?

We again emphasize that typical GAN objective (17) consists of several loss terms. Each term
stimulates the model to attain certain properties (realism, similarity to the input, etc.). These terms,
in general, contradict each other as they have different minima T . This yields the nasty trade-off
between the loss terms. Our analysis shows that conceptually there is no significant difference
between CycleGAN and a more recent StarGAN-v2 model. More generally, any GAN-based method
inherits realism-similarity tradeoff issue. GANs’ differences are mostly related to the use of other
architectures or additional losses. Therefore, we think that additional comparisons are excessive since
they may not provide any new insights.

In contrast, our method is not a sum of losses. Our objective (15) may look like a direct sum of a
transport cost with an adversarial loss; our method does have a generator (transport maps T ) and a
discriminator (potential f ) which are trained via the saddle-point optimization objective maxf minT .
Yet, this visible similarity to GAN-based methods is deceptive. Our objective maxf minT can
be viewed as a Lagrangian and is atypical for GANs: the generator is in the inner optimization
problem minT while in GANs the objective is minT maxf . In our case, similar to other neural dual
OT methods, the generator is adversarial to the discriminator but not vice versa, as in GANs. Please
consult [43, M4.3], [24] or [20] for further discussion about OT methods.

GANs aim to balance loss terms LDom and LSim. Our optimization objective enforces the constraint
T♯P ≤ wQ via learning the potential f (a.k.a. Lagrange multiplier) and among admissible maps T
searches for the one providing the smallest transport cost. There is no realism-similarity trade-off.
For completeness, we emphasize that when w →∞, FID in Table 1b does not drop because of the
decrease of the image quality, but because our method covers the less part of Q. FID negatively reacts
to this [48, Fig. 1b].

D Relation and Comparison with Discrete Partial OT Methods
The goal of domain translation is to recover the map x 7→ T (x) between two domains P, Q.
We approach this problem by approximating T with a neural network trained on the empirical
samples X = {x1, . . . , xN}, Y = {y1, . . . , yM}, i.e., train datasets. Our method generalizes to new
(previously unseen, test) input samples xnew ∼ P, i.e, our learned map T̂ can be applied to new input
samples to generate new target samples T̂ (xnew).

In contrast, discrete OT methods (including discrete partial OT) perform a matching between the
empirical distributions P̂N =

∑N
n=1 δxn , Q̂M =

∑M
m=1 δym . Thus, they do not provide out-of-

sample estimation of the transport plan π(y|xnew) or map T (xnew). The reader may naturally
wonder: why not to interpolate the solutions of discrete OT? For example, a common strategy is
to derive barycentric projections T (x) =

∫
Y ydπ(y|x) of the discrete OT plan π and then learn a

network Tθ(x) ≈ T (x) to approximate them [63]. Below we study this approach and show that it
does not provide reasonable performance.
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(a) Celeba (female) → anime (64×64). (b) Handbags → shoes (128×128).

Figure 15: Unpaired translation via CycleGAN endowed with ℓ1 identity loss with various weights λ.

(a) Celeba (female) → anime (64×64). (b) Handbags→ shoes (128×128).

Figure 16: Unpaired translation via StarGAN-v2 endowed with ℓ1 identity loss
with various weights λ.
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Figure 17: Unpaired translation of handbags to shoes (128×128) via StarGAN-v2 endowed with
ℓ1 identity loss (λ = 10). Since StarGAN-v2 is a stochastic (one-to-many) approach, we visualize
several generated samples for different noise vectors z. Failures (poorly translated handbags which

remain nearly unchanged) are highlighted with red.

We perform evaluation of the BP approach on celeba→anime translation. We solve the discrete
partial OT (DOT) between the parts of the train data X (11K samples), Y (50K samples).8 We
use ot.partial.partial_wasserstein algorithm with parameters w0 = m = 1 and vary w1 ∈
{1, 2, 4, 8}, see the notation in (4). This corresponds to our IT (12) with w = w1. Then we regress a
UNet Tθ to recover the barycentric projection T . We also simulate the case of w =∞ by learning the
discrete NNs in the train dataset using NearestNeighbors algorithm from sklearn.neighbors.
We experiment with using MSE or VGG-based perceptual error9 as the loss function for regression.
We visualize the obtained results in Fig. 18 and report average ℓ2 test transport cost, FID in Table 7.

Metrics w = 1 w = 2 w = 4 w = 8 w = ∞ w = ∞
(perc.)

ℓ2 cost 0.298 0.199 0.184 0.167 0.158 0.165
FID 185.35 137.53 82.67 82.19 82.24 82.45

Table 7: Test ℓ2 cost, FID of the DOT+BP method
trained with ℓ2 or perceptual loss function.

BP methods are known not to work well
in large scale problems such as unpaired
translation because of the averaging effect,
see Figure 3 and large FID values of BP
in Table 1 of [17]. Indeed, one may learn
a barycentric projection network Tθ(x) ≈∫
Y ydπ(y|x) over the discrete OT plan π,

yet it is clear that
∫
Y ydπ(y|x) is a direct weighted average of several images y, i.e., some blurry

average image of poor quality. It is not satisfactory for practical applications.

Figure 19: Test FID, ℓ2 cost
of our IT vs. DOT+BP.

Our qualitative results indeed show that BP approach for small w
leads to the averaging effect. We see that on the train dataset this
effect disappears with the increase of w, see Fig. 18b. It is expected,
since with the increase of weight the conditional distribution of a
plan π(y|x) tends to a degenerate distribution concentrated at the
nearest neighbor NN(x) of x in the train dataset, i.e., π(y|x) ≈
δNN(x) when w →∞. This means, that in the limit the barycentric
projection in point x is its nearest neighbor NN(x).

However, the learned network (w = ∞) does not generalize well
to unseen test samples and produces images of insufficient quality
which is much worse than for the train samples, see Fig. 18a. Despite
the fact that test ℓ2 cost and FID decrease with the increase of w, see

8We do not use the whole datasets since computing discrete OT between them is computationally infeasible.
9github.com/iamalexkorotin/WassersteinIterativeNetworks/src/losses.py
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(a) Results on test set. (b) Results on train set.

Figure 18: Unpaired translation with DOT+BP in celeba→ anime experiment
visualized on test, train partitions.

Table 7, Fig. 19, generated test images have poor quality for all weights w. Yet, the FID scores as
well as the ℓ2 costs are much bigger than in our method in all the cases.

As the MSE error for regression is known not to work well in image tasks, we also conduct an
experiment using the perceptual error function to learn Tθ. Unfortunately, training the neural network
with perceptual error does not lead to meaningful improvements, see the bottom lines of Fig. 18b,
18a, Table 7. This confirms that the origins of DOT+BP method’s poor performance lie not in the
regression part, but in the entire methodology based on barycentric projections.

To conclude, discrete OT methods are not competitors to our work as there is no straightforward and
well-performing way to make out-of-sample DOT estimation in large scale image processing tasks.

E Experimental Details

Pre-processing. For all datasets, we rescale images’ RGB channels to [-1, 1]. As in [40], we rescale
aligned anime face images to 512×512. Then we do 256×256 crop with the center located 14
pixels above the image center to get the face. Finally, for all datasets except the textures dataset, we
resize the images to the required size (64×64 or 128×128). We apply random horizontal flipping
augmentation to the comic faces and chairs datasets. Analogously to [42], we rescale describable
textures to minimal border size of 300, do the random resized crop (from 128 to 300 pixels) and
random horizontal, vertical flips. Next, we resize images to the required size (64 × 64 or 128 × 128).

Neural networks. In M5.1, we use fully connected networks both for the mapping Tθ and potential
fψ. In M5.2, we use UNet [60] architecture for the transport map Tθ. We use WGAN-QC’s [45]
ResNet [30] discriminator as a potential fψ. We add an additional final layer x 7→ −|x| to fψ to
make its outputs non-positive.

Optimization. We employ Adam [38] optimizer with the default betas both for Tθ and fψ. The
learning rate is lr = 10−4. We use the MultiStepLR scheduler which decreases lr by 2 after
[(5+5·w)K, (20+5·w)K, (40+5·w)K, (70+5·w)K] iterations of fψ where w ∈ {1, 2, 4, 8} is a weight
parameter. The batch size is |X| = 256 for toy ’Wi-Fi’, |X| = 4096 for toy Accept, and |X| = 64
for image-to-image translation experiments. The number of inner Tθ iterations is kT = 10. In toy
experiments, we observe convergence in ≈ 30K total iterations of fψ for ’Wi-Fi’, in ≈ 70K for
Accept. In the image-to-image translation, we do ≈ 70K iterations for 128 ×128 datasets, ≈ 40K
iterations for 64×64 datasets. In the experiments with image-to-image translation experiments, we
gradually increase w for 20K first iterations of fψ. We start from w = 1 and linearly increase it to
the desired w (2, 4 or 8).
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Computational complexity. The complexity of training IT maps depends on the dataset, size of
images and weight w. Convergence time increases with the increase of w: possible reasons for this
are discussed in the unused samples limitation (Appendix A). In general, it takes from 2 (for w = 1)
up to 6 (for w = 8) days on a single Tesla V100 GPU.

Reproducibility. We provide the code for the experiments and will provide the trained models, see
README.md.

F Proofs

Proof of Proposition 1. Since continuous c is defined on a compact set X × Y , it is uniformly
continuous on X × Y . This means that there exists a modulus of continuity ω : [0,+∞)→ [0,∞)
such that for all (x, y), (x′, y′) ∈ X × Y it holds

|c(x, y)− c(x′, y′)| ≤ ω(||x− x′||X + ||y − y′||Y),

and function ω is monotone, continuous at 0 with ω(0) = 0. In particular, for y = y′ we have
|c(x, y) − c(x′, y)| ≤ ω(||x − x′||X ). Thus, for c∗(x) = miny∈Supp(Q) c(x, y), we have |c∗(x) −
c∗(x′)| ≤ ω

(
||x− x′||X

)
, see [62, Box 1.8]. This means that c∗ : X → R is (uniformly) continuous.

Proof of Theorem 1. Since function (x, y) 7→ c(x, y) is continuous, there exists a measurable se-
lection T ∗ : X → Y from the set-valued map x 7→ argminy∈Supp(Q) c(x, y), see [2, Theorem
18.19]. This map for all x ∈ X satisfies c

(
x, T (x)

)
= min

y∈Supp(Q)
c(x, y) = c∗(x). As a result,∫

X c
(
x, T (x)

)
dP(x) =

∫
X c

∗(x)dP(x) and (7) is tight.

Lemma 1. (Distinctness) Let µ, ν ∈ M(Y). Then µ ≤ ν holds if and only if for every f ∈ C(Y)
satisfying f ≤ 0 it holds that

∫
Y f(y)dµ(y) ≥

∫
Y f(y)dν(y).

Proof of Lemma 1. If µ ≤ ν, then the inequality
∫
Y f(y)d(µ − ν)(y) ≥ 0 for every (measurable)

f ≤ 0 follows from the definition of the Lebesgue integral. Below we prove the statement in the
other direction.

Assume the opposite, i.e.,
∫
Y f(y)d(µ− ν)(y) ≥ 0 for every continuous f ≤ 0 but still ν ≱ µ. The

latter means there exists a measurableA ⊂ Y satisfying µ(A) > ν(A). Let ϵ = 1
2

(
µ(A)−ν(A)

)
> 0.

Consider the negative indicator function fA(y) which equals−1 if y ∈ A and 0 when y /∈ A. Consider
a variation measure |ν − µ| ∈ M+(Y). Thanks to [23, Proposition 7.9], the continuous functions
C(Y) are dense in the space L1(|µ− ν|). Therefore, there exists a function fA,ϵ ∈ C(Y) satisfying∫
X |fA(y) − fA,ϵ(y)|d

∣∣µ − ν|(y) < ϵ. We define f−A,ϵ(y)
def
= min{0, fA,ϵ(y)} ≤ 0. This is a

non-positive continuous function, and for y ∈ Y it holds that |fA(y)− fA,ϵ(y)| ≥ |fA(y)− f−A,ϵ(y)|
because fA takes only non-positive values {0,−1}. We derive

∫
Y
f−A,ϵ(y)d(µ− ν)(y) =

=ν(A)−µ(A)=−2ϵ︷ ︸︸ ︷∫
Y
fA(y)d

(
µ− ν

)
(y)+

∫
Y
(f−A,ϵ(y)− fA(y))d

(
µ− ν

)
(y) ≤

−2ϵ+
∫
Y
|f−A,ϵ(y)− fA(y)|d

∣∣µ− ν∣∣(y) ≤ −2ϵ+ ∫
Y
|fA,ϵ(y)− fA(y)|d

∣∣µ− ν∣∣(y) ≤
−2ϵ+ ϵ = −ϵ < 0,

which is a contradiction to the fact that
∫
Y f(y)d(µ− ν)(y) ≥ 0 for every continuous f ≤ 0. Thus,

µ ≤ ν.

Proof of Proposition 2. To begin with, we prove that Πw(P,Q) is a weak-* compact set. Pick any
sequence πn ∈ Πw(P,Q). It is bounded as all πn are probability measures (∥πn∥1=1). Hence by
the Banach-Alaoglu theorem [62, Box 1.2], there exists a subsequence πnk

weakly-∗ converging to
some π ∈M(X × Y). It remains to check that π ∈ Πw(P,Q). Let (µnk

, νnk
) denote the marginals
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of πnk
and (µ, ν) be the marginals of π. Pick any f ∈ C(Y) with f ≤ 0. Since πnk

∈ Πw(P,Q), it
holds that 0 ≤ νnk

≤ wQ, w
∫
Y f(y)dQ(y)≤

∫
Y f(y)dνnk

(y)≤0 (Lemma 1). We have∫
Y
f(y)dν(y) =

∫
X×Y

f(y)dπ(x, y) = lim
k→∞

∫
X×Y

f(y)dπnk
(x, y) = lim

k→∞

∫
Y
f(y)dνnk

(y).

The latter limit is ≥ w
∫
Y f(y)dQ(y) and ≤ 0. As this holds for every continuous f ≤ 0, we

conclude that 0 ≤ ν ≤ wQ. By the analogous analysis one may prove that µ = P and π ≥ 0. Thus,
π ∈ Πw(P,Q) and Πw(P,Q) is a weak-* compact.

The functional π 7→
∫
X×Y c(x, y)dπ(x, y) is continuous in the spaceM(X × Y) equipped with

weak-∗ topology because c : X ×Y → R is continuous. Since Πw(P,Q) is a compact set, there exists
π∗ ∈ Πw(P,Q) attaining the minimum on Πw(P,Q). This follows from the Weierstrass extreme
value theorem and ends the proof.

Bibliographical remark. The results showing the existence of minimizers π∗ in partial OT (4)
already exist, see [10, Lemma 2.2] or [22, M2]. They also provide the existence of minimizers in our
IT problem (12). Yet, the authors study the particular case when P,Q have densities on X ,Y ⊂ RD.
For completeness, we include a separate proof of existence as we do not require the absolute continuity
assumption. The proof is performed via the usual technique based on weak-* compactness in dual
spaces and is analogous to [62, Theorem 1.4] which proves the existence of minimizers for OT
problem (2). Our proof is slightly more technical due to the inequality constraint.

Proof of Proposition 3. Let π∗∈Πw(P,Q) be an IT plan. Consider the OT problem between P and
π∗
y :

min
π∈Π(P,π∗

y)

∫
X×Y

c(x, y)dπ(x, y). (18)

It turns out that π∗ is a minimizer here. Assume the contrary, i.e., that there exists a more optimal
π′ ∈ Π(P, π∗

y) satisfying∫
X×Y

c(x, y)dπ′(x, y) <

∫
X×Y

c(x, y)dπ∗(x, y)
(
= Costw(P,Q)

)
. (19)

This plan by the definition of Π(P, π∗
y) satisfies π′

x = P and π′
y = π∗

y ≤ wQ, i.e., π′ ∈ Πw(P,Q).
However, (19) contradicts the fact that π∗ is an IT plan in (18) as π′ provides smaller cost. Thus, min
in (18) equals Costw(P,Q) in (12).

Thanks to [62, Theorem 1.33], problem (18) has the same minimal value as the inf in the Monge’s
problem

inf
T♯P=π∗

y

∫
X
c
(
x, T (x)

)
dP(x), (20)

i.e., for every ϵ > 0 there exists Tϵ : X → Y satisfying Tϵ♯P = π∗
y and

∫
X c

(
x, Tϵ(x)

)
dP(x) <

Costw(P,Q) + ϵ. It remains to substitute this Tϵ to Monge’s IT problem (11) to get an ϵ-close
transport cost to Kantorovich’s IT cost (12). As this works for every ϵ > 0, we conclude that min in
(12) is the same as inf in (11).

Proof of Theorem 2. The fact that w 7→ Costw(P,Q) is non-increasing follows from the inclusion
Πw1(P,Q) ⊂ Πw2(P,Q) for w1 ≤ w2. This inclusion means that for larger values of w, the
minimization in (12) is performed over a larger set of admissible plans. As for convexity, take any IT
plans πw1 ∈ Πw1(P,Q), πw2 ∈ Πw2(P,Q) for w1, w2, respectively. For any α ∈ [0, 1] consider the
mixture π′ = απw1 + (1− α)πw2 . Note that π′

y = απw1
y + (1− α)πw2

y ≤ αw1Q+ (1− α)w2Q =(
αw1 + (1− α)w2

)
Q. Therefore, π′ ∈ Παw1+(1−α)w2(P,Q). We derive

Costαw1+(1−α)w2
(P,Q) ≤

∫
X×Y

c(x, y)dπ′(x, y) =

α

∫
X×Y

c(x, y)dπw1(x, y) + (1− α)
∫
X×Y

c(x, y)dπw2(x, y) =

αCostw1
(P,Q) + (1− α)Costw2

(P,Q), (21)
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which shows the convexity of w 7→ Costw(P,Q).

Now we prove that limw→∞ Costw(P,Q) = Cost∞(P,Q). For every w ≥ 1 and π ∈ Πw(P,Q), it
holds that πy ≤ wQ. This means that Supp(πy) ⊂ Supp(Q). As a result, we see that Πw(P,Q) ⊂
Π∞(P,Q), i.e., Costw(P,Q) ≥ Cost∞(P,Q). We already know that w 7→ Costw(P,Q) is non-
increasing, so it suffices to show that for every ϵ > 0 there exists w = w(ϵ) ∈ [1,+∞) such that
Costw(P,Q) ≤ Cost∞(P,Q) + ϵ. This will provide that limw→∞ Costw(P,Q) = Cost∞(P,Q).

Pick any ϵ > 0. Consider the set S def
= {(x, y) ∈ X × Y such that y ∈ NN(x)}. It is a compact set.

To see this, we pick any sequence (xn, yn) ∈ S . It is contained in compact X × Y . Therefore, it has
a sub-sequence (xnk

, ynk
) converging to some (x, y) ∈ X × Y . It remains to check that (x, y) ∈ S .

Since Supp(Q) is compact and ynk
∈ NN(xnk

) ⊂ Supp(Q), we have y ∈ Supp(Q) as well. At the
same time, by the continuity of c∗ (Proposition 1) and c, we have

c(x, y)− c∗(x) = lim
k→∞

{c(xnk
, ynk

)− c∗(xnk
)} = lim

k→∞
0 = 0,

which means that y ∈ NN(x) and (x, y) ∈ S, i.e., S is compact.

Since (x, y) 7→ c(x, y) − c∗(x) is a continuous function, for each (x, y) ∈ S there exists an open
neighborhood Ux × Vy ⊂ X × Y of (x, y) such that for all (x′, y′) ∈ Ux × Vy it holds that
c(x′, y′) − c∗(x′) < ϵ or, equivalently, c(x′, y′) < c∗(x′) + ϵ. Since

⋃
(x,y)∈S Ux × Vy is an open

coverage of the compact set S , there exists a finite sub-coverage
⋃N
n=1 Uxn

× Vyn of S . In particular,

X =
⋃N
n=1 Uxn

. For convenience, we simplify the notation and put Un
def
= Uxn

and Vn
def
= Vyn .

Now we put U ′
1
def
= U1 and iteratively define U ′

n
def
= Un \ U ′

n−1 for n ≥ 2. By the construction, it
holds that the entire space X is a disjoint union of U ′

n, i.e., X =
⊔N
n=1 U

′
n. Some of U ′

n may be
empty, so we just remove them from the sequence and for convenience assume that each U ′

n is not
empty. Now consider the measure π ∈ P(X × Y) which is given by

π
def
=

N∑
n=1

[
P|U ′

n
× Q|Vn

Q(Vn)

]
. (22)

Here for µ, ν ∈M+(X ),M+(Y), we use × to denote their product measure µ× ν ∈M(X × Y).
In turn, for a measurable A ⊂ X , we use µ|A to denote the restriction of µ to A, i.e., measure
µ′ ∈M(X ) satisfying µ′(B) = µ(A∩B) for every measurable B ⊂ X . Note that

∑N
n=1 P|U ′

n
= P

and
∑N
n=1 P(U ′

n) =
∑N
n=1 P|U ′

n
(U ′

n) = 1 by the construction of U ′
n. At the same time, for each

n it holds that Q|Vn

Q(Vn)
is a probability measure because of the normalization Q(Vn). Note that this

normalization is necessarily positive because Vn is a neighborhood of a point in Supp(Q). Therefore,
since sets U ′

n are disjoint and cover X , we have πx =
∑N
n=1 P|U ′

n
= P. Now let us show that there

exists w such that πy ≤ wQ. It suffices to take w =
∑N
n=1

P(U ′
n)

Q(Vn)
. Indeed, in this case for every

measurable A ⊂ Y we have

πy(A) =

N∑
n=1

P(U ′
n)

Q(A ∩ Vn)
Q(Vn)

≤
N∑
n=1

P(U ′
n)

Q(A)

Q(Vn)
≤ Q(A)

N∑
n=1

P(U ′
n)

Q(Vn)
≤ wQ(A),

which yields πy ≤ wQ and means that π ∈ Πw(P,Q) for our chosen w. Now let us compute the cost
of π: ∫

X×Y
c(x, y)dπ(x, y) =

N∑
n=1

∫
U ′

n

{
1

Q(Vn)

∫
Vn

c(x, y)dQ|Vn
(y)

}
dP|U ′

n
(x) ≤

N∑
n=1

∫
U ′

n

{
1

Q(Vn)

∫
Vn

(
c∗(x) + ϵ

)
dQ|Vn(y)

}
︸ ︷︷ ︸

=c∗(x)+ϵ

dP|U ′
n
(x) =

N∑
n=1

∫
U ′

n

(
c∗(x) + ϵ

)
dP|U ′

n
(x) =

∫
X

(
c∗(x) + ϵ

)
dP(x) = Cost∞(P,Q) + ϵ. (23)

To finish the proof it remains to note that this plan is not necessarily a minimizer for (12), i.e.,∫
X×Y c(x, y)dπ(x, y) is an upper bound on Costw(P,Q). Therefore, we have Costw(P,Q) ≤

Cost∞(P,Q) + ϵ for our chosen w = w(ϵ).
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Bibliographical remark. There exist seemingly related but actually different results in the
fundamental OT literature, see [22, Lemma 2.1] or [10, M3]. There the authors study partial OT
problem (4) and study how the partial OT plan and OT cost evolve when the marginals w0P and w1Q
are fixed and the required mass amount to transport changes from 0 to min{w0, w1}. In our study,
the first marginal w0P and the amount of mass to transport m are fixed (w0 = m = 1), and we study
how the OT cost changes when w1 →∞ in the IT problem.

Proof of Theorem 3. Note that P(X ×Y) is (weak-*) compact. This can be derived from the Banach-
Alaoglu theorem analogously to the compactness of Πw(P,Q) in the proof of Theorem (2). Therefore,
any sequence in P(X × Y) has a converging sub-sequence. In our case, for brevity, we assume that
πwn ∈ Πwn(P,Q) itself weakly-* converges to some π∗ ⊂ P(X ×Y). Since πwn

x = P for all n, we
also have π∗

x = P. As limn→∞ wn =∞, we conclude from Theorem 2 that

Cost∞(P,Q) = lim
n→∞

Costwn
(P,Q) = lim

n→∞

∫
X×Y

c(x, y)dπwn(x, y) =

∫
X×Y

c(x, y)dπ∗(x, y),

(24)
where the last equality holds since πwn (weakly-*) converges to π∗. From (24), we see that the
cost of π∗ is perfect and it remains to check that Supp(π∗

y) ⊂ Supp(Q). Assume the opposite and
pick any y∗ ∈ Supp(π∗

y) such that y∗ /∈ Supp(Q). By the definition of the support, there exists
ϵ > 0 and a neighborhood U = {y ∈ Y such that ∥y − y∗∥Y < ϵ} of y∗ satisfying π∗

y(U) > 0 and

U ∩ Supp(Q) = ∅. Let h(y)
def
= max{0, ϵ− ∥y − y∗∥Y}. From πwn

y ≤ wnQ (for all n), it follows
that Supp(πwn

y ) ⊂ Supp(Q). Therefore, πwn
y (U) = 0 for all n. Since πwn converges to π∗, we have

lim
n→∞

∫
Y
h(y)dπwn(y) =

∫
Y
h(y)dπ∗(y). (25)

The left part is zero because h(y) vanishes outside U and
∫
U
h(y)dπwn(y) = 0 as πwn

y (U) = 0. The
right part equals

∫
U
h(y)dπ∗(y) and is positive as π∗(U) > 0 and h(y) > 0 for y ∈ U . This is a

contradiction. Therefore, Supp(π∗
y) ⊂ Supp(Q). Now we see that π∗ ∈ Π∞(P,Q) is a perfect plan

as its cost matches the perfect cost.

Proof of Corollary 1. Assume the inverse. Then ∃ε such that ∀w(ε) ∃w ≥ w(ε) and ∃ IT plan
πw ∈ Πw(P,Q) solving (12) such that ∀ ET plan π∗, it holds that W1(π

w, π∗) ≥ ε. This means that
there exists an increasing sequence w1, w2, ..., wn, · · · → ∞ and the corresponding sequence of IT
plans πw1 , πw2 , ..., πwn , . . . such that for every ET plan π∗ it holds that W1(π

wn , π∗) ≥ ε for all n.
At the same time, from Theorem 3, this sequence of plans must have a sub-sequence {πwnk } which is
(weakly-*) converging to some ET plan π∗: πw

nk → π∗. Recall that the convergence in W1 coicides
with the weak-∗ convergence (for compact X ,Y), see [62, Theorem 5.9]. Hence, the sub-sequence
should also converge to π∗ in W1 but it is not since W1(π

wn , π∗) ≥ ε. This is a contradiction.

Proof of Theorem 4. Let Π(P) ⊂ P(X × Y) denote the subset of probability measures π ∈
P(X × Y) satisfying πx = P. Consider a functional I : Π(P) → {0,+∞} defined by

I(π)
def
= supf≤0

∫
Y f(y)d

(
wQ − πy

)
(y), where the sup is taken over non-positive f ∈ C(Y).

From Lemma 1, we have I(π) = 0 when π ∈ Πw(P,Q) and I(π) = +∞ otherwise. Indeed, if there
exists a non-positive function satisfying

∫
Y f(y)d

(
wQ− πy

)
(y) > 0, then function Cf (for C > 0)

also satisfies this condition and provides C-times bigger value which tends to∞ with C →∞. We
use I(π) incorporate the right constraint πy ≤ wQ in π ∈ Πw(P,Q) to the objective and obtain the
equivalent to (12) problem:

min
π∈Πw(P,Q)

∫
X×Y

c(x, y)dπ(x, y) = min
π∈Π(P)

{ ∫
X×Y

c(x, y)dπ(x, y) + I(π)

}
=

min
π∈Π(P)

{ ∫
X×Y

c(x, y)dπ(x, y) + sup
f≤0

∫
Y

f(y)d
(
wQ− πy

)
(y)

}
=

min
π∈Π(P)

sup
f≤0

{ ∫
X×Y

c(x, y)dπ(x, y) +

∫
Y

f(y)d
(
wQ− πy

)
(y)

}
= (26)
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sup
f≤0

min
π∈Π(P)

{ ∫
X×Y

c(x, y)dπ(x, y) +

∫
Y

f(y)d
(
wQ− πy

)
(y)

}
= (27)

sup
f≤0

{
min
π∈Π(P)

{ ∫
X×Y

c(x, y)dπ(x, y)−
∫
Y

f(y)dπy(y)
}
+ w

∫
Y

f(y)dQ(y)

}
=

sup
f≤0

{
min
π∈Π(P)

{ ∫
X×Y

c(x, y)dπ(x, y)−
∫

X×Y

f(y)dπ(x, y)
}
+ w

∫
Y

f(y)dQ(y)

}
= (28)

sup
f≤0

{
min
π∈Π(P)

{∫
X

∫
Y

c(x, y)dπ(y|x) dP(x)︸ ︷︷ ︸
=dπx(x)

−
∫
X

∫
Y

f(y)dπ(y|x) dP(x)︸ ︷︷ ︸
=dπx(x)

}
+ w

∫
Y

f(y)dQ(y)

}
= (29)

sup
f≤0

{
min
π∈Π(P)

{∫
X

∫
Y

(
c(x, y)− f(y)

)
dπ(y|x)dP(x)

}
+ w

∫
Y

f(y)dQ(y)

}
(30)

In transition from (26) to (27) we use the minimax theorem to swap sup and min [64, Corollary 2].
This is possible because the expression in (26) is a bilinear functional of (π, f). Thus, it is convex
in π and concave in f . At the same time, Π(P) is a convex and (weak-*) compact set. The latter
can be derived analogously to the compactness of Πw(P,Q) in the proof of Theorem 2. In transition
from (28) to (29), we use the measure disintegration theorem to represent dπ(x, y) as the marginal
dπx(x) = dP(x) and a family of conditional measures dπ(y|x) on Y . We note that

min
π∈Π(P)

∫
X

∫
Y

(
c(x, y)− f(y)

)
dπ(y|x)dP(x)

}
≥

∫
X

min
y∈Y

(
c(x, y)− f(y)

)
︸ ︷︷ ︸

=fc(x)

dP(x). (31)

On the other hand, consider the measurable selection T : X → Y for the set-valued map x 7→
argminy∈Y

(
c(x, y)−f(y)

)
. It exists thanks to [2, Theorem 18.19]. As a result, for the deterministic

plan πT = [id, T ]♯P, the minimum in (31) is indeed attained. Therefore, (31) is the equality. We
combine (30) and (31) and obtain

Costw(P,Q) = min
π∈Πw(P,Q)

∫
X×Y

c(x, y)dπ(x, y) = sup
f≤0

{∫
X

f c(x)dP(x) + w

∫
Y

f(y)dQ(y)

}
. (32)

It remains to prove that sup in the right part is actually attained at some non-positive f∗ ∈ C(Y).
Let f1, f2, · · · ∈ C(Y) be a sequence of non-positive functions for which lim

n→∞

{ ∫
X f

c
n(x)dP(x) +

w
∫
Y fn(y)dQ(y)

}
= Costw(P,Q). For g ∈ C(X ), we define the (c,−)-transform g(c,−)(y)

def
=

min
[
min
x∈X

(
c(x, y)− g(x)

)
, 0
]
≤ 0. It yields a (uniformly) continuous non-positive function satisfy-

ing |g(c,−)(y)− g(c,−)(y′)| ≤ ω
(
∥y − y′∥Y

)
, where ω is the modulus of continuity of c(x, y). This

statement can be derived analogously to the proof of Proposition 1.

Before going further, let us highlight two important facts which we are going to use below. Consider
any g ∈ C(X ) and 0 ≥ h ∈ C(Y) satisfying g(x)+h(y) ≤ c(x, y) for all (x, y) ∈ X ×Y . First, from
the definition of (c,−)-transform, one can see that for all (x, y) ∈ X ×Y it holds that 0 ≥ g(c,−) ≥ h
and

g(x) + h(y) ≤ g(x) + g(c,−)(y) ≤ c(x, y), (33)

i.e., (g, g(c,−)) also satisfies the assumptions of (g, h). Second, from the definition of c-transform, it
holds that hc ≥ g and

g(x) + h(y) ≤ hc(x) + h(y) ≤ c(x, y), (34)

i.e., the pair (hc, h) satisfies the same assumptions as (g, h).

Now we get back to our sequence f1, f2, . . . . For each n and (x, y) ∈ X × Y , we have f cn(x) +
fn(y) ≤ c(x, y). Next,

f cn(x) + fn(y) ≤ f cn(x) + (f cn)
(c,−)(y) ≤

(
(f cn)

(c,−)
)c
(x) + (f cn)

(c,−)(y)
[
≤ c(x, y)

]
, (35)
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where we first used (33) with (g, h) = (f cn, fn) and then used (34) with (g, h) = (f cn,
(
f cn

)(c,−)
). In

particular, we have f cn ≤
(
(f cn)

(c,−)
)c

and fn ≤ (f cn)
(c,−). We sum these inequalities with weights 1

and w, and for all (x, y) ∈ X × Y obtain

f cn(x) + wfn(y) ≤
(
(f cn)

(c,−)
)c
(x) + w(f cn)

(c,−)(y) = hcn(x) + whn(y), (36)

where for convenience we denote hn
def
= (f cn)

(c,−). Integrating (36) with (x, y) ∼ P×Q yields∫
X
f cn(x)dP(x) + w

∫
Y
fn(y)dQ(y) ≤

∫
X
hcn(x)dP(x) + w

∫
Y
hn(y)dQ(y). (37)

This means that potential hn provides not smaller dual objective value than fn. As a result, sequence
h1, h2 . . . also satisfies lim

n→∞

{ ∫
X h

c
n(x)dP(x) + w

∫
Y hn(y)dQ(y)

}
= Costw(P,Q). Now we

forget about f1, f2, . . . and work with h1, h2, . . . .

All the functions hn are uniformly equicontinuous as they share the same modulus of continuity

ω because they are (c,−)-transforms by their definition. Let vn(y)
def
= hn(y) −maxy′∈Y hn(y

′).
This function is also non-positive and uniformly continuous as well. Note that vn provides the same
dual objective value as hn. This follows from the definition of vc = hc + maxy′∈Y hn(y

′). Here
the additive constant vanishes, i.e., vcn(x) + vn(y) = hcn(x) + hn(y). At the same time, vn are all
uniformly bounded. Indeed, let yn ∈ Y be any point where vn(yn) = 0. Then for all y ∈ Y it holds
that |vn(y)| = |vn(y)− vn(yn)| ≤ ω

(
∥y− yn∥Y

)
≤ ω

(
diam(Y)

)
. Therefore, by the Arzelà–Ascoli

theorem, there exists a subsequence vnk
uniformly converging to some f∗ ∈ C(X). As all vnk

≤ 0,
it holds that f∗ ≤ 0 as well. It remains to check that f∗ attains the supremum in (32).

To begin with, we prove that vcnk
uniformly converges to (f∗)c. Denote ∥vnk

− f∗∥∞ = ϵk. For all
(x, y) ∈ X × Y , we have

c(x, y)− f∗(y)− ϵk ≤ c(x, y)− vnk
(y) ≤ c(x, y)− f∗(y) + ϵk (38)

since |vnk
(y)− f∗(y)| ≤ ∥vnk

− f∗∥∞ < ϵ. We take miny∈Y in (38) and obtain (f∗)c(x)− ϵk ≤
vcnk

(x) ≤ (f∗)c(x) + ϵk. As this holds for all x ∈ X , we have just proved that ∥vcnk
− (f∗)c∥∞ <

ϵk. This means that vcnk
uniformly converges to (f∗)c as well since limk→∞ ∥vnk

− f∗∥∞ =
limk→∞ ϵk = 0. Thanks to the uniform convergence, we have

Costw(P,Q) = lim
k→∞

{∫
X
(vnk

)c(x)dP(x) +
∫
Y
vnk

(y)dQ(y)

}
=∫

X
(f∗)c(x)dP(x) +

∫
Y
f∗(y)dQ(y). (39)

We conclude that f∗ is a maximizer of (32) that we seek for.

Bibliographical remark. There exists a duality formula for partial OT (4), see [10, M2] which can be
reduced to duality formula to IT problem (12). However, it is hard to relate the resulting formula with
ours (13). We do not know how to derive one formula from the other. More importantly, it is unclear
how to turn their formula to the computational algorithm. Our formula provides an opportunity to do
this by using the saddle point reformulation of the dual problem which nowadays becomes standard
for neural OT, see [43, 20, 61]. We will give further comments after the next proof. The second part
of the derivation of our formula (existence of a maximizer f∗) is inspired by the [62, Proposition
1.11] which shows the existence of maximizers for standard OT (2).

Proof of Theorem 5. By the definition of f∗, we have

Costw(P,Q) =

min
T :X→Y

L(f∗, T ) = min
T :X→Y

∫
X

{
c
(
x, T (x)

)
− f∗

(
T (x)

)}
dP(x) + w

∫
Y
f∗(y)dQ(y) ≤ (40)∫

X

{
c
(
x, T ∗(x)

)
− f∗

(
T ∗(x)

)}
dP(x) + w

∫
Y
f∗(y)dQ(y) = (41)∫

X
c
(
x, T ∗(x)

)
dP(x)−

∫
X
f∗(y)d

[
T ∗♯P

]
(y) + w

∫
Y
f∗(y)dQ(y) =
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Costw(P,Q) +

∫
Y
f∗(y)d

[
wQ− T ∗♯P

]
(y)︸ ︷︷ ︸

≤0 (Lemma 1)

≤ Costw(P,Q). (42)

This means that all the inequalities in (40)-(42) are equalities. Since (40) equals (41), we have
T ∗ ∈ argmin

T :X→Y
L(f∗, T ).

Bibliographic remark (theoretical part). The idea of the theorem is similar to that of [61, Lemma
4.2], [24, Lemma 3], [43, Lemma 4], [20, Theorem 2] which prove that their respective saddle point
objectives maxf minT L(f, T ) can be used to recover optimal T ∗ from some optimal saddle points
(f∗, T ∗). Our functional (15) differs, and we have the constraint f ≤ 0. We again emphasize here
that not for all the saddle points (f∗, T ∗) it necessarily holds that T ∗ is the IT map, see the discussion
in limitations (Appendix A).

Bibliographic remark (algorithmic part). To derive our saddle point optimization problem (15),
we use the c-transform expansion proposed by [53] in the context of Wasserstein GANs and later
explored by [40, 43, 61, 20, 24, 31] in the context of learning OT maps. That is, our resulting
algorithm 1 overlaps with the standard maximin neural OT solver, see, e.g., [24, Algorithm 1]. The
difference is in the constraint f ≤ 0 and the additional multiplier w ≥ 1.

Proof of Proposition 4. From the proof of Theorem 5, we see that
∫
Y f

∗(y)d
[
wQ− T ∗♯P

]
(y) = 0.

Recall that f∗ ≤ 0. This means that f(y) = 0 for y ∈ Supp
(
wQ − T ∗♯P

)
. Indeed, assume

the opposite, i.e., there exists some y ∈ Supp
(
wQ − T ∗♯P

)
for which f(y) < 0. In this case,

the same holds for all y′ in a small neighboorhood U of y as f is continuous. At the same time,∫
Y f

∗(y)d
[
wQ−T ∗♯P

]
(y) ≤

∫
U
f∗(y)d

[
wQ−T ∗♯P

]
(y) < 0 since

[
wQ−T ∗♯P

]
is a non-negative

measure satisfying
[
wQ−T ∗♯P

]
(U) > 0 by the definition of the support. This is a contradiction. To

finish the proof it remains to note that Supp(Q) \ Supp(T ∗♯P) ⊂ Supp(wQ− T ∗♯P), i.e., f(y) = 0
for y ∈ Supp(Q) \ Supp(T ∗♯P) as well.

Bibliographical remark. Treating functional L(f, T ) in (16) as a Lagrangian, Proposition 4 can be
viewed as a consequence of the complementary slackness in the Karush-Kuhn-Tucker conditions
[37].

G Additional Experimental Illustrations

G.1 Comparison with the Closed-form Solution for ET

In this section, we conduct a Swiss2Ball experiment in 2D demonstrating that for the sufficiently large
parameter w, IT maps become fine approximations of the ground-truth ET map. We define source
measure P as a uniform distribution on a swiss roll centered at (0, 0). Target measure Q is a uniform
distribution on a ball centered at (0, 0) with radius R = 0.5, i.e., Supp(Q) = B(0, 0.5). We note
that the supports of source and target measures are partially overlapping. In the proposed setup, the
solution to ET problem (5) has a closed form: T (x) = x·1x∈B((0,0),0.5)+x· R

∥x∥2
·1x/∈B((0,0),0.5), see

Fig. 20f. We provide the learned IT maps for w ∈ {1, 3/2, 2, 32}, see Fig. 20b-20e. The qualitative
and quantitative results show that with the increase of w our IT maps become closer and closer to the
ground-truth ET one, see Table 8.

(a) Input, target
measures.

(b) IT map,
w=1.

(c) IT map,
w=3/2.

(d) IT map,
w=2.

(e) IT map,
w=32.

(f) Extremal
transport map.

Figure 20: Incomplete Transport (IT) maps learned with c(x, y) = ∥x− y∥22 transport cost
and ground-truth Extremal Transport (ET) map in ’Swiss2Ball experiment.
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w = 1 w = 3/2 w = 2 w = 32

MSE(T̂ , T ∗) 0.0136 0.0026 0.0009 7.98e-06

Table 8: MSE(T̂ , T ∗) between learned IT maps T̂ (w ∈ {1, 3/2, 2, 32})
and ground-truth ET map T ∗.

G.2 Solving Fake Solutions Issue with Weak Kernel Cost

As we discuss in Appendix A, saddle-point neural OT methods (including our IT algorithm) may
suffer from fake solutions issue. As it is proved in [42], this issue can be eliminated by considering
OT with the so-called weak kernel cost functions. In this section, we test the effect of using them in
our IT algorithm. Specifically, we demonstrate the example where IT algorithm with the cost function
c(x, y) = ∥x− y∥2 struggles from fake solutions, while IT with the same cost endowed with weak
kernel regularization, i.e., kernel cost [42, Equation (16)] with parameters α = 1, γ = 0.4, resolves
the issue. Following [42], we consider stochastic version of IT map T (x, z) using noise z ∼ N (0, I)
as an additional input.

We design the Ball2Circle example in 2D, where input P is a uniform distribution on a ball and
target Q − on a ring embracing the ball. The solution of ET problem is an internal circuit of a ring,
see Fig. 21a. We learn IT maps for c(x, y) = ∥x− y∥2, with (γ = 0.4) or without (γ = 0) kernel
regularization for weights w ∈ {1, 2, 32}.

(a) Input, target
measures.

(b) IT map,w=1
(iter=7K)

(c) IT map,
w= 3

2
(iter=8K)

(d) IT map, w=2
(iter=7K)

(e) IT map, w=2
(iter=8K).

(f) IT map,
w=32

Figure 21: Incomplete Transport (IT) maps learned with c(x, y) = ∥x− y∥2 transport cost in
’Ball2Circle’ experiment. We observe that training is highly unstable for w ∈ {1, 2}, see the

solutions for nearby iterations of training - (b-c) and (d-e) respectively. Increase of the weight w
helps to improve the stability (f).

(a) Input, target measures
and ET map.

(b) IT map,
w=1.

(c) IT map,
w=2.

(d) IT map,
w=32.

Figure 22: Incomplete transport (IT) maps learned with weak kernel cost in ’Ball2Circle’ experiment
for a fixed noise z. Usage of the kernel regularization + stochastic map T (x, z) helps to overcome

instability issues for weights w ∈ {1, 2}.

method / weight w = 1 w = 2 w = 32
w/o kernel regularization - - 0.0022
with kernel regularization 0.1377 0.0730 0.0495

Table 9: MSE(T̂ , T ∗) between IT maps (w ∈ {1, 2, 32}) learned with c(x, y) = ∥x− y∥2
(with and without weak kernel regularization) and the ground-truth ET map. MSE for IT map

learned with kernel regularization is larger (see w = 32) than without the regularization since it
introduces small bias to the optimization.
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Discussion. We observe that without kernel regularization training of IT method is highly unstable
(for w ∈ {1, 2}), see Fig. 21b-21d. Interestingly, with the increase of the weight w, the issue
disappears and for w = 32, IT map is close to the ground-truth ET one (Fig. 21f).

The usage of kernel regularization helps to improve stability of the method, see Fig. 22. However,
while MSE between learned and ground-truth ET map drops with the increase of w, for w = 32 it is
bigger than that of learned IT maps without regularization. It is expected, since using regularizations
usually leads to some bias in the solutions.

Thus, the example shows that (a) fake solutions may be a problem, (b) kernel regularization from [42]
may help to deal with them. However, further studying this aspect is out of the scope of the paper.

G.3 Perceptual Cost

In this section, we show that the stated conclusions hold true for the transport costs other than ℓ2. For
this purpose, we perform additional experiments using perceptual transport cost from [24]. We use
the same hyperparameters as in our experiments with ℓ2 cost.

Figure 23: Celeba (female)→ anime (64×64 image size, perceptual cost).

Metrics w = 1 w = 2 w = 4 w = 8
Test FID 9.21 12.98 17.24 22.08

Test perceptual cost 0.954 0.794 0.667 0.545
Test ℓ2 cost 0.303 0.209 0.153 0.103

Table 10: Test FID and ℓ2, perceptual transport costs of our IT maps
(learned with perceptual transport cost).

Experimental results. Qualitative results show that that similarity of input images x and the images
T̂ (x) translated by our IT method trained with perceptual cost grows with the increase of the parameter
w, see Figure 23. In 10, we quantitatively verify these observations by showing that both perceptual
and ℓ2 mean transport costs between input and translated images decrease with the increase of w.
Interestingly, we see that IT trained with perceptual cost yields smaller FID than IT method trained
with ℓ2 cost.

G.4 Bigger Weight Parameters

In this section, we present the results of IT method trained with ℓ2 cost and parameters w = 16, 32.
We see that in contrast to CycleGAN which does not translate face images to anime images in case
of big parameters λ, our IT method continues to translate faces to anime even for big parameters w.
We quantify the obtained results in Table 11. As expected, mean transport costs are decreasing with
the increase of w, while FID is slightly increasing. We present the qualitative results for additional
weights in Figure 24.
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Metrics Main results Additional results
w = 1 w = 2 w = 4 w = 8 w = 16 w = 32

Test FID 14.65 20.79 22.18 22.84 24.86 28.28
Test ℓ2 cost 0.297 0.154 0.133 0.094 0.091 0.083

Table 11: Test FID and ℓ2 transport costs of our IT maps.

G.5 Additional Results for ℓ2 Cost

Figure 24: Celeba (female)→ anime (64×64).

Figure 25: Handbag→ shoes (128×128).
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Figure 26: Textures→ chairs (64×64).

Figure 27: Ffhq→ comics (128×128).

33


	Introduction
	Background on Optimal Transport
	Main Results
	Extremal Transport Problem
	Incomplete Transport Problem
	Link between Incomplete and Extremal Transport
	Computational Algorithm for Incomplete Transport

	Related work
	Evaluation
	Toy 2D experiments
	Unpaired Image-to-image Translation

	Potential Impact
	Limitations
	Toy 2D Illustrations of Other Methods
	Comparison with Other Image-to-Image Translation Methods
	Relation and Comparison with Discrete Partial OT Methods
	Experimental Details
	Proofs
	Additional Experimental Illustrations
	Comparison with the Closed-form Solution for ET
	Solving Fake Solutions Issue with Weak Kernel Cost
	Perceptual Cost
	Bigger Weight Parameters
	Additional Results for 2 Cost


