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ABSTRACT

Communication is a powerful tool for coordination in multi-agent RL. But inducing
an effective, common language is a difficult challenge, particularly in the decen-
tralized setting. In this work, we introduce an alternative perspective where com-
municative messages sent between agents are considered as different incomplete
views of the environment state. By examining the relationship between messages
sent and received, we propose to learn to communicate using contrastive learning
to maximize the mutual information between messages of a given trajectory. In
communication-essential environments, our method outperforms previous work
in both performance and learning speed. Using qualitative metrics and representa-
tion probing, we show that our method induces more symmetric communication
and captures global state information from the environment. Overall, we show
the power of contrastive learning and the importance of leveraging messages as
encodings for effective communication.
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Figure 1: In multi-view learning, augmentations of the original image or “views” are used as positive
samples for contrastive learning. In our proposed method, CACL, different agents’ views of the
same environment state are considered positive samples and messages are contrastively learned as
encodings of that state.

1 INTRODUCTION

Communication is a key capability necessary for effective coordination among agents in partially
observable environments. In multi-agent reinforcement learning (MARL) (Sutton & Barto| [2018]),
agents can use their actions to transmit information (Grupen et al.,|2020) but continuous or discrete
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messages on a communication channel (Foerster et al., |2016), i.e., linguistic communication (Lazari+
dou & Baronil [2020), are more flexible and powerful because they can convey more complex concepts.
To successfully communicate, a speaker and a listener must share a common language with a shared
understanding of the symbols being used (Skyrms| 2010; Dafoe et al.,|2020). Emergent communica-
tion or learning a common protocol (Wagner et al.| 2003; Lazaridou & Baroni}, [2020), is a thriving
research direction but most works focus on simple, single-turn, sender-receiver games (Lazaridou
et al.,|2018} [Chaabouni et al.,2019). In more visually and structurally complex MARL environments
(Samvelyan et al.| [2019), existing approaches often rely on centralized learning mechanisms by
sharing models (Lowe et al.,[2017) or gradients (Sukhbaatar et al., 2016).

However, a centralized controller is impractical in many real-world environments (Mai et al.} 2021}
Jung et al., 2021) where agents cannot easily synchronize and must act independently i.e. decentral-
ized. Centralized training with decentralized execution (CTDE) (Lowe et al.,[2017) is a middle-ground
between purely centralized and decentralized methods but may not perform better than purely decen-
tralized training (Lyu et al., 2021)). A centralized controller suffers from the curse of dimensionality:
as the number of agents it must control increases, the amount of communication between agents
to process increases exponentially (Jin et al.| [2021). Furthermore, the fully decentralized setting
is more flexible and requires fewer assumptions about other agents, making it more realistic in
many real-world scenarios (Li et al.| 2020). Hence, this work explores learning to communicate to
coordinate agents in the decentralized setting. In MARL, this means each agent will have its own
model to decide how to act and communicate, and no agents share parameters or gradients.

Typical RL approaches to decentralized communication are known to perform poorly even in simple
tasks (Foerster et al.,|2016) due to the large space of communication to explore, the high variance of
RL, and a lack of common grounding on which to base communication (Lin et al.,2021). Earlier work
leveraged how communication influences other agents (Jaques et al., [2018} |[Eccles et al.,[2019)) to
learn the protocol. Most recently, [Lin et al.[(2021) proposed agents that autoencode their observations
and use the encodings as communication, using the shared environment as the common grounding.
We build on this work in using both the shared environment and the relationship between sent and
received messages to ground a protocol. We extend the [Lin et al.|(2021) perspective that agents’
messages are encodings and propose that agents in similar states should produce similar messages.
This perspective leads to a simple method based on contrastive learning to ground communication.

Inspired by the literature in representation learning that uses different “views” of a data sample
(Bachman et al.,[2019)), for a given trajectory, we frame an agent’s observation as a “view” of the
environment state. Thus, different agents’ messages are encodings of different incomplete “views” of
the same underlying state. From this perspective, messages from the same state should, generally,
be more similar to each other than to those from distant states or other trajectories, as shown in
Figure[I] As with image augmentations, two agent observations may not necessarily overlap, but
a contrastive objective can generally lead to effective encodings. We propose Communication
Alignment Contrastive Learning (CACL), where each agent separately uses contrastive learning
between their own sent and received messages to learn a communication encoding.

We experimentally validate CACL in three communication-essential environments and show how
CACL leads to improved performance and speed, outperforming state-of-the-art decentralized MARL
communication algorithms. To understand CACL’s success, we propose a suite of qualitative and
quantitative metrics. We demonstrate that CACL leads to more symmetric communication (i.e.,
different agents communicate similarly when faced with the same observations), allowing agents to
be more mutually intelligible. By treating our messages as representations, we show that CACL’s
messages capture global semantic information about the environment better than baselines. Overall,
we argue that contrastive learning is a powerful direction for multi-agent communication and has
fundamental benefits over previous approaches.

2 RELATED WORK

Learning to coordinate multiple RL agents is a challenging and unsolved task where naively applying
single-agent RL algorithms often fails (Foerster et al.,[2016)). Recent approaches focus on neural
network-based agents (Goodfellow et al., [2016) with a message channel to develop a common
communication protocol (Lazaridou & Baroni}, [2020). To handle issues of non-stationarity, some
work focuses on centralized learning approaches that globally share models (Foerster et al., 2016},
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training procedures (Lowe et al.,[2017)), or gradients (Sukhbaatar et al.,[2016)) among agents. This
improves coordination and can reduce optimization issues but results are often still sub-optimal in
practise (Foerster et al.,|2016; |Lin et al.,2021) and may violate independence assumptions, effectively
modelling the multi-agent scenario as a single agent (Eccles et al.,[2019).

This work focuses on independent, decentralized agents and non-differentiable communication. In
previous work, Jaques et al| (2018) propose a loss to influence other agents but require explicit
and complex models of other agents and their experiments focus on mixed cooperative-competitive
scenarios. |[Eccles et al.| (2019) add biases to each agent’s loss function that separately encourage
positive listening (i.e., the listener to act differently for different messages) and positive signaling
(i.e., the speaker to produce diverse messages in different situations). Their method is simpler but
requires task-specific hyperparameter tuning to achieve reasonable performance and underperforms
in sensory-rich environments (Lin et al.,|2021)). Our work is closest to Lin et al.|(2021), who leverage
autoencoding as their method to learn a message protocol in cooperative 2D MARL games. Agents
learn to reconstruct their observations and communicate their autoencoding. It outperforms previous
works while being algorithmically and conceptually simpler. Our method builds on this encoding
perspective by considering other agents’ messages to ground communication. Whereas agents in
Lin et al.|(2021) can only learn to encode the observation, our approach leverages the relationship
between different agents’ messages to encode global state information. Empirically, our method is
also more efficient as it requires no extra learning parameters whereas [Lin et al.| (2021) learn and
discard their decoder network. Note that our setup uses continuous messages instead of discrete
(Eccles et al.,|[2019; Lin et al., 2021)), a standard choice in contrastive learning (Chopra et al., 2005}
He et al.,[2020; |Chen et al., 2020a) and embodied multi-agent communication (Sukhbaatar et al.|
20165 Jiang & Lu, 2018} |Das et al.,[2019).

Autoencoding is a form of generative self-supervised learning (SSL) (Doersch et al., 2015). We
propose to use another form of SSL, contrastive learning (Chen et al., 2020a)), as the basis for learning
communication. We are motivated by recent work that achieves state-of-the-art representation learning
on images using contrastive learning methods (Chen et al., [2020b) and leverages multiple "views"
of the data. Whereas negative samples are simply different images, positive samples are image data
augmentations or “views” of the original image (Bachman et al.l 2019). We treat agents’ messages of
the same state in a trajectory as positives of each other, so we base our method on SupCon (Supervised
Contrastive Learning) (Khosla et al.l[2020) which modifies the classic contrastive objective to account
for multiple positive samples. Relatedly, |Dessi et al.| (2021)) use a two-agent discrete communication
setup to do contrastive learning on images, we do the opposite and leverage contrastive learning to
learn multi-agent communication in an RL environment.

3 PRELIMINARIES

We base our investigations on decentralized partially observable Markov decision processes (Dec-
POMDPs) with N agents to describe a fully cooperative multi-agent task (Olichoek & Amatol 2016).
A Dec-POMDP consists of a tuple G = (S, A, P,R, Z,Q,n,v). s € S is the true state of the
environment. At each time step, each agent i € NN chooses an action a’ € A’ to form a joint
actiona € A = A' x A%... x AN It leads to an environment transition according to the transition
function P(s'|s,al,...a) : § x A x S — [0,1]. All agents share the same reward function
R(s,a): SxA— R.vye€[0,1)is adiscount factor. As the environment is partially observable, each
agent i receives individual observations z € Z based on the observation function Q¢(s) : S — Z.

We denote the environment trajectory and the action-observation history (AOH) of an agent ¢ as
Ty = 80,00, --.-St, ar and 77 = Q(sp), ad, ... Q% (s;),at € T = (Z x A)* respectively. A stochastic
policy 7(a|7%) : T x A — [0,1] conditions on AOH. The joint policy 7 has a corresponding action-
value function Q7 (s;, a) = Es, . ay1.00 [Re|St, ar], where Ry = 7% 47y, is the discounted
return. r;; is the reward obtained at time ¢ + 7 from the reward function R.

To account for communication, similar to VLinvet al.|(2021)), at each time step ¢, an agent i takes an
action «} and produces a message m} = U*(Q*(s;)) after receiving its observation *(s;) including
messages from the previous time step mt_fl, where U is agent ¢’s function to produce a message
given its observation and m;_il refers to messages sent by agents other than agent ¢. The messages
are continuous vectors of dimensionality D.
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4 METHODOLOGY

We propose a different perspective on the message space used for communication. At each time step
t for a given trajectory 7, a message m¢ of an agent i can be viewed as an incomplete view of the
environment state s; because m¢ is a function of s; as formulated in section Naturally, messages of
all the N agents are different incomplete perspectives of s;. To ground decentralized communication,
we hypothesize that we could leverage this relationship between messages from similar states to
encourage consistency and similarity of the messages space across agents. Specifically, we propose
maximizing the mutual information using contrastive learning which aligns the message space
by pushing messages from similar states closer together and messages of different states further
apart. Note that agents see a partial view of the state from their observation, so they will inherently
communicate different messages to reflect their partial knowledge. However, aligning their message
spaces enables communicating these partial views of the state in a more mutually-intelligible way.

As a heuristic for state similarity, we consider a window of timesteps within a trajectory to be all
similar states i.e. positive samples of each other. To guarantee dissimilar negative samples (Schroff]
et al.l 2015)), we use states from other trajectories as negatives. Since each underlying state has
multiple positive views (w steps, N agent messages each), we leverage the recent contrastive learning
method SupCon (Khosla et al.l [ 2020). We refer to the contrastive SupCon objective across multiple
MARL trajectories as Communication Alignment Contrastive Learning (CACL).

Let M be all the messages in a batch of trajectories and M, be the messages in trajectory 7. Let
m; € M, the message of agent ¢ at time ¢. Thus, positives H for a message m; given a timestep
window w are all other messages from the same trajectory 7 sent within that timestep window
H(mi) = {m{, € M, \ {mi}:t €[t —w,t+ w]}. Let all other messages K from all trajectories
in the batch be K (m!) = M \ {m!}. Formally, the contrastive loss Loacr:

Z -1 Z log exp(mi “mp/n) )

m;EMT |H(m%)‘ thH(mz) kaeK(m;)eXP(mg mk/Tl)

Where ) € RT is a scalar temperature and |H (m})] is the cardinality. Practically, each agent has a
replay buffer that maintains a batch of trajectory data collected from multiple environment instances.
It contains messages received during training to compute the CACL loss. We use a timestep window of
size 5 for all the environments based on hyperparameter tuning of different window sizes. Following
Khosla et al.|(2020), messages are normalized before the loss computation and a low temperature (i.e.
1 = 0.1) is used as it empirically benefits performance and training stability. The total loss for each
agent is a reinforcement learning loss L py, using the reward to learn a policy (but not message head)
and a separate contrastive loss Lo ¢, to learn just the message head, formulated as follows:

L= Lgrr+kLcact @)
where x € RT is a hyperparameter to scale the CACL loss. See Appendix for Lpy details.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method on three multi-agent environments with communication channels. Given the
limited information each agent observes, agents must meaningfully communicate in order to improve
task performance. All results are averaged over 12 evaluation episodes and over 6 random seeds.
More details of the environments and parameters can be found in appendix[A.2]

Traffic-Junction: Proposed by Sukhbaatar et al.|(2016), it consists of a 4-way traffic junction with
cars entering and leaving the grid. The goal is to avoid collision when crossing the junction. We
use 5 agents with a vision of 1. Though unnecessary, with limited vision in agents, communication
could help to solve the task. We evaluate algorithms using their success rate in avoiding all collisions
during evaluation episodes.
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Figure 2: CACL (red) outperforms all other methods on Traffic-Junction (left), Predator-Prey (left)
and Find-Goal (right). Predator-Prey shows evaluation reward, higher is better. Traffic-Junction plots
the percent of successful episodes, higher is better. Find-Goal plots the episode length until the goal
is reached, lower is better. The performance curves are smoothed by a factor of 0.5 with standard
errors plotted as shaded areas.

Predator-Prey: A variant of the classic game (Benda et al.,[1986; Barrett et al., 201 1) based on Koul
(2019) where 4 agents (i.e. predators) have the cooperative goal to capture 2 randomly-moving prey
by surrounding each prey with more than one predator. We devise a more difficult variation where
agents have to entirely surround a prey on all 4 sides to successfully capture it and they cannot see
each other in their observations. Thus, agents must communicate their positions and actions in order
to coordinate their attacks. We evaluate each algorithm with episodic rewards in evaluation episodes.

Find-Goal: Proposed by |Lin et al.[(2021), agents’ goal is to reach the green goal location as fast
as possible in a grid environment with obstacles. We use 3 agents, each observes a partial view of
the environment centered at its current position. Unlike in|Lin et al.[(2021)), we use a field of view
of 3 x 3 instead of 7 x 7 to make the problem harder. Each agent receives an individual reward
of 1 for reaching the goal and an additional reward of 5 when all of them reach the goal. Hence,
it is beneficial for an agent to communicate the goal location once it observes the goal. As in|Lin
et al.| (2021)), we measure performance using episode length. An episode ends quicker if agents can
communicate goal locations to each other more efficiently. Hence, a method performs better if it has
shorter episode lengths.

5.2 TRAINING DETAILS

We compare CACL to the state-of-the-art independent, decentralized method, autoencoded commu-
nication (AEComm; [Lin et al.l [2021), which grounds communication by reconstructing encoded
observations. We also compare to baselines from previous work: independent actor critic without
communication (IAC) and positive listening loss (PL; [Eccles et al., 2019) (See Appendix @ We
exclude the positive signalling loss (Eccles et al.l2019) as extending it to continuous messages is
non-trivial but note that AEComm outperforms it in the discrete case (Lin et al., 2021). We also
include DIAL (Foerster et al., [2016) which learns to communicate through differentiable messages to
share gradients so is decentralized but not independent.

All methods use the same architecture based on the IAC algorithm with n-step returns and asyn-
chronous environments (Mnih et al., 2016). Each agent has an encoder for observations and received
messages. For methods with communication, each agent has a communication head to produce
messages based on encoded observations. For policy learning, a GRU (Cho et al., 2014) is used
to generate a hidden representation from a history of observations and messages. Agents use the
hidden state for their the policy and value heads, which are 3-layer fully-connected neural networks.
We perform spectral normalization (Gogianu et al.||2021)) in the penultimate layer for each head to
improve training stability. The architecture is shown in Figure 8| and hyperparameters are further
described, both in Appendix[A.3]

5.3 TASK PERFORMANCE

We run all methods on the three selected environments and plot results in Figure 2] Our proposed
method CACL outperforms all baseline methods in both final performance and learning speed and,
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Figure 3: Success rate in Predator-Prey: the percentage of final evaluation runs that captured no
prey, one prey, or both prey. Average over 6 random seeds, each with 10 evaluation episodes. See
Appendix [3]for the same results with standard deviation.
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Figure 4: Predator-Prey ablation experiment on L 4¢p, varying the sliding window size and k.

consistent with previous results 2021), AEComm is the strongest baseline. The largest
performance increase from CACL is in FindGoal where partial observability is most prominent due to
agents’ small field-of-view which makes communication more necessary (hence why IAC performs
worst). These results show the effectiveness of self-supervised methods for learning communication
in the fully-decentralized setting, as they both outperform DIAL which, notably, backpropogates
gradients through other agents. Furthermore, it demonstrates CACL’s contrastive learning as a more
powerful alternative to AEComm’s autoencoding for coordinating agents with communication.

Improvement on Traffic-Junction is not as significant as others because communication is less
essential for task completion, as shown by the strong performance of IAC. For Predator-Prey, results
are clearly better than baselines but have high variance due to the difficulty of the task. The goal of
Predatory-Prey is to capture two moving prey and requires coordinating precisely to surround and
attack a prey at the same time. Any slight miscoordination leads to sharp drop in rewards. For another
metric of success, we compute the percentages of evaluation episodes that capture no, one, or two
preys. Averaging over 6 random seeds, we show results in Figure[3] CACL does significantly better
on the task, outperforms all baselines, and solving the complete task more robustly while failing
less frequently. Find-Goal requires the most communication among the environments because the
gridworld is the largest and agents must clearly communicate the location of goal. Here, CACL
significantly outperforms the baselines, demonstrating that as the communicative task gets harder,
CACL outperforms more.

We confirm the effectiveness of CACL with an ablation study of the key design decisions: sliding
window and SupCon. CACL leverages the temporal nature of RL to treat a sliding window of
timesteps as positive views of each other. We plot results for a range of window sizes run on Predator-
Prey in Figure[d] No sliding window (size 1) performs poorly, demonstrating its necessity and that the
choice of sliding window size is an important hyperparameter. Through the use of SupCon (Khosla
we treat all sent and received messages in the sliding window as all positive views of
each other, with many positives per batch. Creating a batch with just one positive view per message
corresponds to SimCLR (Chen et al | [2020a) and results in much worse performance (1.36 + 9.46).
We also run Predator-Prey and search across values of the CACL loss coefficient « in Figure 4] We
used the best values (5-step window, k=0.5) across all the environments, demonstrating that the
choice of CACL hyperparameters is robust. Overall, we show the issues in naively implementing
contrastive learning for communication, and the clear, important design decisions behind CACL.
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Figure 5: Comparing CACL and AEComm with their respective variants when combined with DIAL.
Variants with DIAL have generally worse performance.

5.4 AUGMENTING CACL WITH RL

The contrastive loss in the communication head of CACL is very performant without optimizing for
reward, so a natural question is whether we can achieve even better results if we learn the message
using reward as well. To answer this, we add DIAL to both CACL and the next best method,
AEComm, and evaluate in the three environments. This is equivalent to backpropogating L, from
Equation 2 through agents to learn the message head. In this way, both RL and SSL (contrastive or
autoencoding) signals are used to learn the message head.

Figure [5|compares the performance of CACL and AEComm with their DIAL-augmented variants.
Our findings are consistent with [Lin et al.| (2021, who find that mixing AEComm and RL objectives
are detrimental to performance. We observe that augmenting either AEComm or CACL with DIAL
performs generally worse, except in Find-Goal, where performances is similar but not better. We
hypothesize that decentralized DIAL is a complex, and high-variance optimization that is difficult to
stabilize. DIAL’s gradient updates may clash with CACL and result in neither a useful contrastive
representation, nor a strong reward-oriented one. It is also possible that CACL’s messages would
not be improved with reward-oriented gradients. As we show in Section[5.6] CACL already captures
useful semantic information that other agents can effectively extract.

5.5 PROTOCOL SYMMETRY

We hypothesize that CACL’s improved performance over the baselines is because it induces a
more consistent, mutually-intelligible communication protocol that is shared among agents. More
specifically, we consider consistency to be how similarly agents communicate (i.e., sending similar
messages) when faced with the same observations. A consistent protocol can reduce the optimization
complexity since agents only need to learn one protocol for the whole group and it also makes agents
more mutually intelligible.

Table 1: Protocol symmetry across environments, average and standard deviation over 10 episodes
and 6 random seeds. CACL consistently learns the most symmetric protocol.

DIAL PL AEComm CACL (Ours)
Predator-Prey 0.66 +0.07 | 0.66 =0.06 | 0.89 +0.01 | 0.95 4+ 0.01
FindGoal 0.504+0.05 | 0.494+0.04 | 0.85+0.02 | 0.92 +0.01
Traffic Junction | 0.69 +0.01 | 0.61 £0.04 | 0.80 +0.01 | 0.98 + 0.002

To evaluate consistency, we measure protocol symmetry (Graesser et al.,[2019) so if an agent swaps
observations and trajectory with another agent, it should produce a similar message as what the other
agent produced. We extend this metric from previous work to the continuous, embodied case. We
feed the same trajectory to all agents and measure the pairwise cosine similarities of the messages
that they produce. Given a trajectory 7 and {t € T'} as a set of time steps of 7, protocol symmetry
(protocol_sym) is written as:
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Figure 6: DBSCAN (Ester et al.l [1996) clustering results of messages produced by CACL after
dimensionality reduction with t-SNE. We show four semantically meaningful clusters with their
corresponding labels: messages sent when the goal is visible, when another agent is visible, and two
clusters correspond to only the individual agents visible in the observation.
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Therefore, a more consistent protocol has higher symmetry. We swap agent trajectory and observations
and compute this metric over 10 evaluation episodes for 6 random seeds, and show results in Table
[[] The self-supervised methods (CACL and AEComm) clearly outperform the others (DIAL and
PL) implying that SSL is better for learning consistent representations in decentralized MARL.
Furthermore, CACL’s protocol is very highly symmetric, clearly outperforming all others. Each
AEComm agent autoencodes their own observation without considering the other agents’ messages,
leading to the formation of multiple protocols between agents. In contrast, CACL induces a common
protocol by casting the problem in the multi-view perspective and implicitly aligning agents’ messages.
The possible correlation between protocol symmetry and overall performance and speed further
indicates the benefits of learning a common protocol in the decentralized setting.

5.6 PROTOCOL REPRESENTATION PROBING

To further investigate how informative our protocols are, we propose a suite of qualitative and
quantitative representation probing tests based on message clustering and classification, respectively.
We perform these tests on the protocols learned in the Find-Goal environment.

Similar to|Lin et al.| (202 1)), we cluster messages generated from 10 evaluation episodes to qualitatively
assess how informative CACL’s protocol is. The messages are first compressed to a dimension of 2
using t-SNE (Van der Maaten & Hinton| [2008)) and then clustered using DBSCAN (Ester et al., |1996).
We look at each cluster’s messages and their corresponding observations to extract any patterns and
semantics captured. As shown in Figure[6] we observe a cluster of messages for observations when the
goal is visible and another one when another agent is visible. Two clusters correspond to agents seeing
neither the goal nor another agent. Notably, the messages in these clusters can come from different
agents in different episodes, demonstrating that agents can indeed communicate symmetrically. The
clusters indicate that CACL learns to compress meaningful, global state information in messages,
allowing other agents to reasonably learn this semantic information. To quantitatively evaluate the

Table 2: Classification results of the two probing tests in Find-Goal. All methods perform similarly
in the easier Goal Visibility Test while CACL outperforms the baselines significantly in the more
difficult Goal Location Test.

DIAL PL AEComm CACL (Ours)
Goal Visibility | 99.45% +2.68 | 98.87% + 0.67 | 99.75% £+ 0.04 | 97.75% + 0.69
Goal Location | 68.15% + 1.76 | 78.31% +2.39 | 76.14% +3.36 | 91.28% +1.71

informativeness of learned protocols, we propose to treat messages as representations and learn a
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classifier on top of the messages, following work in RL representation learning (Lazaridou et al.|
2018}, |Anand et al., [2019). Since FindGoal is focused on reaching a goal, intuitively, agents should
communicate whether they have found the goal and, if so, where other agents should go to reach the
goal. Thus, we propose to probe the goal visibility and goal location. The former uses the messages
to classify whether the goal is visible in observations or not (i.e. a binary classification). The latter
uses messages where the goal is visible in the observations to classify the general location of the
goal (i.e., a 5-class classification: Top-Left, Top-Right, Bottom-Left, Bottom-Right and Middle).
Whereas goal visibility is easy for egocentric communication, goal location requires detailed spatial
information and communicating the absolute location from their relative position. This tests whether
the communication protocol can consider other agents’ perspectives and give global information
from an egocentric observation. We use 30 evaluation episodes per method to generate messages for
our experiments but different methods may have different numbers of acceptable messages for our
probing task (e.g. a limited number of messages where the goal is visible for predicting goal location).
To ensure fair comparison, we choose an equal number of samples per class (i.e., positive/negative,
5-class location) for all methods and use a 70%/30% random split for training and testing. We use a
2-layer fully-connected neural network to test each method, as this corresponds to the same network
that agents use to encode each others’ messages as part of their observations.

Table [2] shows the classification results for the two probing tests. Goal visibility is an easier task and
all methods’ messages can be effectively used to determine it. In the more difficult goal location task,
all methods perform above chance (20%) but CACL’s protocol significantly outperforms baselines.
Contrastive learning across different agents’ messages can enable CACL to learn a more global
understanding of location from their egocentric viewpoint. We further compare the similarity between
messages sent when the goal is at location [1, 1] and when the goal is at other coordinates along the
diagonal in Appendix which corroborates with the Goal Location Test in CACL’s capability
in encoding global information better. By encoding the goal’s spatial information, CACL agents
are more likely able to move directly towards it, and reduce episode length. If other methods
simply communicate that a goal is found, agents know to alter their search but are not as precise
in direction. This explains why AEComm, PL, and DIAL perform better than IAC but worse than
CACL, which also learns much quicker as shown in Figure[2] For completeness, we also provide
similar classification results with a one-layer (linear) probe in Appendix [A.§]

6 LIMITATIONS

Our work investigates fully-cooperative environments but learning to communicate in less cooperative
settings, such as those with adversaries (Noukhovitch et al., 2021, is a harder optimization problem.
CACL would likely need stronger regularization to be effective. Furthermore, our empirical testing
has revealed that SSL objectives are ineffective with reward-oriented gradients, as demonstrated in
section[SE} Although this phenomenon is well known (Lin et al.,|2021)), it is still not fully understood
and future work should aim to combine the two objectives. Finally, this work evaluates agents that
were trained together. A more challenging frontier is zero-shot communication, an extension of
zero-shot cooperation (Hu et al.| 2020)), in which agents must communicate effectively with novel
partners, unseen during training. In Appendix we show how existing methods perform poorly in
this settings and leave this challenging setup to future work.

7 CONCLUSION AND FUTURE WORK

This work introduces an alternative perspective for learning to communicate in decentralized MARL
based on the relationship between sent and received messages within a trajectory. Drawing inspiration
from multi-view learning, we ground communication using contrastive learning by considering
agents’ messages to be encoded views of the same state. We empirically show that our method
leads to better performance through a more consistent, common protocol and learns to communicate
more global state information. We believe this work solidifies contrastive learning as an effective
perspective for learning to communicate and hope it invigorates research into contrastive methods for
communication with a focus on consistency. Furthermore, by establishing the connection between
multi-view SSL, which has traditionally focused on images, and communication in MARL, we hope
to encourage more cross-domain research. Finally, we see contrastive learning as a potential method
for simulating human language evolution, and hope to inspire research in this direction.
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A APPENDIX

A.1 REINFORCEMENT LEARNING LOSS
In Equation 2] we use Ly, to denote the RL loss. As our investigation is orthogonal to the choice of
RL algorithm, this term can be any RL algorithm dependent on which algorithm is being used. In

this work, we use Independent Asynchronous Actor Critic (IA2C) as our base algorithm, denoted as
IAC in our experiments (Christianos et al., 2020). Given an agent ¢ € N, it has a policy W; and value

function V}/, parameterized by parameters ¢ and 6 respectively. The policy loss for agent i is defined
as:

L(¢) = —log(m(ay | (51); ) (re + 7V (' (s141);0) — V(' (51); 0) “)
with the value function minimizes:

L(0) = |[V(Q'(5¢);0) = (re + 4V (Q (s141):0)) ®)

These two losses are denoted as L gy, due to space limit. In the case with communication, the local
observation of an agent is simply augmented with received messages.

A.2 ENVIRONMENT DETAILS

Figure[A.2] provides a visual illustration of the environments used.

9 i
|
o \-\—, |
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Figure 7: Visual illustration of the environments used. Left: Predator-Prey, taken from [Koul| (2019).
Middle: Find-Goal, taken from [Lin et al.[(2021). Right: Traffic-Junction, taken from |Singh et al.
(2018)

A.2.1 PREDATOR-PREY

We modify the Predator-Prey implementation by |[Koul| (2019). Our Predator-Prey has a higher com-
munication and coordination requirement than the original Predator-Prey environment. Specifically,
for a prey to be captured, it has to be entirely surrounded (i.e. the prey cannot move to another grid
position in any actions).

Here, we use an 7x7 gridworld. In each agent’s observation, it can only see the prey if it is within
the field of view (3x3) and cannot see where other agents are. A shared reward of 10 is given for
a successful capture and a penalty of -0.5 is given for a failed attempt. A -0.01 step penalty is also
applied per step. Each agent has the actions of LEFT, RIGHT, UP. DOWN and NO-OP. The prey has
the movement probability vector of [0.175,0.175,0.175,0.175, 0.3] with each value corresponding
to the probability of each action taken.

All algorithms are trained for 30 million environment steps with a maximum of 200 steps per episode.
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A.2.2 FIND-GOAL

We use the Find-Goal environment implementation provided by [Lin et al.|(2021). The agents have
the goal to find where the goal is in a 15x15 grid world with obstacles.

Unlike in|Lin et al.|(2021)), each agent has a 3x3 field of view (instead of 7x7) to make the task more
difficult. Each agent receives a reward of 1 for reaching a goal and an additional reward of 5 if all
agents reach the goal. We use a step penalty of -0.01 and an obstacle density of 0.15.

All algorithms are trained for 40 million environment steps with a maximum of 512 steps per episode.

A.2.3 TRAFFIC-JUNCTION

We use the Traffic-Junction environment implementation provided by Singh et al.[ (2018]). The
gridworld is 7x7 with 1 traffic junction. The rate of cars being added has a minimum and maximum
of 0.1 and 0.3. We use the easy version with two arrival points and 5 agents. Agents are heavily
penalized if a collision happens and have only two actions, namely gas and brake.

All algorithms are trained for 20 million environment steps with a maximum of 20 steps per episode.

A.3 ARCHITECTURE AND HYPERPARAMETERS

Lcact ! Laecomm

Message . Grounding
—Outgoing message—»{
Head 9 g‘ 9 Module
Hidden state To be sent to other agents
Emmm——
Observation

Observati GRU

Encoder
Policy Head
T
Message

Encoder Value Head
\Y

Y

LrL

Figure 8: Architectural illustration for algorithms with communication. To remove communication,
the message head is disabled. Grounding module is only relevant to CACL and AEComm. The
former is a loss function and the latter is a decoder to reconstruct the encoded observation. Green
boxes denote components where gradients of L, are applied to to. Red boxes denote components
where gradients of Lo acr, and L Apcomm are applied to. L oA pcomm refers to the loss function of
AEComm (Lin et al.,[2021)).

Figure |§| illustrates the components of the architecture used in this work, similar to (Lin et al., 2021).
A message head is only used for algorithms with communication, namely CACL, AEComm, PL
and DIAL. The Grounding Module refers to mechanisms to ground the messages produced by the
message head, used in CACL and AEComm. Colored boxes denote components where gradients
are applied to for a particular loss function. In the case of DIAL, gradients would flow from another
agent to the agent that sends a message through the message head and message encoder. Unless
specified otherwise, we fix all hidden layers to be a size of 32.

We experimented with using the output of the GRU, or hidden state, to condition the message head.
Empirically we found that directly conditioning on the observation encoding, as in|Lin et al.|(2021),
led to more stable learning dynamics.

The observation encoder output values of size 32. For Predator-Prey and Traffic Junction, a one-layer
fully-connected neural network is used as observation encoder. For Find-Goal, same as|Lin et al.
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Table 3: Success rate in Predator-Prey: the percentage of final evaluation runs that captured no prey,
one prey, or both prey. Average and standard deviation over 6 random seeds.

No-Prey One-Prey Two-Preys
IAC 36.67% £ 7.50 15.00% + 3.57 | 48.33% +6.83
DIAL 63.33% =+ 7.56 3.33% £1.24 | 33.34% £ 7.86
PL 50.00% + 8.33 0.00% =+ 0.00 50.00% =+ 8.63
AEComm 41.66% + 7.48 6.67% +1.84 51.67% =+ 7.60
CACL (Ours) | 33.33% + 7.86 | 0.00% =+ 0.00 66.67% + 7.86

(2021)), we use a two-layer convolutional neural network followed by a 3-layer fully-connected neural
network.

For the message encoder, it outputs values of size 8 in Predator-Prey and Find-Goal with one hidden
layer. It outputs values of size 16 in Traffic-Junction with two hidden layers. These configurations
are selected based on the best performance of the baseline communication learning algorithm used -
DIAL. Messages received are concatenated before passing to message encoders. For all the methods
with communication, they produce messages of length 4 (D = 4) with a sigmoid function as
activation. All models are trained with the Adam optimizer (Kingma & Ba, [2014).

Table []lists out the hyperparameters used for all the methods.

A.4 CACL CONTRASTIVE Loss CURVE

Contrastive Loss Over Time - Predator-Prey
— CACL :

7000
6500
6000

5500
updates

100k 200k 300k 400k 500k
Figure 9: CACL’s contrastive loss over time during training for Predator-Prey
Figure [0] shows the CACL’s contrastive loss over time during training for Predator-Prey. This

illustrates training convergence of the loss and improved separation of positive and negative samples
between the start and end of training.

A.5 PREDATOR-PREY CAPTURE RATE

Table 3] shows each method’s success rate in capturing preys for Predator-Prey. CACL outperforms
the baselines by capturing the most preys out of the evaluation episodes.

A.6 POSITIVE LISTENING
This section describes the loss function we implemented for positive listening, based on|Eccles et al.

(2019). Given two policies 7 and 7¢ of agent i where the latter is the policy with messages zeroed
out in the observations, and a trajectory 7 of length 7', the positive listening loss is written as:
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Learning Rate 0.0003
Epsilon for Adam Optimizer 0.001
vy 0.99
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
Gradient Clipping 2500
n for CACL 0.1

K for CACL 0.5
Loss Coefficient for PL 0.01
Number of Asynchronous Processes | 12
N-step Returns 5

Table 4: Table for hyperparameters used across methods

T
Lpr = —% Z > (m'(alr) = w(alr)]) + (' (alr)) log(x(al 7)) (6)

a€A?

where in inner summation, the first term is the L1 Norm and the second term is the cross entropy loss.

A.7 MESSAGE SIMILARITY FOR DIFFERENT GOAL LOCATIONS IN FIND-GOAL

0.85

0.80 §

0.65 7

Average pairwise cosine similarity

6 8 10 © 14 16
Distance from [1, 1]
Figure 10: In Find-Goal, average pairwise cosine similarity between messages sent when the goal
is at [1, 1] and when the goal is in one of these coordinates [5, 5], [9,9], [13, 13]. Similar to the

representation probing test in section[5.6] we generate rollouts from the corresponding algorithms
and filter for messages with the goal visible.

To further support that CACL can encode global information better, we measure the message similarity
between messages sent when the goal is in [1, 1] and when the goal is in other coordinates along the
diagonal of the gridworld. As shown in Figure[I0] CACL shows a clear downward trend in similarity
as the distance from [1, 1] increases unlike AEComm. This means CACL learns to encode global
locations differently despite learning only with egocentric views. This cooroborates with the Goal
Location Test in Table 2] that CACL is able to encode global information better.

A.8 PROTOCOL REPRESENTATION PROBING: 1-LAYER

Table[5]shows the same results for the two probing tests in section[5.6]except here we use a 1-layer
neural network instead of 2 layers. We observe significant dips in performance across all methods.
Particularly, CACL becomes worse than the baselines in the easier Goal Visibility Test. However,
CACL remains superior in the more difficult Goal Location test by an even bigger margin than the
results in table 21
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Table 5: Classification results of the two probing tests in the Find-Goal environment, comparing all
methods with communication. 1-layer neural networks are used for probing
DIAL PL AEComm

CACL

Goal Visibility Test

94.21% + 2.68

96.93% + 3.14

96.27% + 3.98

87.65% =+ 3.86

Goal Location Test

52.29% +5.25

53.65% £ 9.60

48.16% £ 7.34

79.18% £ 5.63

A.9 ZERO-SHOT CROSS-PLAY

Table 6: Zero-shot cross-play performance
method results are bolded.

in Predator-Prey. Best per-

AEComm PL DIAL
CACL (Ours) | —17.20+5.14 | —28.49+2.78 | —24.61 £5.77 | —28.78 £3.99
AEComm —37.86 £ 7.20 —31.56 £ 3.76 | —29.73 & 3.66
PL —27.07+£2.94 | —22.89 +3.98
DIAL —22.851+2.04

Table 7: Zero-shot cross-play performance in Find-Goal. Best per-method

results are bolded.
CACL AEComm PL DIAL
CACL (Ours) | 468.75 £ 15.32 | 471.66 + 13.54 | 487.56 & 8.61 488.28 % 16.60
AEComm 479.06 £ 14.06 | 440.18 +23.04 | 472.85 £ 16.77
PL 192.08 £5.67 486.41 & 10.46
DIAL 476.07 £ 15.89

An advanced form of coordination is working with partners you have not seen during training (Hu
et al., 2020). Previous work has focused on coordination through actions (Carroll et al.|[2019; Lupu
et al., 2021) or pre-test grounding with a common dataset (Gupta et al.l 2021)) but to our knowledge,
no previous work has succeeded in learning a linguistic communication protocol that is robust to
zero-shot partners. To assess this advanced robustness, we take trained agents from different methods
and random seeds and evaluate them with each other (i.e., zero-shot cross-play) in Predator-Prey and
Find-Goal. Given two communication learning methods, m, and ms, we sample two agents from
each method for Predator-Prey and for Find-Goal, we average over sampling two agents from one
method and one agent from the other and vice-versa. For intra-method cross-play, m; = mq, we
evaluate agents that were trained with the same method but from different random seeds, so they have
not been trained with each other. For inter-method cross-play, m; # mo, we sample agents from two
different methods and pair them with each other. Each pairing is evaluated for 10 random seeds each
with 10 evaluation episodes. Given that agents are trained in self-play (Tesauro, 1994) without regard
for cross-play, we expect severe performance dips.

We show mean and standard deviation across random seeds for Predator-Prey and Find-Goal in Tables
[]and[7} respectively. As expected, all pairings take a significant dip in performance when compared
with the main results. Inter-method cross-play performance is particularly bad across all algorithms.
However, notably, CACL outperforms other methods in intra-method cross-play, indicating that
the protocols learned by CACL are generally more robust even across random seeds. In general,
zero-shot linguistic communication is incredibly difficult and our results are far from optimal. Still,
CACL shows promise and demonstrates that contrastive SSL. methods can lead to better zero-shot
communication and coordination.

A.10 BROADER IMPACT

More multi-agent learning systems will be deployed in the real-world as further progress is made
in fields of multi-agent learning like MARL. We expect communication to play an essential role in
these systems given how real-world problems are inherently complex and partially observable in most
cases. Our focus on the decentralized communication setting contributes to the capability of learning
more effective and consistent communication protocols. Having more consistent protocols improve
mutual intelligibility and pave the way to multi-agent systems in which agents can communicate with
unseen agents or even humans.
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On the other hand, increasing adoption of such multi-agent learning systems could exacerbate certain
risks. For instance, this could increase unemployment in a significant scale if systems operated
by multiple humans like warehouses are replaced with multi-robot learning systems. It could also
contribute to more advanced automated weaponry. In particular, given that our method explicitly
considers messages sent from other agents in our protocol learning algorithm, it could encourage
adversarial attacks which would lead to harmful behaviors and miscommunication, especially in
mission-critical systems.
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