
Published as a conference paper at ICLR 2024

SAS: Structured Activation Sparsification

Yusuke Sekikwa, Shingo Yashima
DENSO IT Lab. Inc., Tokyo, Japan
yusuke.sekikawa, yashima.shingo@core.d-itlab.co.jp

Abstract

Wide networks usually yield better accuracy than their narrower counter-
part at the expense of the massive mult cost. To break this tradeoff, we ad-
vocate a novel concept of Structured Activation Sparsification, dubbed SAS,
which boosts accuracy without increasing computation by utilizing the pro-
jected sparsity in activation maps with a specific structure. Concretely, the
projected sparse activation is allowed to have N nonzero value among M
consecutive activations. Owing to the local structure in sparsity, the wide
matmul between a dense weight and the sparse activation is executed as
an equivalent narrow matmul between a dense weight and dense activation,
which is compatible with NVIDIA’s Sparse Tensor Core developed for the
N :M structured sparse weight. In extensive experiments, we demonstrate
that increasing sparsity monotonically improves accuracy (up to 7% on
CIFAR10) without increasing the mult count. Furthermore, we show that
structured sparsification of activation scales better than that of weight given
the same computational budget. https://github.com/DensoITLab/sas_

1 Introduction

Modern deep neural networks (DNNs) consist of numerous matrix multiplications between
input activation and weight matrices, making it challenging for DNNs to deploy on resource-
constrained edge devices due to the enormous mult count. One could reduce the computa-
tion by narrowing the width of the activation channel; however, it trades off accuracy.
Researchers explore the way to speed up DNN inference from various perspectives such
as quantization (Esser et al., 2019), knowledge distillation (Hinton et al., 2015), designing
efficient model architectures (Liu et al., 2022; Howard et al., 2017), and structured weight
sparsification (Wang et al., 2019; Tan et al., 2020; Li et al., 2022; 2016; Wen et al., 2016). This
paper explores the unexplored spectrum, Structured Activation Sparsification, positioned at
the opposite end of the structured weight sparsification.

Weight Sparsification

One could obtain an efficient model by removing unimportant weights from a wide, high-
capacity model. It can be categorized into unstructured and structured.
Unstructured weight sparsification prunes individual weights independently based on
the criteria for the importance of the weight connection (e.g., by their magnitude) (Frankle
& Carbin, 2018; Yang et al., 2019; Wortsman et al., 2019). Although it could achieve an
extremely sparse network without sacrificing accuracy, the sparsity does not translate to the
practical speedup on vector-processing architectures (e.g., GPU) because it has no structure
on the sparsity pattern, making the parallel execution difficult (NVIDIA, 2020). In fact,
even when a matrix is highly sparse (e.g., >95% zero), wall-clock times for the sparse matmul
on GPU (cuSPARSE) is still slower than dense operation (cuBLAS) (Shi et al., 2020).
Coarse-grained structured weight sparsification removes unimportant weights such
that the sparsified operation can be vectorized, which includes block pruning (Wang et al.,
2019; Chen et al., 2022), kernel shape sparsity (Tan et al., 2020), and channel/filter pruning
(Li et al., 2022; 2016; Wen et al., 2016). The resultant network’s theoretical mult count

1

https://github.com/DensoITLab/sas_

Published as a conference paper at ICLR 2024

directly translates to actual speedup on commodity vector-type hardware; however, it hurts
model performance more severely than the unstructured fine-grained sparsity.
Fine-grained structured (semi-structured) weight sparsification aims at the best of
both worlds. The N :M structured weights sparsification (SWS) utilized the local sparse
structure in weight to realize the efficient parallel execution of sparse matmul. The struc-
ture indicates that the sparse weight has N nonzero value for every continuous M element
(section 5). NVIDIA commercialized this idea in Sparse Tensor Core1. It incorporates this
local structure by the vectorized local switch, which selects corresponding N elements from
M consecutive activation, realizing the dot-product using only N/M mult count. They
demonstrate the actual speedup of SWS close to the theoretical gain. This real speedup on
the wide-spread hardware using local sparsity patterns motivates us to explore the oppo-
site: structured sparsity in activation, expecting it to deliver better accuracy/speed tradeoff.
Hereafter, we call the N:M structured pattern as structured for brevity.

Activation Sparsification

Sparsity also exists in activation; however, unlike sparsity in weight, much less attention has
been given to exploiting sparsity in activation for DNN speedup.
Unstructured activation sparsification has been utilized to speed up the DNN inference.
In many settings, DNNs’ activation tends to be naturally sparse by the activation functions,
e.g., rectified linear unit (ReLU). Most of the prior works utilized the activation sparsity by
their novel hardware architecture (Zhu et al., 2022; Albericio et al., 2016; Rhu et al., 2018;
Han et al., 2016; Parashar et al., 2017; Park et al., 2017; Georgiadis, 2019; Wang et al.,
2021). (Kurtz et al., 2020) demonstrate the wall-clock speedup on a general-purpose CPU.
However, the sparsity induced by activation functions such as ReLU depends on its input;
therefore, the resultant sparsity pattern is unstructured. This unstructured nature makes
it difficult to parallelize the operation on vector-type processors such as GPU (Shi et al.,
2020). This incompatibility with the popular vector-type processors partly explains why
activation sparsity has been less explored than weight sparsity.
Structured Activation Sparsification (SAS) is an unexplored area that we expect to
pioneer the new frontier for accuracy/speed tradeoff in vector-processing architecture. Our
contribution is two-fold: 1©We introduce the idea of SAS, open up a new research area, and
2©We invent a mechanism called structured sparse projection to construct SAS, realized
vectorized matmul with sparse activation on GPU for the first time. Realizing structured
sparsity, i.e., controlling the nonzero counts within consecutive activation elements, is diffi-
cult because the activation value depends on its input. We realized the structured sparsity
in activation by implicitly projecting the input narrow/dense activation into higher dimen-
sional space such that the projected activation has a local sparsity pattern. This contrasts
to pruning as in SWS, which sparsify the value (weight) to be fixed after training. SAS
yields better accuracy by utilizing the increased flexibility of the wide weight while keeping
the same mult count. In other words, SAS selects the appropriate weight depending on its
input using the activation’s sparsity pattern. Importantly, owing to the local structure of
the projected sparsity, SAS realized the vectorized matmul with sparse activation on typical
GPU by utilizing the local routing mechanism originally developed for SWS.
Our experiments (section 3-4) demonstrate that increased sparsity in the SAS network en-
hances its capacity and accuracy monotonically without increasing mult count; furthermore,
it performs much better than the SWS for the same speed.

2 Structured Activation Sparsification

A matrix multiplication (matmul) is a fundamental building block of neural networks. This
study mainly focuses on the matmul that appears in convolution2. Convolution with the
activation I ∈ RCi×W×H and weight W ∈ RCo×Ci×k×k is equivalent to matmul between

1Ampere and beyond support this for 2:4 and 1:2 sparsity (NVIDIA, 2020).
2The same discussion can be applied to the matmul in most DNN elements, such as attention.

2

Published as a conference paper at ICLR 2024

Figure 1: SAS overview. Conventional matmul between a dense/narrow weight and a dense/-
narrow activation has a lower expressive power (left). The matmul between dense/wide weight and
structurally sparse/wide activation composed by implicit sparse projection (SAS) has a higher ex-
pressive power while requiring the same mult count and comparable inference time (right).

unfolded activation X ∈ RCikk×WH and the reshaped weight W ∈ RCo×Cikk:
O = I ∗W = WX. (1)

For dense weight W and dense activation X, the matmul consumes Cikk × Co × HW =
C̄i × Co × HW mult count. One can reduce the computation by narrowing the network
width; mult count is reduced by a factor or α2 by narrowing the number of input and output
channels by α. Unfortunately, but apparently, this trades off accuracy.

2.1 Structured Sparsity in Activation

We study an unexplored area, exploiting structured sparsity in activation to realize a neural
network model that is not only low FLOPS but also vectorizable. Concretely, the sparse
activation is allowed to have N nonzero value among M consecutive activations. Owing to
the sparsity, a matmul between sparse/wide activation X̃ and dense/wide weight W̃ could be
reduced into the matmul between dense/narrow activation X and dense/narrow weight W

as: O = W̃ X̃ = WX. More importantly, it realizes the parallel vectorized execution owing
to the local sparsity pattern, specifically W is constructed by locally routing the weight
elements from the sparse weight W̃ that correspond to the nonzero activation elements in
X̃. Actually, this operation is compatible with the commonly used GPU (section 2.3).

2.2 SAS by Sparse Projection

How can we construct such structurally sparse activation? Realizing structured sparsity
(controlling the number of nonzero counts within consecutive activation elements) is chal-
lenging because, unlike the case of SWS, the activation changes depending on the input.
Therefore, existing methods utilizing activation sparsity are unstructured, such as induced
by ReLU (Shi et al., 2020), which is hard to vectorize on GPU. One could construct a struc-
turally sparse activation by max-pooling along the blocked channel dimension; however,
we can not expect this to achieve a good accuracy/speed tradeoff. Because 1©we can not
control the input-dependant activation to have one (N) significant value among M consec-
utive element (otherwise, it removes crucial information); 2©it discards most of the value in
activation map (e.g., 94% when M=16) that is computed using valuable resources.
To realize the structured sparsity, we propose structured sparse projection S as follows:

S : X ∈ RC̄i×HW 7→ X̃ ∈ RM/NC̄i×HW . (2)
In the SAS projection S, a single element in the source activation X is projected into one
of an M consecutive elements in target sparse activation X̃ indexed by I. In this study, we
use the sign of log2M neighbor activation to compute the index Ij,u for j-th input channel
and u-th spacial location as follows:

Ij,u =

log2 M−1∑
i=0

(Xj+i,u > 0) 2i. (3)

3

Published as a conference paper at ICLR 2024

Figure 2: SAS mechanism. The matmul between sparse/wide activation X̃ and dense/wide
weight W̃ could be vectorized on Sparse Tensor Core by selecting elements from the weight W̃
that correspond to the nonzero values in the activation X̃, skipping the unnecessary mult by zero
(left). A dense/narrow activation X ∈ RC̄i×HW is projected to a structurally sparse/wide activation
X̃ ∈ RMC̄i×HW (here M=4). Local index I for projecting the activation is computed by using the
sign of the log2M consecutive activation using eq. (3) (right). Note: we do not compute the sparse
activation X̃ explicitly during inference; instead, X and I is directly passed to the processor.

1 def sas_matmul(W, X, kSparse=2): # Activation X and Weight W, kSparse=2 indicates 50% sparsity
2 beta, gamma, alpha = W.shape[0]∗kSparse, W.shape[1], X.shape[1]
3 Y = zeros([beta, alpha], dtype=’float32’) # Output
4 E_ = zeros([gamma//kSparse//2, alpha], dtype=’uint8’) | 0x4
5 # Compute index by evaluating sgn−bit (eq. (3)) and Convert to 4−bit index
6 E_[signbit(X)] = 0xe
7 E = bitwise_or(E_[0::2,:], E_[1::2,:]<<4)
8 E_reodered = take(E, array(numpy.load(’{}_{}.npy’.format(m, k))) # need re−oder (supp. E, fig. A2)
9 # Copy compressed activation to SparseTensorCore

10 X_compressed = zeros((alpha∗gamma//kSparse)∗(4+1/2), dtype=’uint8’) # value followed by index
11 cuda.runtime.memcpy(X_compressed.data.ptr, X.data.ptr, (int)(alpha∗gamma//kSparse)∗4, ...)
12 cuda.runtime.memcpy(X_compressed.data.ptr+dat_size, E_reodered.data.ptr, (alpha∗gamma//kSparse//2), ...)
13 # Execute matmul: Y = W @ X by calling cusparseLtbetaatmul
14 cusparselt.matmul(..., W.data.ptr, X_compressed.data.ptr, ..., Y.data.ptr, ...)
15 return Y

Listing 1: cuSAS: General SAS matmul library for Sparse Tensor Core. It is based on CuPy Okuta
et al. (2017) wrapper of cuSPARSELt. The index needs to be reordered before execution of sparse
matmul (L8). Refer to supp. E for more details about the reorder specific to NVIDIA GPUs.

The computational cost for the index is negligible (fig. 3 report its wall-clock time); it merely
looks at the sign bit of the log2M neighbor activation (fig. 2). Note: the SAS using this
projection includes the ReLU network as a particular case (e.g., when odd elements of weight
are zero for M=2). Other than this simple indexing, there are various options; one could
choose N elements instead of 1 or incorporate another strategy for computing the index,
e.g., estimating the index I using the previous layer’s output (section 6.1).

FLOPS. The size of weight W̃ for the SAS network increases linearly with M; nevertheless,
the number of mult count is the same as the base dense/narrow network, i.e., C̄i×Co×HW .
The mult count is also approximately the same with the SWS network (Zhou et al., 2021)
with

√
M times wider input/output channel for 1:M sparsity pattern (Refer to supp. B

for more detail). Both SAS and SWS require additional costs for routing the weight or
activation. Sparse Tensor Core is highly engineered for this purpose and can execute the
routing in parallel (section 2.3), and as reported in (NVIDIA, 2020), the time for the routing
is small compared with the main matmul. The SAS network requires another negligible cost
for computing index I of eq. (3) (fig. 3 reports the wall-clock time on actual hardware).
Memory. Although the mult count is constant for the activation sparsity M, the memory
footprint of SAS increases linearly. This contrasts with the SWS, where storage for weight
at inference time is constant irrespective of weight sparsity M. Note: the SWS network
also requires M times more memory during training. SAS and the SWS require additional
storage for storing the index; however, it is small, requiring only log2M-bit per element.

2.3 Hardware Implementation and Speed Benchmarking

The SAS matmul could be vectorized on an ordinary GPU having a local routing mechanism.
For example, NVIDIA GPU equips this mechanism. During inference, we do not explicitly
construct the sparse activation X̃; instead, we directly compute index I from dense acti-
vation X (X̃ is computed implicitly). The I and X is transferred to the core, then the

4

Published as a conference paper at ICLR 2024

20480 19200 17920 16640 15360 14080 12800 11520 10240
α=β size, γ = 10240

0

100

200

300

400

500

Ti
m

e
(m

s)

Dense in cuBLAS (TF32)
SWS in cuSPARSELt (TF32)
SAS in cuSPARSELt (TF32)

Figure 3: Speed benchmarking. SAS (1:2) vs SWS (1:2) for general matmul on NVIDIA A6000
GPU. Comparing the general matmul WX where X ∈ Rγ×α and W ∈ Rβ×γ . The extra cost for
SAS, c.f., index computation is less than 1.5% (when M = 20480) of the entire matmul. The time
of cuBLAS is an estimation based on NVIDIA’s white paper and included for reference.

vectorized switch routes the corresponding weight element using the local index, executing
the sparse/wide matmul as dense/narrow matmul(fig. 2) in parallel. We developed a general
matmul library for SAS (listing 1) called cuSAS for Sparse Tensor Core. cuSAS realized the
vectorized matmul with structured sparse activation on GPU for the first time. Figure 3
report the wall-clock time of SAS for general matmul compared with SWS using the same
matrix size. The difference between SWS and SAS comes from the overhead specific to SAS
(index computation, reorder (supp. E), and its memory transfer), which is less than 1.5%,
even with our naive implementation having several redundancies. Note: the configuration
of this experiment is different from the previous discussion and the other experiments using
neural networks; we use the same matrix size for dense, SWS, and SAS to reveal their dif-
ference more clearly. Therefore, mult count of SWS and SAS is 1/M of that of dense when
considering the sparsity. Refer to supp. C for more detail about the speed benchmarking.

2.4 Training SAS Network

One could transform most existing (narrow) neural networks into (wide) SAS networks to
increase their expressive power without increasing inference speed. The conversion is simple:
replacing the original non-linearity (e.g., ReLU) with our SAS projection S. During the
training, SAS matmul is computed as follows: it first projects the dense/narrow activation
map into a structurally sparse/wide space by S, constructing the sparse activation explicitly;
then, it performs the conventional dense matmul. It is equivalent to the sparse matmul for
efficient inference using hardware support (fig. 2).

Optimizer for SAS To train the SAS network, one wants to utilize modern optimizers
such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2019), which use
adaptive learning rates based on the statistics of the gradient history. However, it is known
that the adaptive learning rate could be unstable in the early stage of training, where
the number of experienced gradients is small (Liu et al., 2020). This is more problematic
in the SAS network (when M is large) because each weight element receives gradients less
frequently (×1/M on average) than the dense network. To achieve stable training of the SAS
network, we propose Experience-RAdam (ERAdam), which slightly modifies the formulation
of RAdam (Liu et al., 2020). Basically, RAdam rectifies Adam(W)’s adaptive learning rates
by multiplying rt < 1 to reduce the variance in the early stage of training:

ρ∞ = 2 (1− β2)− 1, ρt = ρ∞ − 2tβt
2

(
1− βt

2

)
, (4)

rt =
√
((ρt − 4) (ρt − 2) ρ∞)/((ρ∞ − 4) (ρ∞ − 2) ρt), (5)

where t is the optimization steps, and β is the hyperparameters used in computing the
running average of gradients. As t → ∞ (training proceeds), we have rt → 1, and it
recovers the original Adam(W)’s update.
Our ERAdam scales steps t for calculating rt of each weight element so that it is proportional
to the number of received gradients. Specifically, we use the following scaled time vector

5

Published as a conference paper at ICLR 2024

A
ct

iv
at

io
n

Sp
ar

se

Input (l=1.0) ReLU (l=0.89) M=2 (l=1.2) M=4 (l=3.8) M=8 (l=5.2) M=16 (l=6.3)

W
ei

gh
t

Sp
ar

se

Input (l=1.0) ReLU (l=0.89) M=2 (l=0.99) M=4 (l=0.99) M=8 (l=0.99) M=16 (l=0.99)

Figure 4: SAS capacity analysis by trajectory length. Comparing SAS (top) with dense ReLU
network and SWS network (bottom). l indicates the average relative length concerning the input
circle length, where a longer length (complex trajectory) indicates more expressive power.

t ∈ RC̄i instead of t:

ti ← ti +
(∑

u

(∇X̃·,u) 6= 0

)
/HW, (6)

where ∇X̃ ∈ C̄i ×HW is gradient of activation corresponding to the weight W . We find
the optimizer with the CosineDecay (Loshchilov & Hutter, 2017) scheduler with k-decay
(Zhang & Li, 2020) works well, especially for large M.

3 Expressive Power Analysis

We propose SAS for DNNs, but it is difficult to discuss its superiority (or inferiority) over
SWS based on their accuracy on a specific task; the result often turns back depending on
the model structure, training strategy (scheduler, optimizer, etc), and dataset. To evaluate
the difference of expressive power with SWS independently from these factors, we utilize
the Trajectory Length (Raghu et al., 2017), which evaluates the expressiveness by measuring
the length of the output trajectory given input sweeps along a one-dim path (e.g., circle).
We construct a two-layer neural network with 2-dim input and output (fig. A1). The base
network has 32-dim intermediate channels, followed by the ReLU activation. We replace the
ReLU by our SAS with different sparsity M, such that they all have the same mult count, i.e.,
structurally sparsified activation X̃ has 32 nonzero elements. We also construct the SWS
variant (Zhou et al., 2021), which has approximately the same mult count (supp. section A).
We evaluate their trajectory length by inputting the one-dimensional circular path to the
networks by varying the sparsity M and report their average output trajectory length by
changing the initial random weights.
Figure 4 report the results. The trajectory length of the SAS network increases with increas-
ing sparsity M. On the other hand, the length from the SWS network is almost constant
for M. This trajectory analysis suggests our SAS has more expressive power than the SWS,
given the same computational budget at the expense of increased memory requirement.

4 Experiment

Given the same matmul budget, enlarging a model by SAS with sparse projec-
tion improves accuracy? Is it better than the SWS using the same hardware?

We conducted extensive experiments to answer the questions. For the first question, we
evaluated the accuracy by changing the sparsity M, keeping the same mult count. For the
second question, we compared the SAS with SWS (Zhou et al., 2021), which has the same
sparsity and mult count; both utilize the same hardware mechanism (i.e., local routing).

6

Published as a conference paper at ICLR 2024

C
IF

A
R

-1
0

ReLu M=2 M=4 M=8 M=16

0.75

0.80

0.85

0.90

0.95

=16
=8
=4

Train summary
0 250 500 750 1000 1250 1500 1750 2000

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 16

0 500 1000 1500 2000 2500 3000 3500 4000
0.80

0.82

0.84

0.86

0.88

0.90

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 8

0 1000 2000 3000 4000 5000 6000 7000 8000
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 4

ReLu M=2 M=4 M=8 M=16

0.84

0.86

0.88

0.90

0.92

0.94

Test summary
0 250 500 750 1000 1250 1500 1750 2000

0.70

0.73

0.75

0.78

0.80

0.83

0.85

0.88

0.90

Test, α = 16

0 500 1000 1500 2000 2500 3000 3500 4000
0.80

0.82

0.84

0.86

0.88

0.90

0.92

Test, α = 8

0 1000 2000 3000 4000 5000 6000 7000 8000
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Test, α = 4

C
IF

A
R

-1
00

ReLu M=2 M=4 M=8 M=16

0.40

0.50

0.60

0.70

0.80

0.90

=16
=8
=4

Train summary
0 250 500 750 1000 1250 1500 1750 2000

0.30

0.33

0.35

0.38

0.40

0.43

0.45

0.48

0.50

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 16

0 500 1000 1500 2000 2500 3000 3500 4000
0.50

0.55

0.60

0.65

0.70

0.75

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 8

0 1000 2000 3000 4000 5000 6000 7000 8000
0.70

0.73

0.75

0.78

0.80

0.83

0.85

0.88

0.90

ReLU
M= 2
M= 4
M= 8
M=16

Train, α = 4

ReLu M=2 M=4 M=8 M=16

0.50

0.55

0.60

0.65

0.70

Test summary
0 250 500 750 1000 1250 1500 1750 2000

0.40

0.43

0.45

0.48

0.50

0.53

0.55

0.58

0.60

Test, α = 16

0 500 1000 1500 2000 2500 3000 3500 4000

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Test, α = 8

0 1000 2000 3000 4000 5000 6000 7000 8000
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Test, α = 4

Figure 5: Accuracy of ×α narrow ResNet18 on CIFAR-10 and CIFAR-100 for difference SAS
sparsity M. The summary plot reports the best score for each setting where dashed lines are the
SWS network having the same sparsity in weight, which consumes the same mult-add count.

4.1 Experimental Setup and Results

We evaluate the classification accuracy on CIFAR-10/100 (Krizhevsky et al., a;b), and
ImageNet (Deng et al., 2009). Because the commonly used network already achieves good
saturated accuracy, we adopted the narrow version as a base network to better evaluate the
effects of using the sparse activation or weight. Specifically, as a base dense ReLU network,
we’ve utilized the network with α× narrow width (W ∈ RCo/α×C̄i/α) except for the first
and last layers; it approximately consume α2× less mult count. All variants, ReLU, SWS
(Zhou et al., 2021) and SAS networks, have approximately the same mult count for the
same α. The 1:M SWS network employs

√
M× more channel to make the mult count the

same as the base ReLU network (section 2.2, supp. B).
For fair comparisons, we employ the same training strategy for all variants, i.e., the training
epochs, batch size, optimizer, scheduler, etc. For training the SWS network, we employed
the training method of (Zhou et al., 2021). We train the networks from scratch for all
experiments. Refer to supp. D for more detail about the experimental configuration.
CIFAR-10 / CIFAR-100. We use ResNet18 (He et al., 2016) as one of the most popular
architectures. For all the variants, we utilize our proposed ERAdam optimizer (section 2.4)
in combination with k-decay scheduler (Zhang & Li, 2020); it is equivalent to RAdam for

7

Published as a conference paper at ICLR 2024

the base network because
∑

u(∇X̃·,u) 6= 0 in eq. (6) is approximately same for each weight
elements. We trained them for 16×1000/α epochs, utilizing the data argumentation adopted
in the ConvNeXt (Liu et al., 2022). We evaluate the accuracy by changing the base network
width α and sparsity M. Figure 5 summarize the results.
ImageNet. We use ConvNeXt (Liu et al., 2022), which is computationally efficient by its
network architecture design; e.g., it heavily utilizes depthwise convolutions to reduce the
number of mult. For this ImageNet experiment, we conducted an experiment only on the
practical configuration (rather than changing α and M in wider rage); we use ConvNeXt-B,
having half of the original input channel (α = 2) as a base network and use M = 2 for SWS
and SAS. We use their official code base only changing its activation and number of training
epochs and keeping the rest of the highly optimized settings unchanged. The accuracy of
the base network, SWS, and SAS is 80.7 %, 81.5 %, and 82.2 %, respectively.

4.2 Discussion

As expected, the accuracy improves as we increase the activation’s sparsity M. For all
ranges of the base network width (having different α), we observed the most significant gain
from the base ReLU network to a M=2 sparse network. The improvement saturates around
M=8 or M=16. Similarly, we observe a significant gain when the base network capacity
is small (large α). From a perspective of the training statistics evolution, the accuracy of
the SAS network having significant sparsity (large M) is worse than the less sparse network
(small M) at the beginning of the training; however, it surpasses them as training proceeds;
sparser network requires more training epochs to reach their best accuracy. We hypothesize
this is partly due to the sparse gradient when M is large. In comparison with the weight
sparsification, SWS network (Zhou et al., 2021) also shows improvement for the weight
sparsity M. Yet, SAS scales significantly better than SWS for the same mult count.
In summary, we see the SAS realized by the projected sparsity boosts accuracy without
increasing mult count; furthermore, the improvement is monotonic w.r.t. M and is much
better than SWS. The index I changes depending on its input, suggesting the different weight
elements are dynamically utilized depending on their input (section 5). We hypothesize that
the increased flexibility by the increases memory for weight is a primary source of SAS’s
superior accuracy boost over the SWS. The result also aligns with the increased capacity of
SAS evaluated by the trajectory length analysis (section 3).

5 Related Works

This section discusses the relation to other approaches for efficient DNN inference on GPU.

Unstructured weight sparsity. It is hard to utilize the unstructured sparsity for
speedup on GPU (Shi et al., 2020). For example, the wall-clock time for matmul be-
tween an 8000×8000 matrix with a sparsity of 90% and a dense matrix with the same
size takes 780ms by cuSPARSE, while the corresponding dense algorithm by cuBLAS only
requires 121ms. Though the sparse operation reduces the mult count by 90%, the dense
matmul is 7× faster, suggesting the difficulty of utilizing unstructured sparsity in vector
processors due to several overheads such as indexing.

Dynamic kernel. SAS dynamically selects weight elements based on activation. In this
regard, it relates to a series of research exploring the input-dependent weight to increase
the network expressive power (Chen et al., 2020; Jia et al., 2016)., which also relates to the
attention mechanism (Vaswani et al., 2017). Our SAS is different both in its motivation and
mechanism (e.g., SAS selects weight instead of composing it on the fly). Possible future work
would be to use attention for computing the index instead of the strategy in section 2.2.

Quantization. Discretizing the weight and/or activation into a low-bit representation is
commonly used to speed up the DNN inference (Yin et al., 2019; Esser et al., 2019; Li
& Baillieul, 2004); low-precision mult is more computationally efficient and consumes less
energy than the floating point counterpart. Furthremore, when we adopt a lower bit weight,

8

Published as a conference paper at ICLR 2024

memory footprints and cost for transferring the weight decrease. The main drawback of SAS
is the increased memory footprint for the weight matrix (×M); we’ll explore the combination
with the lower-bit weight matrix to mitigate the issue.

Low-rank factorization. Factorization of matmul into a low-rank presentation is often
utilized to reduce the number of mult count. The factorization can be integrated into
network design as depthwise or 1x1 convolution; they are utilized in efficient network designs
such as MobileNet (Howard et al., 2017) or ConvNeXt (which we evaluate). Recent research
realized the optimization of low-rank structure (Idelbayev & Carreira-Perpinan, 2020). Ours
are orthogonal to these low-rank approaches and could be combined.

6 Conclusion

We propose SAS, an unexplored but effective approach for efficient DNN inference on vector-
type processors. The evaluation reveals that sparsifying activation by structured projection
improves accuracy while maintaining the same mult count and inference speed. Our idea
is compatible with NVIDIA’s commercial GPU for M=2. It is not limited to the specific
device but is a good match for a wide range of vector processes; we expect it to open the
door for the new algorithm and hardware utilizing the structured sparsity in activation.

6.1 Limitations & Future work

Advanced projection algorithm. In this study, we employed a straightforward strategy
to compute the index I (section 2.2). We employed this method because it is computation-
ally cheap, simply looking at the sign bit of the neighbor activation. It has some drawbacks
for M>2 when the neighbor elements are close to zero. When the neighbor oscillates around
zero, the sparse activation X̃ undergoes discontinuous changes, which may negatively affect
the accuracy; this phenomenon is more likely to occur when M is large. From another
perspective, our current implementation determines the index by the simple rule, which is
not learned end-to-end. Learning to compute the index by incorporating extra channels or
attention-like mechanisms (Vaswani et al., 2017) might improve the accuracy.

Combination with SWS. We used the switching circuit developed for the SWS to utilize
the sparsity in activation for speedup. Exploring the combination of SAS and SWS would
be an exciting direction. Unfortunately, the current GPU supports sparse matmul where
one of the matrices is sparse. More efficient DNN could be realized on future GPU, which
supports matmul where both inputs are structurally sparse.

Library for DNN framework. We developed the CuPy (Okuta et al., 2017) based li-
brary cuSAS (listing 1) for general matmul for 1:2 sparse pattern, which runs on actual
Sparse Tensor Core hardware and realized wall clock speedup; however, integration to pop-
ular DNN framework has not yet been completed. As an important future work, we will
develop SAS (depth-wise) convolution for Pytorch (Paszke et al., 2019), TensorFlow (Abadi
et al., 2015), and JAX (Bradbury et al., 2018) by CUDA programming. We expect slightly
better results (in terms of the percentage of SAS-specific overhead) than the result in fig. 3
will be achieved with the custom CUDA kernel because we can integrate SAS-specific online
computation such as index computation, reorder (section E), and memory copy.

Hardware consideration for significant sparsity. Current NVIDIA’s GPU support
only 1:2 sparsity for tf32 or float matrices3, which restricts the SAS in higher sparsity
on actual hardware. In principle, larger sparsity in SAS does not increase the mult count
but may increase the switching circuit’s area, energy, and storage cost. Considering the
saturated gain by increasing the sparsity (section 4), the best sparsity can be defined; we
left this consideration for future work. Furthermore, hardware support could make the
index computation (section 2.2) more efficient. In addition to the efficient implementation
on existing GPUs, we’ll explore the novel vector-type processor design specific to the SAS.

3https://docs.nvidia.com/cuda/cusparselt. It supports a 2:4 sparsity for lower bit inputs.

9

https://docs.nvidia.com/cuda/cusparselt

Published as a conference paper at ICLR 2024

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available
from tensorflow.org.

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and
Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network computing. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 1–13,
2016. doi: 10.1109/ISCA.2016.11.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang. Coarsening the
granularity: Towards structurally sparse lottery tickets. February 2022.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030–11039, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, June 2009.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. February 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. March 2018.

G. Georgiadis. Accelerating convolutional neural networks via activation map compression. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7078–7088,
Los Alamitos, CA, USA, jun 2019. IEEE Computer Society. doi: 10.1109/CVPR.2019.00725.
URL https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00725.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. EIE: Efficient inference engine on compressed deep neural network. February 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for
mobile vision applications. April 2017.

Yerlan Idelbayev and Miguel A Carreira-Perpinan. Low-rank compression of neural nets: Learn-
ing the rank of each layer. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, June 2020.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. Advances
in neural information processing systems, 29, 2016.

10

http://tensorflow.org/
http://github.com/google/jax
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00725

Published as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). a. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). b. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation
sparsity for fast inference on deep neural networks. 119:5533–5543, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Keyong Li and John Baillieul. Robust quantization for digital finite communication bandwidth
(dfcb) control. IEEE Transactions on Automatic Control, 49(9):1573–1584, 2004.

Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool. Revisiting random channel
pruning for neural network compression. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 191–201, Los Alamitos, CA, USA, jun 2022. IEEE Computer
Society. doi: 10.1109/CVPR52688.2022.00029. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR52688.2022.00029.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=rkgz2aEKDr.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

NVIDIA. NVIDIA A100 tensor core GPU architecture. https://images.nvidia.com/aem-dam/
en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf, 2020.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. Cupy: A numpy-
compatible library for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. URL http://learningsys.org/nips17/assets/papers/paper_16.pdf.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan,
Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally. Scnn: An accelerator
for compressed-sparse convolutional neural networks. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’17, pp. 27â��40, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450348928. doi: 10.1145/3079856.3080254.
URL https://doi.org/10.1145/3079856.3080254.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster CNNs with direct sparse convolutions and guided pruning. In International Conference
on Learning Representations, 2017. URL https://openreview.net/forum?id=rJPcZ3txx.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

11

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00029
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00029
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1145/3079856.3080254
https://openreview.net/forum?id=rJPcZ3txx

Published as a conference paper at ICLR 2024

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W.
Keckler. Compressing dma engine: Leveraging activation sparsity for training deep neural net-
works. In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 78–91, 2018. doi: 10.1109/HPCA.2018.00017.

Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Efficient sparse-dense matrix-matrix multiplication
on gpus using the customized sparse storage format. In 2020 IEEE 26th International Conference
on Parallel and Distributed Systems (ICPADS), pp. 19–26. IEEE, 2020.

Zhanhong Tan, Jiebo Song, Xiaolong Ma, Sia-Huat Tan, Hongyang Chen, Yuanqing Miao, Yifu Wu,
Shaokai Ye, Yanzhi Wang, Dehui Li, et al. Pcnn: Pattern-based fine-grained regular pruning
towards optimizing cnn accelerators. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng. Dual-side
sparse tensor core. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pp. 1083–1095. IEEE, 2021.

Yanzhi Wang, Shaokai Ye, Zhezhi He, Xiaolong Ma, Linfeng Zhang, Sheng Lin, Geng Yuan,
Sia Huat Tan, Zhengang Li, Deliang Fan, et al. Non-structured dnn weight pruning consid-
ered harmful. arXiv preprint arXiv:1907.02124, 2, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. June 2019.

Huanrui Yang, Wei Wen, and Hai Li. DeepHoyer: Learning sparser neural network with differen-
tiable Scale-Invariant sparsity measures. September 2019.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing Straight-Through estimator in training activation quantized neural nets. March 2019.

Tao Zhang and Wei Li. kdecay: Just adding k-decay items on learning-rate schedule to improve
neural networks. arXiv preprint arXiv:2004.05909, 2020.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning N:M fine-grained structured sparse neural networks from scratch. February
2021.

Zeqi Zhu, Arash Pourtaherian, Luc Waeijen, Lennart Bamberg, Egor Bondarev, and Orlando Mor-
eira. Arts: An adaptive regularization training schedule for activation sparsity exploration. In
2022 25th Euromicro Conference on Digital System Design (DSD), pp. 415–422, 2022. doi:
10.1109/DSD57027.2022.00062.

12

Published as a conference paper at ICLR 2024

SAS: Structured Activation Sparsification
Supplemental Material

A Detail in Trajectory Length Analysis

Network design for the Trajectory Length analysis (section 3) is illustrated infig. A1. We
evaluate the length by randomly initializing the weight 100 times and reporting their average.
We also compose the SWS network having the same sparsity, which consumes approximately
the same mult count. The SWS network uses ReLU activation.

Figure A1: Network design used for the Trajectory Length Analysis (section 3). Relative
output length with respect to the input circle length is an indicator of the network’s expressive
power; a longer length (complex trajectory) indicates more expressive power.

B Detail in SWS Network

In this paper, we propose SAS to improve the network capacity or accuracy without increas-
ing the actual mult count. Therefore, we compare the SWS in the same scenario (keeping
the mult count constant while increasing the sparsity). Specifically, we consider a base
layer consisting of matmul between activation X and weight W, where X ∈ RC̄i×HW and
W ∈ RCo×C̄i (eq. (1)). Using the proposed SAS, one could increase the network width for M
times while maintaining the same mult count as the base layer by utilizing the 1:M sparsity
pattern. The sparsified matrix shape is, X ∈ RMC̄i×HW and W ∈ RCo×MC̄i (eq. (3)). Note
that the SAS does not change the output channel dimension Co.
On the other hand, in the case of SWS, if one increases the network width for the M times
and uses the 1:M sparse pattern on weight, the mult count of the resultant network increases
by about M ×M/M = M because both input and output channel is M times wider. In
the case of SWS, by using

√
M times wider network for the 1:M sparsity pattern, we can

construct the SWS network, which has roughly the same mult count as the base dense
network and SAS. More specifically, we adopt the following configuration: We use

√
M

times (instead of M times) wider input/output channel. In this configuration, we’ll have
approximately the same mult count as the base network. The network width needs to be
an integer value, and it also needs to be a multiple of M . Hence, we use the weight having
the shape of b

√
MC̄

(l)
i e × b

√
MC

(l)
o e for the 1:M SWS network, where b·e is a rounding

operator, C̄(l)
i , C(l)

o is the input/output channel dimension of l-th layer of the base dense
network. For the last chunk, when it does not equal to M , we use (b

√
MC̄

(l)
i eb
√
MC

(l)
o e

13

Published as a conference paper at ICLR 2024

mod M):1 sparse pattern. This way, we construct the SWS network having approximately
the same mult count as the base dense network.
For example, consider the l-th layer of the base network consisting of convolution
with C̄i=288 (Ci=32, kernel size k=3) and Co=128. When M=8, then we have
b
√
MC̄

(l)
i e=815 and b

√
MC

(l)
o e=181. Then mult count of the original dense layer (for

single pixel) is 288×64=18432, the mult count of the weight sparse layer (SWS) is 18440
(815×181/8=18439 with modulo 3, we use M=3 for the last chunk).

C Detail in Speed Benchmarking

On the wall-clock speed benchmarking reported in section 2.3, we adopt the opposite config-
uration as the neural network experiment. We evaluate the speed by changing the sparsity
pattern while keeping the matrix dimension unchanged to report more concrete comparisons.
Specifically, in the wall-clock speed benchmarking in fig. 3, we consider the matmul WX
where X ∈ Rγ×α and W ∈ Rβ×γ which is same for dense matmul, SAS matmul, and
SWS matmul. The mult count of the three variants is the same (γ×α×β) when one does not
take the sparsity into account. By utilizing the 1:2 fine-grained (or semi-structured) sparsity
on Sparse Tensor Core, the mult count becomes half for SAS and SWS, i.e., (γ × α× β)/2.
As shown in fig. 3, we use fixed γ=10240, changing α = β from 10240 to 20480, which is
the same for dense matmul SAS matmul, and SWS matmul.
We want to emphasize that the scenario in this speed benchmarking (keep the same matrix
dimension) is different from the scenario for neural networks (keep the (almost) same mult
count). We adopt the different configurations to evaluate the speed in a fair setting between
SWS and SAS. In the neural network setting, one could construct the SWS network having
approximately the same mult count with the base one by using

√
M wider input/output

channel (supp. B); however, it is hard to align the mult count precisely, and the shape of
the matrices is different, which makes it hard to evaluate the overhead specific to SAS which
we are interested in (computation of index, reorder, and memory transfer for the index).
On the other hand, we can clearly evaluate this by measuring the time of the matmul of the
same-sized matrix (section 2.3).

14

Published as a conference paper at ICLR 2024

D Detail in Main Experiment

The primary experimental setup is summarized in table A1. The FLOPS and memory
footprint of the network used in the experiments are summarized in table A2
For training the SWS network, we employed the method of (Zhou et al., 2021) instead of
APEX’s Automatic SParsity1 because 1©code base of (Zhou et al., 2021)2 supports arbitrar-
ily 1 :M sparsity and 2©it allows training from scratch which enables fair comparison with
SAS.

Table A1: Experimental setup

CIFAR-10 CIFAR-100 ImageNet
Network ResNet18 ConvNeXt-B

Batch size 512 4096
Training epochs 16/α×1000 600

Optimizer ERAdam (section 2.4) AdamW
Scheduler Two cycle cosine with kDecay=2.0 Zhang & Li (2020) Cosine

Initialization Kaiming-uniform He et al. (2015) Truncated Gaussian
Base width α 4/8/16 2
Sparsity M ReLU/2/4/8/16 ReLU/2

CIFAR-10/CIFAR-100

The code for CIFAR-10 and CIFAR-100 is based on Pytorch lightning CIFAR10 tutorial
code3. We use a single A6000 GPU for CIFAR10 and CIFAR100 experiments. It takes a
day to train the single model.

ImageNet

The code for ImageNet is based on ConvNeXt’s (Liu et al., 2022) official code base4. We use
four A100 GPUs (each holding 256 batches) with an update frequency of four to virtually
construct the batch size of 4096. It takes about two weeks to train a single SAS model for
600 epochs (double the original 300 epochs to compensate for sparse gradient); we use the
default setup of ConvNeXt’s (Liu et al., 2022) official repository for training ImageNet-1K
(without pre-training using ImageNet-22K), only changing the original dense matmul to our
proposed SAS matmul(conv2D→ SASconv2D, and linear→ SASlinear) and training epochs
(300→ 600). We use the original AdamW optimizer to keep the original ConvNeXt’s highly
optimized settings intact as much as possible (furthermore, in this moderate sparsity of
M=2, proposed ERAdam behaves almost identical to AdamW with warm-up). Refer to
their paper for a more detailed setup.

Table A2: FLOPS and memory footprints. Note that FLOPS and the number of
parameters and FLOPS of SWS are not precisely the same as the base dense network as
discussed in supp. B, but the difference is less than 1% for all the configurations.

Network FLOPS (all) Params (dense, SWS) Params (SAS)
ResNet18 (α=4) 114K 731K 731K×M
ResNet18 (α=8) 28K 182K 182K×M
ResNet18 (α=16) 7K 46K 46K×M

ConvNeXt-B (α=2) 3850M 22M 22M×M

1http://github.com/NVIDIA/apex
2http://github.com/NM-sparsity/NM-sparsity
3http://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples
4https://github.com/facebookresearch/ConvNeXt

15

http://github.com/NVIDIA/apex
http://github.com/NM-sparsity/NM-sparsity
http://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples
https://github.com/facebookresearch/ConvNeXt

Published as a conference paper at ICLR 2024

Training

During the training, SAS matmul is computed as follows: it first projects the dense/narrow
activation map into a structurally sparse/wide space by S, constructing the sparse activation
explicitly; then, it performs the conventional dense matmul. Note that it is equivalent to
the sparse matmul for efficient inference when hardware support is available, and we do
not construct the sparse matrix explicitly during inference. Still, the hardware directly
processes the narrow dense feature along with the index computed online (fig. 2). Refer to
the pseudo-code in listing 2 during training. When implemented this way, the gradient for
the wide weight W̃ could be computed using autograd mechanism.

1 def SAS_proj(x, m): # m corresponds to log2(M) in the main text
2 B, C, H, W = x.shape
3 xa = [torch.roll(x[:, None], i, dims=1) for i in range(m)]
4 ind = torch.cat([2∗∗i∗(torch.signbit(x_)) for i, x_ in enumerate(xa)], dim=2).sum(dim=2, keepdim=True)
5 x_sparse = torch.zeros([B, 2^m, C, H, W]).scatter_(1, ind, x[:, None]).view([B, (2^m)∗C, H, W])
6 return x_sparse
7 def forward(self, x): # x: input activation, m: sparsity factor (actual sparsity is 100(1−1/2^m)[%])
8 return F.conv2d(SAS_proj(x, m), self.weight, bias=self.bias, stride=....)

Listing 2: Code of SAS conv2d layer for training (PyTorch). Note: During inference, one does not
need to construct the sparse activation explicitly (L5); refer to fig. 2 for efficient infrence mechanism.

16

Published as a conference paper at ICLR 2024

E Memory Arrangement for cusparseLtMatmul

The Sparse Tensor Core and the cuSPARSELt library were originally developed to speed up
the DNN having structured weight sparsity (SWS). Our SAS improved the accuracy/compu-
tation tradeoff by using the same hardware and software library. In the case of SWS,
the index could be precomputed after training using cusparseLtSpMMACompress function of
cuSPARSELt library. Figure A2 illustrates the memory arrangement of value and index for
cusparseLtMatmul operation for NVIDIA’s Sparse Tensor Core. The value matrix follows
the index matrix. In the case of a 1:2 sparse pattern (TF32), the index is stored using 4-bit
(although it can be represented in 1-bit; Sparse Tensor Coreuse 4-bit to index a 1:2 pattern),
and ’0x4’ and ’0xe’ is assigned for indexing the first and second element, respectively.
The important note for Sparse Tensor Core is that the order of the index is not aligned
with its corresponding activation value; it needs to be reordered (L8 in listing 1), and the
reordered index Ĩ needs to be supplied to the core to get the correct result. The arrangement
depends on the size of activation matrices X (The memory arrangement in fig. A2 illustrates
the specific case when the input matrix is 64× 32).

How to use the cusparseLtMatmul for SAS?

One can also use the cusparseLtSpMMACompress function for SWS to executed the SAS
matmul, 1©compute the index I using equation 3, then 2©explicitly computing the sparse
activation X̃ and finally 3©compute the reordered index Ĩ using cusparseLtSpMMACompress.
However, it is redundant and inefficient. We already have compressed activation X as an
output from the previous layer; the index I is computed cheaply. We want to reorder the
index I to get Ĩ without explicit construction of sparse activation X̃ as we discussed in the
main text (section 2.3). The problem is that NVIDIA does not provide information about
the rendering mechanism of cuSPARSELt.

Tools for digging up the reordering matrix

We developed a helper tool of cuSAS5 for finding out the rendering matrix O for arbitrary
size matrix to realize a general matmul for SAS activation. The core idea for realizing
the elucidation is impulse response of cusparseLtSpMMACompress function. Specifically, we
input the sparse activation X̃; all the odd element has a non-zero value except the (i, j)
element. Then, looking at the reordered index computed by cusparseLtSpMMACompress,
we can find the destination index (̃i, j̃) where (i, j) element in the original index should be
warped. Repeating this process for all the row-column pairs, we get the reordering matrix
O such that Ĩ = I[O]. The reordering matrix O depends only on the size of X; therefore
could be precomputed. We’ll also open-source this tool.
It is possible to implement the CUDA kernel, which runs the following operation at once
for more efficient SAS matmul; 1©checks the sign bit, 2©assign either ’0x4’ or ’0xe’, and
3©reorder.

Figure A2: Memory arrangement for cusparseLtMatmul. The index is located just after the
value. The index needs to be arranged for the execution of sparse matmul using cusparseLtMatmul.
The formatting of the index depends on the size of the matrix X in listing 1. This figure illustrate
the case for the 1:2 sparse pattern (TF32) and the input matrix size is 32× 64.

5The current version supports sparse activation with a 1:2 structured pattern.

17

Published as a conference paper at ICLR 2024

F Fine-grained (semi) Structured Weight Sparsity.

NVIDIA’s SWS (NVIDIA, 2020) could speed up the matmul with weight having moderate
rate sparsity (e.g., 50%) on GPU, which is almost impossible for the unstructured sparse
pattern (section 5). They realized actual speed up by utilizing a specific pattern in their
sparsity, namely N :M structured sparsity. Suppose a typical matrix multiplication between
activation X ∈ R16×32 and weight W ∈ R32×8. The Dense Tensor Cores implement this
matmul by two cycles. In contrast, the Sparse Tensor Core only needs one cycle if the weight
tensor W satisfies the structured sparse pattern (fig. A3).
Our SAS could utilize the same hardware by the novel structured sparse projection mecha-
nism. With the same computational budget and on the same hardware, SAS realizes better
accuracy if one can use extra memory for storing the weight.

Figure A3: SWS matmul on Sparse Tensor Core NVIDIA (2020). Compare with our SAS
matmul mechanism in fig. 2.

18

	Introduction
	Structured Activation Sparsification
	Structured Sparsity in Activation
	SAS by Sparse Projection
	Hardware Implementation and Speed Benchmarking
	Training SAS Network

	Expressive Power Analysis
	Experiment
	Experimental Setup and Results
	Discussion

	Related Works
	Conclusion
	Limitations & Future work

	Detail in Trajectory Length Analysis
	Detail in SWS Network
	Detail in Speed Benchmarking
	Detail in Main Experiment
	Memory Arrangement for cusparseLtMatmul
	Fine-grained (semi) Structured Weight Sparsity.

