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“The whole universe is a complex system, including the human brain.” – Immanuel Kant

Abstract

In both neuroscience and artificial intelligence (AI), it is well-established that neural
“coupling” gives rise to dynamically distributed systems. These systems exhibit self-
organized spatiotemporal patterns of synchronized neural oscillations, enabling
the representation of abstract concepts. By capitalizing on the unprecedented
amount of human neuroimaging data, we propose that advancing the theoretical
understanding of rhythmic coordination in neural circuits can offer powerful design
principles for the next generation of machine learning models with improved
efficiency and robustness. To this end, we introduce a physics-informed deep
learning framework for Brain Rhythm Identification by Kuramoto and Control
(coined BRICK) to characterize the synchronization of neural oscillations that
shapes the dynamics of evolving cognitive states. Recognizing that brain networks
are structurally connected yet behaviorally dynamic, we further conceptualize
rhythmic neural activity as an artificial dynamical system of coupled oscillators,
offering a shared mechanistic bridge to brain-inspired machine intelligence. By
treating each node as an oscillator interacting with its neighbors, this approach
moves beyond the conventional paradigm of graph heat diffusion and establishes
a new regime of representation compression through oscillatory synchronization.
Empirical evaluations demonstrate that this synchronization-driven mechanism
not only mitigates over-smoothing in deep GNNs but also enhances the model’s
capacity for reasoning and solving complex graph-based problems.

1 Introduction

The evolution of artificial intelligence (AI) has long been intertwined with efforts to decipher the
principles of human cognition. Rather than existing as separate disciplines, AI and neuroscience
share conceptual foundations in how information is represented and transformed. In the human brain,
massive ensembles of neurons form densely interconnected circuits that coordinate activity across
multiple spatial and temporal scales [4]. Many artificial graph systems, ranging from transportation
networks to online communities, show comparable organizational motifs, including efficient long-
range connectivity and modular substructures [57].

Both domains can be viewed through the lens of collective dynamics. Neural assemblies give
rise to oscillatory rhythms through intricate coupling between regions [20], while graph neural
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networks (GNNs) update node states by iteratively exchanging information, leading to structured
representations that emerge across layers [58].

Machine learning shows remarkable proficiency in extracting statistical patterns from vast datasets, yet
it remains fundamentally limited in its capacity for flexible reasoning and context-aware integration.
Biological neural systems, in contrast, constantly fuse inputs from different sensory streams in real
time [24]. Everyday experiences, for example, hearing approaching footsteps before seeing someone,
highlight how sensory predictions interact across modalities to construct unified percepts.

Neural oscillations serve as a core mechanism that enables coordinated information exchange across
different sensory modalities [53, 49]. At the microscopic scale, accumulating evidence indicates that
neurons communicate through lateral connections [31], and their rhythmic patterns of excitability,
commonly referred to as brain rhythms, emerge from the intrinsic dynamics of local circuits and
the biophysical properties of ionic channels [8]. Neighboring neurons often synchronize their
activity, forming competitive clusters that interpret sensory inputs [25, 45]. This process, known
as “competitive learning” [2], compresses information during layer-wise propagation and enhance
abstraction. Such synchronization also drives functional specialization among higher-order cortical
populations, aligning their activity (analogous to fireflies synchronizing their flashes) to generate
compact and meaningful neural representations [7].

While modern GNNs such as graph convolution network (GCN) [34] and Graph Transformer [63]
excel at structural representation learning, they lack the adaptive dynamical properties that charac-
terize biological neural systems. On the flip side, cognition in humans and animals is governed by
large-scale, dynamic oscillations that support perception, memory and decision-making. This parallel
between biological and artificial systems motivates us to rethink graph learning through the lens of
coupled neural oscillators, which presents new opportunities to reshape GNN architectures.
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Figure 1: The link between the human brain and artificial intelligence
inspires the development of novel learning mechanism of graph-structured
data based on neural oscillatory synchronization.

Following this spirit, we aim
to establish a novel learn-
ing mechanism for graph-
structured data grounded in
neural oscillatory synchro-
nization, as illustrated in
Fig. 1. First, we introduce
BRICK, a physics-informed
deep learning framework for
brain rhythm identification.
This model unifies the syn-
chronization dynamics of the
Kuramoto model [36] with
the concept of attending mem-
ory [32], allowing us to cap-
ture rhythmic neural oscillations that underlie cognitive state transitions. By bridging control theory
with oscillatory dynamics, BRICK provides a principled foundation for extracting interpretable task-
related synchronization patterns from complex neural signals. Second, we generalize this oscillatory
synchronization principle to graph learning and propose BIG-NOS, which is a biologically inspired
graph neural oscillatory synchronization framework. Here, each graph node functions as a coupled
oscillator whose state evolves dynamically through network interactions. In contrast to conventional
graph message passing and convolution paradigms constrained by heat diffusion [11], which often
suffer from over-smoothing and information dilution [37, 17], BIG-NOS preserves oscillatory co-
herence across graph topology. By steering feature propagation via controlled synchronization, the
model naturally captures emergent interference patterns in the spatial domain, unveiling meaningful
modular structures (e.g., red–blue clustering in Fig. 1). This biologically grounded formulation draws
inspiration from how rhythmic synchronization supports information integration in the human brain,
enriching the theoretical connection between brain dynamics and graph learning and offering a pow-
erful foundation for next-generation machine intelligence, capable of interpretable reasoning, robust
pattern integration, and scalable performance on real-world graph datasets. In summary, we propose
a neural oscillatory synchronization-based graph learning mechanism, uniting a physics-informed
model (BRICK) and a biologically grounded GNN (BIG-NOS) with decent real-world performance.
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2 Related Works

Graph neural networks for brain network modeling. GNNs have become foundational tools for
analyzing structured data, spanning areas such as chemistry, recommendation systems, biological
networks, and social graphs. Initial developments focused on spectral formulations like GCN [34]
and GAT [56], which were later extended by more expressive variants including GIN [59] and
GraphSAGE [27]. Beyond standard tasks of node and graph classification, GNNs have been adapted
for spatio-temporal modeling [60], link prediction, and graph generation [38], with scalability
improved through methods such as clustering and sparse attention [15, 61, 35].

Applications to brain networks have followed a similar trajectory, using both structural and functional
connectomes to represent the complex topology of neural systems. Early work such as Brain-
NetCNN [33] demonstrated the feasibility of disease classification from brain graphs, while more
recent studies leverage hierarchical pooling [62] and attention mechanisms [29] to uncover multi-scale
functional organization and enhance interpretability. Temporal extensions [60] have further enabled
dynamic modeling of fMRI and EEG signals, offering insight into evolving neural states over time.

System identification approaches. A key objective in computational neuroscience has been to
uncover mechanistic principles governing how the brain regulates perception, action, and cogni-
tion [6]. Motivated by parallels between cognitive control and classical control theory, prior work has
represented neural dynamics as linear or bilinear control systems [26, 40], enabling controllability
analyses through energy-based formulations [41]. More recently, research has shifted toward inte-
grating recurrent neural architectures with physics-inspired continuous-time dynamics [14, 28, 16].
The Kuramoto model, in particular, has been a central tool for linking structural connectivity to
emergent functional activity [9, 10], showing that spontaneous neural fluctuations can be explained as
coordinated interactions between local oscillators and large-scale network architecture. Our proposed
BRICK builds on this line of work by parameterizing these governing dynamics through a deep
learning framework.

Kuramoto dynamics in machine learning. A closely related effort is the recent development of
artificial Kuramoto oscillatory neurons for unsupervised vision representation [43], which leverage
synchronization to achieve compact and structured feature embeddings. In contrast, our approach
emphasizes the bidirectional exchange between neuroscience and machine learning through dynamical
systems principles [18], and places additional focus on probing the intrinsic potential of the model.
Specifically, we aim to (1) use machine learning models to reveal the mechanisms by which fluctuating
brain activity maps to cognitive states, and (2) translate biologically grounded synchronization
mechanisms into graph learning to enable large-scale network reasoning without explicit supervision.

3 Methods

In this work, we model both human brain networks and graph-structured data as dynamical systems
whose collective behavior is governed by the Kuramoto model [18]. Consider a network of N
interacting oscillators with pairwise coupling strengths Kij (i, j = 1, . . . , N). Each oscillator
oscillates at its intrinsic frequency ωi, and the temporal evolution of its phase θi can be expressed as

dθi
dt

= ωi +

N∑
j=1

Kij sin
(
θj − θi

)
, (1)

where θi ∈ R denotes the instantaneous phase of the i-th oscillator. When coupling is absent, the
oscillators evolve independently following their own natural frequencies. As interactions accumulate
over time, the sinusoidal coupling term in Eq. 1 drives gradual phase alignment across units, giving
rise to collective synchronization. This interaction enables groups of oscillators to entrain to common
rhythms, ultimately forming stable phase-locked clusters (as shown in Fig. 1 bottom-right).

3.1 Deep Model for Brain Rhythm Identification

A growing body of research has highlighted the central role of neural oscillations in coordinating
activity across distributed brain regions [8, 55]. To mechanistically characterize these large-scale
synchronization phenomena, the Kuramoto model has become a widely used framework in both
theoretical neuroscience and neuroimaging research [9].
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Problem setup. We formalize the brain network as a weighted graph G = (V,W ), where V
represents N brain regions (nodes) and W = [wij ]

N
i,j=1 denotes the weighted adjacency matrix.

Each weight wij encodes the coupling intensity between node vi and vj , derived from neuroimaging
measurements3. Let the observed BOLD signal be X = xi | xi(t) ∈ R, t = 1, . . . , T , where xi(t)
is the signal measured from brain region vi at time t. We then construct a physics-informed deep
learning model to map neural activity patterns to cognitive outcomes.

Vectorized neural oscillators. To move beyond scalar-valued signals xi(t) and better characterize
complex neural dynamics, we adopt the geometric scattering transform (GST) [23]. GST leverages
harmonic wavelets derived from the graph Laplacian to construct representations that encode both
multi-scale structure and frequency content. We begin by defining the lazy random walk matrix [42]:
G = 1

2 (IN +WD−1), where IN denotes the N ×N identity matrix and D is the diagonal degree
matrix associated with W . From this operator, a sequence of graph wavelets {Ψh}H−1

h=0 is generated
recursively, enabling a compact and structured embedding of neural oscillatory activity across multiple
scales. Ψ0 := IN−G, Ψh := G2h−1−G2h , 1 ≤ h < H. Let x(t) ∈ RN be the BOLD snapshot
at time t. For each scale h, the GST output x̂h(t) ∈ RN is computed by: (1) applying the wavelet
transform (Ψh, x(t)), (2) taking element-wise absolute value, and (3) applying the low-pass filter
Φ = G2H , yielding x̂h(t) = Φ|(Ψh, x(t))|.
Vectorized Kuramoto model for multi-frequency neural synchronization. Following GST decom-
position, each brain region vi yields a set of frequency-resolved BOLD signals x̂i(t) = [x̂h

i (t)]
H
h=1

capturing temporal fluctuations across multiple scales. The evolution of these oscillator phases can
be compactly described by a vector-valued differential equation:

dx̂i

dt
= ωi + [τ · ϕx̂i

(
∑

N
j=1wij x̂j)] (2)

where x̂i ∈ RH denotes the oscillator state of region vi on a unit hypersphere, ωi its intrinsic
frequency, and τ a global coupling gain parameter. The mapping ϕ constrains the aggregated phase
input to the tangent space of x̂i, enforcing smooth manifold-constrained dynamics.

Rather than simply fitting temporal fluctuations, the aim is to represent neural synchronization in
a way that reflects how the brain achieves coordinated oscillatory activity with minimal energetic
cost. Accordingly, we seek an oscillator-based representation and a control strategy that are both
mathematically stable and biologically meaningful.

Kuramoto model with attending memory. The standard Kuramoto model (Eq. 2) relies on global
dynamics, which are not well suited for capturing short-lived functional fluctuations tied to specific
cognitive operations. In contrast, the human brain can flexibly emphasize task-relevant inputs while
down-weighting irrelevant signals, effectively deciding “what to remember” and “what to ignore.”
This selective filtering resonates with the concept of attending memory [32] and motivates us to
augment the Kuramoto model with a biologically inspired, memory-guided control mechanism. We
incorporate a global optimal control term:

dx̂i

dt
= ωi + [τ · ϕx̂i(yi +

∑
N
j=1wij x̂j)], (3)

where yi is a feedback control signal derived from attending memory, reflecting observed neural
activity. Each yi represents behavior-specific, population-level memory traces that dynamically
modulate the influence of oscillator i in a given cognitive context. This control formulation allows
the system to continuously adapt synchronization dynamics as neural states evolve.

Intuition behind the Kuramoto model with attending memory. Assuming uniform contribution
from each brain region vi and a symmetric coupling matrix W , the extended Kuramoto dynamics
in Eq. 3 can be viewed as a gradient flow that evolves along the steepest descent direction of the
following energy functional E [3, 43]:

E = −
∑
i,j

x̂⊤
i wij x̂j −

∑
i

y⊤i x̂i (4)

The term E acts as a Lyapunov function that guarantees the system’s stability, as dE(x̂(t))
dt ≤ 0. Its

first component captures pairwise coupling, promoting synchronization among oscillators x̂i and x̂j

3For example, wij can represent the normalized fiber count in structural connectivity (SC) or the strength of
temporal co-fluctuation in functional connectivity (FC).
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Figure 2: Overview of the proposed framework. (a) BRICK (solid cyan box) models neural oscillatory
synchronization for brain rhythm identification. (b) BIG-NOS (dashed orange box) extends the same Kuramoto-
based dynamics to graph learning.

proportional to the interaction strength wij . The second component represents task-driven feedback
control, aligning each oscillator’s dynamics with its control signal yi, which encodes population-level
attention and behavior-specific modulation. Together, these two objectives describe a biologically
motivated trade-off between network coherence and cognitive specialization.

From a control-theoretic standpoint, the feedback variables Y = {yi|i = 1, ..., N} can be interpreted
as spatial control fields, providing a physically grounded attention mechanism distinct from graph
attention [56]. These feedback patterns quantify the controllability of each brain region [39], bridging
the link between oscillatory synchronization and adaptive regulation of cognitive states. Importantly,
the energy formulation also offers a gradient-flow interpretation, ensuring that the system mono-
tonically decreases E along its trajectory, thereby maintaining smooth and stable evolution on the
hyperspherical manifold.

This unified view reveals why the proposed model alleviates the over-smoothing problem observed
in deep GNNs: oscillatory synchronization fosters global coherence while preserving discrimina-
tive, high-frequency information. Consequently, this mechanism provides both a neurobiologically
meaningful and computationally efficient pathway toward large-scale graph reasoning, forming the
theoretical basis of the BIG-NOS model introduced in Sec. 3.2.

Physics-informed deep model for brain rhythm identification. Building upon the above formu-
lation, we introduce BRICK, a physics-informed framework designed to predict cognitive states
through neural synchronization dynamics. The overall architecture of the model is illustrated in the
solid cyan box in Fig. 2a. Specifically, the intrinsic frequency of each oscillator is determined by a set
of learnable vectors Γσ(x̂i), whose magnitudes control the rotation speed, while the control signal
yi is generated through a neural mapping Γµ(x̂i), with σ and µ denoting network parameters. The
synchronization process evolves in three key steps: (1) Coupling influence aggregation. For each

oscillator x̂i, we compute the aggregate input from its neighbors as zi = yi +
∑N

j=1(sij · wij) x̂j ,

where S = [sij ]
N
i,j=1 is a symmetric, trainable reweighting matrix that adaptively modulates the

coupling strengths W . This step captures how local interactions shape the global phase landscape.
(2) Tangent-space projection. Each zi is then projected onto the tangent space of the unit hyper-

sphere at x̂i through ϕx̂i
(zi) = zi − ⟨zi, x̂i⟩x̂i. This ensures that the updated direction respects the

geometric constraint of the manifold and maintains stability during the synchronization process [12].
(3) Phase-state update. Finally, x̂i is updated via forward Euler integration of Eq. 3, while the

controller yi is transformed using a mapping function fφ to remain on the hypersphere and capture
phase-invariant patterns. These three steps together implement a geometry-aware synchronization
mechanism in which oscillator states evolve under both coupling dynamics and task-driven control.
The procedure is summarized in Algorithm 1.

The downstream objective combines the task-driven loss L, defined as cross-entropy between pre-
dicted and ground-truth cognitive task labels, with the synchronization energy E. For unseen subjects,
the trained BRICK synchronizes a large oscillator ensemble X̂ using learned parameters σ and µ,
producing both the predicted cognitive state and its associated control pattern Y .

3.2 BIG-NOS: Graph Learning via Neural Oscillation

New learning mechanism of GNN. Conceptually, BIG-NOS extends BRICK from continuous brain
dynamics to arbitrary graph data (as shown in the dashed orange box of Fig. 2b). By treating graph
nodes as analogs of brain regions and the adjacency matrix as a proxy for inter-regional coupling
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Algorithm 1: Iterative Solver for BRICK Dynamics (Eq. 3)

Input: BOLD signal X(0), coupling matrix W

Output: Final oscillator states X̂(L) and controller Y (L)

Initialization: Obtain initial oscillator states X̂(0) by applying GST to X(0); set
Y (0) = Γµ(X

(0));
Parameterize natural frequencies Ω← Γσ(X̂

(0));
for l = 1 to L do

for q = 1 to Q do
// Step 1: Aggregate coupling influence
Z ← Y (l) + (S ⊙W )X̂(q);
// Step 2: Project to tangent space of the hypersphere
ϕX̂(q)(Z)← Z − ⟨Z, X̂(q)⟩X̂(q);
// Step 3: Integrate oscillator dynamics
∆X̂(q) ← Ω+ τ · ϕX̂(q)(Z);
X̂(q+1) ← X̂(q) + β ·∆X̂(q);
// Step 4: Renormalize to stay on manifold
X̂(q+1) ← X̂(q+1)/∥X̂(q+1)∥;

end
// Step 5: Update control signal on hypersphere
Y (l+1) ← fφ(X̂

(q+1));
end

strength, we seamlessly adapt the physics-informed architecture of BRICK to general graphs. Both
models share the same governing equation rooted in Kuramoto synchronization but differ in their
data domains and learning objectives.

Let X = [xi]
N
i=1 denote the initial graph embeddings. In conventional GNNs, feature propagation

follows a graph heat diffusion process, formalized as ∂X
∂t = ∇ · (∇X), where ∇ and ∇· denote

the graph gradient and divergence operators [11]. Prior studies have shown that excessive message
passing under this diffusion mechanism leads to over-smoothing, where node representations become
indistinguishable [37]. Inspired by BRICK, we mitigate over-smoothing by evolving graph features
within a latent oscillatory phase space rather than diffusing them over the graph domain. The
Kuramoto model’s intrinsic oscillatory dynamics, driven by coupling interactions and intrinsic
frequencies, naturally prevent convergence to static equilibrium (as in diffusion-based GNNs [51])
and instead produce partial synchronization [1].

Unlike conventional attention mechanisms that re-weight neighbor contributions during aggrega-
tion [56], our model introduces control patterns Y as task-dependent feedback signals that guide
synchronization dynamics (Eq. 3). These patterns provide a new perspective on graph controllability
through the lens of complex systems theory [39].

Taken together, conventional GNNs are typically governed by a diffusion equation, in which node
features evolve according to a heat-diffusion process. This formulation leads to passive information
averaging across neighboring nodes, an approach that effectively captures local smoothness but
often suffers from over-smoothing and limited expressiveness in deeper architectures. In contrast,
our brain-rhythm-inspired BIG-NOS is formulated as a neural oscillation system, where each node
behaves as a coupled oscillator whose state evolves according to both its intrinsic frequency and the
phase interactions with connected nodes. Rather than diffusive averaging, information propagation
in BIG-NOS emerges from oscillatory synchronization, allowing it to represent complex, nonlinear
dependencies across the network. Furthermore, unlike conventional attention mechanisms that rely
on fixed weighting matrices, BIG-NOS incorporates a task-adaptive feedback control mechanism that
dynamically modulates coupling strength, enabling flexible coordination and improved generalization
across diverse graph structures.

Network architecture. We discretize the BRICK formulation into a GNN framework, denoted as
BIG-NOS, to enable general graph learning. In this architecture, each node is represented as an
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oscillator, and its interactions are governed by the underlying graph topology. The model takes initial
graph embeddings X(0) as input, and an encoder (e.g., a GCN layer) is used to initialize the control
term. As illustrated in Fig. 2b, feature evolution in BIG-NOS follows Kuramoto-based dynamics,
which are explicitly described in Algorithm 1.

4 Experiments

In this section, we present extensive experiments to validate the effectiveness and interpretability of
our proposed models across a variety of brain-related and general graph learning tasks.

We conduct a comprehensive evaluation of our proposed models across multiple tasks. We evaluate
BRICK for brain rhythm identification and explore its effectiveness in unsupervised brain parcel-
lation, demonstrating its potential for uncovering latent neural patterns in neural dynamics. We
further evaluate BIG-NOS on standard benchmarks including node and graph classification. To
analyze its robustness to "over-smoothing", we examine performance across increasing network
depths. We compared BIG-NOS with a diverse set of graph-based baselines: GCN [34], GAT [56],
GIN [59], GCNII [13], GraphSAGE [27], SAN [35], GRAND [11], GTN [63], GraphCON [48] and
KuramotoGNN (KGNN) [46]. To validate scalability, we also evaluate BIG-NOS on the large-scale
ogbn-arxiv dataset. For this task, we compare not only against the above baselines but also with
top-performing models from the official OGB leaderboard.

4.1 Data Description

To evaluate the effectiveness of BRICK and BIG-NOS, we use the publicly available neuroimaging
and graph datasets, respectively.

• Human brain datasets

1. HCP-Aging (HCP-A) [5]. This dataset includes 717 subjects with 4,846 fMRI scans (300 time
points each), covering four tasks (VISMOTOR, CARIT, FACENAME, Resting State).

2. HCP-Young Adults (HCP-YA) [54]. This includes seven cognitive tasks: Motor, Relational, Social,
Working Memory, Language, Emotion, and Gambling (175 time points each). The Working Memory
task (HCP-WM) involves alternating 2-back and 0-back conditions with body, place, face, and tool
stimuli with a total of 405 time points. Preprocessing follows [19].

In both HCP-A and HCP-YA datasets, the brain is parcellated into 116 regions via the AAL atlas [52].
Structural connectivity (SC) matrices with the size of 116× 116 encode fiber counts between regions
(normalized per subject), while functional connectivity (FC) is derived from Pearson correlations of
BOLD signals across brain regions. To test scalability, we use the Brainnetome atlas [22] to increase
granularity to 246 regions for HCP-WM. We perform 5-fold cross-validation for both the 4-class
(HCP-A), 7-class (HCP-YA) and 8-class (HCP-WM) classification tasks.

• Graph-based datasets

1. Node classification. We apply BIG-NOS to homophilic and heterophilic graphs sorted by homophily
ratio h [64]: Texas (h=0.11), Wisconsin (0.21), Actor (0.22), Squirrel (0.22), Chameleon (0.23),
Cornell (0.3), Citeseer (0.74), Pubmed (0.80), Cora (0.81). We also evaluate on the large-scale
ogbn-arxiv dataset from the Open Graph Benchmark (OGB) [30]. Details are in Table 4 (Appendix).

2. Graph classification. We evaluate on ENZYMES and PROTEINS from TUDataset [44], detailed
in Table. 5. For homophilic graph data (Cora, Citeseer, Pubmed) in node classification tasks, we
adopt the semi-supervised 20-per-class training split from [34] and average over 5 random seeds. For
heterophilic graph data and TUDataset, we follow [47] and [21], using 10-fold cross-validation and
reporting test-set averages. All datasets are evaluated using Accuracy (Acc), weighted-Precision (Pre)
and F1-Score (F1).

4.2 Performance on Human Brain Data

4.2.1 Brain rhythm identification

Results. We evaluate BRICK on the task of decoding dynamic brain states through neural synchro-
nization. Fig. 3a reports the performance across three human brain datasets and seven baseline
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Figure 3: (a) Performance (%) on human brain data. ∗ indicates statistically significant improvement (p <
0.001). (b) Inference time (ms/subject) on three human brain datasets.
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Figure 4: (a) Distribution of regional features across different brain states (tasks) in the HCP-A dataset. Each
brain region’s feature trajectory over time is projected onto the unit phase space (magnitude = 1), revealing
consistent synchronization of the same regions across tasks. (b) Phase-space feature aggregation on HCP-A
dataset, where features from different categories at each time point are mapped onto the unit phase space to
illustrate their clustering patterns. (c) Unsupervised clustering comparison between BRICK and classical spectral
clustering, where BRICK yields more coherent and neurobiologically meaningful functional communities.

models. BRICK consistently achieves the best performance (p < 0.001), surpassing all existing
hand-designed GNN models.

Discussion. These results demonstrate that our physics-based oscillation model effectively synchro-
nizes brain regions, producing patterns closely aligned with specific cognitive states. To further
explore this relationship, we visualize the phase-space representations of brain regions in Fig. 4a.
BRICK captures task-specific synchronization across functionally defined brain network in HCP-A.
For instance, Visual network regions (red) cluster clearly during the VISMOTOR task in the deeper
representation X(L), indicating strong within-network coordination. Similarly, tighter phase clus-
tering emerges in the Sensorimotor and Dorsal Attention networks under tasks such as CART and
FACENAME. These results suggest that our model respects functional boundaries in a biologically
meaningful manner.

We also investigate task-specific synchronization across all subjects. As shown in Fig. 4b, individuals
performing the same task (e.g., “VISMOTOR” or “FACENAME” in HCP-A dataset) form well-
separated synchronization in deeper layers (e.g., X(L)). This indicates BRICK captures latent
dynamics consistent across subjects and datasets, supporting the notion that neural phase alignment
underlines cognitive state representation.

4.2.2 Potential in unsupervised brain parcellation

To evaluate our model’s capability in unsupervised settings, we examine functional parcellation on
the HCP-A dataset, which partitions 116 brain regions (AAL atlas) into eight functional subnetworks
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(default mode, frontoparietal, limbic, ventral/dorsal attention, sensorimotor, visual, and cerebellar
networks). We train an unsupervised variant of BRICK that identifies functional communities
by minimizing pairwise distances between synchronized oscillators xi and xj using a Rayleigh
quotient objective [50]. As shown in Fig. 4c, compared to classical spectral clustering, BRICK more
effectively synchronizes related brain regions into meaningful clusters, demonstrating strong potential
for personalized brain parcellation.

4.2.3 Ablation study and model efficiency

We conduct an ablation study on the GST to assess the impact of different frequency scales. Specifi-
cally, we vary the wavelet order (from 0 to 2) and level (1 or 2) on the HCP-YA dataset (fixed-group
split), which define a multi-branch wavelet tree: the level determines the tree’s depth, while the order
sets the branching factor. As shown in Table 1, increasing either the level or order generally improves
performance by incorporating additional frequency components. However, this comes at the cost of
increased computational complexity. For example, using level=2 and order=[0,1] expands the
feature dimension from [N ] to [N, 7], due to the increased number of wavelet filters.

Table 1: Ablation results of GST with different levels and orders on HCP-YA.
Level Order Acc (%) Pre (%) F1 (%)

1
[0] -0.41 -0.45 -0.42
[0, 1] -0.14 -0.05 -0.16
[0, 1, 2] 85.20 85.53 85.13

2 [0] -0.23 -0.24 -0.24
[0, 1] +0.21 +0.25 +0.22

We provide a detailed comparison of inference time per subject across three human brain datasets in
Fig. 3b. Overall, all baseline GNNs demonstrate low computational cost, with inference typically
below 2 ms per subject. We further PDE-based GRAND and KuramotoGNN are notably slower.
In contrast, BRICK achieves comparable efficiency to lightweight baselines such as GCN and
GraphSAGE. Even on the larger HCP-WM dataset (246 regions), BRICK maintains a modest runtime
of 1.56 ms per subject (as shown in Fig. 3b-the rightmost data point), confirming its scalability and
computational practicality for large-scale brain analysis.

4.3 Performance on Graph Data

4.3.1 Node classification

Result. Fig. 5 (left and middle) presents the results of eleven models across nine node-classification
benchmarks. Overall, BIG-NOS achieves the best or second-best accuracy on the majority of datasets,
showing strong generalization across both homophilic and heterophilic graphs. For homophilic
graphs (Citeseer, Pubmed, Cora), BIG-NOS maintains competitive performance on par with advanced
architectures like GCNII and GRAND. For heterophilic graphs, it achieves the highest performance
on Actor, Squirrel, and Chameleon, where conventional message-passing GNNs typically fail due to
inconsistent neighborhood features. In contrast, BIG-NOS continues to improve through phase-based
coupling, which allows nodes to synchronize dynamically rather than relying solely on feature
similarity. This oscillatory mechanism enables coherent message propagation even when node
attributes are diverse, making BIG-NOS especially suitable for heterophilic settings.

Scalability. To assess the scalability of BIG-NOS, we evaluated its performance on the large-scale
ogbn-arxiv dataset. As reported in Table 2, our model achieved an accuracy of 0.86, outperforming
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Table 2: Performance on ogbn-arxiv test set. Bold and underline indicate the best and second-best results.
Dataset Metric GCN GIN GAT GCNII GraphSAGE SAN BiGTexa SimTeG+TAPE+RevGATa BIG-NOS

Acc 0.70 0.71 0.70 0.71 0.71 0.69 0.89 0.78 0.86
ogbn-arxiv Pre 0.70 0.70 0.69 0.71 0.70 0.68 – – 0.86

F1 0.69 0.69 0.68 0.70 0.69 0.68 – – 0.85
a BiGTex and SimTeG+TAPE+RevGAT are the top two models on the OGB Leaderboard at the time of writing. Pre and F1 are not reported.

all standard baselines and ranking second on the leaderboard, just behind BiGTex (0.89). These
results underscore the strong generalization ability of our oscillatory synchronization mechanism on
large graphs.
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Figure 6: Performance of BIG-NOS as the network
depth increases on Cora (red) and Citeseer (blue).

Discussion. These results show that our mes-
sage aggregation strategy effectively promotes
synchronization among nodes of the same class
while preserving the structural dependencies de-
fined by the coupling strength. In contrast to con-
ventional GNNs, which tend to drive neighboring
nodes toward indistinguishable embeddings, our
model maintains representational diversity and
prevents excessive feature homogenization. As a
result, it inherently resists over-smoothing as the
network depth increases. This property is empirically verified in Fig. 6, where we observe consistently
high classification performance even with up to 128 layers, demonstrating the robustness of our
synchronization framework against the depth-induced degradation common in traditional GNNs.

4.3.2 Graph classification

Result. Fig. 5 (right) reports graph classification accuracy on the ENZYMES and PROTEINS datasets
from TUDataset [44]. BIG-NOS achieves the best accuracy on ENZYMES (60.00±4.28) and performs
competitively on PROTEINS (75.02±2.61), despite using a minimal batch size (batch size=1). These
results indicate that our model maintains strong generalization from node-level to graph-level tasks
without architectural modification.

Discussion. Graph classification is conceptually analogous to brain rhythm identification, where the
goal is to predict a global state emerging from local interactions. The success of BIG-NOS in this
setting further validates the ability of our synchronization mechanism to generate global patterns that
effectively distinguish different graphs, which reinforces its applicability beyond node-level tasks.

Table 3 summarizes the average accuracy across homophilic, heterophilic, and all datasets. The
balanced performance is particularly encouraging: whereas many existing models tend to specialize
in a single regime (for example, GCN performs well primarily on homophilic graphs), our model
demonstrates consistent generalization across both homophilic and heterophilic graphs. This robust-
ness suggests that the underlying neural oscillation mechanism is inherently generalizable and largely
independent of specific graph structures.

Table 3: The average accuracy across homophilic, heterophilic, and all datasets.
GCN GIN GAT GCNII GraphSAGE SAN GRAND GTN GraphCON KGNN BIG-NOS

Hete. Avg 42.19 39.46 43.99 62.01 58.19 57.18 50.55 54.99 56.28 51.23 69.18
Homo. Avg 76.68 66.81 75.77 79.20 75.46 72.99 78.32 74.77 78.61 71.96 76.76
Total Avg 53.69 48.58 54.58 67.74 63.95 62.45 59.80 61.58 63.73 58.14 71.70

5 Conclusion

In this work, we introduce BRICK, a new deep learning framework inspired by the biological
mechanisms underlying fluctuating brain activity and cognitive state formation. Building on this
foundation, we extended the concepts of neural oscillatory synchronization and attentional memory
to graph domain and derive a novel graph-neural architecture, BIG-NOS. Extensive experiments
demonstrate that BIG-NOS effectively alleviates over-smoothing problem in conventional GNNs,
and delivers competitive performance across diverse GNN benchmarks. These results highlight
the model’s promise for tackling challenging graph-learning problems while offering a biologically
grounded view of information propagation.
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NA answer to this question will not be perceived well by the reviewers.
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Justification: The code is released at Anonymous GitHub.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is released at Anonymous GitHub.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Appendix A.2
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use paired-ttest.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix A.4.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Appendix A.2 for the use of data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We release a new codebase implementing the proposed models, with documen-
tation and instructions provided in the Anonymous GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

20

https://anonymous.4open.science/r/NIPS25-3F8B/


Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Data Description
Table 4: Dataset description for node classification.

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora ogbn-arxiv
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.81 -

# Nodes 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708 169,343
# Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278 1,166,243

# Classes 5 5 5 5 5 5 7 3 6 40

Table 5: Dataset description for graph classification.
ENZYMES PROTEINS

Avg # Nodes 32.63 39.36
Avg # Edges 62.14 39.06

# Classes 6 2
# Graphs 600 1,113

A.2 Hyperparameters

As human data as an example, for all methods, the hidden dimension is set to 256. The network depth
and batch size are set to 2 and 64 for the comparison methods, while for our BRICK, they are set to
16 and 256, respectively.

A.3 Connections and Distinctions from Prior Approaches

A.3.1 Relevance to neuroscience domains

In principle, the learning behavior of BRICK is shaped by the same governing equations (i.e.,
Kuramoto model) that describe the neural oscillatory dynamics responsible for generating cognition
and behavior. We further introduce structural-functional coupling, implemented through the geometric
scattering transform, to emulate the cross-frequency coupling observed in cognitive neuroscience.
In addition, we incorporate an adaptive control term to enhance task-relevant modulation. Drawing
inspiration from neural oscillatory synchronization, our BRICK model not only improves predictive
accuracy but also enhances interpretability, thereby offering novel insights into cognitive processes.

A.3.2 Advances over conventional methods in brain rhythm identification

While traditional models, including CNNs, RNNs, Transformers, and GNNs, have demonstrated
strong empirical performance in brain rhythm identification, they largely remain data-driven and
agnostic to the underlying neurobiological mechanisms, they often treat the brain as a generic data
source without sufficient domain knowledge. In contrast, BRICK explicitly incorporates neural
synchronization dynamics, a well-established principle in cognitive neuroscience, into the learning
architecture. This alignment with neuroscience allows us to interpret learned patterns (e.g., coupling
strengths or synchronization clusters) in biologically meaningful terms (as shown in Figure 3),
such as inter-regional communication or pathological desynchronization. Therefore, compared to
conventional approaches, BRICK is not just a deep model for feature representation learning, it shows
the potential to establish a biologically inspired reasoning system. By embedding core principles
of brain dynamics into a learnable, differentiable architecture, our proposed deep model enables
achieving more interpretable, temporally-aware, and robust brain state identification.

A.3.3 Differences from prior dynamical models

While both BRICK and Cabral et al. [9] adopt the Kuramoto model to explore brain dynamics,
their roles and applications diverge significantly. In their work, the Kuramoto model is used as a
forward simulator to reproduce biologically observed functional connectivity (FC) patterns from
empirical structural connectivity (SC), with the goal of explaining emergent brain phenomena. In
contrast, our BRICK repurposes the Kuramoto model as a computational module within a machine
learning framework. Rather than passively simulating dynamics, BRICK actively learns to perform
representation learning, reasoning, and predictive tasks on graphs using dynamic synchronization
mechanisms.
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For methodological paradigm, while Capouskova et al. [10] follow a data-driven analytical paradigm,
using autoencoders and clustering to uncover latent cognitive states from empirical fMRI data, they
encode BOLD phase coherence data using modern machine learning tools without Kuramoto model.
Their focus lies in neuroscientific pattern discovery and interpretation. In contrast, BRICK intro-
duces a physics-informed learning framework that embeds the principles of neural synchronization,
specifically via the Kuramoto model, directly into the learning process. The outcomes of these two
approaches are also distinct: Capouskova et al.[10] generate empirical insights about cognitive brain
states, whereas BRICK yields new machine learning models that not only excel in brain-related tasks
but also generalize to broader graph-based AI problems.

Compared with [43], our BRICK framework offers two key advantages. First, neuroscientific
grounding: starting from fMRI-derived brain rhythms, we augment the Kuramoto core with a task-
driven feedback controller that mimics cognitive control, thereby preserving biological interpretability.
Second, domain-specific impact: on real HCP fMRI data BRICK achieves the best task decoding and
unsupervised parcellation, while on graph benchmarks it delivers competitive accuracy and remains
resistant to oversmoothing even at 128 layers.

Taken together, these properties make BRICK a biologically inspired but practically efficient module
that bridges brain dynamics and general-purpose AI.

A.4 Discussion and Limitation

Although our approach demonstrates promising accuracy on brain connectomes and node-level
benchmarks, its computational efficiency remains limited due to the iterative solver required to
integrate BRICK dynamics. Unlike feed-forward GNNs, our model relies on repeated geometric
projections, oscillator updates, and manifold renormalization, all of which introduce substantial
per-batch computational overhead. This bottleneck becomes particularly pronounced on datasets
such as TUDataset.

Despite these efficiency constraints, our method still achieves competitive graph classification
performance, underscoring the robustness of our dynamical-systems perspective beyond neuroscience
applications. In future work, we plan to develop more efficient numerical solvers and adaptive graph
batching strategies to significantly improve scalability. We also aim to apply our framework to
broader multimodal and clinical datasets to further assess its generalizability and translational value.

More broadly, this line of research highlights the potential of brain-inspired synchronization mecha-
nisms for building more interpretable and principled AI systems.

More broadly, this line of research highlights the promise of brain-inspired synchronization mech-
anisms for building more interpretable and efficient AI systems, while also drawing attention to
important ethical considerations surrounding the use of neural data and the societal impact of au-
tonomous decision-making technologies.
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