
Tight Data Access Bounds for Private Top-k Selection

Hao Wu 1 Olga Ohrimenko 1 Anthony Wirth 1

Abstract

We study the top-k selection problem under the differen-
tial privacy model: m items are rated according to votes
of a set of clients. We consider a setting in which algo-
rithms can retrieve data via a sequence of accesses, each
either a random access or a sorted access; the goal is to
minimize the total number of data accesses. Our algo-
rithm requires only O(

√
mk) expected accesses: to our

knowledge, this is the first sublinear data-access upper
bound for this problem. Our analysis also shows that
the well-known exponential mechanism requires only
O(
√
m) expected accesses. Accompanying this, we

develop the first lower bounds for the problem, in three
settings: only random accesses; only sorted accesses;
a sequence of accesses of either kind. We show that,
to avoid Ω(m) access cost, supporting both kinds of
access is necessary, and that in this case our algorithm’s
access cost is optimal.

1. Introduction
We consider the differentially private top-k selection prob-
lem; there are m items to be rated according to n clients’
votes. Each client can either vote or not vote for each item,
and can vote for an unlimited number of items. Since this
data can be sensitive (e.g., visited websites, purchased items,
or watched movies), the goal is to identify a set of k items
with approximately the highest number of votes, while con-
cealing the votes of individual clients.

Private top-k selection is a fundamental primitive and under-
lies a wide range of differentially private machine learning
and data analytics tasks such as discovering frequent pat-
terns from data (Bhaskar et al., 2010), training wide neural
networks (Zhang et al., 2021), tracking data streams (Car-
doso & Rogers, 2022), false discovery rate control in hy-

1School of Computing and Information Systems,
The University of Melbourne. Correspondence to:
Hao Wu <whw4@student.unimelb.edu.au>, Olga Ohri-
menko <oohrimenko@unimelb.edu.au>, Anthony Wirth
<awirth@unimelb.edu.au>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

pothesis testing (Qiao et al., 2021), etc.

In recent years, a significant progress has been made towards
understanding how accurate the algorithms for this problem
can be. For example, (Bafna & Ullman, 2017; Steinke &
Ullman, 2017) provide lower bounds for the problem in
terms of sample complexity, which can be achieved by a
number of existing algorithms (Durfee & Rogers, 2019;
Qiao et al., 2021).

Another line of research is devoted to improving the effi-
ciency of the algorithms. Early works such as the peeling
solution (Bhaskar et al., 2010) need to iterate k times over
all items. The improved mechanisms (Durfee & Rogers,
2019; Qiao et al., 2021) iterate over each item only once.
Since k can be much smaller than m, the research commu-
nity remains interested in the following question:

Is there a private top-k selection algorithm that accesses
only a sublinear number of items?

Although it seems to be an unachievable target, it is possi-
ble to address this question by considering how items are
accessed. For example, Durfee & Rogers (2019) consider
the setting where the data has been pre-processed and re-
sides in an existing data analytics system, that can return
the items in sorted order (which we refer to as sorted access
in our paper). Their top-k algorithm can make a sublinear
number of accesses at a cost of potentially returning fewer
than k items, while to guarantee that k items are returned,
the number of retrieved items can be m. Since retrieving
information from an existing system incurs corresponding
query processing and communication cost, it is crucial to
minimize the number of data accesses.

In this paper, we systematically investigate the minimum
number of items an algorithm needs to evaluate (a.k.a. ac-
cess cost) , in order to answer the private top-k selection
problem. In addition to sorted access, we also consider
another common way of accessing items’ data, i.e., the ran-
dom access, in which an algorithm can actively request the
data of an arbitrary item.1 Both types of accesses have been
considered by previous literature for the non-private ver-
sion of top-k selection problem (see Ilyas et al. (2008) for a
comprehensive survey).

1Here random carries the sense of Random Access Memory
(RAM), rather than the outcome of a random process.

1

Tight Data Access Bounds for Private Top-k Selection

Example 1.1. Consider the example of a movie ranking
database. It can present the movies in sorted order, accord-
ing to their ratings by the clients, or it can return directly
the rating of a specific movie.

Our Contributions. Our results are threefold. On the
upper bound side,

• If the system supports both sorted access and random
access, we design an algorithm with expected access
cost O(

√
mk).

To our knowledge, this is the first asymptotically sublin-
ear bound of the access cost for the private top-k selection
problem. Our algorithm builds on existing works (Dur-
fee & Rogers, 2019; Qiao et al., 2021) and inherits their
error bounds, which are known to be asymptotically op-
timal (Bafna & Ullman, 2017; Steinke & Ullman, 2017).
Additionally, since the exponential mechanism (McSherry
& Talwar, 2007), a fundamental technique in differential
privacy, can be formulated as a private top-1 selection al-
gorithm (Durfee & Rogers, 2019), our result implies the
following corollary:

- If the system supports both sorted access and random
access, the exponential mechanism requires only O(

√
m)

expected accesses.

On the lower bound side,

• If the system supports either only sorted accesses or only
random accesses, but not both, we show a lower bound
of Ω(m).

• If the system supports both sorted accesses and random
accesses, we show a lower bound of Ω(

√
mk).

These statements are informal versions of Theorems 5.1, 5.3,
and 5.4, which impose modest assumptions on the privacy
guarantee, and relatively weak assumptions on the accuracy
guarantee of the algorithms. They show that supporting
sorted and random access to the items’ data simultaneously
is necessary to break the linear barrier, and the access cost
of our algorithm is essentially optimal.

Organization. Our paper is organized as follows. Sec-
tion 2 introduces the problem formally. Section 3 discusses
the preliminaries for our algorithm. Section 4 introduces our
algorithm and shows the upper bounds. Section 5 presents
the lower bounds for the problem. Section 6 discusses the
related works. Section 7 summarizes the paper.

2. Model Description
Let C .

= {1, . . . ,m} be a set of m items, and U .
=

{1, . . . , n} be a set of n clients. Each client v ∈ U can
cast at most one vote for each item, and can vote for an

unlimited number of items. Hence, client v’s votes, denoted
by x⃗v , can be viewed as a vector in D .

= {0, 1}m, such that
for each i ∈ C, x⃗v[i] = 1 if v votes for item i, where x⃗v[i] is
the i(th) entry of x⃗v . We regard the collection of voting vec-
tors from all n clients as a dataset X = {x⃗1, . . . , x⃗n} ∈ Dn.

For each item i ∈ C, let its score h⃗[i]
.
=
∑

v∈U x⃗v[i] be
the number of clients that vote for i. The dataset X can
be described by its histogram h⃗

.
= (⃗h[1], . . . , h⃗[m]) ∈ Nm.

We also define π : C → C to be a permutation that puts the
entries of h⃗ in nonincreasing order2, s.t., h⃗[π(1)] ≥ · · · ≥
h⃗[π(m)].

Our goal is to design a differentially private algorithm that
returns a set S of k items with (approximately) largest
scores, while minimizing its data access cost.

In what follows, we discuss the privacy guarantee, the utility
guarantee, the data access model of an algorithm formally.

Privacy Guarantee. We call two datasets X ,X ′ neigh-
boring, denoted by X ∼ X ′, if they differ in addition
or deletion of one client vector, e.g., X ′ = X ∪ {x⃗n+1}
or X ′ = X \ {x⃗v} for some v ∈ [n].

Let h⃗ and h⃗′ be the histograms corresponding to X and X ′,
respectively. It is easy to see that if X ∼ X ′, then the score
of each item can differ by at most 1, i.e., ∥h⃗ − h⃗′∥∞ ≤ 1.
Hence, for every h⃗, h⃗′ ∈ Nm, we also call them neighboring
histograms, written as h⃗ ∼ h⃗′, if and only if ∥h⃗− h⃗′∥∞ ≤ 1.

Let
(
[m]
k

)
be the collection of all subsets of [m] of size k,

andA : Nm →
(
[m]
k

)
be a top-k selection algorithm. To pro-

tect the voting information of individual clients, we would
like its output distributions to be similar for neighboring
inputs, as defined thus.

Definition 2.1 ((ε, δ)-Private Algorithm (Dwork & Roth,
2014)). Given ε, δ > 0, a randomized algorithmA : Nm →(
[m]
k

)
is called (ε, δ)-differentially private (DP), if for ev-

ery h⃗, h⃗′ ∈ Nm such that h⃗ ∼ h⃗′, and all Z ⊆
(
[m]
k

)
,

Pr
[
A(⃗h) ∈ Z

]
≤ eε · Pr[A(⃗h′) ∈ Z] + δ . (1)

We call ε and δ the privacy parameters. Typically, it is
required that δ is cryptographically negligible, i.e., δ ≤
1/mω(1) (Vadhan, 2017; Dwork & Roth, 2014). An algo-
rithm A is also called ε-DP for short, if it is (ε, 0)-DP.

Utility Guarantee. In line with previous research (Bafna
& Ullman, 2017; Durfee & Rogers, 2019), we measure
the error of an output S by the maximum amount by
which h⃗[π(k)] exceeds the score of any item in S, defined
formally as follows.

2We break ties arbitrarily.

2

Tight Data Access Bounds for Private Top-k Selection

Definition 2.2 ((α, k)-Accuracy). Given a vector h⃗, pa-
rameters k ∈ N+, and α ∈ R+, an output S ∈

(
[m]
k

)
is

called (α, k)-accurate, if for each i ∈ S, h⃗[i] ≥ h⃗[π(k)]−α.

Data Access. We assume that the histogram h⃗ has been
preprocessing by an existing data management system, and
an algorithm A can access h⃗ only through the system. We
consider two access models that abstract common function-
alities supported by a system: sorted access and random
access. Such access models have been widely accepted by
the community for non-private top-k selection problems
(see Ilyas et al. (2008) for a survey).

Sorted Access. Let Cs be the set of items already returned
by sorted access (initially, Cs = ∅). When a new sorted-
access request is submitted, the system returns an item-
score pair (i, h⃗[i]), where i ∈ [m] \ Cs has the largest score,
i.e., i = argmaxj∈[m]\Cs

h⃗[j]. An alternative view is that
the system returns

(
π(1), h⃗[π(1)]

)
,
(
π(2), h⃗[π(2)]

)
, . . . in

order, one tuple at a time.

Random Access. A request of random access consists of a
reference i ∈ C to an item. In response, the system returns
the corresponding item-score pair (i, h⃗[i]). We emphasize
that a random access does not imply that i must be a ran-
domly chosen item.

Access Cost. Given an algorithm A and a histogram h⃗, the
access cost of an algorithm on h⃗, cost

(
A, h⃗

)
, is the total

number of accesses – either sorted or random – to h⃗. Note
that this is an upper bound of distinct number of entries A
learns from h⃗, as a random access may retrieve a previously
encountered item-score pair.

3. Preliminaries
In this section, we review two building blocks for con-
structing our algorithm: a state-of-the-art algorithm for
non-private top-k selection, specifically designed for ag-
gregating data from multiple sources, and a framework of
the existing one-shot algorithms for private top-k selection.

3.1. Threshold Algorithm
The threshold algorithm (Fagin et al., 2003) is a top-k se-
lection algorithm, when the information of an item needs
to be aggregated from multiple resources. In this scenario,
there are m items, each associated with t attributes. With-
out loss of generality, assume that each attribute is a real
number. Therefore, each item i can be represented by a
vector y⃗i ∈ Rt. The score of item i is computed by a
function f : Rt → R, which is assumed to be mono-
tone, s.t., for each y⃗, y⃗′ ∈ Rt, if y⃗[j] ≤ y⃗′[j],∀j ∈ [t],
then f(y⃗) ≤ f(y⃗′).

The vectors y⃗1, . . . , y⃗m do not reside in a single data man-
agement system, but distributed in t systems L1, . . . , Lt, s.t.,

for each item i, its jth attribute y⃗i[j] resides on Lj . Each Lj

allows for both sorted access and random access. We can
view it as an array of m tuples Lj [1], . . . , Lj [m], each of
the form (i, val) ∈ [m]× R, where val equals y⃗i[j]. The tu-
ples in Lj are sorted in descending order by their val’s.
Further, Lj is augmented with an inverted index σj :
[m]→ [m] to support random access, such that, for each an
item i ∈ [m], Lj [σj(i)] contains the tuple (i, y⃗i[j]).

The aim is to identify the top-k items with highest scores
according to f , while minimizing the access cost, i.e., the
total number of data accesses performed by the algorithm
to L1, . . . , Lt. The algorithm is described in Algorithm 1.

It works in round-robin fashion. In each round, it retrieves
one tuple from each sorted array Lj . For each tuple (i, val)
encountered during sorted access, it retrieves all entries y⃗i[j]
of y⃗i by random accesses. This step can be optimized at a
cost of memoization: we augment ATA with a data structure
to store previously encountered i’s. After retrieving all y⃗i[j],
the algorithm computes f(y⃗i), and maintains a set S, con-
sisting of k item-score pairs with largest scores seen so far.
The algorithm stops when there are k tuples in S with score
at least τ .

= f(y
1
, . . . , y

m
), where the y

j
is the score of the

last item in Lj retrieved under sorted access.

Algorithm 1 Threshold Algorithm ATA (Fagin et al., 2003)
1: Input: Sorted array Lj and inverted index σj , ∀j ∈ [t].

2: S ← ∅.
3: repeat
4: for each j ∈ [t] do
5: Retrieve a tuple from Lj via sorted access, and

denote the returned tuple as (i, val).
6: Retrieve from L1, . . . , Lt by random access (with

the help of σ1, . . . , σt) all attributes of item i, to
compute f(y⃗i).

7: If f(y⃗i) is among the-k highest scores seen so far,
add (i, f(y⃗i)) to S; if |S| > k, remove the tuple
with lowest score from S .

8: end for
9: For each Lj , let y

j

.
= y⃗i[j], where i is the last item

seen in Lj under sorted access.
10: Define the threshold τ

.
= f(y

1
, . . . , y

m
).

11: until there are k tuples in S with score at least τ .
12: Return the set of items contained in the tuples in S.

The correctness of the algorithm is obvious: when the algo-
rithm stops, since f is monotone, the scores of all unseen
items are at most τ , which are lower than the scores of all
tuples in S.

Access Cost. Fagin et al. (2003) did not provide asymp-
totic bound for the access cost. Instead, they proved thatATA

is instance optimal. Informally, instance optimally implies
that for every algorithm A which solves the top-k selection
problem correctly and whose first access to an item must

3

Tight Data Access Bounds for Private Top-k Selection

be sorted access as opposed to random access, the access
cost of ATA is at most the access cost of A (up to some
multiplicative constant). In Section 4, we apply a different
technique to asymptotically bound the access cost of our
algorithm.

3.2. One-shot Private Top-k Algorithm

We review an existing framework for the differentially pri-
vate top-k selection algorithms (Durfee & Rogers, 2019;
Qiao et al., 2021). The framework, described in Algorithm 2,
does not consider a specific data access model, and instead
needs to learn all entries of h⃗.

Algorithm 2 Private Top-k AlgorithmM
1: Input: vector h⃗
2: for each item i ∈ [m] do
3: v⃗[i]← h⃗[i] + Zi, where Zi is an independent noise

random variable;
4: end for
5: Return a set S of k items that the maximizes the v⃗[i]’s.

Definition 3.1 (Noise Distributions). Given parameter b ∈
R, the Laplace distribution, Lap (b), and the Gumbel
distribution, Gumbel (b), have probability density func-
tions p(z) = 1

2b · exp
(
− |z|

b

)
, ∀z ∈ R, and p(z) =

1
b · exp

(
−
(
z
b + exp

(
− z

b

)))
, ∀z ∈ R, respectively.

Candidates noise distributions for Zi in Algorithm 2 in-
clude Lap (1/ε) (Qiao et al., 2021) and Gumbel (1/ε) (Dur-
fee & Rogers, 2019). The corresponding privacy guarantees,
are stated as follows.

Fact 3.2 ((Qiao et al., 2021)). Assume that Zi ∼ Lap (1/ε),
then M is 2kε-DP. Given δ ∈ [0, 0.05], if it holds
that m ≥ 2 and 8ε

√
k log (m/δ) ≤ 0.2, then M also

satisfies
(
8ε
√

k log (m/δ), δ
)

-DP.

Fact 3.3 ((Durfee & Rogers, 2019)). Assume that Zi ∼
Gumbel (1/ε). For each δ ∈ [0, 1], M is (ε′′, δ)-DP,

where ε′′
.
= min

{
kε, kε

(
eε−1
eε+1

)
+ ε
√
k ln 1

δ

}
.

Next, we discuss their utility guarantees.
Fact 3.4. Given β ∈ (0, 1), if the Zi ∼ Lap (1/ε),
or Gumbel (1/ε), then with probability at least 1− β, the
returned solution by Algorithm 2 is (α, k)-accurate, for
α ∈ O

(
ln (m/β)

ε

)
.

Remark 3.5. Compared to Laplace noise, the Gumbel noise
allows the algorithm to return a ranked list of indices, in-
stead of a set which contains on order information. For
consistency of presentation, we assume that Algorithm 2
returns a set for both choices.

4. Sublinear Access and Time Algorithm
In this section, we present an algorithm for top-k selec-
tion problem, which achieves optimal privacy-utility trade-
offs, and with high probability, has an expected access
cost O(

√
mk) and computation time O(

√
mk log logm).

Our presentation follows two steps: we first present a straw-
man algorithm with sublinear access cost but only linear
computation; next we show how to improve its time com-
plexity to O(

√
mk log logm).

4.1. A Strawman Approach

A natural idea is to combine the threshold algorithm ATA

with the oneshot private top-k algorithm. Each item i ∈ [m]

now has two attributes, namely, h⃗[i] and Zi, where Zi is
sampled independently from Lap (1/ε) or Gumbel (1/ε).

Since the histogram h⃗ is stored in a database management
system, which allows for two types of access: sorted access
and random access, we can think of this as a sorted array L1

of m tuples, each of the form (i, val) ∈ [m]× R, where val

equals h⃗[i]. The tuples in L1 are sorted in descending or-
der by their val’s. Further, L1 has an inverted index σ1 to
support random access.

Additionally, we can construct another sorted array L2 of m
tuples, each of the form (i, val) ∈ [m] × R, where val
equals Zi. The tuples in L2 are also sorted in descending
order by their val’s. L2 also has an inverted index σ2 to
support random access.

Then we can run the algorithm ATA, with input L1, L2,
σ1, σ2, and an aggregating function f (⃗h[i], Zi)

.
= h⃗[i]+Zi.

It is easy to see that f is monotone. The pseudo-code is in
Algorithm 3.

Algorithm 3 Private Threshold Algorithm APrivTA

1: Let I1 = 1, I2 = 2, . . . , Im = m. Generate m
tuples (I1, Z1), . . . , (Im, Zm), where the Zi’s are
i.i.d. random variables; sort the tuples in descend-
ing order by the values of the Zi’s, denote the sorted
sequence by

(
I(1), Z(1)

)
, . . . ,

(
I(m), Z(m)

)
, and store

this sequence in an array L2; construct σ2 : [m]→ [m],
s.t., L2[σ2(i)] = (i, Zi) for each item i ∈ [m].

2: Run Algorithm 1 on input L1, L2, σ1, σ2, with an ag-
gregation function f

(
(⃗h[i], Zi)

) .
= h⃗[i] + Zi;

Privacy and Utility Guarantee. The privacy and util-
ity guarantee of the algorithm inherits directly from Algo-
rithm 2.

Access and Time Complexity. It is easier to first discuss
the time complexity and then the access cost. Generating
the random variables takes O(m) time, and sorting them
takes O(m logm) time. Hence the total running time is
bounded by O(m logm).

4

Tight Data Access Bounds for Private Top-k Selection

It remains to discuss the number of accesses the algorithm
performs on L1. Our analysis relies on the following impor-
tant observation.

Lemma 4.1. The I(1), . . . , I(m) are distributed uniformly
over all possible permutations over [m], and are indepen-
dent of the random variables Z(1), . . . , Z(m).

Intuitively, the claim holds since each Zi in Algorithm 3
follows the same distribution independently. The proof of
the lemma is included in Appendix B.1.

Theorem 4.2. The expected access cost of Algorithm 3
on L1, E [cost (APrivTA, L1)], is bounded by O

(√
mk
)

.

The rigorous proof of the Theorem is presented in Ap-
pendix B.1. Here we offer an intuitive and informal ex-
planation. Let Sr

.
=
{
i(1), . . . , i(r)

}
be the top-r items with

highest scores in h⃗, and I(1:r) =
{
I(1), . . . , I(r)

}
be the

items in the first r tuples in the array L2. Since I(1:r) is
a uniform random subset of [m], Sr ∩ I(1:r) has expected
size r · (r/m) =

(
r2/m

)
, which equals k when r =

√
mk.

Applying a technique introduced by Fagin (1999), we can
show that when

∣∣Sr ∩ I(1:r)
∣∣ ≥ k, the algorithm will

not access any item outside Sr ∪ I(1:r), since any such
item will have a score lower than or equal to any item
in Sr ∩ I(1:r). Therefore the algorithm should have access

cost roughly O
(√

mk
)

.

Application. We discuss an interesting application of our
algorithm to the exponential mechanism (McSherry & Tal-
war, 2007), a fundamental technique in differential privacy
to choose a single item from a set of items.

Following the setup in this paper, the exponential mecha-
nism works as follows: it selects an item i ∈ [m] with prob-
ability proportional to eε·⃗h[i]. Moreover, Durfee & Rogers
(2019) show that the exponential mechanism is equivalent to
Algorithm 2 with k = 1 and Zi ∼ Gumbel (1/ε) ,∀i ∈ [m].
This variant of Algorithm 2 is commonly referred to as the
Report-Noisy-Max algorithm with Gumbel noise. Apply-
ing the same k and the Zi’s to Algorithm 3, Theorem 4.2
immediately implies the following corollary.

Corollary 4.3. When given access to both sorted and ran-
dom access to data, the exponential mechanism has expected
access cost O(

√
m).

4.2. An Online Sampling Approach

Pre-generating all m noise values may be excessive. For
problems with small values of k, e.g., k = 10, the Algo-
rithm 3 may need to know only a small subset of tuples in L2.
It is of interest whether we can also reduce the expected
number of noisy random variables generated to O(

√
mk),

by constructing the L2 (and σ2) on the fly.

One can consider applying existing algorithms
(such as those presented in Lurie & Hartley
1972; Devroye 1986) to generate the random vari-
ables

(
I(1), Z(1)

)
, . . . ,

(
I(m), Z(m)

)
sequentially, one tuple

at a time, each taking O(1) time. However, since the
threshold algorithm relies on non-sequential accesses to
the variables (due to the random access operation), these
algorithms cannot be applied to reduce the number of
variables generated to O

(√
mk
)

. In this section, instead,
we present an algorithm that can generate the variables in
an arbitrary order and “on the fly”. The main result of this
section is stated as follows.
Theorem 4.4. There is an algorithm Aoracle, that,

• does not require to pre-generate L2;

• answers sorted access and random access query to L2

in O(log logm) time in expectation.

Further, the tuples returned by Aoracle have the same
marginal distribution as those generated by Algorithm 3.

There are two key ingredients for constructing Aoracle.

Sampling the I(j)’s. The first ingredient is Lemma 4.1,
which allows Aoracle to sample the I(j) and the Z(j) inde-
pendently according to their marginal distributions, without
changing the joint distribution of the I(j) and the Z(j). The
lemma states that the I(j)’s are distributed uniformly over
all possible permutations over [m]. It is not hard to sample
an I(j) on the fly: let J be the set of indexes such that the
values of I(j′), j′ ∈ J have been determined; if j /∈ J ,
then I(j) just distributes uniformly over the subset of unseen
items, i.e., [m] \ I(J), where I(J)

.
=
{
I(j′) : j

′ ∈ J
}

. Cor-
respondingly, we can also construct the inverted index σ2 on
the fly: given an item i ∈ [m], if it has not been encountered,
then σ2(i) should equal one of the undetermined indexes,
namely [m] \ J , uniformly at random.

Sampling the Z(j)’s. The second ingredient is an algo-
rithm Aord-stat which generates the Z(j)’s on the fly. For-
mally, for each J ⊆ [m], define Z(J)

.
= (Z(j), j ∈ J),

and let z(J) refer to a vector (z(j), j ∈ J) ∈ R|J |. Denote
by p

Z(J)
(·) the marginal density of Z(J), induced by the

generating procedure of Algorithm 3. Call z(J) a feasible
realization of Z(J), if p

Z(J)
(z(J)) > 0. Given such a fea-

sible realization, let p
Z(j)|Z(J)

(z(j) | z(J)) be the density
function of Z(j), conditioned on Z(J) = z(J). The property
of Aord-stat is stated as follows.
Lemma 4.5. For each J ⊆ [m] s.t., J ≠ [m], each j ∈
[m] \ J , and each feasible realization z(J) of Z(J),
Aord-stat samples a random variable with the conditional
density p

Z(j)|Z(J)
(z(j) | z(J)) in O(log logm) expected

time.

5

Tight Data Access Bounds for Private Top-k Selection

The proof of the Lemma is discussed in Section 4.2.1 . Now,
we return to the construction of Aoracle. The algorithm is
described in Algorithm 4.

Algorithm 4 Algorithm Aoracle

Initialization
1: J ← ∅, idx← 0;
2: L2[i]← nil, σ2(i)← nil, ∀i ∈ [m]

Sorted Access
1: idx← idx+ 1;
2: if idx /∈ J then
3: Sample I(idx) uniformly from [m] \ I(J);
4: Invoke Aord-stat to sample Z(idx);
5: σ2(I(idx))← idx;
6: L2[idx]← (I(idx), Z(idx)); J ← J ∪ {idx}.
7: end if
8: return L2[idx]

Random Access (Input: item i ∈ [m])

1: if σ2(i) = nil then
2: Sample j uniformly from [m] \ J ;
3: Invoke Aord-stat to sample Z(j);
4: σ2(i)← j;
5: L2[j]← (i, Z(j)); J ← J ∪ {j}.
6: end if
7: return L2[σ2(i)]

Initialization. The algorithm creates an empty array L2

and an empty inverted index σ2. Further, it creates a set J ,
to record the positions of L2 which are already sampled, and
a variable idx, to record the last visited position by sorted
access. In practice, L2 and σ2 need not to be physically ini-
tialized, and can be implemented by hash sets with constant
initialization time.

Sorted Access. Indeed, it is trivial to handle the sorted
access. We just maintain an index, idx ∈ N, of last tuple
returned by sorted access. When a new request of sorted ac-
cess arrives, we increase idx by 1. If idx ∈ J , then Aoracle

returns L2[idx] directly; otherwise, it generates L2[idx] be-
fore returning it.

Random Access. A random access request comes with
a reference to an item i ∈ [m]. We need to identify the
tuple L2[j] = (I(j), Z(j)) s.t., I(j) = i. There are two cases:
if item i has been encountered previously (σ2(i) ̸= nil),
then Aoracle returns L2[σ2(i)] directly; otherwise, Aoracle

randomly pick an index j from [m] \ J , and set I(j) ←
i, σ2(i) ← j, and calls Aord-stat to generate Z(j). Finally,
it returns L2[j].

4.2.1. SAMPLING ORDERED NOISES

In this section, we show how to construct Aord-stat and
prove Lemma 4.5. Deciding the conditional distribution of

the Z(j)’s and sampling them directly from such distribution
can be non-trivial. As a result, we follow the three-step
approach outlined below:

• Transform U(j) to Z(j): we show that the sorted se-
quence Z(1), . . . , Z(m) can be transformed from a se-
quence U(1), . . . , U(m) of sorted independent uniform
random variables.

• Distribution of U(j): to avoid generating the entire se-
quence of random variables, we study the distribution
of U(j), conditioned on a set of U(j′) which have already
been sampled.

• Sampling U(j): we show how to sample an U(j) from
such a distribution in O(log logm) expected time.

Transform U(j) to Z(j). Since all potential noise distri-
butions (Lap (1/ε) or Gumbel (1/ε)) of the Zi’s (the noise
random variables, before sorting) have continuous cumula-
tive distribution function, we can sample them indirectly via
uniform random variables, based on the inversion method.
Fact 4.6 (Inversion Method (Devroye, 1986)). Let F be
a continuous cumulative distribution function on R with
inverse F−1 defined by

F−1(u)
.
= inf {x : F (x) = u, 0 < u < 1} .

If U is a uniform [0, 1] random variable, then F−1(U) has
distribution function F .

As a result, an ordered sequence of random variables can
also be generated via the inversion method.
Fact 4.7 (Gerontidis & Smith 1982). Let U1, . . . , Um

be independent uniform random variables on [0, 1],
and U(1), . . . , U(m) the corresponding sorted sequence in
descending order. Let F be a continuous cumulative distri-
bution function shared by the random variables Z1, . . . , Zm.
Then the sequence F−1(U(1)), . . . , F

−1(U(m)) has the
same distribution as the sequence Z(1), . . . , Z(m).

For completeness, we include a proof for this fact in Ap-
pendix B.2. We can thus sample U(j) first and then com-
pute F−1(U(j)) to generate Z(j). It remains to study the
distribution of U(j), and the algorithm for sampling a ran-
dom variable efficiently from such distribution.

Distribution of U(j). Recall that J is the set of in-
dexes which have been previously queried. Denote
U(J)

.
=
{
U(j′) : j

′ ∈ J
}

a shorthand for the order
random variables that have been sampled. Further,
write u(J)

.
=
{
u(j′) : j

′ ∈ J
}
∈ [0, 1]|J | as a set of num-

bers within [0, 1], indexed by J . Call u(J) a feasible real-
ization of U(J), if for each j, j′ ∈ J s.t. j < j′, it holds
that u(j) ≥ u(j′).

Given a new query index j ∈ [m] \ J , we are interested in
the conditional probability density, p

U(j)|U(J)
(u(j) | u(J)),

6

Tight Data Access Bounds for Private Top-k Selection

of U(j), given the occurrence of a feasible realization u(J)

of U(J). For ease of reading, we omit the subscripts of the
conditional probability densities, whenever their meaning
can be unambiguously determined from their parameters.

Depending on the relative position of j w.r.t. the indexes
in J , we consider the following three cases:

• J is empty. It reduces to study the un-conditional proba-
bility density p(u(j)) of U(j).

• J is not empty, and j is greater than the largest index
in J ; in this case, j has a predecessor (the largest index
that is smaller than j), denoted by ℓ, in J .

• J is not empty, and j is smaller than the largest index
in J ; in this case, j has both a predecessor, denoted by ℓ,
and a successor (the smallest index that is larger than j),
denoted by r, in J .

Hereafter, if J ≠ ∅, we consider only feasible realiza-
tion u(J) of U(J). The probability densities corresponding
to these three cases are given thus.

Theorem 4.8. (1) If J is empty, then the density p(u(j))
of U(j) is given by: ∀u(j) ∈ [0, 1],

p(u(j)) =
m!

(j−1)!(m−j)! · (1− u(j))
j−1

(u(j))
m−j

. (2)

(2) If J is not empty, and j is greater than the largest
index in J , then given U(ℓ) = u(ℓ), U(j) is indepen-
dent of all other random variables U(j′) for all j′ ∈
J \ {ℓ}, i.e., p

(
u(j) | u(J)

)
= p

(
u(j) | u(ℓ)

)
; further, for

each u(j) ∈ [0, u(ℓ)],

p
(
u(j) | u(ℓ)

)
= (m−ℓ)!

(j−ℓ−1)!(m−j)! ·(
u(ℓ)−u(j)

u(ℓ)

)j−ℓ−1(u(j)

u(ℓ)

)m−j
1

u(ℓ)
.

(3)

(3) If J is not empty, and j is smaller than the largest in-
dex in J , then given U(ℓ) = u(ℓ) and U(r) = u(r), U(j) is
independent of all other random variables U(j′) for all j′ ∈
J \ {ℓ, r}, i.e., p

(
u(j) | u(J)

)
= p

(
u(j) | u(ℓ), u(r)

)
; fur-

ther, for each u(j) ∈ [u(r), u(ℓ)],

p
(
u(j) | u(ℓ), u(r)

)
= (r−ℓ−1)!

(j−ℓ−1)!(r−j−1)! ·(
u(ℓ)−u(j)

u(ℓ)−u(r)

)j−ℓ−1(u(j)−u(r)

u(ℓ)−u(r)

)r−j−1
1

u(ℓ)−u(r)
.

(4)

The theorem removes the dependency of U(j) from all but at
most two variables in U(J). The detailed proof is non-trivial
and can be found in Appendix B.3. Assuming that U(j) de-
pends on at most two variables in U(J), we can provide
an informal, but intuitive, explanation of the conditional
probability densities. Take the Equation (4) for example.
Conditioned on U(r) = u(r) and U(ℓ) = u(ℓ), r − ℓ− 1 uni-
form random variables fall into the interval [u(r), u(ℓ)]. Of
these r−ℓ−1 random variables, j−ℓ−1 of them are≥ ui,

and r−j−1 of them are < ui. The number of possible com-
binations is given by (r−ℓ−1)!

(j−ℓ−1)!(r−j−1)! . For a fixed combina-

tion, the former happens with probability
(

u(ℓ)−u(j)

u(ℓ)−u(r)

)j−ℓ−1

,

the latter happens with probability
(

u(j)−u(r)

u(ℓ)−u(r)

)r−j−1

, and

the probability density of U(j) = u(j) is 1
u(ℓ)−u(r)

.

Sampling U(j). We now discuss how to sample the U(j)

efficiently from their conditional distributions. First, note
that determining the conditional distributions may need to
find the index j’s predecessor or successor in J . This can
be done by Van Emde Boas tree (van Emde Boas, 1975)
in O(log logm) time. Next, we show that sampling from
such conditional distributions takes O(1) expected time.
Specifically, we will sample random variables with Beta
distributions, then convert them into ones which follow
desired conditional distributions.

Definition 4.9 (Beta Distribution (Ross, 2018)). The beta
distribution Beta (α, β) is a distribution defined on [0, 1]
whose density is given by

p(x) = xα−1(1−x)β−1

B(α,β) , ∀x ∈ [0, 1], (5)

where α, β > 0 are shape parameters, B(α, β)
.
=∫ 1

0
xα−1(1− x)

β−1
dx is a normalisation constant.

It is known that, when α ≥ 1, β ≥ 1, a random vari-
able X ∼ Beta (α, β) can be generated in O(1) expected
time (Devroye, 1986; Gentle, 2009).

Theorem 4.10. Assume that ℓ < j < r ≤ m, and 1 ≥
u(ℓ) > u(r) ≥ 0. Then

1. If X ∼ Beta (m− j + 1, j), then the density function
of X is the same as Equation (2).

2. If X ∼ Beta (m− j + 1, j − ℓ), then the density func-
tion of Y .

= u(ℓ) ·X is the same as Equation (3).
3. If X ∼ Beta (r − j, j − ℓ), then the density function

of Y .
= (u(ℓ) − u(r)) ·X is the same as Equation (4).

The proof of the Theorem is included in Appendix B.2.

5. Lower Bounds
In this section, we generate the lower bounds for the prob-
lem. Following the setting in Section 2, since h⃗ is the sum of
voting vectors of n clients, we have ||⃗h||∞ ≤ n. It follows
that each S ∈

(
[m]
k

)
is (n, k)-accurate. All lower bounds

in this section hold for algorithms that are (n−O(1), k)-
accurate, which is just slightly better than the trivial error
guarantee.

5.1. Random Access

We first present a lower bound for the random access case.

7

Tight Data Access Bounds for Private Top-k Selection

Theorem 5.1. Assume that 0 ≤ β < 0.1. Let A be an
algorithm that has only random access to h⃗, does not return
items which it has not seen , and for each input, with prob-
ability at least 1− β, returns a solution that is (n− 1, k)-
accurate. Then there exists a family of histograms H, and
a distribution µ onH, if h⃗ is sampled fromH according to
distribution µ, it holds that

E⃗
h

[
cost

(
A, h⃗

)]
∈ Ω(m). (6)

Note that the theorem does not even requireA to be a (ε, δ)-
DP algorithm. The proof of the theorem is in Appendix C.1.
At a high level, our construction focuses on a family of
histograms the values of whose entries are either n or 0.
Further, if an h⃗ is sampled from H, there are roughly 2k
entries of h⃗ that have value n, and those entries appear at
random positions of h⃗, so thatA is unlikely to identify more
than k of them, before learning the values of Ω(m) entries.

5.2. Sorted Access

The lower bound for the sorted access case relies on the
following lemma.
Lemma 5.2. Let A be an (ε, δ)-DP algorithm, which for
each input histogram, with probability at least 1−β, returns
a solution that is (n− 2, k)-accurate. Let S ⊆ [m], and h⃗S

be a histogram, s.t.

h⃗S [i]
.
=

{
n− 1, ∀ i ∈ S,

0, ∀ i ∈ S̄,
(7)

where S̄
.
= [m] \ S. Let SL be a subset of S sampled uni-

formly at random from
(

S
|S|/k

)
, SH

.
= S \ SL, and h⃗SH ,SL

be a histogram neighboring to h⃗ s.t.

h⃗SH ,SL [i]
.
=


n, ∀ i ∈ SH ,

n− 1, ∀ i ∈ SL,

0, ∀ i /∈ S.

(8)

Then,

PrSL,A

[
A(⃗hSH ,SL

) ∩ SL ̸= ∅
]
≥ 1−β−δ−e−1

eε , (9)

where the randomness is first over the choice of SL then
over the output of A.

The formal proof of the lemma is included in Appendix C.2.
Note that, for each i ∈ SL, h⃗SH ,SL

[i] is among the |S|/k
smallest entries of the |S| largest entries in h⃗SH ,SL

. The
lemma states that the probability that output of A con-
tains some item i ∈ SL is not too “small”. Informally,
for each subset Sk ∈

(
S
k

)
, when SL is sampled uniformly

from
(

S
|S|/k

)
, then the probability that Sk∩SL ̸= ∅ is not too

“small” (observe that E [|Sk ∩ SL|] = k · |S|/k
|S| = 1). Fur-

ther, ifA’s output is (n−2, k) accurate, then it must belong
to
(
S
k

)
. So the probability that A’s output has non-empty

intersection with SL should not be significantly smaller than
the probability that A’s output is (n− 2, k) accurate.

Theorem 5.3. Let ε, δ, β be non-negative parameters,
s.t., ε ∈ O(1), δ+β ≤ 0.6. LetA be an (ε, δ)-DP algorithm
that has only sorted access, does not return items which it
has not seen, and for each input histogram, with probability
at least 1−β, returns a solution that is (n− 2, k)-accurate.
Then there exists a family of histograms H so that, if h⃗ is
sampled uniformly at random fromH, it holds that

E⃗
h

[
cost

(
A, h⃗

)]
∈ Ω(m). (10)

Proof. Let S = [m/2], SL be sampled uniformly at random
from

(
S

|S|/k
)
, and h⃗SH ,SL

be a histogram built as outlined
in Equation (8). Let H be the collection of all possible
outcomes of h⃗SH ,SL

. Then by Lemma 5.2,

PrSL,A

[
A(⃗hSH ,SL

) ∩ SL ̸= ∅
]
≥ 1−β−δ−e−1

eε .

But for each i ∈ SL, h⃗SH ,SL
[i] is among the

top (|S| − |S|/k + 1)
(th) to |S|(th) largest numbers

in h⃗SH ,SL
. Since A has only sorted access to h⃗SH ,SL

and
does not return an item which it has not seen, if it returns an
item in SL, it needs to invoke at least |S| − |S|/k ∈ Ω(m)
sorted accesses. It follows that the expected access cost
of A is at least 1−β−δ−e−1

eε · Ω(m). Inequality (10) follows
from the assumption that ε ∈ O(1), and β + δ ≤ 0.6.

5.3. Random and Sorted Access

In this section, we present a lower bound for algorithms that
can retrieve data via both random access and sorted access.
Theorem 5.4. Let ε, δ, β be non-negative parameters,
s.t., ε ≤ 1, δ + β ≤ 0.05. Let A be an algorithm that has
both sorted access and random access to h⃗, does not return
items which it has not seen, and for each input, with prob-
ability at least 1− β, returns a solution that is (n− 2, k)-
accurate. Then there exists a family of histogramsH, if h⃗ is
sampled uniformly at random fromH, it holds that

E⃗
h

[
cost

(
A, h⃗

)]
∈ Ω

(√
mk
)
. (11)

Proof. LetH be the collection of all possible h⃗SH ,SL
gen-

erated as follows:

• First, we sample an S from
(
[m]
τ

)
uniformly at random,

where τ
.
=
√
mk.

• Then we sample an SL from
(

S
|S|/k

)
uniformly at ran-

dom, and construct a histogram h⃗SH ,SL
as described by

Equation (8).

Since Lemma 5.2 holds for each S ⊆ [m], we have

PrS,SL,A

[
A
(
h⃗SH ,SL

)
∩ SL ̸= ∅

]
≥ 1

eε

(
1− β − δ − 1

e

)
(a)

≥ e−1
(
1− 0.05− e−1

)
≥ 0.21,

8

Tight Data Access Bounds for Private Top-k Selection

where the randomness is first over the choice of S, then
over the choice of SL, and finally over the output of A,
and inequality (a) follows from the assumption that ε ≤ 1
and β + δ ≤ 0.05. In what follows, we omit the sub-
scripts S, SL,A from the probability notations, when the
source of randomness is clear from the context.

Consider the event E : A accesses some item i ∈ SL. As A
does not return an item which it has not seen, the event E is
a necessary condition for A

(
h⃗SH ,SL

)
∩ SL ̸= ∅. Hence,

Pr [E] ≥ Pr
[
A
(
h⃗SH ,SL

)
∩ SL ̸= ∅

]
.

Let η .
= τ/20. We decompose E into two mutually ex-

clusive events: E1 : A accesses some item i ∈ SL for the
first time within η access operations; E2 : A accesses some
item i ∈ SL for the first time after η access operations.
Then Pr [E] = Pr [E1] + Pr [E2].

Lemma 5.5. The probability thatA accesses some item i ∈
SL for the first time within η access operations, denoted
by Pr [E1], is upper bounded by Pr [E1] ≤ 0.19.

The proof of Lemma 5.5 is omitted here, and is included
in Appendix C.3. Intuitively, the lemma holds since: 1) A
can not access some i ∈ SL within η sorted accesses; 2)
because of the way it is generated, SL is a random subset
from [m] of size

√
mk/k, hence it is also unlikely for A

to come across some i ∈ SL with at most η =
√
mk/20

random access. To conclude the justification of (11), and
hence prove the Theorem, we apply Lemma 5.5.

Pr [E2] = Pr [E]− Pr [E1]

≥ Pr
[
A
(
h⃗SH ,SL

)
∩ SL ̸= ∅

]
− Pr [E1]

≥ 0.21− 0.19 ∈ Ω(1).

But when E2 happens, the access cost is Ω(η). Therefore,
the expected access cost of A is lower bounded by Ω(η) =
Ω(
√
mk).

6. Related Work
Private Selection. The private top-1 selection problem is a
special case of the private top-k problem. The latter has been
studied extensively, e.g., the exponential mechanism (Mc-
Sherry & Talwar, 2007), report noisy max (Dwork & Roth,
2014), permute-and-flip (McKenna & Sheldon, 2020; Ding
et al., 2021). Of interest is the permute-and-flip mecha-
nism: when the largest score of the items is known a prior ,
the mechanism can potentially terminate without iterating
over all m items. However, in this scenario, an asymptotic
upper bound for the number of items evaluated remains
unresolved.

Private Top-k Mechanisms. Bhaskar et al. (2010) were the
first to apply the “peeling exponential mechanism”, which

iteratively invoked the exponential mechanism to select the
item with highest score, then remove it. They also proposed
an oneshot Laplace mechanism for private top-k selection.
Bhaskar et al. (2010) analyzed the pure differential privacy
guarantees of both algorithms. Subsequently, Durfee &
Rogers (2019) showed that the peeling exponential mech-
anism has an equivalent oneshot implementation (i.e., Al-
gorithm 2 with Gumbel noise), and studied its approximate
privacy guarantee. Qiao et al. (2021) provided the approxi-
mate privacy guarantee for the oneshot Laplace mechanism,
without the help of the composition theorem.

Both Bhaskar et al. (2010) and Durfee & Rogers (2019) have
proposed private algorithms which estimate top-k based on
the true top k̄ items for some k̄ ≥ k. Given an integer k,
both algorithm may need to set k̄ = m, in order to return k
items.

Accuracy Lower Bound. Bafna & Ullman (2017)
and Steinke & Ullman (2017) show that, for approximate
private algorithms, the error guarantees of existing algo-
rithms (McSherry & Talwar, 2007; Dwork & Roth, 2014;
Durfee & Rogers, 2019; Qiao et al., 2021) are essentially
optimal.

7. Conclusions and Future Directions
In this paper, we systematically advance our understanding
of the access cost of private top-k selection algorithm. We
introduce the first algorithm with sublinear access cost, and
provide lower bounds for three access models, showing that
supporting both sorted access and random access is the key
to breaking the linear access cost barrier, and that the access
cost of our algorithm is optimal.

We believe our work is a first step towards a comprehensive
study of building a differentially private top-k algorithm on
top of existing data analytics systems. Our focus in this
work is primarily on advancing theoretical understanding of
the problem, assuming that sorted access and random access
operations have the same cost. Interesting future directions
include conducting empirical evaluations, and investigating
scenarios where the costs of these two operations differ.

Acknowledgements
We thank the anonymous reviewers for their constructive
feedback, which has helped us to improve our manuscript.
In particular, we acknowledge the suggestion that our algo-
rithm can be applied to the exponential mechanism, resulting
in an O(

√
m) expected access cost.

Hao Wu is supported by an Australian Government Research
Training Program (RTP) Scholarship.

9

Tight Data Access Bounds for Private Top-k Selection

References
Bafna, M. and Ullman, J. R. The price of selection in

differential privacy. In Kale, S. and Shamir, O. (eds.),
Proceedings of the 30th Conference on Learning The-
ory, COLT 2017, Amsterdam, The Netherlands, 7-10 July
2017, volume 65 of Proceedings of Machine Learning
Research, pp. 151–168. PMLR, 2017.

Bhaskar, R., Laxman, S., Smith, A., and Thakurta, A. Dis-
covering frequent patterns in sensitive data. In Proceed-
ings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’10,
pp. 503–512, New York, NY, USA, 2010. Association for
Computing Machinery. ISBN 9781450300551.

Blitzstein, J. and Hwang, J. Introduction to Probability. 07
2014. ISBN 9780429102103.

Brassard, G. and Kannan, S. The generation of random
permutations on the fly. Inf. Process. Lett., 28(4):207–
212, 1988.

Cardoso, A. R. and Rogers, R. Differentially private his-
tograms under continual observation: Streaming selection
into the unknown. In Camps-Valls, G., Ruiz, F. J. R., and
Valera, I. (eds.), International Conference on Artificial
Intelligence and Statistics, AISTATS 2022, 28-30 March
2022, Virtual Event, volume 151 of Proceedings of Ma-
chine Learning Research, pp. 2397–2419. PMLR, 2022.

Devroye, L. Non-Uniform Random Variate Generation.
Springer, 1986. ISBN 978-1-4613-8645-2.

Ding, Z., Kifer, D., E., S. M. S. N., Steinke, T., Wang, Y.,
Xiao, Y., and Zhang, D. The permute-and-flip mechanism
is identical to report-noisy-max with exponential noise.
CoRR, abs/2105.07260, 2021.

Durfee, D. and Rogers, R. M. Practical differentially private
top-k selection with pay-what-you-get composition. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3527–3537, 2019.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

Fagin, R. Combining fuzzy information from multiple sys-
tems. J. Comput. Syst. Sci., 58(1):83–99, 1999.

Fagin, R., Lotem, A., and Naor, M. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci., 66(4):
614–656, 2003.

Gentle, J. E. Computational Statistics. Statistics and Com-
puting. Springer, New York, NY, December 2009.

Gerontidis, I. and Smith, R. L. Monte carlo generation of
order statistics from general distributions. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 31
(3):238–243, 1982. ISSN 00359254, 14679876.

Guntuboyina, A. Lecture Notes for 201A
Fall, 2019. https://www.stat.
berkeley.edu/˜aditya/resources/
FullLectureNotes201AFall2019.pdf (Ac-
cessed on Oct. 21, 2022).

Hoeffding, W. Probability Inequalities for sums of Bounded
Random Variables, pp. 409–426. Springer New York,
New York, NY, 1994. ISBN 978-1-4612-0865-5.

Ilyas, I. F., Beskales, G., and Soliman, M. A. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):11:1–11:58, 2008.

Lurie, D. and Hartley, H. O. Machine-generation of order
statistics for monte carlo computations. The American
Statistician, 26:26–27, 1972.

Matousek, J. and Nesetril, J. Invitation to Discrete Math-
ematics (2. ed.). Oxford University Press, 2009. ISBN
978-0-19-857042-4.

McKenna, R. and Sheldon, D. Permute-and-flip: A
new mechanism for differentially private selection. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2007), Octo-
ber 20-23, 2007, Providence, RI, USA, Proceedings, pp.
94–103. IEEE Computer Society, 2007.

Mitzenmacher, M. and Upfal, E. Probability and computing:
Randomization and probabilistic techniques in algorithms
and data analysis. Cambridge university press, 2017.

Qiao, G., Su, W. J., and Zhang, L. Oneshot differentially
private top-k selection. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning
Research, pp. 8672–8681. PMLR, 2021.

Robbins, H. A remark on stirling’s formula. The Ameri-
can Mathematical Monthly, 62(1):26–29, 1955. ISSN
00029890, 19300972.

10

https://www.stat.berkeley.edu/~aditya/resources/FullLectureNotes201AFall2019.pdf
https://www.stat.berkeley.edu/~aditya/resources/FullLectureNotes201AFall2019.pdf
https://www.stat.berkeley.edu/~aditya/resources/FullLectureNotes201AFall2019.pdf

Tight Data Access Bounds for Private Top-k Selection

Ross, S. A First Course in Probability. Pearson, Upper
Saddle River, NJ, 10 edition, November 2018.

Steinke, T. and Ullman, J. R. Tight lower bounds for differ-
entially private selection. In Umans, C. (ed.), 58th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pp. 552–563. IEEE Computer Society, 2017.

Vadhan, S. P. The complexity of differential privacy. In
Lindell, Y. (ed.), Tutorials on the Foundations of Cryp-
tography, pp. 347–450. Springer International Publishing,
2017.

van Emde Boas, P. Preserving order in a forest in less
than logarithmic time. In 16th Annual Symposium on
Foundations of Computer Science, Berkeley, California,
USA, October 13-15, 1975, pp. 75–84. IEEE Computer
Society, 1975.

Zhang, H., Mironov, I., and Hejazinia, M. Wide network
learning with differential privacy. CoRR, abs/2103.01294,
2021.

11

Tight Data Access Bounds for Private Top-k Selection

A. Probability Inequalities
Fact A.1 (Chernoff Bound, (Mitzenmacher & Upfal 2017, Theorem 4.4 and 4.5)). Let X1, X2, . . . , Xn be independent
Poisson trials such that, for i ∈ [m], Pr [Xi = 1] = pi, where 0 < pi < 1. Then, for X =

∑n
i=1 Xi, µ = E [X],

Pr [X ≥ (1 + λ)µ] ≤

(
eλ

(1 + λ)
1+λ

)µ

, ∀λ > 0, (12)

Pr [X ≥ (1 + λ)µ] ≤

(
eλ

(1 + λ)
1+λ

)µ

≤ e−λ2µ/3, ∀λ ∈ (0, 1], (13)

Pr [X ≤ (1− λ)µ] ≤

(
e−λ

(1− λ)
1−λ

)µ

≤ e−λ2µ/2, ∀λ ∈ (0, 1). (14)

The known concentration inequalities for sampling with replacement can be transferred to the case of sampling without
replacement, based on a notable reduction technique.
Fact A.2 ((Hoeffding, 1994)). Let X = (x1, . . . , xN) be a finite population of N real points, Y1, . . . , Yn denote a random
sample without replacement from X and X1, . . . , Xn denote a random sample with replacement from X . If f : R→ R is
continuous and convex, then

E

[
f

(
n∑

i=1

Yi

)]
≤ E

[
f

(
n∑

i=1

Xi

)]
.

In particular, the lower bound presented in Fact A.1 can be converted into the following one, by combining its proof
in (Mitzenmacher & Upfal, 2017) and Fact A.2.

Corollary A.3 (Chernoff bound). Let X = (x1, . . . , xN) ∈ {0, 1}N be a finite population of N binary points and
Y1, . . . , Yn be a random sample drawn without replacement from the population. Then, for Y =

∑n
i=1 Yi,

Pr

[
n∑

i=1

Yi ≤ (1− λ)µ

]
≤

(
e−λ

(1− λ)
1−λ

)µ

≤ e−λ2µ/2, ∀λ ∈ [0, 1). (15)

where µ = np is the expectation of
∑n

i=1 Yi, and p
.
= 1

N

∑N
i=1 xi is the mean of X .

Note that, in Corollary A.3, we also extend the range of λ from {0, 1}, to [0, 1). When λ = 0,
(

e−λ

(1−λ)1−λ

)µ
= e−λ2µ/2 = 1,

and Inequality (15) holds trivially.
Fact A.4 ((Blitzstein & Hwang, 2014)). Let Γ(a)

.
=
∫∞
0

xa−1e−x dx, ∀a > 0 be the Gamma function. It holds
that Γ(a+ 1) = aΓ(a), and Γ(12) =

√
π. Then for each k ∈ N+, we have Γ(k) = (k − 1)! and

Γ

(
1

2
+ k

)
=

(
k − 1

2

)(
k − 3

2

)
· · · 1

2
Γ

(
1

2

)
=

2k − 1

2

2k − 3

2
· · · 1

2

√
π =

(2k)!

4kk!

√
π. (16)

Fact A.5 ((Ross, 2018)). Given shape parameters α, β > 0, define beta function B(α, β)
.
=
∫ 1

0
xα−1(1− x)

β−1
dx. Then

B(α, β) = Γ(α)Γ(β)
Γ(α+β) , In particular,

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
, ∀α, β ∈ N+. (17)

The factorials can be estimated as follows.
Fact A.6 (Stirling’s Approximation (Robbins, 1955; Matousek & Nesetril, 2009)). For k = 1, 2, ...

√
2πk

(
k

e

)k

exp

(
1

12k + 1

)
≤ k! ≤

√
2πk

(
k

e

)k

exp

(
1

12k

)
. (18)

12

Tight Data Access Bounds for Private Top-k Selection

B. Proofs for Section 4
B.1. Proofs for Section 4.1

Proof for Lemma 4.1. For each i ∈ [m], let p
Zi
(·) be the density function of random variable Zi. Since the Zi’s are i.i.d.

random variables, they share the same density function, i.e., p
Z1
(·) = · · · = p

Zm
(·).

Let Sm be the collection of all possible permutations over [m], and s refer to a permutation in Sm . Further, let z(1) ≥
. . . ≥ z(m) denote a possible realization of Z(1), . . . , Z(m), and z(1:m)

.
= (z(1), . . . , z(m)). We write I(1:m) = s, if I(j) =

s(j),∀j ∈ [m], and Z(1:m) = z(1:m), when Z(j) = z(j),∀j ∈ [m].

Let p
I(1:m),Z(1:m)

(s, z(1:m)) be the probability density when I(1:m) = s and Z(1:m) = z(1:m). The probability den-

sity, p
Z(1:m)

(z(1:m)) of Z(1:m) = z(1:m) is given by

p
Z(1:m)

(z(1:m)) =
∑
s∈Sm

p
I(1:m),Z(1:m)

(s, z(1:m))

=
∑
s∈Sm

∏
j∈[m]

p
Zs(j)

(z(j))

=
∑
s∈Sm

∏
j∈[m]

p
Z1
(z(j))

= m!
∏

j∈[m]

p
Z1
(z(j)).

Hence, for a given s ∈ Sm, the probability density of I(1:m) = s, conditioned on Z(1:m) = z(1:m), is given by

p
I(1:m)|Z(1:m)

(s | z(1:m)) =
p
I(1:m),Z(1:m)

(s, z(1:m))

p
Z(1:m)

(z(1:m))
=

∏
j∈[m] pZ1

(z(j))

m!
∏

j∈[m] pZ1
(z(j))

=
1

m!
,

which is independent of the values of the Z(1:m). Finally,

p
I(1:m)

(s) = E
Z(1:m)

[
p
I(1:m)|Z(1:m)

(s | Z(1:m))
]
=

1

m!
.

B.1.1. PROOF OF THEOREM 4.2

Before the proof of Theorem 4.2, we present two supporting lemmas.

Lemma B.1. Let cost (APrivTA, L1) be the access cost of Algorithm 3. Then

Pr [cost (APrivTA, L1) ≥ 2 · r] ≤ ek

kk
· (r

2/m)
k

er2/m
, ∀r ∈ N, s.t., r ≥

√
mk. (19)

Proof for Lemma B.1. Let Sr
.
=
{
i(1), . . . , i(r)

}
be the top-r items with highest scores in h⃗. Also consider the items in the

first r tuples in the array L2, denoted by I(1:r) =
{
I(1), . . . , I(r)

}
.

Consider the following event:
E .
=
∣∣Sr ∩ I(1:r)

∣∣ > k .

We claim that

1. When event E happens, cost (APrivTA, L1) < 2r.

2. The complement of E , denoted by Ē , happens with probability Pr
[
Ē
]
≤ ek

kk · (r
2/m)

k

er2/m
.

13

Tight Data Access Bounds for Private Top-k Selection

Combing both claims, we get

Pr [cost (APrivTA, L1) ≥ 2r] ≤ Pr
[
Ē
]
≤ ek

kk
· (r

2/m)
k

er2/m
.

Claim One. It suffices to show that, when event E happens, Algorithm 1 stops before r rounds , where each round involves
executing lines 4 to 10 in Algorithm 1. In such a case, the number of random accesses incurred (to h⃗) is less than r.
Therefore, the total number of access cost to h⃗ is less than 2r.

Assume that Algorithm 1 runs for r rounds. Since i(r) and I(r) are the last encountered items, the corresponding threshold
(Algorithm 1, Line 9) is given by τr

.
= f (⃗h[i(r)], ZI(r)).

But for each i ∈
{
i(1), . . . , i(r)

}
∩ I(1:r), it holds that h⃗[i] ≥ h⃗[i(r)], and Zi ≥ ZI(r) . Since f is monotone, the score of

item i, f (⃗h[i], Zi), is at least τr. Since event E happens, at least k items encountered by the algorithm have score at least τ .
Therefore, the stopping condition of Algorithm 1 should be satisfied.

Claim Two. Via Lemma 4.1, the I(1), . . . , I(m) distribute uniformly over all permutations of [m]. Therefore, the set I(1:r)
can be viewed as a uniform sample (without replacement) of r elements from [m]. Hence, for each j ∈ [r], the probability
that i(j) belongs to I(1:r) is given by

Pr
[
i(j) ∈ I(1:r)

]
= r/m .

Let 1[i(j)∈I(1:r)] be the indicator for the event that i(j) ∈ I(1:r), and Y
.
=
∑

j∈[r] 1[i(j)∈I(1:r)]. The event Ē is equivalent
to Y ≤ k. Observe that

Pr
[
1[i(j)∈I(1:r)] = 1

]
= Pr

[
i(j) ∈ I(1:r)

]
= r/m, (20)

µ
.
= E [Y] =

∑
j∈[r]

E
[
1[i(j)∈I(1:r)]

]
= r2/m ≥ k. (21)

Since k/µ ∈ (0, 1], λ .
= 1− k/µ ∈ [0, 1). By the Chernoff bound for sampling without replacement (Fact A.3), we have

Pr [Y ≤ k] = Pr [Y ≤ (1− λ) · µ] ≤

(
e−λ

(1− λ)
1−λ

)µ

=

(
ek/µ−1

(k/µ)
k/µ

)µ

=
ek−µ

(k/µ)
k
=

ekµk

kkeµ
=

ek

kk
· (r

2/m)
k

er2/m
.

Lemma B.2. Let cost (APrivTA, L1) be the access cost of Algorithm 3. Then

Pr [cost (APrivTA, L1) ≥ 2 · r] ≤ ek

kk
· (r

2/m)
k

er2/m
, ∀r ∈ R, s.t., r ≥

√
mk. (22)

Proof for Lemma B.2. Since Algorithm 3 executes the threshold algorithm (Algorithm 1) with two sorted arrays L1 and L2,
the access cost of Algorithm 3 on L1, denoted by cost (APrivTA, L1), is an even integer due to the way the threshold
algorithm operates. Therefore, the event cost (APrivTA, L1) ≥ 2 · r is equivalent to the event cost (APrivTA, L1) ≥ ⌈2 · r⌉even,
where ⌈2 · r⌉even denotes the smallest even integer that is at least 2 · r.

Define r⋆
.
= 1

2 · ⌈2 · r⌉even ∈ N. Clearly it holds that r⋆ ≥ r. Via Lemma B.1, for each r ∈ R, s.t., r ≥
√
mk,

Pr [cost (APrivTA, L1) ≥ 2 · r] = Pr [cost (APrivTA, L1) ≥ ⌈2 · r⌉even]

= Pr [cost (APrivTA, L1) ≥ 2 · r⋆] ≤
ek

kk
· (r

2
⋆/m)

k

er
2
⋆/m

.

Consider the function y
.
= xk/ex. As y′ = kxk−1ex−xkex

e2x , y is decreasing when x ≥ k. Noting that r2⋆/m ≥ r2/m, we
have

Pr [cost (APrivTA, L1) ≥ 2 · r] ≤ ek

kk
· (r

2
⋆/m)

k

er
2
⋆/m

≤ ek

kk
· (r

2/m)
k

er2/m
, ∀r ∈ R, s.t., r ≥

√
mk.

14

Tight Data Access Bounds for Private Top-k Selection

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. First, we can rewrite

E [cost (APrivTA, L1)] =

∫ ∞

0

Pr [cost (APrivTA, L1) ≥ s] ds = 2 ·
∫ ∞

0

Pr [cost (APrivTA, L1) ≥ 2 · r] dr,

where the last inequality follows from a change of variable of r .
= s/2.

Decomposing the integral further, we have∫ ∞

0

Pr [cost (APrivTA, L1) ≥ 2r] dr =

∫ √
mk

0

Pr [cost (APrivTA, L1) ≥ 2r] dr +

∫ ∞

√
mk

Pr [cost (APrivTA, L1) ≥ 2r] dr

≤
√
mk +

∫ ∞

√
mk

Pr [cost (APrivTA, L1) ≥ 2r] dr.

Via Lemma B.2, we can bound the last integral by∫ ∞

√
mk

Pr [cost (APrivTA, L1) ≥ 2r] dr ≤
∫ ∞

√
mk

ek

kk
· (r

2/m)
k

er2/m
dr =

∫ ∞

k

ek

kk
· tke−k

√
m

dt

2
√
t
,

where the last inequality follows from a change of variable of t .
= r2/m. Via the definition and property of Gamma function

(Fact A.4), ∫ ∞

k

ek

kk
· tke−k

√
m

dt

2
√
t
≤
√
m

2
· e

k

kk
·
∫ ∞

0

tk−1/2e−k dt

=

√
m

2
· e

k

kk
· Γ(k + 1/2) =

√
m

2
· e

k

kk
· (2k)!
4kk!

.

Finally, by Stirling’s approximation (Fact A.6),

ek

kk
· (2k)!
4kk!

≤ ek

kk
·
√
2π · 2k

(
2k
e

)2k
exp

(
1

12·2k
)

4k
√
2π · k

(
k
e

)k
exp

(
1

12·k+1

) ≤ √2.
Combing the previous inequalities, we show that

E [cost (APrivTA, L1)] ≤ 2 ·
(√

mk +

√
m√
2

)
,

which proves the theorem.

B.2. Proofs for Section 4.2

Proof of Theorem 4.4. This is a directly consequence of the facts that

• Based on a technique by Brassard & Kannan (1988) for sampling a random perturbation on the fly, and on the
discussions in Section 4.2, it holds that each I(j), j ∈ [m], and each value of inverted index σ2(i), i ∈ [m] can be
sampled on the fly in O(1) times.

• Based on Lemma 4.5, each Z(j), j ∈ [m] can be sampled on the fly with O(log logm) expected time.

Proof of Fact 4.7. Recall that F is the cumulative distribution function of Z1, . . . , Zm, and U1, . . . , Um are independent
uniform random variables on [0, 1]. We compare the two post-processing procedures:

15

Tight Data Access Bounds for Private Top-k Selection

• By Fact 4.6, we can obtain Z1, . . . , Zm by computing F−1(U1), . . . , F
−1(Um); then we obtain Z(1), . . . , Z(m) by

sorting this sequence in descending order.
• Alternatively, we first sort U1, . . . , Um in descending order, to obtain a sequence U(1), . . . , U(m); then we com-

pute F−1(U(1)), . . . , F
−1(U(m)).

Figure 1. A pictorial comparison of the two procedures.

We claim that the two procedures output the same sequence.

First, observe that the following two multisets are the same
{
F−1(U1), . . . , F

−1(Um)
}

and
{
F−1(U(1)), . . . , F

−1(U(m))
}

.
By construction, Z(1), . . . , Z(m) is a sorted sequence of the multiset. To prove the claim, it suffices to show
that F−1(U(1)), . . . , F

−1(U(m)) is also a sorted sequence. This is true: since F is a cumulative distribution function on R,
it is non-decreasing; it follows that for every two 1 ≤ j < j′ ≤ m, U(j) ≥ U(j′) implies that F−1(U(j)) ≥ F−1(U(j′)).

Proof of Theorem 4.10. In this proof, we write the density function of X as pX(·) and the density function of Y as pY (·),
to distinguish between the two.

If X ∼ Beta (m− j + 1, j), then its density function satisfies

pX(x) =
(x)

m−j
(1− x)

j−1

B(m− j + 1, j)
, ∀x ∈ [0, 1].

Based on Fact A.5, B(m− j + 1, j) = (m−j)!(j−1)!
m! , which proves the first claim.

Secondly, if X ∼ Beta (m− j + 1, j − ℓ), then the density of Y = u(ℓ) ·X , is given by,

pY (y) = pX

(
y

u(ℓ)

)
· dX
dY

=
1

B(m− j + 1, j − ℓ)
·
(

y

u(ℓ)

)m−j(
1−

(
y

u(ℓ)

))j−ℓ−1

· 1

u(ℓ)
,

Noting that B(m− j + 1, j − ℓ) = (m−j)!(j−ℓ−1)!
(m−ℓ)! proves the second claim.

The third claim follows from similar argument as the second one.

B.3. Proof for Theorem 4.8

We need the following fact.
Fact B.3 ((Guntuboyina, 2019)). The joint density of U(1), . . . , U(m) is given by

p(u(1), u(2), . . . , u(m)) = m! , (23)

where 1 ≥ u(1) ≥ u(2) · · · ≥ u(m) ≥ 0.

As a sanity check, note that the simplex ∆∗
n

.
=
{
u(1), u(2) . . . , u(m) ∈ Rm : 1 ≥ u(1) ≥ u(2) . . . ≥ u(m) ≥ 0

}
has vol-

ume 1/m!. Since U(1), . . . , U(m) distribute uniformly over ∆∗
n, each point of the simplex has density m!. Based on this fact,

we can derive the following lemma.

16

Tight Data Access Bounds for Private Top-k Selection

Lemma B.4. Let j1, . . . , jt ∈ [m] be an increasing sequence of indexes. Then the joint distribution of U(j1), . . . , U(jt) is
given by

p
(
u(j1), . . . , u(jt)

)
= m! ·

(
u(jt)

)m−jt

(m− jt)!
·
(
1− u(j1)

)j1−1

(j1 − 1)!
·

t∏
s=2

(
u(js−1) − u(js)

)js−js−1−1

(js − js−1 − 1)!
. (24)

Proof of Lemma. p
(
u(j1), . . . , u(jt)

)
is given by the following integration:∫ 1

0

· · ·
∫ 1

0

m! · 1[0≤u(m)≤...≤u(1)≤1] du(m)
. . . du(1+jt)

du(−1+jt)
. . . du(1+jt−1)

. . . du(−1+j1)
. . . du(1)

.

Integrating with respect to u(m) over the range [0, u(m−1)], we have∫ 1

0

· · ·
∫ 1

0

m! · u(m−1) · 1[0≤u(m−1)≤...≤u(1)≤1] du(m−1)
. . . du(1+jt)

du(−1+jt)
. . . du(1+jt−1)

. . . du(−1+j1)
. . . du(1)

.

Then integrate u(m−1) over the range [0, u(m−2)], all the way down to the integral with respect to u(1+jt) over the
range [0, u(jt)]. We obtain∫ 1

0

· · ·
∫ 1

0

m! ·
(
u(jt)

)m−jt

(m− jt)!
· 1[0≤u(jt)

≤u(−1+jt)
...≤u(1)≤1] du(−1+jt)

. . . du(1+jt−1)
. . . du(−1+j1)

. . . du(1)
.

Integrating with respect to u(−1+jt) over the range [u(jt), u(−2+jt)], we have∫ 1

0

· · ·
∫ 1

0

m!

(
u(jt)

)m−jt

(m− jt)!

(
u(−2+jt) − u(jt)

)
· 1[0≤u(jt)

≤u(−2+jt)
...≤u(1)≤1] du(−2+jt)

. . . du(1+jt−1)
. . . du(−1+j1)

. . . du(1)
.

Then integrate u(−2+jt) over the range [u(jt), u(−3+jt)], all the way down to u(1+jt−1) over the range [u(jt), u(jt−1)]:

∫ 1

0

· · ·
∫ 1

0


m!·
(
u(jt)

)m−jt

(m− jt)!
·
(
u(jt−1) − u(jt)

)jt−jt−1−1

(jt − jt−1 − 1)!

· 1[0≤u(jt−1)≤u(−1+jt−1)...≤u(1)≤1]

 du(−1+jt−1)
. . . du(1+jt−2)

. . . du(−1+j1)
. . . du(1)

.

Repeating the above efforts proves Equation (24).

Proof of Theorem 4.8.

Claim One: Applying Lemma B.4 directly, we have

p
(
u(j)

)
= m! ·

(
u(j)

)m−j

(m− j)!
·
(
1− u(j)

)j−1

(j − 1)!
, ∀u(j) ∈ [0, 1],

which proves the first claim.

Claim Two: let J = {ζ1, . . . , ζc}, s.t., ζ1 < · · · < ζc < j. Following the notation of Theorem 4.8, we have ℓ = ζc. By
Lemma B.4,

p
(
u(J)

)
= m! ·

(
u(ζc)

)m−ζc

(m− ζc)!
·
(
1− u(ζ1)

)ζ1−1

(ζ1 − 1)!
·

c∏
s=2

(
u(ζs−1) − u(ζj)

)ζs−ζs−1−1

(ζs − ζs−1 − 1)!
,

p
(
u(J∪{j})

)
= m! ·

(
u(j)

)m−j

(m− j)!
·
(
u(ζc) − u(j)

)j−ζc−1

(j − ζc − 1)!
·
(
1− u(ζ1)

)ζ1−1

(ζ1 − 1)!
·

c∏
s=2

(
u(ζs−1) − u(ζs)

)ζs−ζs−1−1

(ζs − ζs−1 − 1)!
.

17

Tight Data Access Bounds for Private Top-k Selection

Hence,

p
(
u(j) | u(J)

)
=

p
(
u(J∪{j})

)
p
(
u(J)

) =
(m− ζc)!

(j − ζc − 1)!(m− j)!

(
u(ζc) − u(j)

u(ζc)

)j−ζc−1(u(j)

u(ζc)

)m−j
1

u(ζc)
.

Similarly, the densities of p
(
u(ζc)

)
, p
(
u(ζc), u(j)

)
are given by

p
(
u(ζc)

)
= m! ·

(
u(ζc)

)m−j

(m− ζc)!
·
(
1− u(ζc)

)ζc−1

(ζc − 1)!
,

p
(
u(ζc), u(j)

)
= m! ·

(
u(j)

)m−j

(m− j)!
·
(
u(ζc) − u(j)

)j−ζc−1

(j − ζc − 1)!
·
(
1− u(ζc)

)ζc−1

(ζc − 1)!
.

It is easy to see that

p
(
u(j) | u(ζc)

)
=

p
(
u(ζc), u(j)

)
p
(
u(ζc)

) = p
(
u(j) | u(J)

)
.

Claim Three: let J = {ζ1, . . . , ζc}, s.t., ζ1 < . . . < ζc, and there exists c′ ∈ [c− 1] for which ζc′ < j < ζc′+1. Following
the notation of Theorem 4.8, we have ℓ = ζc′ , r = ζc′+1. By Lemma B.4,

p
(
u(J)

)
= m! ·

(
u(ζc)

)m−ζc

(m− ζc)!
·
(
1− u(ζ1)

)ζ1−1

(ζ1 − 1)!
·

c∏
s=2

(
u(ζs−1) − u(ζs)

)ζs−ζs−1−1

(ζs − ζs−1 − 1)!
,

p
(
u(J∪{j})

)
= m! ·

(
u(ζc)

)m−ζc

(m− ζc)!
·
(
1− u(ζ1)

)ζ1−1

(ζ1 − 1)!
·
(
u(ζc′)

− u(j)

)j−ζc′−1

(j − ζc′ − 1)!
·

(
u(j) − u(ζc′+1)

)ζc′+1−j−1

(ζc′+1 − j − 1)!

·
c′∏

j=2

(
u(ζs−1) − u(ζs)

)ζs−ζs−1−1

(ζs − ζs−1 − 1)!
·

c∏
j=c′+2

(
u(ζs−1) − u(ζs)

)ζs−ζs−1−1

(ζs − ζs−1 − 1)!
.

Hence,

p
(
u(j) | u(J)

)
=

p
(
u(J∪{j})

)
p
(
u(J)

) =
(ζc′+1 − ζc′ − 1)!

(j − ζc′ − 1)!(ζc′+1 − j − 1)!

·

(
u(ζc′)

− u(j)

u(ζc′)
− u(ζc′+1)

)j−ζc′−1(
u(j) − u(ζc′+1)

u(ζc′)
− u(ζc′+1)

)ζc′+1−j−1
1

u(ζc′)
− u(ζc′+1)

.

Similarly, the densities of p
(
u(ζc′)

, u(ζc′+1)

)
, p
(
u(ζc′)

, u(j), u(ζc′+1)

)
is given by

p
(
u(ζc′)

, u(ζc′+1)

)
= m! ·

(
u(ζc′+1)

)m−ζc′+1

(m− ζc′+1)!
·

(
u(ζc′)

− u(ζc′+1)

)ζc′+1−ζc′−1

(ζc′+1 − ζc′ − 1)!
·
(
1− u(ζc′)

)ζc′−1

(ζc′ − 1)!
,

p
(
u(ζc′)

, u(j), u(ζc′+1)

)
= m! ·

(
u(ζc′+1)

)m−ζc′+1

(m− ζc′+1)!
·
(
u(ζc′)

− u(j)

)j−ζc′−1

(j − ζc′ − 1)!

·

(
u(j) − u(ζc′+1)

)ζc′+1−j−1

(ζc′+1 − j − 1)!
·
(
1− u(ζc′)

)ζc′−1

(ζc′ − 1)!
.

It is easy to see that

p
(
u(j) | u(ζc′)

, u(ζc′+1)

)
=

p
(
u(ζc′)

, u(j), u(ζc′+1)

)
p
(
u(ζc′)

, u(ζc′+1)

) = p
(
u(j) | u(J)

)
.

18

Tight Data Access Bounds for Private Top-k Selection

C. Proofs for Section 5
C.1. Proofs for Section 5.1

Proof of Theorem 5.1. We do not specify the familyH and the distribution µ onH directly. Instead, we show how we can
sample a h⃗ fromH according to µ: for each i ∈ [m], independently set

h⃗[i]
.
=

{
n, w.p. 2k

m ,

0, w.p. 1− 2k
m .

(25)

This can also be understood as, for each item i ∈ [m], with probability 2k/m all of the n clients votes for i; and with
probability 1− 2k/m, none of the clients votes for i.

Assume that: 1) A retrieves entries from h⃗ (via random access) without repetition. This only decreases its access cost, since
accessing a previously encountered entry does not provide additional information. 2) If A terminates before retrieving all
entries in h⃗, it continues to read the remaining entries without being charged for the additional accesses. This enables A
to obtain more entries for free. Now, let J1, . . . , Jm ∈ [m] be the order in which A accesses the entries. The sequence
constitutes a permutation of [m], and for each t ∈ [m], the choice of Jt can depend on previous choices J1, . . . , Jt−1 and
outcomes h⃗[J1], . . . , h⃗[Jt−1]. However, whatever the choice of Jt is, the distribution of h⃗[Jt] (conditioned on previous
choices and outcomes) is till given by Equation (25). Hence, h⃗[J1], . . . , h⃗[Jm] can be viewed as independent random
variables.

Consider the following events. Event E1 : h⃗ has at least k non-zero entries. Since each entry of h⃗ is generated independently,
via Chernoff bound (Fact A.1),

Pr
[
Ē1

]
≤ exp

(
− (0.5)

2 · 2k
2

)
≤ exp (−(0.5)2) ≤ 0.78 .

Event E2 : the number of non-zero entries among h⃗[J1] , . . . , h⃗[Jm/50] is less than k. Since h⃗[J1], . . . , h⃗[Jm/50] are
independent, via Chernoff bound (Fact A.1), and noting that k ≥ 1,

Pr
[
Ē2

]
≤
(

e24

2525

)k/25

≤
(

e24

2525

)1/25

≤ 0.11 .

Event E3 : A returns an (n− 1, k)-accurate solution. By assumption, we have Pr
[
Ē3

]
≤ β < 0.1.

Hence, Pr [E1 ∩ E2 ∩ E3] ≥ 1 − Pr
[
Ē1

]
− Pr

[
Ē2

]
− Pr

[
Ē3

]
∈ Ω(1). Observe that, when E1 and E3 happens, each

item i returned by A must have frequency h⃗[i] = n. However, when E2 happens, A cannot see k items with non-zero
frequency, from its first m/50 retrievals.

It follows that , with probability at least Pr [E1 ∩ E2 ∩ E3], A has access cost at least m/50, which proves the theorem.

C.2. Proofs for Section 5.2

Proof of Lemma 5.2. Let O .
=
(
[m]
k

)
be a shorthand for the collection of all possible outputs of A. Observe that, given

an input histogram h⃗S or h⃗SH ,SL
, if A’s output is (n− 2, k)-accurate, then it must be a subset of S of size k. Therefore,

define G .
=
(
S
k

)
be a shorthand for the collection of all (n − 2, k)-accurate outputs. Via the assumption that A outputs

an (n− 2, k)-accurate solution with probability at least 1− β, it holds that

Pr
[
A(⃗hS) ∈ G

]
≥ 1− β .

Let F .
=
(

S
|S|/k

)
be a shorthand for the collection all possible outcomes of SL. For each sℓ ∈ F , define Osℓ

.
=

{o ∈ O : o ∩ sℓ ̸= ∅}, the collection of sets in O that has nonempty intersection with sℓ, and Gsℓ
.
= {o ∈ G : o ∩ sℓ ̸= ∅},

the collection of sets in G that has nonempty intersection with sℓ. Conditioned on SL = sℓ,

Pr
[
A(⃗hSH ,SL

) ∩ SL ̸= ∅ | SL = sℓ

]
= Pr

[
A(⃗hSH ,SL

) ∈ Osℓ | SL = sℓ

]
≥ Pr

[
A(⃗hSH ,SL

) ∈ Gsℓ | SL = sℓ

]
,

19

Tight Data Access Bounds for Private Top-k Selection

where the inequality holds as Osℓ ⊇ Gsℓ . Moreover, since A is (ε, δ)-DP, it holds that

Pr
[
A(⃗hSH ,SL

) ∈ Gsℓ | SL = sℓ

]
≥ 1

eε
(Pr

[
A(⃗hS) ∈ Gsℓ

]
− δ) . (26)

Further, since the events that A(⃗hS) = o are mutually exclusive for different values of o ∈ G, we have

Pr
[
A(⃗hS) ∈ G

]
=
∑
o∈G

Pr
[
A(⃗hS) = o

]
≥ 1− β , (27)

Pr
[
A(⃗hS) ∈ Gsℓ

]
=

∑
o∈G,o∩sℓ ̸=∅

Pr
[
A(⃗hS) = o

]
=
∑
o∈G

1[o∩sℓ ̸=∅] · Pr
[
A(⃗hS) = o

]
. (28)

Finally,

Pr
SL,A

[
A(⃗hSH ,SL

) ∩ SL ̸= ∅
]
=
∑
sℓ ∈F

Pr [SL = sℓ] · Pr
[
A(⃗hSH ,SL

) ∈ Osℓ | SL = sℓ

]
≥
∑
sℓ ∈F

Pr [SL = sℓ] · Pr
[
A(⃗hSH ,SL

) ∈ Gsℓ | SL = sℓ

]
≥
∑
sℓ ∈F

Pr [SL = sℓ] · e−ε

(∑
o∈G

1[o∩sℓ ̸=∅] · Pr
[
A(⃗hS) = o

]
− δ

)

= −e−εδ + e−ε
∑
o∈G

Pr
[
A(⃗hS) = o

](∑
sℓ ∈F

1[o∩sℓ ̸=∅] · Pr [SL = sℓ]

)

(a)
= −e−ε · δ + e−ε

∑
o∈G

Pr
[
A(⃗hS) = o

](
1−

(|S|−k
|S|/k

)(|S|
|S|/k

))
(b)

≥ −e−ε · δ + e−ε
∑
o∈G

Pr
[
A(⃗hS) = o

]
(1− exp (−1))

≥ −e−ε · δ + e−ε(1− β)
(
1− e−1

)
≥ e−ε

(
1− β − δ − e−1

)
,

where equation (a) follows, since
∑

sℓ ∈F 1[o∩sℓ ̸=∅] · Pr [SL = sℓ] can interpreted as the probability that given a subset o
of S of size k, the sampled subset SL has nonempty intersection with o; and inequality (b) follows, since(|S|−k

|S|/k
)(|S|

|S|/k
) =

|S| − k

|S|
· · · |S| − k − |S|/k + 1

|S| − |S|/k + 1

≤
(
|S| − k

|S|

)|S|/k

≤ exp

(
− k

|S|
· |S|
k

)
= exp (−1) .

C.3. Proofs for Section 5.3

Proof of Lemma 5.5. Assume that: 1) ifA terminates before performing η accesses operations, it continues to perform more
until it reaches η, and will not be charged for any additional access. Now, let J1, . . . , Jη represents the first η operations
of A: each Jt is either a character ‘s’, implying that the t(th) operation is a sorted access, or an integer in [m], implying
that the t(th) operation is a random access to the entry h⃗SH ,SL

[Jt]. Further, let J ′
1, . . . , J

′
t be the subsequence of all random

access in J1, . . . , Jη .

20

Tight Data Access Bounds for Private Top-k Selection

Consider an alternative algorithm A′ that operates as follows: it first performs 9η sorted accesses to obtain all frequencies of
all items from SH , followed by random accesses J ′

1, . . . , J
′
t . It is clear that, A′ retrieves a greater number of entries than the

first η operations of A.

We bound the probability that A′ does not retrieve an entry from SL. First consider random access J ′
1. If J ′

1 had already
been retrieved by sorted access, then clearly J ′

1 /∈ SL. Otherwise, conditioned on the fact that the entries SH have been
determined, according to the manner S and SL are generated, each item in [m] \ (SH) belongs to SL with equal probability.
Hence,

Pr [J ′
1 /∈ SL] ≥ 1− τ/k

m− (k − 1)τ/k
.

In general, for each 1 < ℓ ≤ t, suppose that J ′
1, . . . , J

′
ℓ−1 does not belong to SL, and has revealed mℓ ≤ ℓ− 1 distinct items

from [m] \ (SH). Whatever the choice of J ′
ℓ is, and the items J ′

1, . . . , J
′
ℓ−1 are, each of the remaining items that have not

been queried belong to SL with equal probability. Hence

Pr [J ′
ℓ /∈ SL] ≥ 1− τ/k

m− (k − 1)τ/k −mℓ
.

Noting that mℓ < t ≤ η, we have

Pr [J ′
1, . . . , J

′
t /∈ SL] ≥

t∏
ℓ=1

(
1− τ/k

m− (k − 1)τ/k −mℓ

)

≥
t∏

ℓ=1

(
1− τ/k

m− (k − 1)τ/k − η

)
(a)

≥
t∏

ℓ=1

exp

(
− 2τ/k

m− (k − 1)τ/k − η

)
≥ exp

(
− τ2/(10k)

m− (k − 1)τ/k − η

)
≥ exp

(
− m/10

m− 21
√
mk/20

)
≥ exp

(
− m/10

m− 21m/40

)
≥ 0.81.

where inequality (a) holds, since 1− x ≥ e−2x,∀x ∈ [0, 3/4], and

τ/k ≤ 3

4
(m− (k − 1)τ/k − η) (29)

⇐⇒ τ

(
3

4
+

1

4k
+

3

40

)
≤ 3

4
m (30)

The last inequality holds, since 3
4 + 1

4k + 3
40 ≤ 3/2 for k ∈ N+, and 2τ = 2

√
mk ≤ m, i.e., k ≤ m/4.

21

