
Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Erica Zhang * 1 Fangzhao Zhang * 2 Mert Pilanci 2

Abstract
Active learning methods aim to improve sample
complexity in machine learning. In this work, we
investigate an active learning scheme via a novel
gradient-free cutting-plane training method for
ReLU networks of arbitrary depth and develop
a convergence theory. We demonstrate, for the
first time, that cutting-plane algorithms, tradition-
ally used in linear models, can be extended to
deep neural networks despite their nonconvex-
ity and nonlinear decision boundaries. Moreover,
this training method induces the first deep active
learning scheme known to achieve convergence
guarantees, revealing a geometric contraction rate
of the feasible set. We exemplify the effectiveness
of our proposed active learning method against
popular deep active learning baselines via both
synthetic data experiments and sentimental classi-
fication task on real datasets.

1. Introduction
Large neural network (NN) models are now core to arti-
ficial intelligence systems. After years of development,
current large NN training is still dominated by gradient-
based methods, which range from basic gradient descent
method to more advanced online stochastic methods such
as Adam (Kingma & Ba, 2017) and AdamW (Loshchilov
& Hutter, 2019). Recent empirical effort has focused on
cutting down storage requirement for such optimizers (see
Griewank & Walther (2000); Zhao et al. (2024)); accel-
erating convergence by adding momentum (see Xie et al.
(2023)); designing better step size search algorithms (see
Defazio & Mishchenko (2023)). Despite their popularity,
gradient-based methods suffer from sensitivity to hyper-
parameters and slow convergence. Therefore, researchers

* Equal Contribution; Junior author listed first. 1Department
of Management Science and Engineering, Stanford University
2Department of Electrical Engineering, Stanford University. Cor-
respondence to: Erica Zhang <yz4232@stanford.edu>, Fangzhao
Zhang <zfzhao@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

are persistently seeking for alternative training schemes for
large NN models, including zero-order and second-order
algorithms.

Cutting-plane method is a classic optimization algorithm
and is known for its fast convergence rate. Research on
cutting-plane type methods dates back to 1950s when Ralph
Gomory (Gomory, 1958) first studied it for integer program-
ming and mixed-integer programming problems. Since then,
this method has also been heavily investigated for solving
nonlinear problems. Different variations of cutting-plane
method emerge, including but not limited to center of gravity
cutting-plane method, maximum volume ellipsoid cutting-
plane method, and analytic center cutting-plane method,
which mainly differ in their center-finding strategies.

Historically, deep NN training and cutting-plane methods
have developed independently, each with its own audience.
In this work, we bridge them for the first time by providing
a viable cutting-plane-based deep NN training and active
learning (AL) scheme. Our method finds optimal neural
network weights and actively queries training points via a
gradient-free cutting-plane approach. We show that the in-
duced active learning scheme naturally inherits classic con-
vergence guarantees of cutting-plane methods. We present
synthetic and real data experiments to demonstrate the ef-
fectiveness of our proposed methods.

2. Notation
We denote the set of integers from 1 to n as [n]. We use
Bp := {u ∈ Rd : ∥u∥p ≤ 1} to denote the unit ℓp-norm
ball and ⟨·, ·⟩ to denote the dot product between two vectors.
Given a hyperplaneH := {x : xTw = 0}, we useH+ (H−)
to denote the positive (negative) half-space: H+(−) := {x :
xTw ≥ (≤)0}. We use notation (x)+ = max(x, 0). We
take 1{x ∈ S} as the 1/0-valued indicator function with
respect to the set S, evaluated at x.

3. Preliminaries
Classic cutting-plane method’s usage in different opti-
mization problems has been heavily studied. To better
demonstrate the problem and offer a more self-contained
background, we start with describing basic cutting-plane
method’s workflow.

1

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 1. Illustration of a single iteration of general cutting-plane method (Boyd & Vandenberghe, 2007).

Cutting-Plane Method. Consider any minimization prob-
lem with an objective function f(θ), where the solution
set, denoted as Θ, is a convex set. Cutting-plane method
typically assumes the existence of an oracle that, given any
input θ0, either confirms that θ0 ∈ Θ, thereby terminating
with θ0 as a satisfactory solution, or returns a pair (or so-
called “cut”) (x, y) such that xT θ0 ≤ y while xT θ > y for
all θ ∈ Θ. If the cut is “good enough,” it allows for the
elimination of a large portion of the search space, enabling
rapid progress toward the true solution set Θ.

The classic convergence results of the cutting-plane method
are highly dependent on the quality of the cut in each iter-
ation. For instance, if the center of gravity of the current
volume is removed, it guarantees a volume reduction of
approximately 63%. Similar results hold for the analytic
center and the center of the maximum volume ellipsoid. Fig-
ure 1 illustrates a single step of the cutting-plane method,
showing how a “good” cut near the center of the current
volume induces a much larger volume reduction compared
to a “bad” cut near the edge.

Cutting-Plane-Based Active Learning with Linear Mod-
els (Louche & Ralaivola, 2015). Prior work (Louche &
Ralaivola, 2015) has studied the use of cutting-plane method
in the context of active learning with linear models for bi-
nary classification tasks. The setup is the following. One
is given a set of unlabeled data D = {x1, · · · , xn}. The
authors consider a linear binary classifier f(x; θ) := ⟨θ, x⟩
with prediction sign(f(x; θ)) for any input x. Define the
set of model parameters that correctly classify our dataset
as TD. Starting at an initial set T 0 which contains TD as a
subset, the goal is to query training data point (and require
its label) to reduce the size of T 0 to approach TD as soon
as possible (i.e., with as few data queried as possible). The
cutting-plane-based active learning framework developed
by (Louche & Ralaivola, 2015) (Algorithm 3) starts with a
localized convex set T 0. The algorithm is presented with
the set of all unlabeled data. At each step t, it performs
the following steps: (i) computes the center of the current

parameter space θtc := center(T t); (ii) queries the label yt
for xt from the unlabeled dataset D which has minimal pre-
diction margin with respect to θtc; (iii) reduces the parameter
space via a cutting plane in the case of mis-classification:
T t+1 = T t ∩{θ | yt⟨xt, θ⟩ > 0}. The algorithm terminates
when set T t is small enough or maximum iterations or data
budget have been reached. This active learning scheme
has strong convergence result inherited from classic cutting-
plane method, which has been investigated in (Louche &
Ralaivola, 2015).

Cutting-Plane-Based Active Learning with DNN Models
(This Work). Although (Louche & Ralaivola, 2015) pri-
marily focuses on the active learning setting, their method
implicitly suggests a cutting-plane-based training work-
flow for linear binary classifiers. To illustrate this, con-
sider a set of training samples {(x1, y1), . . . , (xn, yn)}.
Each pair (xi, yi) induces a cut on the parameter space
{θ | yi⟨θ, xi⟩ > 0}. The final center, i.e., θc = center({θ |
yi⟨θ, xi⟩ > 0, i ∈ [n]}), accounts for all such cuts and thus
maintains the desired property sign(f(x; θ)) = y for all
training samples. This choice makes θc not only an optimal
solution, but also a robust choice, as it remains stable under
data perturbations.

By disentangling the model training process from the active
learning query strategy described in (Louche & Ralaivola,
2015), we derive a gradient-free cutting-plane-based work-
flow for training linear binary classifiers. However, this
approach has several key limitations: (1) it is restricted to
linear models, (2) it requires the data to be linearly sepa-
rable to ensure existence of an optimal parameter set, and
(3) it only supports binary classification tasks. Our current
work addresses all three limitations by extending the cutting-
plane method to train deep nonlinear neural networks for
both classification and regression tasks, without requiring
linear separability of the data. Similar to the linear binary
classification case, our vanilla training scheme lacks desir-
able convergence guarantees, as the cuts may occur at the
edge of the parameter set. To overcome this, we focus on

2

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

a cutting-plane-based active learning scheme that enables
cuts to be near the center of the parameter set. We provide
convergence result for this approach which, to the best of
our knowledge, is the first convergence guarantee for active
learning algorithms applied to deep neural networks.

Outline. The paper is organized as follows: in Section
4, we adapt the cutting-plane method for nonlinear model
training by transforming the nonlinear training process into
a linear programming problem. Section 5 introduces the
general gradient-free cutting-plane-based training algorithm
for deep NNs. In Section 6, we explore the induced cutting-
plane active learning framework and prove its convergence.
Section 7 demonstrates the practical effectiveness of our
proposed training and active learning methods through var-
ious experiments. Finally, limitations and conclusions are
discussed in Section 8.

4. Key Observation: Training ReLU NNs for
Binary Classification is Linear
Programming

The cutting-plane active learning scheme proposed by
(Louche & Ralaivola, 2015) (summarized in Section 3) is
designed for linear models like f(x; θ) = ⟨θ, x⟩. Extend-
ing this method to nonlinear models, such as a two-layer
ReLU network f(x; θ) = (xTW1)+W2, with W1 ∈ Rd×m

and W2 ∈ Rm, presents additional challenges. Specifically,
for a mis-predicted data pair (xi, yi), determining how to
cut the parameter space for (W1,W2) is far more complex
(and nonlinear), whereas in the linear case, the cut is simply
yi⟨θ, xi⟩ > 0.

To break this bottleneck and extend the cutting-plane-based
learning method to nonlinear models, we observe that train-
ing a ReLU network for binary classification can be for-
mulated as a linear programming problem. This insight
is crucial for extending the learning scheme in (Louche &
Ralaivola, 2015) to more complex models. We now develop
our core idea of reframing binary classification with ReLU
models as linear programs. For clarity, we present our re-
sults in two theorems: one for two-layer ReLU networks
and another for ReLU networks of arbitrary depth. We focus
on the two-layer case in the main paper for detailed discus-
sion, deferring the more abstract general case to Appendix
F.2. Since the general case is an extension of the two-layer
model, focusing on the two-layer case should be enough to
provide a clear understanding of the core concepts.

We start with writing the linear program corresponding to
the linear model for binary classification tasks as below,

find θ

s.t. yi⟨θ, xi⟩ ≥ 1 ∀i.
(1)

Note that originally, we want yi⟨θ, xi⟩ > 0 to be satisfied
for our sign prediction. However, the set {θ|yi⟨θ, xi⟩ > 0}
is not compact and is thus not compliant with forms of
standard linear programs. This may raise technical issues.
We observe that our training data is finite, and thus we can
always scale θ to achieve yi⟨θ, xi⟩ ≥ c for any positive
constant c once yi⟨θ, xi⟩ > 0 holds, and yi⟨θ, xi⟩ ≥ c for
c > 0 also guarantees yi⟨θ, xi⟩ > 0. We pick c = 1 in
(1). With a two-layer ReLU model, we obtain the following
problem:

find W1,W2

s.t. yi(x
T
i W1)+W2 ≥ 1 ∀i.

(2)

Before showing that solving (2) is indeed equivalent to
solving a linear program, we first introduce the core concept
of activation patterns which we will draw on heavily later.
For data matrix X ∈ Rn×d and any arbitrary vector u ∈ Rd,
we consider the set of diagonal matrices

D := {diag(1{Xu ≥ 0})}.

We denote the carnality of set D as P , i.e., P = |D|. Thus
{Di ∈ D, i ∈ [P]} iterates over all possible activation
patterns of ReLU function induced by data matrix X . See
Definition C.1 for more details. With this concept, we can
reframe the training of two-layer ReLU model for binary
classification as the following linear program:

Theorem 4.1. When m ≥ 2P , Problem (2) is equivalent to

find ui, u
′
i

s.t. y

(
P∑
i=1

DiX(ui − u′i)

)
≥ 1,

(2Di − I)Xui ≥ 0,

(2Di − I)Xu′i ≥ 0.

(3)

Proof. See Appendix F.1.

The equivalence in Theorem 4.1 holds in the sense that,
which we prove rigorously in Appendix F.1, whenever there
is solution W1,W2 to Problem (2), there is always solution
{ui, u

′
i} to problem (3) and vice versa. Moreover, when an

optimal solution {u⋆
i , u
′⋆
i } to problem (3) has been found,

we can explicitly create an optimal solution {W ⋆
1 ,W

⋆
2 } to

Problem (2) from value of {u⋆
i , u
′⋆
i }, see Appendix F.1 for

details. Thereafter, for any test point x̃, our sign prediction is
simply sign((x̃W ⋆

1)+W
⋆
2), which will have the same value

as sign(
∑

i(x̃
Tu⋆

i)+ − (x̃Tu′⋆i)+).

We emphasize that our reframing of training a ReLU neural
network for binary classification as linear program does not
erase the nonlinear nature of the ReLU activation. Instead,
this approach works because the ReLU activation patterns

3

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

for a given training dataset are finite. By looping through
these activation patterns, we can explicitly enumerate them.
At test time, the ReLU nonlinearity is preserved, as our
prediction sign(

∑
i(x̃

Tui)+ − (x̃Tu′i)+) depends on the
sign of x̃Tui and x̃Tu′i, ensuring that the expressiveness
of the nonlinearity remains intact. A careful reader might
note that the number of patterns P increases with the size of
the training data, meaning the number of variables in Prob-
lem (3) may also grow. Additionally, finding all activation
patterns poses a challenge. In Section 7, we demonstrate
that subsampling a set of non-duplicate activation patterns
performs well in practice. For further grounding, Appendix
F.4 outlines an iterative hyperplane filtering method that
guarantees the identification of all activation patterns with a
reasonable complexity bound.

Now, let us consider ReLU network with n hidden layers
for binary classification task

find W1,W2, · · · ,Wn+1

s.t. y ⊙ (· · · (((XW1)+W2)+ · · ·)+Wn)+Wn+1 ≥ 1.
(4)

We extend the activation patterns involved in Theorem
4.1 to (n + 1)-layer neural networks. Let W1 ∈
Rd×m1 ,W2 ∈ Rm1×m2 ,W3 ∈ Rm2×m3 , · · · ,Wn ∈
Rmn−1×mn ,Wn+1 ∈ Rmn . Define m0 := d and the ac-
tivation pattern in i-th layer as

D(i) :=
{

diag(1{
(
· · · ((Xv1)+v2)+ v3 · · ·

)
+
vi ≥ 0})|

vj ∈ Rmj−1×mj ∀ j < i, vi ∈ Rmi−1
}
.

We denote the cardinality of setD(i) as Pi, i.e., Pi = |D(i)|.
Thus {D(i)

j ∈ D(i), j ∈ [Pi]} iterates over all possible
activation patterns at the i-th hidden layer. We then reframe
Problem (4) as below:

Theorem 4.2. When mi ≥ Πn
i 2Pi for each i ∈ [n], Prob-

lem (4) is equivalent to

find u
cncn−1cn−2···c1
jnjn−1jn−2...j1

s.t. y ⊙
Pn∑

jn=1

D
(n)
jn

(
T (n−1)
1 (D(n−1))

−T (n−1)
2 (D(n−1))

)
≥ 1

(2D
(i)
ji
− I)T (n−1)(n−2)···(i−1)

cn−1cn−2···ci−1 (D(i−1)) ≥ 0, 2 ≤ i ≤ n

(2D
(1)
j1
− I)Xu

cncn−1···c1
jnjn−1···j1 ≥ 0,

(5)

where ci ∈ {1, 2} and

T (n−1)···(i)
cn−1···ci (D(i)) =

Pi∑
ji=1

D
(i)
ji

(
T (n−1)···(i)(i−1)
cn−1···ci1 (D(i−1))

−T (n−1)···(i)(i−1)
cn−1···ci2 (D(i−1))

)
,∀ i ≤ n− 1,

T (n−1)(n−2)···(1)
cn−1cn−2···c1 (D(1)) =

P1∑
j1=1

D
(1)
j1

X
(
u
1cn−1cn−2···c1
jnjn−1···j1

−u2cn−1cn−2···c1
jnjn−1···j1

)
.

Proof. See Appendix F.2.

5. Training Deep Neural Networks via
Cutting-Plane Method

Algorithm 1 Training NN with Cutting-Plane Method
Input: ϵv, Tmax

Initialization: T 0 ← B2, t← 0
repeat

θtc ← center(T t)
Get new training data (xnt , ynt)
if yntf(xnt , θ

t
c) < 0 then

T t+1 ← T t ∩ cut(xnt
, z)

t← t+ 1
end if

until vol(T t) ≤ ϵv or t ≥ Tmax

return θtc

With the linear program reframing of training deep ReLU
models in place, we now formally introduce our cutting-
plane-based NN training scheme for binary classification.
We begin with a feasible set of variables in our linear pro-
gram (5) that contains the optimal solution. For each train-
ing sample (xi, yi), we add the corresponding constraints
as cuts. At each iteration, we select the center of the current
parameter set, stopping when either the validation loss sta-
bilizes or after a fixed number of iterations, similar to the
stopping criteria in gradient-based training of large models.

We present our cutting-plane-based NN training algorithm
here in main text. For generalizations, such as (i) relax-
ing the data distribution to remove the linear separability
requirement (Appendix E.1), and (ii) extending from classi-
fication to regression tasks (Appendix E.2), we refer readers
to Appendix E. We emphasize that both the relaxed data con-
straint and the ability to handle regression tasks are unique
to our method and have not been achieved in prior work.

Algorithm 1 presents the general workflow of how we
train deep NNs with gradient-free cutting-plane method,
which simply adds a cut corresponding to each training data

4

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

(xnt
, ynt

) in each iteration. When the stopping criterion
is satisfied, center of current parameter set T t is returned.
Here we start with the parameter space as the unit 2-norm
ball, which is guaranteed to contain optimal parameters due
to scale invariance.

After we get the final θtc, for any test point x̃, we can directly
compute our sign prediction with θtc. For example, for
two-layer ReLU model, θtc will be of form {ut

i, u
′t
i }, our

final sign prediction would simply be sign(
∑

i(x̃
Tut

i)+ −
(x̃Tu′ti)+). For deeper models, the prediction is a bit more
complex and is given in equation (16) in Appendix F.2.
Notably, the computation of final sign prediction from value
of θtc always takes a single step, just as one forward pass
of original NN model formulation. Moreover, one can also
restore optimal NN weights from final θtc, see Appendix F.1
for two-layer case reconstruction of optimal NN parameters
and Appendix F.2 for general case.

Two key functions in our proposed training scheme are the
“center” and the “cut” function, which we detail below:

• Center. The “center” function calculates the center
of the convex set T t. There are a couple of notions
of centers, such as center of gravity (CG), center of
maximum volume ellipsoid (MVE), Chebyshev’s cen-
ter, and analytic center (Boyd & Vandenberghe, 2004).
Among these, the analytic center is the easiest to com-
pute and is empirically known to be effective (Goffin
et al., 1997; Atlason et al., 2008). This is the notion
of center that we implement. See Appendix H.1 for
details.

• Cut. The “cut” function determines the cutting planes
we get from a specific training data (xnt

, ynt
). For two-

layer model, the “cut” function would return the con-
straint set {ynt(

∑
i Dintx

T
nt
(ui− u′i)) ≥ 1, (2Dint −

1)xT
nt
ui ≥ 0, (2Dint − 1)xT

nt
u′i ≥ 0}. For deeper

NNs, the “cut” function would return constraints listed
in Problem (5).

Unlike gradient-based neural network training, which takes
a gradient descent step for each queried data point, our
method applies a cutting-plane cut for every data point en-
countered. Furthermore, our training scheme guarantees
correct classification for all previously encountered data
points, a property not ensured by gradient-based methods

6. Cutting-Plane-Based Active Learning and
Convergence Guarantees

6.1. Cutting-Plane Localization for Active Learning

Our proposed cutting-plane-based active learning algorithm
adapts and extends the generic trainings framework dis-
cussed in Section 5. For the sake of simplicity, we present

in this section the algorithm specifically for binary clas-
sification and with respect to two-layer ReLU NNs. We
emphasize that the algorithm can be easily adapted to the
case of multi-class classification and regression tasks, per
discussion in Appendix E.2, and for deeper NNs following
our reformulation in Theorem 4.2.

Recall the problem formulation for cutting-plane training
with two-layer ReLU NN for binary classification (Equation
(3)). Given a training dataset (X, y), we use XD and yD to
denote the slices of X and y at indices D. Moreover, we
succinctly denote the prediction function as:

f two-layer(X; θ) :=

P∑
i=1

(DiX)D(u
′
i − ui)

=
[
X1
D −X1

D . . . XP
D −XP

D
]
θ,

(6)

where θ = (u′1, u1, . . . , u
′
P , uP) with ui, u

′
i ∈ Rd, and Xi

D
is a shorthand notation for (DiX)D. For the further brevity
of notation, we denote the ReLU constraints in Equation (3),
i.e. ((2Di − In)X)D ui ≥ 0 and ((2Di − In)X)D u′i ≥ 0,
as C(D) and C ′(D). We use the analytic center (Definition
6.1 below), which is known to be easily computable and
has good convergence properties, as our “center” function.
Then with Theorem 4.1 , cutting-plane-based active learning
methods for deep NNs become well applicable.
Definition 6.1 (Analytic Center). The analytic center of
polyhedron P = {z|aTi z ≤ bi, i = 1, ...,m} is given by

AC(P) := argmin
z
−

m∑
i=1

log(bi − aTi z) (7)

We are now ready to present the cutting-plane-based active
learning algorithms for deep NNs. For breadth of discussion,
we present three versions of the active learning algorithms,
each corresponding to the following setups:

1. Cutting-plane active learning with query synthesis (Al-
gorithm 2). The cutting-plane oracle has access to
query synthesis, ensuring that the cut remains active
until the optimal classifier(s) is(are) encountered, at
which point the algorithm terminates.

2. Cutting-plane active learning with limited queries (Al-
gorithm 4). The cutting-plane oracle operates with
limited queries, performing a cut only when the cur-
rent center misclassifies the data pair provided by the
oracle.

3. Cutting-plane active learning with inexact cuts (Algo-
rithm 5). The cutting-plane oracle also operates with
limited queries, but in this case, the algorithm performs
a cut regardless of whether the current center misclas-
sifies the data pair provided by the oracle.

5

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 2. Decision boundaries for binary classification on the spiral dataset for the cutting-plane AL method using a two-layer ReLU
neural network, alongside various deep AL baselines. For compactness, we also include the decision boundaries for the cutting-plane
AL method with a three-layer ReLU network in the collage to demonstrate its feasibility. For fairness of comparison, we use the same
two-layer ReLU network structure and embedding size of 623 for all methods. We enforce the same hyperparameters for all deep AL
baselines and select the best performing number of training epochs at 2000 and a learning rate at 0.001 to ensure optimal performance.
See Appendix H.3 for details.

For brevity, we present the algorithm for the first setup here
(Algorithm 2), using DQS for query synthesis, and defer the
rest to Appendix D.

Algorithm 2 Cutting-plane AL for Binary Classification
with Query Synthesis

1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(θtc, s)
8: if ynt · f two-layer(xnt ; θ

t
c) < 0 then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ynt · f two-layer(xnt ; θ) ≥

0, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function Query(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

Notably, Ergen & Pilanci (2021b) shows that two- and three-
layer ReLU networks can be reformulated as exact convex
programs, allowing a final convex solver to be applied to Al-
gorithm 2 after the active learning loop. This reformulation,

which includes regularization, can improve the cutting-plane
method’s performance in certain tasks (see Appendix H.2).

6.2. Convergence Guarantees

We give theoretical examination of the convergence prop-
erties of Algorithm 2 with respect to the center of gravity
(CG). Analysis of Algorithm 4 with center of maximum vol-
ume ellipsoid (MVE) and Algorithm 5 for inexact cuts are
deferred to Appendix G.3 and G.4. We note that the analysis
of MVE closely parallels that of CG. For both centers, we
measure the convergence speed with respect to the volume
of the localization set T t and judge the progress in iteration
t by the fractional decrease in volume: vol(T t+1)/vol(T t).
To start, we give the definition of the center of gravity.

Definition 6.2 (Center of Gravity (Boyd & Vandenberghe,
2004)). For a given convex body (i.e. a compact convex set
with non-empty interior) C ⊆ Rd, the centroid, or center of
gravity (CG) of C, denoted θG(C), is given by

θG(C) =
1

vol(C)

∫
x∈C

xdx.

Our analysis of the center of gravity relies on Propo-
sition C.4 from (Grünbaum, 1960), which ensures that
cutting a convex body through its centroid eliminates a
fixed portion of the feasible set. Recursively applying
this proposition yields the volume inequality: vol(Tt) ≤
(1− 1/e)tvol(T0) ≈ (0.63)tvol(T0).

Our proposed cutting-plane-based active learning method
(Algorithms 2 and 4) modifies the splitting in Proposition

6

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 3. Left: Predictions for the quadratic regression task using the cutting-plane AL method with a two-layer ReLU network, alongside
representative deep AL baselines. Full results are deferred to Appendix H.5. The linear cutting-plane AL method becomes infeasible
after the fourth query, as expected (see Appendix D for further explanation), so its prediction is based on 4 queries, while others use all
20. Right: Logarithm of mean test/train RMSE across seeds (0–4) versus the number of queries for the two-layer cutting-plane AL and
baselines. The linear cutting-plane method is excluded for this comparison due to infeasibility.

C.4 by replacing the weight vector with a mapping of the pa-
rameter θ to the feature space via the function f two-layer,
which depends on the point xnt

returned by the oracle
at each step, along with the associated linear constraints
C({nt}) and C′({nt}). Since f two-layer is linear in θ (as in
Equation (17)), the set {θ | ynt

· f two-layer(xnt
; θ) ≥ 0}

forms a half-space in the parameter space. Therefore,
{θ | ynt · f two-layer(xnt ; θ) ≥ 0, C({nt}), C′({nt})} defines
a convex polyhedron. This represents a non-trivial modifi-
cation of the results in Proposition C.4.

Theorem 6.3 (Convergence with Center of Gravity). Let
T ⊆ Rd be a convex body and let θG denote its center
of gravity. The polyhedron cut given in Algorithm 2 and
Algorithm 4 (assuming that the cut is active), i.e.,

T ∩ {θ : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},

where coupling (xn, yn) is the data point returned by the
cutting-plane oracle after receiving queried point θG, parti-
tions the convex body T into two subsets:

T1 := {θ ∈ T : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})}
T2 := {θ ∈ T : yn · f two-layer(xn; θ) < 0 ∨ ¬C({n})∨

¬C′({n})},

where ¬ denotes the complement of a given set. Then T1

satisfies the following inequality:

vol(T1) <
(
1− 1

e

)
· vol(T).

Proof. See Appendix G.1.

An immediate consequence of the progressive volumetric
shrinkage of the parameter space in Theorem 6.3 is the con-
vergence of the prediction function f two-layer

θ to the optimal
decision function f two-layer

θ∗ .

Corollary 6.4 (Prediction Convergence of Two-Layer Net-
work). Let T (0) ⊆ R2Pd be an initial convex parame-
ter domain containing the optimal parameter θ∗, and let
{T (k)}k≥0 be the sequence of convex bodies generated by
repeated cuts centered at the center of gravity of the current
set, as in Theorem 6.3. Assume that each cut is active and
the associated constraints are valid. Then for any fixed data
matrix X ∈ Rn×d, the corresponding prediction functions
converge:

∥f two-layer
θ(k) (X)− f two-layer

θ∗ (X)∥2 → 0 as k →∞,

where θ(k) ∈ T (k) denotes the center of gravity at iteration
k.

Proof. See Appendix G.2.

7

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 4. Sentimental analysis on IMDB movie review dataset with two-layer ReLU model. We take Phi-2 embeddings as our training
features and compare with various baselines. The result shows that the introduction of non-linearity improves upon linear model
performance; our active sampling scheme effectively identifies valuable training points compared to random sampling; and our cutting-
plane training scheme is more effective than SGD in this setting. See Section 7.2 for details. Linear and our reframed two-layer models are
initialized to predict zero while two-layer NN trained with SGD has random weight initialization, thus starting from non-zero prediction.
Solid lines are running averages of dotted lines.

7. Experiments
We validate our proposed training and active learning meth-
ods through extensive experiments, comparing them with
various popular baselines from scikit-activeml (Kot-
tke et al., 2021) and DeepAL (Huang, 2021). Synthetic
data experiments are presented in Section 7.1, and real data
experiments are presented in Section 7.2. An overview of
each baseline is given in Appendix H.3. For implementation
details and additional results, refer to Appendix H.

7.1. Synthetic Data Experiments

In this section, we present small scale numerical experi-
ments to verify the performance of our algorithm on both
classification and regression tasks.
Binary Classification on Synthetic Spiral. We use a syn-
thetic dataset of two intertwined spirals with positive and
negative labels (details in Appendix H.4), which contains
100 data points with a 4:1 train-test split. We compare the
train and test accuracy of our cutting-plane AL (Algorithm
4) to popular deep AL baselines, all evaluated with a query
budget of 20 points (25% of the train data). Our method
achieved perfect accuracy on both sets, outperforming all
baselines. Notably, in the 3-layer case, our cutting-plane AL
achieved train/test accuracies of 0.71/0.60 while using only
57 and 34 neurons per layer, respectively, compared to 623
neurons in the two-layer version. See Table 3 in Appendix
H.4 for numerical results. The decision boundary plot in
Figure 2 shows the 3-layer model capturing the spiral’s
rough shape with smaller embeddings, while the two-layer
model precisely traces the spiral. The strong performance
of our method is consistent across random seeds, as shown
in the error-bar plot in Appendix H.4 (Figure 15), where our
approach converges to the optimal classifier faster than all

baselines with fewer queries.

Quadratic Regression. We evaluate our method (Al-
gorithm 6) on a simple quadratic regression task, com-
paring it against the same seven baselines from the spi-
ral task and two additional regression AL methods from
scikit-activeml: GreedyT (greedy sampling in tar-
get space) and kldiv (KL divergence maximization). Using
100 noise-free data points from y = x2, we perform a 4:1
train-test split with a query budget of 20 points. The numer-
ical results are presented in Appendix H.5 (Table 5). The
left of Figure 3 visualizes our method’s final predictions
against select baselines. Our cutting-plane AL achieves the
lowest train/test RMSE of 0.01/0.01, reducing errors by over
80%/75% compared to the next best baseline. This strong
performance is consistent across random seeds, as shown
in the error-bar plots (right of Figure 3), where our method
converges faster to the optimal solution with fewer queries.

7.2. Sentimental Classification for Real Datasets Using
LLM Embeddings

To demonstrate the real-world applicability of our method,
we combine the Microsoft Phi-2 model (Javaheripi et al.,
2023) with our two-layer ReLU binary classifier for senti-
mental classification on the IMDB (Maas et al., 2011) movie
review dataset. This dataset contains 50k online reviews
labeled as positive or negative. Example training data can
be found in Appendix H.6. Our active learning algorithm,
paired with the cutting-plane training scheme, is tested on
this task. For the experiment, we extract Phi-2’s final-layer
embeddings (size d = 2560) as feature vectors for training
and testing and sample P = 500 activation patterns to man-
age the high-dimensional feature space (details in Appendix
H.1).

8

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 4 presents our results compared to various baselines.
The leftmost plot shows that our two-layer ReLU model
achieves higher accuracy within the same query budget
compared to the linear model from (Louche & Ralaivola,
2015), highlighting the advantage of a nonlinear model.
The middle plot compares our active learning method to
random sampling, both using the two-layer ReLU model. As
expected, our active sampling scheme identifies critical data
points, enabling better performance within the same query
budget. The rightmost plot compares our cutting-plane-
based NN training with stochastic gradient descent (SGD).
Unlike SGD, which requires batched data and struggles
with as few as 15 query points, our cutting-plane training
achieves higher accuracy with this minimal training budget,
demonstrating its efficiency.

8. Conclusion and Limitation
In this work, we introduce a novel cutting-plane-based
method for deep neural network training. We also ex-
plore an active learning scheme built on our proposed
training framework. The implementation of our cutting-
plane active learning (CPAL) method is made available at
https://github.com/pilancilab/cpal. Despite its novelty, our
current implementation has several key limitations that hin-
der its competitiveness with large-scale models trained using
gradient-based methods: (1) our hyperplane subsampling
process is not exhaustive; (2) our implementation relies on
CPU-based convex program solver and is inefficient for
large-scale problems with many variables; (3) our approach
has so far been applied only to classification and regression
tasks. Nevertheless, our theoretic work shows a valid way to
extend cutting-plane method from prior linear-model-based
binary classifier to NN-based classifier and regressor, and
our active learning method persists fast geometric conver-
gence rate.

Due to space constraints, the prior work section is de-
ferred to Appendix A and detailed conclusion section is
deferred to Appendix B.

Impact Statement
This work introduces a cutting-plane-based framework for
training deep neural networks, offering the first deep active
learning method with convergence guarantees. It enhances
efficiency and reliability in neural network training, with
potential applications in resource-constrained domains like
healthcare and environmental modeling. While the method
carries minimal ethical risks, future work should consider
fairness constraints to address unintended biases.

Acknowledgement
M.P. acknowledges support in part by National Science
Foundation (NSF) under Grant DMS-2134248; in part by
the NSF CAREER Award under Grant CCF-2236829; in
part by the U.S. Army Research Office Early Career Award
under Grant W911NF-21-1-0242; in part by the Office of
Naval Research under Grant N00014-24-1-2164. E.Z. and
F.Z. acknowledge support from the Stanford Graduate Fel-
lowship (SGF) for Sciences and Engineering.

In addition, the authors would like to thank Maximilian
Schaller from the Department of Electrical Engineering at
Stanford University for their valuable contributions to the
early development of the codes used in this paper.

References
Abe, N. and Mamitsuka, H. Query learning strategies using

boosting and bagging. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML),
pp. 1–9. Citeseer, 1998.

Atlason, J., Epelman, M. A., and Henderson, S. G. Optimiz-
ing call center staffing using simulation and analytic cen-
ter cutting-plane methods. Manage. Sci., 54(2):295–309,
feb 2008. ISSN 0025-1909. doi: 10.1287/mnsc.1070.
0774. URL https://doi.org/10.1287/mnsc.
1070.0774.

Balas, E., Ceria, S., and Cornuéjols, G. A lift-and-project
cutting plane algorithm for mixed 0—1 programs. Math.
Program., 58(1–3):295–324, January 1993. ISSN 0025-
5610.

Boyd, S. and Vandenberghe, L. Localization and cutting-
plane methods. From Stanford EE 364b lecture notes,
386, 2007.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Chen, T. and Chen, H. Approximations of continuous func-
tionals by neural networks with application to dynamic
systems. IEEE Transactions on Neural Networks, 4(6):
910–918, 1993. doi: 10.1109/72.286886.

Chui, C. K. and Li, X. Approximation by ridge functions
and neural networks with one hidden layer. Journal of
Approximation Theory, 70(2):131–141, 1992.

Costarelli, D., Spigler, R., et al. Constructive approximation
by superposition of sigmoidal functions. Anal. Theory
Appl, 29(2):169–196, 2013.

Cotter, N. The stone-weierstrass theorem and its applica-
tion to neural networks. IEEE Transactions on Neural
Networks, 1(4):290–295, 1990. doi: 10.1109/72.80265.

9

https://github.com/pilancilab/cpal
https://doi.org/10.1287/mnsc.1070.0774
https://doi.org/10.1287/mnsc.1070.0774

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Defazio, A. and Mishchenko, K. Learning-rate-free learning
by d-adaptation, 2023. URL https://arxiv.org/
abs/2301.07733.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Elreedy, D., Atiya, A. F., and Shaheen, S. I. A novel
active learning regression framework for balancing the
exploration-exploitation trade-off. In Proceedings of the
28th International Joint Conference on Artificial Intelli-
gence, pp. 651–657, 2019.

Ergen, T. and Pilanci, M. Implicit convex regularizers of
cnn architectures: Convex optimization of two- and three-
layer networks in polynomial time. 2021a.

Ergen, T. and Pilanci, M. Revealing the structure of deep
neural networks via convex duality. 2021b.

Franc, V., Sonnenburg, S., and Werner, T. Cutting-plane
methods in machine learning. 2011.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active
learning with image data, 2017a.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian
active learning with image data, 2017b. URL https:
//arxiv.org/abs/1703.02910.

Gallant and White. There exists a neural network that does
not make avoidable mistakes. In IEEE 1988 International
Conference on Neural Networks, pp. 657–664 vol.1, 1988.
doi: 10.1109/ICNN.1988.23903.

Goffin, J.-L., Marcotte, P., and Zhu, D. An analytic
center cutting plane method for pseudomonotone
variational inequalities. Operations Research Let-
ters, 20(1):1–6, 1997. ISSN 0167-6377. doi:
https://doi.org/10.1016/S0167-6377(96)00029-6.
URL https://www.sciencedirect.com/
science/article/pii/S0167637796000296.

Gomory, R. E. An algorithm for integer solu-
tions to linear programs. 1958. URL https:
//api.semanticscholar.org/CorpusID:
116324171.

Goulart, P. J. and Chen, Y. Clarabel: An interior-point solver
for conic programs with quadratic objectives, 2024.

Griewank, A. and Walther, A. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation. ACM Trans-
actions on Mathematical Software (TOMS), 26(1):19–45,
2000.

Grünbaum, B. Partitions of mass-distributions and of convex
bodies by hyperplanes. Journal of Mathematical Analy-
sis and Applications, 10(4):1257–1261, 1960. Received
January 22, 1960. This research was supported by the
United States Air Force through the Air Force Office of
Scientific Research of the Air Research and Development
Command, under contract No. AF49(638)-253.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Huang, K.-H. Deepal: Deep active learning in python, 2021.

ichi Funahashi, K. On the approximate realization of
continuous mappings by neural networks. Neural
Networks, 2:183–192, 1989. URL https://api.
semanticscholar.org/CorpusID:10203109.

Javaheripi, M., Bubeck, S., Abdin, M., Aneja, J., Mendes,
C. C. T., Weizhu Chen, A. D. G., Eldan, R., Gopi, S.,
Gunasekar, S., Kauffmann, P., Lee, Y. T., Li, Y., Nguyen,
A., de Rosa, G., Saarikivi, O., Salim, A., Shah, S., San-
tacroce, M., Behl, H. S., Kalai, A. T., Wang, X., Ward, R.,
Witte, P., Zhang, C., and Zhang, Y. Microsoft research
blog, 2023.

Jiang, H., Lee, Y. T., Song, Z., and wai Wong, S. C. An
improved cutting plane method for convex optimization,
convex-concave games and its applications, 2020. URL
https://arxiv.org/abs/2004.04250.

Karzand, M. and Nowak, R. D. Maximin active learning in
overparameterized model classes. IEEE Journal on Se-
lected Areas in Information Theory, 1(1):167–177, 2020.

Kelley, J. E. The cutting-plane method for solv-
ing convex programs. Journal of The Society
for Industrial and Applied Mathematics, 8:703–712,
1960. URL https://api.semanticscholar.
org/CorpusID:123053096.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization, 2017. URL https://arxiv.org/abs/
1412.6980.

Kottke, D., Herde, M., Minh, T. P., Benz, A., Mergard,
P., Roghman, A., Sandrock, C., and Sick, B. scikit-
activeml: A Library and Toolbox for Active Learn-
ing Algorithms. Preprints, 2021. doi: 10.20944/
preprints202103.0194.v1. URL https://github.
com/scikit-activeml/scikit-activeml.

10

https://arxiv.org/abs/2301.07733
https://arxiv.org/abs/2301.07733
https://arxiv.org/abs/1703.02910
https://arxiv.org/abs/1703.02910
https://www.sciencedirect.com/science/article/pii/S0167637796000296
https://www.sciencedirect.com/science/article/pii/S0167637796000296
https://api.semanticscholar.org/CorpusID:116324171
https://api.semanticscholar.org/CorpusID:116324171
https://api.semanticscholar.org/CorpusID:116324171
https://api.semanticscholar.org/CorpusID:10203109
https://api.semanticscholar.org/CorpusID:10203109
https://arxiv.org/abs/2004.04250
https://api.semanticscholar.org/CorpusID:123053096
https://api.semanticscholar.org/CorpusID:123053096
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://github.com/scikit-activeml/scikit-activeml
https://github.com/scikit-activeml/scikit-activeml

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Lee, Y. T., Sidford, A., and wai Wong, S. C. A faster cutting
plane method and its implications for combinatorial and
convex optimization, 2015. URL https://arxiv.
org/abs/1508.04874.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken,
S. Original contribution: Multilayer feedforward
networks with a nonpolynomial activation function
can approximate any function. Neural Netw., 6(6):
861–867, jun 1993. ISSN 0893-6080. doi: 10.1016/
S0893-6080(05)80131-5. URL https://doi.org/
10.1016/S0893-6080(05)80131-5.

Lewis, D. D. and Gale, W. A. A sequential algorithm for
training text classifiers. In SIGIR, pp. 3–12, 1994a.

Lewis, D. D. and Gale, W. A. A sequential algorithm for
training text classifiers, 1994b. URL https://arxiv.
org/abs/cmp-lg/9407020.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

Louche, U. and Ralaivola, L. From cutting planes algo-
rithms to compression schemes and active learning. In
2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2015.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 142–150, Port-
land, Oregon, USA, June 2011. Association for Com-
putational Linguistics. URL http://www.aclweb.
org/anthology/P11-1015.

Mhaskar, H. and Micchelli, C. Approximation by superpo-
sition of sigmoidal and radial basis functions. Advances
in Applied Mathematics - ADVAN APPL MATH, 13:350–
373, 09 1992. doi: 10.1016/0196-8858(92)90016-P.

MOSEK ApS. MOSEK Optimizer API for Python Version
10.0.0, 2024. URL https://www.mosek.com/. Li-
cense file attached: mosek.lic.

Mussmann, S., Reisler, J., Tsai, D., Mousavi, E., O’Brien,
S., and Goldszmidt, M. Active learning with expected
error reduction, 2022. URL https://arxiv.org/
abs/2211.09283.

Parshakova, T., Zhang, F., and Boyd, S. Implementation
of an oracle-structured bundle method for distributed op-
timization, 2023. URL https://arxiv.org/abs/
2211.01418.

Pilanci, M. and Ergen, T. Neural networks are convex
regularizers: Exact polynomial-time convex optimization
formulations for two-layer networks, 2020.

Pinkus, A. Approximation theory of the mlp model in neural
networks. Acta numerica, 8:143–195, 1999.

Settles, B. Active learning literature survey, 2009. URL
http://burrsettles.com/pub/settles.
activelearning.pdf.

Seung, H., Opper, M., and Sompolinsky, H. Query by com-
mittee. In ACM Workshop on Computational Learning
Theory, pp. 287–294, 1992.

Shen, Z., Yang, H., and Zhang, S. Optimal approxi-
mation rate of relu networks in terms of width and
depth. Journal de Mathématiques Pures et Appliquées,
157:101–135, January 2022. ISSN 0021-7824. doi:
10.1016/j.matpur.2021.07.009. URL http://dx.doi.
org/10.1016/j.matpur.2021.07.009.

Stanley, R. P. et al. An introduction to hyperplane arrange-
ments. Geometric combinatorics, 13(389-496):24, 2004.

Viehmann, T. et al. skorch: A scikit-learn compatible neural
network library that wraps pytorch. https://github.
com/skorch-dev/skorch, 2019. Version 0.10.0.

Woodward, M. and Finn, C. Active one-shot learning, 2017.
URL https://arxiv.org/abs/1702.06559.

Wu, D., Lin, C.-T., and Huang, J. Active learning for re-
gression using greedy sampling. Information Sciences,
pp. 90–105, 2019.

Xie, X., Zhou, P., Li, H., Lin, Z., and Yan, S. Adan: Adap-
tive nesterov momentum algorithm for faster optimiz-
ing deep models, 2023. URL https://arxiv.org/
abs/2208.06677.

Zhang, F. and Pilanci, M. Analyzing neural network-based
generative diffusion models through convex optimiza-
tion, 2024. URL https://arxiv.org/abs/2402.
01965.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm training
by gradient low-rank projection, 2024. URL https:
//arxiv.org/abs/2403.03507.

Zhu, Y. and Nowak, R. Active learning with neural net-
works: Insights from nonparametric statistics. Advances
in Neural Information Processing Systems, 35:142–155,
2022.

11

https://arxiv.org/abs/1508.04874
https://arxiv.org/abs/1508.04874
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5
https://arxiv.org/abs/cmp-lg/9407020
https://arxiv.org/abs/cmp-lg/9407020
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://www.mosek.com/
https://arxiv.org/abs/2211.09283
https://arxiv.org/abs/2211.09283
https://arxiv.org/abs/2211.01418
https://arxiv.org/abs/2211.01418
http://burrsettles.com/pub/settles.activelearning.pdf
http://burrsettles.com/pub/settles.activelearning.pdf
http://dx.doi.org/10.1016/j.matpur.2021.07.009
http://dx.doi.org/10.1016/j.matpur.2021.07.009
https://github.com/skorch-dev/skorch
https://github.com/skorch-dev/skorch
https://arxiv.org/abs/1702.06559
https://arxiv.org/abs/2208.06677
https://arxiv.org/abs/2208.06677
https://arxiv.org/abs/2402.01965
https://arxiv.org/abs/2402.01965
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

A. Prior Work
We emphasize the novelty of our work as the first to introduce both cutting-plane-based training schemes and cutting-plane-
based active learning methods to deep neural network models. To the best of our knowledge, this work also provides the first
convergence guarantees among existing active learning methods for nonlinear neural networks. As discussed in Section 3,
the most closely related work is (Louche & Ralaivola, 2015), which also integrates the concepts of cutting-plane methods,
active learning, and machine learning for binary classification tasks. We are not aware of any other studies that closely align
with our approach. However, we review additional works that, while less directly connected, share some overlap with our
research in key areas.

Cutting-Plane Method. Cutting-plane methods are first introduced by (Gomory, 1958) for linear programming. Though
being considered as ineffective after it was first introduced, it has been later shown by (Balas et al., 1993) to be empirically
useful when combined with branch-and-bound methods. Cutting-plane method is now heavily used in different commercial
MILP solvers. Commonly employed cutting planes for solving convex programs are tightly connected to gradient information,
which is also the underline logic for well-known Kelley’s cutting-plane method (Kelley, 1960). Specifically, consider
any minimization problem with objective f(θ) whose solution set, we denote as Θ, is a convex set. Gradient-based
cutting-plane method usually assumes the existence of an oracle such that given any input θ0, it either accepts θ0 ∈ Θ
- and thus terminates with a satisfactory solution θ0 being found - or it returns a pair (x, y) such that xT θ0 ≤ y while
xT θ > y for any θ ∈ Θ, i.e., we receive a cutting plane that cuts between the current input θ0 and the desired solution set
Θ. Such cut is given by subgradient of f at query point θ0. Consider any subgradient g ∈ ∇f(θ0), we have the inequality
f(θ) ≥ f(θ0) + gT (θ − θ0), which then raises the cut gT (θ − θ0) ≤ 0 for minimization problem. Recent development of
cutting-plane methods involves those designed for convex-concave games (Jiang et al., 2020), combinatorial optimization
(Lee et al., 2015), and also application to traditional machine learning tasks such as regularized risk minimization, multiple
kernel learning, and MAP inference in graphical models (Franc et al., 2011).

Active Learning. With the fast growth of current model sizes, a large amounts of data is need for training an effective
deep networks. Compared to just feeding the model with a set of randomly-selected training samples, how to select the
most informative data for each training iteration becomes a critical question, especially in neural models (Zhu & Nowak,
2022; Karzand & Nowak, 2020). Efficient data sampling is thus increasingly important, especially for current RL-based
language model training schemes. With the increasing power of current pretrained models, researchers observed that since
most of simple questions can be addressed correctly by the model already, these questions are less important for further
boosting the language models’ capacity. Therefore, actively selecting questions that LLM cannot address correctly is key to
current LLM training (Lightman et al., 2023). Based on different learning settings, active learning strategies can be divided
into: stream-based selective sampling used when the data is generated continuously (Woodward & Finn, 2017); pool-based
sampling used when a pool of unlabeled data is presented (Gal et al., 2017b); query synthesis methods used when new
samples can be generated for labeling. Based on different information measuring schemes, active learning algorithms can be
further divided into uncertainty sampling (Lewis & Gale, 1994b) which selects data samples to reduce prediction uncertainty,
query-by-committee sampling which involves multiple models for data selection, diversity-weighted method which selects
the most diverse data sample, and expected error reduction method (Mussmann et al., 2022) which selects samples to best
reduce models’ expected prediction error.

Convex NN. We note that the idea of introducing hyperplane arrangements to derive equivalent problem formulation for
deep NN training task has also been investigated in prior convexification of neural network research. For example, (Ergen
& Pilanci, 2021b) has exploited this technique to derive a convex program which is equivalent to two-layer ReLU model
training task. More developments involving (Ergen & Pilanci, 2021a) which derives convex programs equivalent to training
three-layer CNNs and (Zhang & Pilanci, 2024) which derives convex programs for diffusion models. However, those work
neither derive linear programs as considered in our case, nor did they connect such reframed problems to active learning
platform. On the contrast, they mainly focus on solving NN training problem by solving the equivalent convex program
(directly) they have derived via convex program solver such as CVXPY (Diamond & Boyd, 2016).

B. Conclusion and Limitations
In this work, we introduce a novel cutting-plane-based method for deep neural network training, which, for the first time,
enables the application of this approach to nonlinear models. Additionally, our new training scheme removes previous

12

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

restrictions on the training data distribution and extends the method beyond binary classification to general regression tasks.
We also explore an active learning scheme built on our proposed training framework, which inherits convergence guarantees
from classic cutting-plane methods. Through both synthetic and real data experiments, we demonstrate the practicality and
effectiveness of our training and active learning methods. In summary, our work introduces a novel, gradient-free approach
to neural network training, demonstrating for the first time the feasibility of applying the cutting-plane method to neural
networks, while also offering the first deep active learning method with convergence guarantees.

Despite its novelty, our current implementation has several key limitations that hinder its competitiveness with large-scale
models trained using gradient-based methods. First, although we employ subsampling of activation patterns and propose an
iterative filtering scheme (see Appendix F.4), the subsampling process is not exhaustive, which impacts model performance,
especially with high-dimensional data. Refining the activation pattern sampling strategy could significantly improve results.
Second, we rely on analytic center retrieval during training, which we solve using CVXPY. However, this solution is
CPU-bound and becomes inefficient for large-scale problems with many variables. Developing a center-finding algorithm
that leverages GPU parallelism is crucial to unlocking the full potential of our training method. Finally, while current large
language model (LLM) training often involves cross-entropy loss, our approach has so far been applied only to classification
and regression tasks. Extending our method to handle more diverse loss functions presents an exciting avenue for future
research.

C. Key Definitions and Deferred Theorems
C.1. Key Definition

A notion central to the linear programming reformulation which enables the feasibility of our proposed cutting-plane based
AL method is the notion of hyperplane arrangement. It has been briefly introduced in Section 4. We now give a formal
definition.

Definition C.1 (Hyperplane Arrangement). A hyperplane arrangement for a dataset X ∈ Rn×d, where X contains xi in
its rows, is defined as the collection of sign patterns generated by the hyperplanes. Let A denote the set of all possible
hyperplane arrangement patterns:

A := ∪{sign(Xw) : w ∈ Rd}, (8)

where the sign function is applied elementwise to the product Xw.

The number of distinct sign patterns in A is finite, i.e., |A| <∞. We define a subset S ⊆ A, representing the collection of
sets corresponding to the positive signs in each element of A:

S := {∪hi=1{i} : h ∈ A}. (9)

The cardinality of S , denoted by P , represents the number of regions in the partition of Rd created by hyperplanes passing
through the origin and orthogonal to the rows of X , or more birefly, P is the number of regions formed by the hyperplane
arrangement.

As the readers may see in the definition, P , the number of regions formed by the hyperplane arrangement, increases with
both the dimension and the size of the dataset X . To reduce computational costs of our cutting-plane AL algorithm, as we
will discuss in Appendix H.1, we sample the number of regions in the partition instead of using the entire S.

In addition to center of gravity (Definition 6.2) and analytic center (Definition 6.1), another widely-used notion for center is
the center of maximum volume inscribed ellipsoid (MVE), which we also referenced in the main text. We hereby give its
definition (Boyd & Vandenberghe, 2004).

Definition C.2 (Maximum volume inscribed ellipsoid (MVE)). Given a convex body C ⊆ Rd, the maximum volume
inscribed ellipsoid inside C is found by solving the below optimization problem:

maximize log detB

subject to sup
∥u∥2≤1

1C(ε(u)) ≤ 0, (10)

13

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

where we have parametrized the ellipsoid as the image of the unit ball under an affine transformation:

ε(u) := {Bu+ c : ∥u∥2 ≤ 1}

with c ∈ Rd and B ∈ Sn
++. The optimal value of the variable u in the convex program in 10 gives the center of the maximum

volume inscribed ellipsoid of the convex body C, which is affine invariant. We denote it as θM (C), or θM as abbreviation.

A metric important to our evaluation for the regression prediction in Section 7 is the notion of root mean square error, or
RMSE.

Definition C.3 (Root Mean Square Error). The root mean square error (RMSE) is a metric used to measure the difference
between predicted values and the actual values in a regression model. For a set of predicted values ŷi and true values yi, the
RMSE is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

where n is the total number of data points, ŷi is the predicted value, and yi is the actual value. RMSE provides an estimate
of the standard deviation of the prediction errors (residuals), giving an overall measure of the model’s accuracy.

C.2. Key Theorems

Key Theorems in Section 6.2. We present the cornerstone theorem to our results in Section 6.2 given by (Grünbaum,
1960) on the bounds relating to convex body partitioning.

Proposition C.4 (Grünbaum’s Inequality). Let T ∈ Rd be a convex body (i.e. a compact convex set) and let θG denote its
center of gravity. LetH = {x ∈ Rd : wT (θ − θG) = 0} be an arbitrary hyperplane passing through θG. This plane divides
the convex body T in the two subsets:

T1 := {θ ∈ T : wT θ ≥ wT θG},
T2 := {θ ∈ T : wT θ < wT θG}.

Then the following relations hold for i = 1, 2:

vol(Ti) ≤ (1− (
d

d+ 1
)1/d)vol(T) ≤ (1− 1/e)vol(T). (11)

Proof. See proof of Theorem 2 in (Grünbaum, 1960).

D. Deferred Algorithms
D.1. More on Cutting-Plane AL for Binary Classification

D.1.1. LINEAR MODEL

Algorithm 3 describes the original cutting-plane-based learning algorithm proposed by (Louche & Ralaivola, 2015). This
algorithm, despite having pioneered in bridging the classic cutting-plane optimization algorithm with active learning for the
first time, remains limited to linear decision boundary classification and can only be applied to shallow machine learning
models. We have demonstrated its inability to handle nonlinear decision boundaries and simple regression tasks in Section
7, where the linearity of the final decision boundary and prediction returned by the cutting-plane AL algorithm is evident.
Nevertheless, Algorithm 3 establishes a crucial foundation for the development of our proposed cutting-plane active learning
algorithms (Algorithm 2, 5, 4, and 6).

D.1.2. NN MODEL WITH LIMITED QUERIES

We begin with Algorithm 4, which summarizes our proposed cutting-plane active learning algorithm under the second setup
discussed in Section 6.1. In this case, the cutting-plane oracle has access to limited queries provided by the user and, in

14

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Algorithm 3 Generic (Linear) Cutting-Plane AL
1: T 0 ← B2
2: t← 0
3: repeat
4: θtc ← center(T t)
5: xnt

, ynt
← QUERY(T t,D)

6: if ynt
⟨θtc, xnt

⟩ < 0 then
7: T t+1 ← T t ∩ {z : ynt⟨z, xnt⟩ ≥ 0}
8: t← t+ 1
9: end if

10: until T t is small enough
11: return θtc

1: function Query(T ,D)
2: Sample M points s1, . . . , sM from T
3: g ← 1

M

∑M
k=1 sk

4: x← argminxi∈D⟨g, xi⟩
5: y ← get label from an expert
6: return x, y
7: end function

contrast to its query synthesis alternative (Algorithm 2), only makes the cut if the queried center mis-classifies the returned
data point from the oracle. Hence, the convergence speed associated with Algorithm 4 hinges on how often the algorithm
queries a center which incorrectly classifies the returned queried points before it reaches the optimal classifier. Therefore,
the performance of this algorithm in terms of convergence speed depends not only on the geometry of the parameter version
space but also on the effectiveness of the Query function to identify points from the limited dataset which gives the most
informative evaluation of the queried center.

While Algorithm 4 still maintains similar rate and convergence guarantees as Algorithm 2, to optimize the empirical
performance of Algorithm 4 (see discussions in Section 6.2), we therefore modify the Query function to query twice,
once for minimal margin and once for maximal margin, to maximize the chances of the oracle returned points in correctly
identifying mis-classification of the queried center. This modification greatly aids the performance of Algorithm 4, allowing
the algorithm to make effective classification given very limited data. This is demonstrated in our experiment results in
Section 7.

D.1.3. NN MODEL WITH INEXACT CUT

Algorithm 5 summarizes our proposed cutting-plane active learning algorithm under the third setup metioned in Section
6.1. Under this scenario, the cutting-plane oracle has access to limited queries. However, in contrast to Algorithm 4, this
cutting-plane AL algorithm always performs the cut regardless of whether the queried center mis-classifies the data point
returned by the oracle. This is an interesting extension to consider. On the one hand, it can possibly speed up Algorithm
4 in making a decision boundary as the cut is effective in every iteration. On the other hand, however, the algorithm’s
lack of discern for the correctness of the queried candidate presents a non-trivial challenge to evaluate its convergence
rate and whether it still maintains convergence guarantees. It turns out that we can still ensure convergence in the case of
Algorithm 5, and the convergence rate can be quantified by measuring the “inexactness” of the cut in relation to a cut which
directly passes through the queried center. We refer the readers to a detailed discussion on this matter in Appendix G.3. We
would also like to emphasize that Algorithm 2, 5, and 4, although written for binary classification, can be easily extended to
multi-class by using, for instance, the “one-versus-all” strategy. See Appendix E.2 for details.

While it may be intuitive for the optimal performance of the cutting-plane AL algorithms to translate from binary classification
to the multi-class case, it is not entirely evident for us to expect similar performance of the algorithms for regression tasks,
where the number of classes K →∞. What is surprising is that our cutting-plane AL still maintains its optimal performance
on regression tasks, as evidenced by the synthetic toy example using quadratic regression in Section 7. Nevertheless, one can
argue that the result is not so surprising after all as it is to be expected in theory due to intuition explained in Appendix E.2.

15

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Algorithm 4 Cutting-plane AL for Binary Classification with Limited Queries
1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ynt · f two-layer(xnt ; θ

t
c) < 0 then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ynt · f two-layer(xnt ; θ) ≥ 0, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function Query(θ, s)
2: (x, y)← argmin(xi,yi)∈DLQ sf two-layer(xnt ; θ)

3: return (x, y)
4: end function

D.2. More on Cutting-Plane AL for Regression

D.2.1. NN MODEL WITH LIMITED QUERIES

To generalize our classification cutting-plane AL algorithm to regression tasks, we need to make some adaptations to the
cutting criterion and to how the cuts are being made. As the main body of the algorithm is the same across different setups
(e.g. query synthesis, limited query, and inexact cuts) except for minor changes as the reader can see in Algorithm 2, 4,
and 5, we only present the cutting-plane AL algorithm for regression under limited query. Algorithm 6 summarizes our
proposed algorithm for training regression models via cutting-plane active learning. Here ϵ > 0 is a threshold value for the
L2−norm error chosen by the user. Observe that the new L2-norm cut of step

T t+1 ← T t ∩ {θ : ∥ynt
− f two-layer(xnt

; θ)∥2 ≤ ϵ, C({nt}), C′({nt})}

consists simply of two linear cuts:
−ϵ ≤ ynt − f two-layer(xnt ; θ) ≤ ϵ.

We can hence still ensure that the version space remains convex after each cut.

D.2.2. LINEAR MODEL

Following the adaptation of our cutting-plane AL from classification to regression tasks, we similarly attempt to adapt the
original linear cutting-plane AL (Algorithm 3) for regression. Algorithm 7 introduces an ϵ > 0 threshold to account for the
L2-norm error between the predicted value and the actual target. This threshold controls both when a cut is made and the
size of the cut. We applied this version of the algorithm (Algorithm 7) in the quadratic regression experiment detailed in
Section 7. However, for nonlinear regression data—such as quadratic regression—this approach will necessarily fail. The
prediction model ⟨θ, x⟩ in Algorithm 7 is linear, whereas the underlying data distribution follows a nonlinear relationship,
i.e., y = x2. As a result, once the query budget starts accumulating nonlinearly distributed data points, no linear predictor
can satisfy the regression task’s requirements for small values of ϵ.

In particular, after a certain number of iterations t, the cut

T t ∩ {θ : ∥ynt
− ⟨θ, xnt

⟩∥2 ≤ ϵ}

will eliminate the entire version space (i.e., T t+1 = ∅). This occurs because the error between the linear prediction and the
nonlinear true values (e.g., y = x2) cannot be reduced sufficiently, disqualifying all linear predictors. This is precisely what
we observed in our quadratic regression example in Section 7. After four queries, the algorithm reported infeasibility in

16

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Algorithm 5 Cutting-plane AL for Binary Classification with Inexact Cutting
1: T 0 ← B2
2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: DAL ← ADD(DAL, (xnt , ynt))
9: T t+1 ← T t ∩ {θ : ynt

· f two-layer(xnt
; θ) ≥ 0, C({nt}), C′({nt})}

10: t← t+ 1
11: end for
12: until |DAL| ≥ nbudget
13: return θtc

1: function Query(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

solving for the version space center, as the remaining version space had been reduced to an empty set. This infeasibility is a
direct consequence of the mismatch between the linear model’s capacity and the data’s nonlinear nature.

Algorithm 7 Linear Cutting-Plane AL for Regression
1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: xnt , ynt ← QUERY(T t,D)
7: if ∥ynt − ⟨θtc, xnt⟩∥2 > ϵ then
8: T t+1 ← T t ∩ {θ : ∥ynt − ⟨θ, xnt⟩∥2 ≤ ϵ}
9: t← t+ 1

10: end if
11: until |DAL| ≥ nbudget
12: return θtc

1: function Query(T ,D)
2: Sample M points s1, . . . , sM from T
3: g ← 1

M

∑M
k=1 sk

4: x← argminxi∈D⟨g, xi⟩
5: y ← get label from an expert
6: return x, y
7: end function

D.3. Minimal Margin Query Strategy

Here we note that in our main algorithm 2, we always query points with highest prediction confidence by setting

(x, y)← argmin
(xi,yi)∈DQS

sf two-layer(xnt
; θ).

However, we indeed allow more custom implementation of query selection. For example, an alternative approach is to select
data with minimal prediction margin, i.e.

(x, y)← argmin
(xi,yi)∈DQS

|f two-layer(xnt
; θ)|.

17

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Algorithm 6 Cutting-plane AL for Regression with Limited Queries
1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ∥ynt − f two-layer(xnt ; θ

t
c)∥2 > ϵ then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ∥ynt − f two-layer(xnt ; θ)∥2 ≤ ϵ, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function Query(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

We experiment with this query strategy in our real dataset experiments.

E. Key Generalization to Cutting-Plane AL
In this section, we discuss two important generalizations of our cutting-plane AL method: (i). the relaxation in data
distribution requirement and (ii). the extension from classification to regression.

E.1. Relaxed Data Distribution Requirement

For linear classifier f(x; θ) = xT θ, the training data is expected to be linearly separable for an optimal θ⋆ to exist. However,
this constraint on training data distribution is too restrictive in real scenarios. With ReLU model, due to its uniform
approximation capacity, the training data is not required to be linearly separable as long as there is a continuous function h
such that sign(h(x)) = y for all (x, y) pairs. Due to the discrete nature of sampled data points, this is always satisfiable,
thus we can totally remove the prerequisite on training data. For sake of completeness, we provide a version of uniform
approximation capacity of ReLU below, with an extended discussion about a sample compression perspective of our cutting-
plane based model training scheme thereafter. Given the fact that two-layer model has weaker approximation capacity
compared to deeper models, we here consider only two-layer model without loss of generality. Uniform approximation
capacity of single hidden layer NN has been heavily studied (Chen & Chen, 1993; Chui & Li, 1992; Costarelli et al., 2013;
Cotter, 1990; Cybenko, 1989; ichi Funahashi, 1989; Gallant & White, 1988; Hornik, 1991; Mhaskar & Micchelli, 1992;
Leshno et al., 1993; Pinkus, 1999), here we present the version of ReLU network which we find most explicit and close to
our setting.

Theorem E.1. (Theorem 1.1 in (Shen et al., 2022)) For any continuous function f ∈ C([0, 1]d), there exists a two-layer
ReLU network ϕ = (xW1 + b1)+W2 + b2 such that

∥f − ϕ∥Lp([0,1]d) ∈ O
(√

dωf

(
(m2 logm)−1/d

))
where ωf (·) is the modulus of continuity of f .

The above result can be extended to any f ∈ C([−R,R]d), see Theorem 2.5 in (Shen et al., 2022) for discussion. Therefore,
for any fixed dimension d, as we increase number of hidden neurons, we are guaranteed to approximate f a.e. (under proper
condition on ωf). Thus the assumption on training data can be relaxed to existence of some {W1, b1,W2, b2} such that
sign(ϕ(x)) = y, which happens almost surely. A minor discrepancy here is that the ϕ being considered in above Theorem
incorporates the bias terms b1, b2 while our Theorem 4.1 considers two-layer NN of form (xW1)+W2. We note here that
(xW1)+W2 is essentially the same as the one with layer-wise bias. To see this, we can append the data x by a 1-value entry

18

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

to accommodate for b1. After this modification, we can always separate a neuron of form (XW1i)+W2i, set W1(d+1) = 1
and zeros elsewhere, and W2i would then accommodate for bias b2. Therefore, our relaxed requirement on training data still
persists. For deeper ReLU NNs, similar uniform approximation capability has been established priorly and furthermore
the general NN form we considered in Theorem 4.2 incorporates the form with layer-wise bias and thus we still have such
relaxation on training data distribution, see Appendix F.3 for more explanation.

E.2. From Classification to Regression

Algorithm 2 shows how we train deep NN for binary classification task with cutting-plane method. Nevertheless, it can
be easily extended to multi-class using, for instance, the so-called “one-versus-all” classification strategy. To illustrate, to
extend the binary classifier to handle K classes under this approach, we decompose the multi-class problem into K binary
subproblems. Specifically, for each class Ck, we define a binary classification task as:

Classify between Ck and
⋃
i ̸=k

Ci,

where we classify Ck against all other classes combined as a single class. This creates K binary classification problems,
each corresponding to distinguishing one class from the rest.

In fact, our cutting-plane AL can be even applied to the case of regression, where the number of classes K →∞. The core
intuition behind this is still the uniform approximation capability of nonlinear ReLU model. Given any training data x with
its label y, we want a model f(x; θ) to be able to predict y exactly. Here the data label is no longer limited to plus or minus
one and can be any continuous real number. For linear model f(x; θ) = xT θ considered in (Louche & Ralaivola, 2015),
train such a predictor is almost impossible since it is highly unlikely there exists such a θ for real dataset. However, with
our ReLU model, we are guaranteed there is a set of NN weights that would serve as a desired predictor due to its uniform
approximation capacity.

Therefore, for regression task, the training algorithm will be exactly the same as Algorithm 3 instead that the original
classification cut ynt

f(xnt
; θ) ≥ 1 will be replaced with f(xnt

; θ) = ynt
. All other activation pattern constraints are leaved

unchanged. A minor discrepancy here is that though theoretically sounding, the strict inequality f(xnt
; θ) = ynt

may raise
numerical issues in practical implementation. Thus, we always include a trust region as ynt − ϵ ≤ f(xnt ; θ) ≤ ynt + ϵ with
some small ϵ for our experiments. See Algorithm 6 for our implementation details.

F. Deferred Proofs and Extensions in Section 4
F.1. Proof of Theorem 4.1

We prove the equivalence in two directions, we first show that if there exists W1,W2 to y ⊙ ((XW1)+W2) ≥ 1, then we
can find solution {ui, u

′
i} to Problem (3); we then show that when there is solution {ui, u

′
i} to Problem (3) and the number

of hidden neurons m ≥ 2P , then there exists W1,W2 such that y ⊙ ((XW1)+W2) ≥ 1. We last show that given solution
{ui, u

′
i} to Problem (3), after finding correspondent W1,W2, the prediction for any input x̃ can be simply computed by∑P

i=1(x̃ui)+ − (x̃u′i)+. We now start with our first part and assume the existence of W1,W2 to y ⊙ ((XW1)+W2) ≥ 1,
i.e.,

y ⊙
m∑
j=1

(XW1j)+W2j ≥ 1,

from which we can derive

y ⊙
m∑
j=1

D1
jXW1jW2j ≥ 1, (12)

where D1
j = diag(1{XW1j ≥ 0}) ∈ Rn×n. Now consider set of pairs of {uj , u

′
j} given by uj = W1jW2j , u

′
j = 0 for

j ∈ {j|W2j ≥ 0} and uj = 0, u′j = −W1jW2j for j ∈ {j|W2j < 0}. We thus have by (12)

y ⊙
m∑
j=1

D1
jX(uj − u′j) ≥ 1, (2D1

j − I)Xuj ≥ 0, (2D1
j − I)Xu′j ≥ 0.

19

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

The only discrepancy between our set of {uj , u
′
j} pairs and our desired solution to Problem (3) is we want to match D1

j ’s in
equation (12) to Di’s in Problem (3). This is achieved by observing that whenever we have D1

a = D1
b = D(a,b) for some

a, b ∈ [m], we can merge them as

D1
aX(ua − u′a) +D1

bX(ub − u′b)

= D(a,b)X((ua + ub)− (u′a + u′b))

= D(a,b)X(ua+b − u′a+b),

with (2D(a+b) − I)Xua+b ≥ 0 and (2D(a+b) − I)Xu′a+b ≥ 0 still hold. We can keep this merging for all activation
patterns {D1

j |j ∈ [m]}. We are guaranteed to get

y ⊙
m̃∑
j=1

D̃jX(ũj − ũ′j) ≥ 1, (2D̃j − I)Xũj ≥ 0, (2D̃j − I)Xũ′j ,≥ 0

where all D̃j , j ∈ [m̃] are different. Note since our {Di|i ∈ [P]} in Problem (3) loop over all possible activation patterns
corresponding to X , it is always the case that m̃ ≤ P and D̃j = Di for some i ∈ [P]. Thus we get a solution {ui, u

′
i}

to Problem (3) by setting ui = ũk, u
′
i = ũ′k when Di = D̃k for some k ∈ [m̃]. Otherwise we simply set ui = u′i = 0.

This completes our proof of the first direction, we now turn to prove the second direction and assume that there is solution
{ui, u

′
i} to Problem (3) as well as the number of hidden neurons m ≥ 2P . We aim to show that there exists W1,W2 such

that y ⊙ ((XW1)+W2) ≥ 1. Since we have

y ⊙
P∑
i=1

(DiX(ui − u′i)) ≥ 1, (2Di − I)Xui ≥ 0, (2Di − I)Xu′i ≥ 0,

we are able to derive the below inequality by setting vi = ui, αi = 1 for i ∈ [P] and vi = u′i−P , αi = −1 for i ∈ [P+1, 2P],

y ⊙
2P∑
i=1

(Xvi)+αi ≥ 1.

Therefore, consider W1 ∈ Rd×m defined by W1j = vj for j ∈ [2P] and W1j = 0 for any j > 2P , W2 ∈ Rm defined by
W2j = αj for j ∈ [2P] and W2j = 0 for any j > 2P. Then we achieve

y ⊙ ((XW1)+W2) = y ⊙
2P∑
i=1

(Xvi)+αi ≥ 1,

as desired. Lastly, once a solution {ui, u
′
i} to Problem (3) is given, we can find corresponding W1,W2 according to our

analysis of second direction above. Then for any input x̃, the prediction given by (x̃W1)+W2 is simply
∑P

i=1(x̃ui)+ −
(x̃u′i)+.

F.2. Proof of Theorem 4.2

Similar to proof of Theorem 4.1, we carry out the proof in two directions. We prove first that if there exists solution to
Problem (4), then there is also solution to Problem (5). We then show that whenever there exists solution to Problem (5),
there is also solution to Problem (4). Concerned with that the notation complexity of (n+ 1)-layer NN might introduce
difficulty to follow the proof, we start with showing three-layer case as a concrete example, we then move on to (n+1)-layer
proof which is more arbitrary.

Proof for three-layer. The three-layer ReLU model being considered is of the form ((XW1)+W2)+W3. The corresponding

20

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

linear program is given by

find uij , u
′
ij , vij , v

′
ij

s.t. y ⊙
P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 1,

(2D
(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

D
(1)
i X(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 0,

which is a rewrite of (5) with n = 2. Firstly, assume there exists solution {W1,W2,W3} to the problem y ⊙
((XW1)+W2)+W3 ≥ 1. We want to show there exists {uij , u

′
ij , vij , v

′
ij} solves the above problem. Note that by

y ⊙ ((XW1)+W2)+W3 ≥ 1, we get

y ⊙

(
m1∑
i=1

(XW1i)+W2i

)
+

W3 ≥ 1.

Let Ki denote sign(XW1i), i.e, (2Ki − I)XW1i ≥ 0, we can write

y ⊙

(
m1∑
i=1

KiXW1iW2i

)
+

W3 ≥ 1.

Expand on the outer layer neurons, we get

y ⊙
m2∑
j=1

(
m1∑
i=1

KiXW1iW2ij

)
+

W3j ≥ 1.

Construct cij = W1iW2ij whenever W2ij ≥ 0 and 0 otherwise, c′ij = −W1iW2ij whenever W2ij < 0 and 0 otherwise, we
can write

y ⊙
m2∑
j=1

(
m1∑
i=1

KiX(cij − c′ij)

)
+

W3j ≥ 1, (2Ki − I)Xcij ≥ 0, (2Ki − I)Xc′ij ≥ 0.

Denote sign(
∑m1

i=1 KiX(cij − c′ij)) as K(2)
j , we thus have

y ⊙
m2∑
j=1

K
(2)
j

(
m1∑
i=1

KiX(cij − c′ij)

)
W3j ≥ 1,

with (2Ki − I)Xcij ≥ 0, (2Ki − I)Xc′ij ≥ 0, (2K
(2)
j − I)(

∑m1

i=1 KiX(cij − c′ij)) ≥ 0. We construct {dij , d′ij , eij , e′ij}
by setting dij = cijW3j , d

′
ij = c′ijW3j when W3j ≥ 0 and 0 otherwise, setting eij = −cijW3j , e

′
ij = −c′ijW3j when

W3j < 0 and 0 otherwise, and we will arrive at

y ⊙
m2∑
j=1

K
(2)
j

(
m1∑
i=1

KiX(dij − d′ij)−
m1∑
i=1

KiX(eij − e′ij)

)
≥ 1,

where
(2Ki − I)Xdij ≥ 0, (2Ki − I)Xd′ij ≥ 0, (2Ki − I)Xeij ≥ 0, (2Ki − I)Xe′ij ≥ 0

(2K
(2)
j − I)

m1∑
i=1

KiX(dij − d′ij) ≥ 0, (2K
(2)
j − I)

m1∑
i=1

KiX(eij − e′ij) ≥ 0,

which is already of form we want. We are left with matching mi with Pi for i ∈ {1, 2} and matching D
(2)
j to K

(2)
j , D(1)

i to

Ki, {uij , u
′
ij , vij , v

′
ij} to {dij , d′ij , eij , e′ij}. We achieve this by observing that whenever there is duplicate K

(2)
j1

= K
(2)
j2

,

21

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

we can merge the corresponding terms as

K
(2)
j1

(
m1∑
i=1

KiX(dij1 − d′ij1)−
m1∑
i=1

KiX(eij1 − e′ij1)

)
+K

(2)
j2

(
m1∑
i=1

KiX(dij2 − d′ij2)−
m1∑
i=1

KiX(eij2 − e′ij2)

)

= K
(2)
(j1,j2)

(
m1∑
i=1

KiX
(
(dij1 + dij2)− (d′ij1 + d′ij2)

)
−

m1∑
i=1

KiX
(
(eij1 + eij2)− (e′ij1 + e′ij2)

))

= K
(2)
(j1,j2)

(
m1∑
i=1

KiX(di(j1+j2) − d′i(j1+j2)
)−

m1∑
i=1

KiX(ei(j1+j2) − e′i(j1+j2)
)

)
,

where K
(2)
(j1,j2)

:= K
(2)
j1

, di(j1+j2) := dij1 + dij2 , d
′
i(j1+j2)

= d′ij1 + d′ij2 , ei(j1+j2) = eij1 + eij2 , e
′
i(j1+j2)

= e′ij1 + e′ij2 .
We have as constraints

(2K
(2)
(j1,j2)

− I)

(
m1∑
i=1

KiX(di(j1+j2) − d′i(j1+j2)
)

)
≥ 0,

(2K
(2)
(j1,j2)

− I)

(
m1∑
i=1

KiX(ei(j1+j2) − e′i(j1+j2)
)

)
≥ 0,

(2Ki − I)Xdi(j1+j2) ≥ 0, (2Ki − I)Xd′i(j1+j2)
≥ 0,

(2Ki − I)Xei(j1+j2) ≥ 0, (2Ki − I)Xe′i(j1+j2)
≥ 0.

Keep such merging until all K(2)
j are different, we arrive at

y ⊙
m̃2∑
j=1

K
(2)

j

(
m1∑
i=1

KiX(dij − d′ij)−
m1∑
i=1

KiX(eij − e′ij)

)
≥ 1,

with
(2Ki − I)Xdij ≥ 0, (2Ki − I)Xd

′
ij ≥ 0, (2Ki − I)Xeij ≥ 0, (2Ki − I)Xe′ij ≥ 0,

(2K
(2)

j − I)

(
m1∑
i=1

KiX(dij − d
′
ij)

)
≥ 0, (2K

(2)

j − I)

(
m1∑
i=1

KiX(eij − e′ij)

)
≥ 0,

where m̃2 ≤ P2,K
(2)

j ∈ {D(2)} and K
(2)

j all different. We now proceed to match Ki and D
(1)
i . Consider

∑m1

i=1 KiX(dij−
d
′
ij), if Kv = Kq for some v, q, we can merge them as

KvX(dvj − d
′
vj) +KqX(dqj − d

′
qj) = K(v,q)X(d(v+q)j − d

′
(v+q)j),

where K(v,q) := Kv, d(v+q)j := dvj + dqj , d
′
(v+q)j := d

′
vj + d

′
(v+q)j . The constraints are (2K(v,q) − I)Xd(v+q)j ≥

0, (2Kv,q − I)Xd
′
(v+q)j ≥ 0, and we still have

(2K
(2)

j − I)

 ∑
i∈[m1],i̸=v,i̸=q

KiX(dij − dij′) +K(v,q)X(d(v+q)j − d
′
(v+q)j)

 ≥ 0.

Continue such merging and also for {eij , e′ij}, we finally arrive at

y ⊙
m̃2∑
j=1

K
(2)

j

(
m̃1∑
i=1

K̂iX(d̂ij − d̂
′
ij)−

m̃1∑
i=1

K̂iX(êij − ê
′
ij)

)
≥ 1,

with
(2K̂i − I)Xd̂ij ≥ 0, (2K̂i − I)Xd̂

′
ij ≥ 0, (2K̂i − I)Xêij ≥ 0, (2K̂i − I)Xê

′
ij ≥ 0,

(2K
(2)

j − I)

(
m̃1∑
i=1

K̂iX(d̂ij − d̂
′
ij)

)
≥ 0, (2K

(2)

j − I)

(
m̃1∑
i=1

K̂iX(êij − ê
′
ij)

)
≥ 0.

22

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Now, for any D
(2)
j ̸∈ {K(2)}, we set all uij = u′ij = vij = v′ij = 0. For D(2)

j = K
(2)

j′ , for any D
(1)
i ̸∈ {K̂}, we set all

uij = u′ij = vij = v′ij = 0. For D(2)
j = K

(2)

j′ , D
(1)
i = K̂i′ , we set uij = d̂i′j′ , u

′
ij = d̂

′
i′j′ , vij = êi′j′ , v

′
ij = ê

′
i′j′ . Then

we get exactly

y ⊙

 P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

) ≥ 1,

and
(2D

(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

D
(1)
i X(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 0,

which completes the proof of our first direction. We now turn on to prove the second direction, assume there exists
uij , u

′
ij , vij , v

′
ij such that

y ⊙

 P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

) ≥ 1,

with
(2D

(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

DiX(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

DiX(vij − v′ij)

)
≥ 0.

We want to show that there exists W1,W2,W3 such that

y ⊙ ((XW1)+W2)+W3 ≥ 1.

We are able to derive

y ⊙

 P2∑
j=1

(
P1∑
i=1

DiX(uij − u′ij)

)
+

−

(
P1∑
i=1

DiX(vij − v′ij)

)
+

 ≥ 1,

and furthermore

y ⊙

 P2∑
j=1

(
P1∑
i=1

(Xuij)+ − (Xu′ij)+

)
+

−

(
P1∑
i=1

(Xvij)+ − (Xv′ij)+

)
+

 ≥ 1.

We thus construct {κij , αij} by setting κij = uij , αij = 1 for i ∈ [P1], κij = u′(i−P1)j
, αij = −1 for i ∈ [P1 + 1, 2P1].

We similarly construct {κ′ij , α′ij} with {vij , v′ij}, we thus get

y ⊙

 P2∑
j=1

(
2P1∑
i=1

(Xκij)+αij

)
+

−

(
2P1∑
i=1

(Xκ′ij)+α
′
ij

)
+

 ≥ 1.

We construct {uj} by setting uj = 1 for j ∈ [P2] and uj = −1 for j ∈ [P2 + 1, 2P2]. We construct also {κ̃ij , α̃ij} such
that κ̃ij = κij , α̃ij = αij for i ∈ [2P1], j ∈ [P2], κ̃ij = κ′i(j−P2)

, α̃ij = α′i(j−P2)
for i ∈ [2P1], j ∈ [P2 + 1, 2P2], we thus

get

y ⊙

2P2∑
j=1

(
2P1∑
i=1

(Xκ̃ij)+α̃ij

)
+

uj

 ≥ 1.

Therefore, we arrive at y ⊙ ((XW1)+W2)+W3 ≥ 1 by focusing on j ≤ 2P2, i ≤ 4P1P2, i.e., setting parameters with
(i, j) indices exceeding these thresholds to be all zero. We then set W1i = κ̃ab for a = ⌊ i−12P1

⌋+ 1, b = (i− 1)%2P1 + 1,
W2ij = α̃(i−1)%2P1+1 for i ∈ [(j − 1) ∗ 2P1 + 1, j ∗ 2P1] and 0 otherwise, W3j = uj .

23

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Proof for n+ 1-layer. We now provide proof for ReLU model of arbitrary depth. The logic follows the three-layer case
proof above, despite the notation now represents n + 1-layer model for arbitrary n. We first assume that there exists
W1,W2, · · · ,Wn+1 that satisfies problem (4). We want to show that there exists {acn···c1jn···j1 } which satisfies problem (5). We
first span the inner most neuron to get

y ⊙

· · ·
(m1∑

i1=1

(XW1i1)+W2i1

)
+

W3


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

Denote sign(XW1i) as K(1)
i1

, i.e., (2K(1)
i1
− I)XW1i1 ≥ 0. We can then rewrite the above inequality as

y ⊙

· · ·
(m1∑

i1=1

K
(1)
i1

XW1i1W2i1

)
+

W3


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

We then expand the second last inner layer as

y ⊙

· · ·
 m2∑

i2=1

(
m1∑
i1=1

K
(1)
i1

XW1i1W2i1i2

)
+

W3i2


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

We construct {b(1)i1i2
, b′

(1)
i1i2
} such that b(1)i1i2

= W1i1W2i1i2 when W2i1i2 ≥ 0 and 0 otherwise, b′(1)i1i2
= −W1i1W2i1i2 when

W2i1i2 < 0 and 0 otherwise. Therefore we get

y ⊙

· · ·
 m2∑

i2=1

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
+

W3i2


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1,

with constraints (2K(1)
i1
− I)Xb

(1)
i1i2
≥ 0, (2K

(1)
i1
− I)Xb′

(1)
i1i2
≥ 0. Let K(2)

i2
denote sign(

∑m1

i=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

)), i.e.,

(2K
(2)
i2
− I)(

∑m1

i1=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

)) ≥ 0, we thus have

y ⊙

· · ·
(m2∑

i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
W3i2

)
+

W4


+

W5 · · ·


+

Wn+1 ≥ 1,

with constraints

(2K
(1)
i1
− I)Xb

(1)
i1i2
≥ 0, (2K

(1)
i1
− I)Xb′

(1)
i1i2 ≥ 0, (2K

(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2)

)
≥ 0.

Expand one more hidden layer

y ⊙

· · ·
 m3∑

i3=1

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
W3i2i3

)
+

W4i3


+

W5 · · ·


+

Wn+1 ≥ 1.

Construct {b(11)i1i2i3
, b′

(11)
i1i2i3

} by setting b
(11)
i1i2i3

= b
(1)
i1i2

W3i2i3 and b′
(11)
i1i2i3

= b′
(1)
i1i2

W3i2i3 when W3i2i3 ≥ 0 and 0 otherwise.

Construct {b(12)i1i2i3
, b′

(12)
i1i2i3

} by setting b
(12)
i1i2i3

= −b(1)i1i2
W3i2i3 and b′

(12)
i1i2i3

= −b′(1)i1i2
W3i2i3 when W3i2i3 < 0 and 0

otherwise. Let K(3)
i3

denotes sign(
∑m2

i2=1 K
(2)
i2

(
∑m1

i1=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

))W3i2i3). Thus we have

y ⊙

(
· · ·

(
m3∑
i3=1

K
(3)
i3

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))

−
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

)))
W4i3

)
+

W5 · · ·


+

Wn+1 ≥ 1,

24

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

with constraints

(2K
(1)
i1
− I)Xb

(11)
i1i2i3

≥ 0, (2K
(1)
i1
− I)Xb′

(11)
i1i2i3 ≥ 0

(2K
(1)
i1
− I)Xb

(12)
i1i2i3

≥ 0, (2K
(1)
i1
− I)Xb′

(12)
i1i2i3 ≥ 0,

(2K
(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))
≥ 0, (2K

(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

))
≥ 0,

(2K
(3)
i3
− I)

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))
−

m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

)))
≥ 0.

For cleanness, we introduce the following notation, for any ci ∈ {1, 2} and 2 ≤ s ≤ n− 1,

T (n−1)(n−2)···(s)
cn−1cn−2···cs (K(s)) =

ms∑
is=1

K
(s)
is

(
T (n−1)(n−2)···(s)(s−1)
cn−1cn−2···cs[cs−1=1] (K

(s−1))− T (n−1)(n−2)···(s)(s−1)
cn−1cn−2···cs[cs−1=2] (K

(s−1))
)
.

When s = 1,

T (n−1)(n−2)···(2)(1)
cn−1cn−2···c2c1 (K(1)) =

m1∑
i1=1

K
(1)
i1

X
(
b
(cn−1cn−2···c1)
inin−1···i1 − b′

(cn−1cn−2···c1)
inin−1···i1

)
.

Proceed with the above splitting, under the newly defined notation, we will get

y ⊙
mn∑
in=1

K
(n)
in

(
T (n−1)
1 (K(n−1))− T (n−1)

2 (K(n−1))
)
≥ 1

with constraints
(2K

(s)
is
− I)T (n−1)(n−2)···(s)(s−1)

cn−1cn−2···cscs−1 (K(s−1)) ≥ 0,∀2 ≤ s ≤ n− 1,

(2K
(1)
i1
− I)Xb

(cn−1cn−2···c1)
inin−1···i1 ≥ 0, (2K

(1)
i1
− I)Xb′

(cn−1cn−2···c1)
inin−1···i1 ≥ 0.

Note we already have the form of (5) by combine {b(cn−1cn−2···c1)
inin−1···i1 } and {b′(cn−1cn−2···c1)

inin−1···i1 } into {b(cncn−1cn−2···c1)
inin−1···i1 }, the

only thing left is to match {K(s)} with {D(n)}, we do this by recursion. Consider any layer l, assume all {K(s)}, s ≤ l

can be matched with {D(n)}, n ≤ l. Now we consider the (l + 1)-th layer. Note that all K(l+1)
il+1

∈ {D(l+1)} for any

il+1 ∈ [ml+1]. If there is duplicate neuron activation patterns, i.e., K(l+1)
a = K

(l+1)
b for some a ̸= b, a, b ∈ [ml+1]. Then

we merge all lower-level neurons corresponding to K
(l+1)
a and K

(l+1)
b by summing up the corresponding (with respect

to i1, i2, . . . , il indices) b vectors. Both the layer output and ReLU sign constraints will be preserved for all layers up to
(l + 1)-th layer, and we thus get, after the merging, a new set of {K̃(l+1)} and {b̃} that matches the problem (5) up to layer
(l+1), where we just set all parameters to be zero for any jl+1 ∈ [Pl+1] such that Djl+1

̸∈ {K̃(l+1)}. Now, we only need to
verify that the last inner layer’s neuron can be matched. By the symmetry between b

(cn−1cn−2···c1)
inin−1···i1 terms, consider without

loss of generality the neuron
m1∑
i1=1

K
(1)
i1

Xb
[cn−1=1][cn−2=1]···[c1=1]
inin−1···i1 , (13)

which we want to match with
P1∑

j1=1

D
(1)
j1

Xu
[cn=1][cn−1=1][cn−2=1]···[c1=1]
jnjn−1···j1 . (14)

Note by construction we know K
(1)
i1
∈ {D(1)} for any i1 ∈ [m1]. If there is any duplicate neurons K

(1)
c = K

(1)
d for

some c ̸= d, c, d ∈ [m1]. We denote K
(1)
(c,d) = K

(1)
c = K

(1)
d . Let b11···1inin−1···[i1←(c,d)] = b11···1inin−1···[i1=c] + b11···1inin−1···[i1=d].

Then we merge K
(1)
c and K

(1)
d by replacing them with only one copy of K(1)

(c,d), and set the corresponding b vector to be
binin−1···[i1=(c,d)]. Continue this process until there is no duplicate neurons in the last inner layer. We are guaranteed to

get a set of {K̃(1)
i1
} and corresponding {b̃11···1inin−1···i1} such that K̃(1)

i1
belong to {D(1)} and are all different. Now assume

25

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

all outer layers have already been merged by the scheme of summing up corresponding b vectors mentioned above. Using
{m̂s, K̂

(s), b̂} to represent the new set of parameters. Then is ∈ [m̂s] with m̂s ≤ Ps. The expressions (13) and (14) can be
matched by setting u111···1

jnjn−1···j1 = b̂11···1inin−1···i1 for (js, is) pairs satisfying D
(s)
js

= K̂
(s)
is

, and setting to zero if D(s)
js
̸∈ [K̂(s)].

This completes our first direction proof.

We now assume that there exists {ucncn−1···c1
jnjn−1···j1 } which satisfies problem (5), our goal is to find (n + 1)-layer NN

weights W1,W2, · · · ,Wn+1 satisfying (4). Since our {ucncn−1···c1
jnjn−1···j1 } satisfies all plane arrangement constraints in (5),

we thus have, based on the inner most layer’s activation pattern constraint and splits {ucncn−1···c1
jnjn−1···j1 } into u

cn−1cn−2···c1
jnjn−1···j1 :=

u
[cn=1]cn−1cn−2···c1
jnjn−1···j1 , u′

cn−1cn−2···c1
jnjn−1···j1 := u

[cn=2]cn−1cn−2···c1
jnjn−1···j1 ,

y ⊙
Pn∑

jn=1

D
(n)
jn

 Pn−1∑
jn−1=1

D
(n−1)
jn−1

· · · P1∑
j1=1

(Xu1···1
jn···j1)+ − (Xu′

1···1
jn···j1)+ · · ·

−
Pn−1∑

jn−1=1

D
(n−1)
jn−1

· · · P1∑
j1=1

(Xu2···1
jn···j1)+ − (Xu′

2···1
jn···j1)+ · · ·

 ≥ 1.

Thus we can find some vjnjn−1···j2j1 ∈ Rd, S
(1)
j1

, S
(2)
j2

, · · · , S(n)
jn
∈ {−1, 1} such that

Pn∑
jn=1

D
(n)
jn

(
T (n−1)
1 (D(n−1))− T (n−1)

2 (D(n−1))
)

=

2Pn∑
jn=1

 2Pn−1∑
jn−1=1

 2Pn−2∑
jn−2=1

· · · 2P2∑
j2=1

 2P1∑
j1=1

(Xvjnjn−1···j1)+S
(1)
j1


+

S
(2)
j2
· · ·
)
+
S
(n−2)
jn−2

)
+

S
(n−1)
jn−1

)
+

S
(n)
jn

.

(15)

Though the process of finding {vjnjn−1···j1 , S
(i)
ji
} has been outlined in three-layer case proof above and can be extended to

(n+ 1)-layer case, we present here an outline of finding such {vjnjn−1···j1 , S
(i)
ji
} for five-layer NN for demonstration. For

n = 5, we have the following

P4∑
j4=1


 P3∑

j3=1

 P2∑
j2=1

 P1∑
j1=1

(Xa111j4j3j2j1)+ − (Xa′
111
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa112j4j3j2j1)+ − (Xa112j4j3j2j1)+


+


+

−

 P2∑
j2=1

 P1∑
j1=1

(Xa121j4j3j2j1)+ − (Xa′
121
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa122j4j3j2j1)+ − (Xa′
122
j4j3j2j1)+


+


+


+

−

 P3∑
j3=1

 P2∑
j2=1

 P1∑
j1=1

(Xa211j4j3j2j1)+ − (Xa′
211
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa212j4j3j2j1)+ − (Xa′
212
j4j3j2j1)+


+


+

−

 P2∑
j2=1

 P1∑
j1=1

(Xa221j4j3j2j1)+ − (Xa′
221
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa222j4j3j2j1)+ − (Xa′
222
j4j3j2j1)+


+


+


+

 .

Let v111j4j3j2j1
= {a111j4j3j2j1

} ∪ {a′111j4j3j2j1} and similarly construct v112j4j3j2j1
, v121j4j3j2j1

, v122j4j3j2j1
, v211j4j3j2j1

, v212j4j3j2j1
,

v221j4j3j2j1
, v222j4j3j2j1

. Let S111
j1

, S112
j1

, S121
j1

, S122
j1

, S211
j1

, S212
j1

, S221
j1

, S222
j1

to be 1 for j1 ∈ [P1] and to be −1 for j1 ∈

26

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

[P1 + 1, 2P1]. Thus, the above expression is equivalent to

P4∑
j4=1


 P3∑

j3=1

 P2∑
j2=1

 2P1∑
j1=1

(Xv111j4j3j2j1)+S
111
j1


+

−

 2P1∑
j1=1

(Xv112j4j3j2j1)+S
112
j1


+


+

−

 P2∑
j2=1

 2P1∑
j1=1

(Xv121j4j3j2j1)+S
121
j1


+

−

 2P1∑
j1=1

(Xv122j4j3j2j1)+S
122
j1


+


+


+

−

 P3∑
j3=1

 P2∑
j2=1

 2P1∑
j1=1

(Xv211j4j3j2j1)+S
211
j1


+

−

 2P1∑
j1=1

(Xv212j4j3j2j1)+S
212
j1


+


+

−

 P2∑
j2=1

 2P1∑
j1=1

(Xv221j4j3j2j1)+S
221
j1


+

−

 2P1∑
j1=1

(Xv222j4j3j2j1)+S
222
j1


+


+


+

 .

Let v11j4j3j2j1 = {v111j4j3j2j1
}∪ {v112j4j3j2j1

} and S̃11
j1

= S111
j1

. Let S11
j2

= 1 for j2 ∈ [P2] and S11
j2

= −1 for j2 ∈ [P2+1, 2P2].

Similarly construct v12j4j3j2j1 , S̃
12
j1
, S12

j2
, v21j4j3j2j1 , S̃

21
j1
, S21

j2
, v22j4j3j2j1 , S̃

22
j1
, S22

j2
. Thus the above expression is equivalent to

P4∑
j4=1


 P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv11j4j3j2j1)+S̃
11
j1


+

S11
j2


+

−

 2P2∑
j2=1

 2P1∑
j1=1

(Xv12j4j3j2j1)+S̃
12
j1


+

S12
j2


+


+ P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv21j4j3j2j1)+S̃
21
j1


+

S21
j2


+

−

 2P2∑
j2=1

 2P1∑
j1=1

(Xv22j4j3j2j1)+S̃
22
j1


+

S22
j2


+


+

 .

Let v1j4j3j2j1 = {v11j4j3j2j1} ∪ {v
12
j4j3j2j1

}, v2j4j3j2j1 = {v21j4j3j2j1} ∪ {v
22
j4j3j2j1

}. Let ˆ̃S
(1)

j1 = S̃11
j1
, ˆ̃S

(2)

j1 = S̃21
j1
. Let

Ŝ
(1)
j2

= S11
j2
, Ŝ

(2)
j2

= S21
j2
. Let further S(1)

j3
, S

(2)
j3

to take value 1 for j3 ∈ [P3] and take value −1 for j3 ∈ [P3 + 1, 2P3].
Therefore the above expression is equivalent to

P4∑
j4=1


 2P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv1j4j3j2j1)+
ˆ̃S
(1)

j1


+

Ŝ
(1)
j2


+

S
(1)
j3


+

−

 2P3∑
j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv2j4j3j2j1)+
ˆ̃S
(2)

j1


+

Ŝ
(2)
j2


+

S
(2)
j3


+

 .

We once again repeat the above procedure for the outer most layer and we arrive

P4∑
j4=1

 2P3∑
j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv1j4j3j2j1)+
ˆ̃S
(1)

j1


+

Ŝ
(1)
j2


+

S
(1)
j3


+

S′j4 ,

where S′j4 = 1 for j4 ∈ [P4] and −1 otherwise. This completes our construction of {vjnjn−1···j1 , S
(i)
ji
} for n = 5. Now, we

are left with matching the following two expressions

2Pn∑
jn=1

 2Pn−1∑
jn−1=1

 2Pn−2∑
jn−2=1

· · · 2P2∑
j2=1

 2P1∑
j1=1

(Xvjnjn−1···j1)+S
(1)
j1


+

S
(2)
j2
· · ·


+

S
(n−2)
jn−2


+

S
(n−1)
jn−1


+

S
(n)
jn

,

27

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

and

mn∑
in=1

 mn−1∑
in−1=1

 mn−2∑
in−2=1

· · · m2∑
i2=1

(
m1∑
i1=1

(XW1i1)+W2i2i1

)
+

W3i3i2 · · ·


+

W(n−1)in−1in−2


+

Wninin−1


+

W(n+1)in .

This can be done by setting all weights corresponding to indices {in > 2Pn, in−1 > 4PnPn−1, · · · , ik > Πn
c=k2Pc} to be

all zeros, then for the outer most layer, we set W(n+1)in = S
(n)
in

, for 2 ≤ k ≤ n, we set Wkikik−1
= S

(k−1)
((ik−1−1)%2Pk−1)+1

for ik−1 ∈ [(ik − 1) ∗ 2Pk−1 + 1, ik ∗ 2Pk−1] and 0 otherwise. For the inner most layer, we set W1i1 = vjnjn−1···j1 with

jn = ⌊(i1 − 1)/Πn−1
k=12Pk⌋+ 1,

jn−1 = ⌊((i1 − 1)%Πn−1
k=12Pk)/Π

n−2
k=12Pk⌋+ 1,

jn−2 = ⌊(((i1 − 1)%Πn−1
k=12Pk)%Πn−2

k=12Pk)/Π
n−3
k=12Pk⌋+ 1,

· · ·
j2 = ⌊((· · ·)%Π2

k=12Pk)/2P1⌋+ 1,

j1 = ((· · ·)%Π2
k=12Pk)%2P1 + 1.

Given any test point x̃ ∈ Rd, the final prediction can be computed by

ỹ =

Pn∑
jn=1

(
T (n−1)
1 (D(n−1))

)
+
−
(
T (n−1)
2 (D(n−1))

)
+
, (16)

where

T (n−1)···(i)
cn−1···ci (D(i)) =

Pi∑
ji=1

(
T (n−1)···(i)(i−1)
cn−1···ci1 (D(i−1))

)
+
−
(
T (n−1)···(i)(i−1)
cn−1···ci2 (D(i−1))

)
+
,

T (n−1)(n−2)···(1)
cn−1cn−2···c1 (D(1)) =

P1∑
j1=1

(
x̃Ta

1cn−1···c1
jnjn−1···j1

)
+
−
(
x̃Ta

2cn−1···c1
jnjn−1···j1

)
+
.

F.3. Explanation of Bias Term for General Case

To show that the n-layer NN of form ((· · · ((XW1)+W2)+W3 · · ·)+Wn−1)+Wn preserves the same approximation capacity
as the biased version ((· · · ((XW1 + b1)+W2 + b2)+W3 + b3 · · ·)+Wn−1 + bn−1)+Wn + bn, we show that the biased
version is incorporated in the form ((· · · ((XW1)+W2)+W3 · · ·)+Wn−1)+Wn when the constraint on number of hidden
neurons is mild. First note that we can always append the data matrix X with a column of ones to incorporate the inner most
bias b1. Then for each outer layer, we can always have an inner neuron to be a pure bias neuron with value one. Then the
corresponding outer neuron weight would serve as an outer layer bias.

F.4. Activation Pattern Subsampling and Iterative Filtering.

Here we detail more about our hyperplane selection scheme. Take two-layer ReLU model for example, in order to find the
activation pattern D corresponding to the hidden layer, one needs to exhaust the set {diag(1{Xu ≥ 0})} for all u ∈ Rd. In
our experiments, we adopt a heuristic subsampling procedure, i.e., we usually set a moderate number of hidden neurons
m1, and we sample a set of Gaussian random vectors {u1, u2, · · · , un1

} with some random n1 > m1. Then we take the set
{diag(1{Xui ≥ 0})|i ∈ [n1]}. If |{diag(1{Xui ≥ 0})|i ∈ [n1]}| > m1, we take a subset of m1 activation patterns there,
if not, we increase n1 and redo all prior steps until we hit some satisfactory n1. This heuristic method always works well in
our experiments, see Appendix H.1 for more about our implementation details.

A more rigorous way which exhausts all possible activation patterns can be done via an iterative filtering procedure. We
demonstrate here for a toy example. Consider still two-layer model as before, when we are given a data set X of size n, a
loose upper bound on |D| is given by 2n, i.e., each piece of data can take either positive and negative values and they are all

28

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

independent. Thus one can find all possible Di’s by solving

find
2n∑
i

∥ui∥2

s.t. (2Di − I)Xui ≥ 0, ∥ui∥2 ≤ 1

where Di’s loop over all 2n possibilities. Then the Di’s correspond to non-zero ui’s in the solution are feasible plane
arrangements. However, this method induces 2n ∗ d variables. A more economic way to find all feasible arrangements
is to do an iterative filtering with each newly added data. When there is only one non-zero data point X1, there always
exists u1, u2 vectors such that XT

1 u1 > 0 and XT
1 u2 < 0. Thus D1 = {

[
1
]
,
[
0
]
} represent all possible sign patterns for

this single training data. After the second data point has been added, we know

D2 ⊆
{[

1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]}
.

Therefore, an upper bound on cardinality of D2 is given by 22 = 4. However, this upper bound might be pessimistic, for
example, if X1 = X2, then we would expect

D2 =

{[
1 0
0 1

]
,

[
0 0
0 0

]}
⊂
{[

1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]}
.

Since XT
1 u = XT

2 u for any u, they will always have the same sign pattern. Things get more complicated with more data
points, say for n data points X1, X2, · · · , Xn, it is possible that sign pattern of XT

n u can be determined by sign patterns of
XT

1 u,X
T
2 u, · · · , XT

n−1u when there are linear dependency between the data points, which happens more often with larger
set of training data. Thus the true cardinality of Dn might be far smaller than 2n. Indeed, one can show that, with r denoting
rank of the training data matrix consisting of the first n data points (Pilanci & Ergen, 2020; Stanley et al., 2004),

|Dn| ≤ 2r

(
e(n− 1)

r

)r

,

which can be much smaller than our pessimistic bound 2n especially when training data has small rank. To stay close to the
optimal cardinality and avoid solving an optimization problem with 2n ∗ d number of variables, what one can do is to find
the feasible plane arrangements iteratively at the time when each single data point is added. The underline logic is that plane
arrangement patterns which are infeasible to X[1:t−1] will also be infeasible to X[1:t]. Therefore, assume one has already
found the optimal sign patterns Dt−1 for the first t− 1 training samples which has cardinality ct−1, when Xt arrives, one
needs to solve the following auxiliary problem

find
2ct−1∑

i

∥ui∥2

s.t.
(
2

[
D(t−1)i 0

0 0

]
− I

)
Xui ≥ 0, i ∈ [1, · · · , ct−1](

2

[
D(t−1)i−ct−1

0
0 1

]
− I

)
Xui ≥ 0, i ∈ [ct−1 + 1, · · · , 2ct−1]

∥ui∥2 ≤ 1,

which has only (2 ∗ ct−1) ∗ d number of variables and can be far fewer than 2t ∗ d. This scheme can also be done lazily each
fixed T iterations, one just add all {0, 1}-patterns for the last T data points.

G. Deferred Proofs and Extensions in Section 6
G.1. Deferred Proof of Theorem 6.3

Proof. Notice that the polyhedron cut is simply three consecutive cuts with three hyperplanes:

• H1 := {θ : yn · f two-layer(xT
n ; θ) = 0};

29

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

• H2 := {θe : (2Di − I)nx
T
nθ

e = 0};

• H3 := {θo : (2Di − I)nx
T
nθ

o = 0},

where θo (θe) denotes the reduced θ = (u′1, u1, ..., u
′
p, up) vector containing only the odd (even) indices. Since the cuts

imposed by the linear inequality constraints Cn and C′n via hyper-planesH2,H3 only reduce the remaining set T , examining
the volume remained after just the cut viaH1 suffices for the convergence analysis as it bounds vol(T1) from above.

Assuming the cut is active, it follows that θG misclassifies (xn, yn), so yn · f two-layer(xn; θ) < 0. Thus, the cut is deep and
θG is in the interior of T2. By Proposition C.4, it follows that

vol(T ∩ H+
1) < vol(T ∩ H+

G) ≤ (1− 1/e)vol(T),

whereHG is any hyperplane that goes through θG which is parallel toH1. Therefore, at each step t where the cut is active,
at least volume of magnitude 1

evol(T t) is cut away. The volume of T t after t iterations is bounded by:

vol(T t) < (1− 1/e)t · vol(T 0).

Then as t→∞, (1− 1/e)t → 0, it follows that vol(T t) converges to zero and the feasible region shrinks to point(s).

Notice that since T is a convex body and {T t} is a nested decreasing sequence of convex set with T t+1 ⊆ T t, by the finite
intersection property, the intersection of all T t sets is non-empty and contains the optimal solution θ∗:

∩∞t=0T t = {θ∗}.

It remains to justify that what the intersection contains is indeed the optimal solution. To see this, observe that the problem
that Algorithm 4 is simply a feasibility problem. Since every time the convex set shrinks by intersecting with the constraint
set containing feasibility criteria given each new acquired data point (xnt , ynt), i.e.,

{θ ∈ T : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},

the set shrinks to a finer set that satisfies increasingly more constraints posed by additional acquired data points. This
monotonic improvement with the shrinking feasible region implies that the sequence of classifiers θt converges to the set of
optimal classifiers {θ∗}.

G.2. Deferred Proof of Corollary 6.4

Proof. We show that the volumetric shrinkage in Theorem 6.3 implies convergence of the prediction function f two-layer
θ(k) to

the optimal decision function f two-layer
θ∗ .

Let X ∈ Rn×d be a fixed data matrix. The two-layer ReLU network prediction function can be expressed as

f two-layer
θ (X) :=

P∑
i=1

DiX(u′i − ui), (17)

where θ = (u′1, u1, . . . , u
′
P , uP) ∈ R2Pd is the parameter vector, and each ui, u

′
i ∈ Rd. Define wi := u′i− ui, and similarly

w∗i := u′∗i − u∗i , where θ∗ denotes the limiting parameter.

Let θ(k) ∈ T (k) denote the center of gravity of the parameter set at iteration k. We aim to show:

∥f two-layer
θ(k) (X)− f two-layer

θ∗ (X)∥2 → 0 as k →∞.

Decomposition of prediction difference. Expanding the difference between predictions:

∥fθ(k)(X)− fθ∗(X)∥2 =

∥∥∥∥∥
P∑
i=1

D
(k)
i Xw

(k)
i −

P∑
i=1

D∗iXw∗i

∥∥∥∥∥
2

=

∥∥∥∥∥
P∑
i=1

D
(k)
i X(w

(k)
i − w∗i) +

P∑
i=1

(D
(k)
i −D∗i)Xw∗i

∥∥∥∥∥
2

≤
P∑
i=1

∥D(k)
i X(w

(k)
i − w∗i)∥2 +

P∑
i=1

∥(D(k)
i −D∗i)Xw∗i ∥2.

30

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Here D
(k)
i and D∗i are diagonal matrices in {0, 1}n×n encoding the ReLU activation pattern of the i-th unit.

Bounding the first term. Since D
(k)
i is diagonal with operator norm ≤ 1, we have:

∥D(k)
i X(w

(k)
i − w∗i)∥2 ≤ ∥X∥2 · ∥w

(k)
i − w∗i ∥2,

and summing over i:
P∑
i=1

∥D(k)
i X(w

(k)
i − w∗i)∥2 ≤ ∥X∥2

P∑
i=1

∥w(k)
i − w∗i ∥2.

By Cauchy–Schwarz:
P∑
i=1

∥w(k)
i − w∗i ∥2 ≤

√
P ·

(
P∑
i=1

∥w(k)
i − w∗i ∥22

)1/2

.

Bounding the second term. The activation pattern D
(k)
i is determined by the sign of Xu

(k)
i . Over the finite dataset X ,

there are only finitely many sign patterns:

H :=
{

sign(Xw) : w ∈ Rd
}
, |H| <∞. (18)

Thus, Di is piecewise constant with respect to wi, and therefore locally constant almost everywhere. Since w
(k)
i → w∗i , we

conclude that for sufficiently large k, we have D
(k)
i = D∗i , implying

∥(D(k)
i −D∗i)Xw∗i ∥2 = 0.

Conclusion. Combining the bounds, we have:

∥fθ(k)(X)− fθ∗(X)∥2 ≤ ∥X∥2 ·
√
P ·

(
P∑
i=1

∥w(k)
i − w∗i ∥22

)1/2

+ o(1),

where the o(1) term accounts for the vanishing contribution from activation pattern differences.

Finally, since the volumetric convergence guarantees θ(k) → θ∗, and hence w
(k)
i → w∗i , it follows that

∥f two-layer
θ(k) (X)− f two-layer

θ∗ (X)∥2 → 0.

G.3. Extension to Algorithm 4: The Case of Inexact Cuts and Convergence

In this section, we discuss convergence results of Algorithm 5 under the third setup described in Section 6.1.

Note that the cut made by both Algorithm 4 and Algorithm 2 are exact in the sense that cuts are only made when the
computed center mis-classifies the data points returned by the oracle and is therefore always discarded via the cutting
hyperplanes. Algorithm 5, on the other hand, implements inexact cut: cuts are always made regardless of whether the
queried center mis-classifies. Nice convergence rate similar to that of Theorem 6.3 can still be guaranteed, as we shall see in
the following theorem, as long as the cut is made within a certain neighborhood of the centroid at each step.

First, let us quantify the inexactness of the cut. At each iteration, given a cutting hyperplaneHa of normal vector a, which
passes through the origin by design, and the computed center θ, the Euclidean distance between θ and the hyperplane is
given by

h = ∥θ∥2| cos(α)|, (19)

31

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

where

α = arccos(
θ · a

∥θ∥2∥a∥2
) (20)

is the angle between θ and the normal vector a. For simple notation, let us denote the angle between θ and the cutting plane
Ha as β. Then

β =
π

2
− α. (21)

Next, we introduce an important extension to Proposition C.4 given in (Louche & Ralaivola, 2015).

Proposition G.1 (Generalized Partition of Convex bodies). Let T ⊆ Rd be a convex body. Let Ha be a hyperplane of
normal vector a. We define the positive (negative) halfspace T + (resp. T −) of T with respect toHa as

T + := T ∩ {θ ∈ Rd : ⟨a, θ⟩ ≥ 0}

T − := T ∩ {θ ∈ Rd : ⟨a, θ⟩ < 0}

The following holds true: if θG + Λa ∈ T + then

vol(T +)/vol(T) ≥ e−1(1− λ)d,

where

Λ = λΘd
vol(T)HT +

RdHT −
,

with λ ∈ R an arbitrary real such that λ ≤ 1, Θd a constant depending only on d, R the radius of the (d− 1)-dimensional
ball B2 of volume vol(B2) := vol(T ∩ {θ ∈ Rd : ⟨a, θ⟩ = 0}) and

HT + := max
b∈T +

bTa (resp. HT − := min
b∈T −

bTa).

Proof. See Proof of Theorem 2 in (Louche & Ralaivola, 2015).

Note that by symmetry of partitioned convex body with respect to the centroid (an application of Proposition C.4), one can
similarly establish a bound in the case that

θG + Λa ∈ T −,

where Λ is defined as in Proposition G.1. Then

vol(T −)/vol(T) ≥ e−1(1− λ)d. (22)

Proposition G.1 generalizes Grünbaum’s inequality in Proposition C.4 by allowing a cut that is of distance (greater than or
equal to) Λ along the direction of the normal vector a from the actual center of gravity. To apply Proposition G.1, we need
to establish an equivalence relation between our quantifiation of the inexactness through the Euclidean distance h (or angle
α and or β) with Λ.

We are now ready to bound the volume reduction factor for inexact cuts with respect to the center gravity in Algorithm 5.

Theorem G.2 (Convergence with Inexact Cuts of Center of Gravity). Let T ⊆ Rd be a convex body and let θG denote its
center of gravity. Given oracle returned data point (xn, yn), define hyperplane

Ha := {θ ∈ Rd : yn · f two-layer(xn; θ) = 0},

where

a := yn · [x1
n − x1

n ... xP
n − xP

n]

32

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

is its associated normal vector. ThenHa divides T into a positive half-space T + and a negative half-space T −,

T + := T ∩ {θ ∈ Rd : ⟨a, θ⟩ ≥ 0}
T − := T ∩ {θ ∈ Rd : ⟨a, θ⟩ < 0},

and h :=
|θT

Ga|
∥a∥2 is the Euclidean distance between θG andHa. The inexact polyhedron cut given in Algorithm 5 partitions

the convex body T into two subsets:

T1 := {θ ∈ T : T +, C({n}), C′({n})}
T2 := {θ ∈ T : T −, or ¬C({n}),¬C′({n})},

where ¬ denotes the complement of a given set. The following holds:

vol(T1) < (1− e−1(1− λ̃)d)vol(T),

with

λ̃ = − RdHT −

Θdvol(T)HT +

h > 0,

where Θd is a constant depending only on d, R is the radius of the (d − 1)-dimensional ball B2 of volume vol(B2) :=
vol(T ∩ Ha) and

HT + := max
θ∈T +

θTa (resp. HT − := min
θ∈T −

θTa).

Proof. Observe that at each iteration if θG mis-classifies the oracle returned data point (xn, yn), then we have the same
analysis as in Theorem 6.3. In such a case, we have guaranteed accelerated cuts with a strictly better volume reduction rate
bound than in the case when cuts are made exactly through the centroid. This is because in this case the centroid is contained
in the interior of the eliminated region. On the other hand, when the cut is made such that the centroid is contained in the
interior of the positive half-space, we cut away smaller volume than when we make the cut through the centroid. Therefore,
to obtain a lower bound on the volume reduction rate for Algorithm 5, it suffices to examine only the latter case, i.e. when
θG is contained in interior of the positive half-space.

Suppose that θG ∈ T + \ Ha. Define real number Λ to be such that

Λ < −h := −|θ
Ta|
∥a∥2

,

then since θG − ha ∈ Ha, it follows that

θG + Λa ∈ T −.

By Proposition G.1 and symmetry, it follows that

vol(T −)/vol(T) ≥ e−1(1− λ)d,

where

λ = Λ(Θd
vol(T)HT +

RdHT −
)−1

is a real such that λ ≤ 1, Θd is a constant depending only on d, R is the radius of the (d− 1)-dimensional ball B2 of volume
vol(B2) := vol(T ∩ Ha) and

HT + := max
θ∈T +

θTa (resp. HT − := min
θ∈T −

θTa).

Since

Λ = λΘd
vol(T)HT +

RdHT −
< −h,

33

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

or equivalently

0 < λ < − RdHT −

Θdvol(T)HT +

h,

it follows that

vol(T −) ≥ e−1(1− λ)dvol(T) > e−1(1− λ̃)dvol(T),

or equivalently

vol(T +) < (1− e−1(1− λ̃)d)vol(T),

where

λ̃ = − RdHT −

Θdvol(T)HT +

h.

Since

T1 := {θ ∈ T : T +, C({n}), C′({n})} ⊆ T +,

we have that

vol(T1) ≤ vol(T +) < (1− e−1(1− λ̃)d)vol(T).

To justify that the derived ratio vol(T1)/vol(T) is valid, i.e. vol(T1)/vol(T) ∈ [0, 1], it suffices to show that e−1(1− λ̃)d ∈
[0, 1], or 0 < λ̃ ≤ 1.

Define coefficient

c(Ha, T , d) := Θd
vol(T)HT +

RdHT −
.

Since by definition HT + > 0, HT − < 0, with Θd, vol(T), Rd > 0, it follows that c(Ha, T , d) < 0.

Since λ̃ := −c(Ha, T , d)−1h and h > 0, we have that λ̃ > 0. Next, to see λ̃ ≤ 1, observe that since we have

Λ = λc(Ha, T , d) < −h,

it follows that

c(Ha, T , d) < −h ≤ −λ−1h,

where we have used the fact that 0 < λ ≤ 1. It follows that

λ̃ := −c(Ha, T , d)−1h < h−1h = 1.

Hence, 0 < λ̃ < 1. Then by Theorem 6.3, the volume reduction ratio 1 − e−1(1 − λ̃)d > 1 − e−1 offers a strict upper
bound for each iteration of Algorithm 5, regardless of whether the centroid θG is contained in the positive half-space or the
negative half-space.

Given Theorem G.2, at each step t in Algorithm 5, at least a volume of magnitude e−1(1− λ̃)dvol(T t) is cut away. The
volume of T t after t iterations is bounded by:

vol(T t) < (1− e−1(1− λ̃)d)t · vol(T 0).

Since 0 < λ̃ < 1, we have 0 < 1 − e−1(1 − λ̃)d ≤ 1. So as t → ∞, (1 − e−1(1 − λ̃)d)t → 0. It follows that vol(T t)
converges to zero as t→∞, and the feasible region shrinks to the optimal point(s), as in Theorem 6.3.

Theorem G.2 allows us to quantify the volume reduction rate as a function of the inexactness of cuts through the Euclidean
distance between the centroid and the cutting hyperplane, which is monitored by the query sampling method. In particular, in
the case of inexact cuts in Algorithm 5 with a minimal margin query sampling scheme, the volume reduction rate converges
asymptotically in the number of training data supplied to the cutting-plane oracle to the rate in Proposition C.4. This result
is stated in the following corollary.

34

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Corollary G.3 (Asymptotic Convergence of Inexact Cuts with Center of Gravity). Assume that data points xi’s are
uniformly distributed across input space. Let the number of training data supplied to the cutting-pane oracle in Algorithm
5 goes to infinity, i.e. |D| → ∞. Then the volume of T t after t iterations with the polyhedron cut in Algorithm 5 under
minimal margin query sampling method converges asymptotically to bound

vol(T t) < (1− e−1)t · vol(T 0).

Proof. Let us begin with analyzing a single iteration with convex body T ⊂ Rd and its centroid θG. Notice that as |D|
increases, data points xi’s become more densely distributed across the input space. So for any ϵ > 0, there exists a
sufficiently large N such that for all |D| > N , there exists at least one data point xi ∈ D, for which |f two-layer(xi; θG) :=
[x1

i − x1
i ... x

P
i − xP

i] · θG| < ϵ. As |D| → ∞, ϵ can be made arbitrarily small, implying that

argmin
xi∈Dx

|f two-layer(xi; θG)| → 0.

This suggests that the Euclidean distance between θG and the oracle returned cutting planeHa diminishes to 0 as |D| → ∞.

By Theorem G.2, given an inexact polyhedron cut in Algorithm 5 distance h away from the centroid, the volume of the
remaining set is upper bounded by the following:

vol(T1) ≤ (1− e−1(1− λ̃)d)vol(T),

where λ̃ := −c(Ha, T , d)−1h and

c(Ha, T , d) := Θd
vol(T)HT +

RdHT −
.

Then to show that ratio (1 − e−1(1 − λ̃)d) → 1 − e−1, or equivalently λ̃ → 0, as h → 0, it suffices to show that the
coefficient term −c(Ha, T , d) = |c(Ha, T , d)| is lower bounded by a constant Mmin so that its inverse is upper bounded.
This is easy to show. First observe that dimension dependent constant Θd and vol(T) is fixed and finite regardless of the
cutting planeHa. Because convex body T is by definition closed, variables R, |HT − | are bounded from above. By the same
reasoning, HT + is bounded from below and away from 0, for if HT + = 0, it follows that vol(T +) = 0, suggesting the
termination and convergence of the algorithm to the optimal solution(s). Hence, there exists a constant Mmin such that

min
Hai

|c(Hai
, T , d)| ≥Mmin.

It follows that

0 ≤ lim
h→0

λ̃ := lim
h→0
−c(Ha, T , d)−1h ≤ lim

h→0
M−1minh = 0.

So as |D| → ∞, we have that h→ 0, which results in λ̃→ 0. Therefore, the volume of T t after t iterations in Algorithm 5
follows:

lim
|D|→∞

vol(T t) < lim
|D|→∞

(1− e−1(1− λ̃)d)t · vol(T 0) = (1− e−1)t · vol(T 0).

G.4. Convergence w.r.t. Center of the Maximum Volume Ellipsoid

Recall the definition for the center of MVE in Definition C.2. We will now show that similar convergence rate as that of the
center of gravity can be achieved under center of MVE as well.
Theorem G.4 (Convergence with Center of MVE). Let T ⊆ Rd be a convex body and let θM denote its center of the
maximum volume inscribed ellipsoid. The polyhedron cut given in Algorithm 4 (assuming that the cut is active) and
Algorithm 2, i.e.,

T ∩ {θ : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},

where coupling (xn, yn) is the data point returned by the cutting-plane oracle after receiving queried point θM , partitions
the convex body T into two subsets as in Theorem 6.3. Then T1 satisfies the following inequality:

vol(T2) < (1− 1

d
) · vol(T).

35

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Proof. The proof follows similarly as the proof to Theorem 6.3. For the MVE cutting-plane method, the bound on the
volume reduction factor is given by:

vol(T k+1)

vol(T k)
≤ 1− 1

d
,

where k denotes the iteration (Boyd & Vandenberghe, 2004). Since f two-layer(xn; θ) is linear in θ and by the design of the
algorithm, the center θM is always contained in the interior of the discarded set (or equivalently, the cut is deep), proof for
the bound (1− 1

d) · vol(T) follows similarly as the proof of Theorem 6.3.

Accelerated Cutting Theorem 3 in (Louche & Ralaivola, 2015): for any convex body K ⊂ Rn+1, and any hyperplane W . If
cg(K)∈ K+ then

V (K+) ≥ e−1 × V (K).

Here in our case, we consider n = 1, P = 1. Assume the ReLU gate is activated, we harness the following constraints

xT (w1 − w2) ≥ 0, xTw1 ≥ 0, xTw2 ≥ 0.

H. Experiments Supplementals
H.1. Implementation Details

In this section, we provide an overview of the implementation details. For specific aspects, such as baseline implementation
and the cutting-plane AL method for regression, we direct readers to the corresponding sections in Appendix H.

In our experiments, we follow exactly the same algorithm workflow as in Algorithm 1 for our model training and Algorithm
4 for active learning with limited queries, which is the version we used conducting all of our experiments in Section 7. In
the training of Algorithm 4, we implement the “center” function for analytic center retrieval due to its simple computation
formula (see Definition 6.1). Since the center retrieval problem is of convex minimization form, we solve it with CVXPY
(Diamond & Boyd, 2016) and default to MOSEK (MOSEK ApS, 2024) as our solver. In our experiments, MOSEK is able
to handle all encountered convex optimization programs, given that they are feasible. We involve all training data cuts while
we note that some cut dropping method may help alleviate computation overhead, i.e., one may keep the last several cuts
only, see Section 2.5 in (Parshakova et al., 2023) for a discussion on constraint dropping. For activation pattern generation,
for two-layer model experiment, say we want P = m patterns, we always generate a set of standard Gaussian vectors
{ui, i ∈ [n]} for some n > m, compute the induced pattern set {Di = diag(1{Xui ≥ 0})}, and take m non-duplicate
patterns out of it. Furthermore, in our implementation of Algorithm 4, we included a few additional checks for computational
efficiency, like skipping the centering step when no cut has been performed before, or book-keeping of discarded data points
that should not be re-considered immediately. For IMDB experiments, we randomly pick 50 training data points and 20 test
data points for ease of computation, and we use minimal margin query strategy described in Appendix D.3. Through all our
data experiments, random seed is fixed to be 0 except for error bar plots, where we always take random seeds {0, 1, 2, 3, 4}.

H.2. Final Solve Regularization in Cutting-plane AL

In this section, we discuss an optional feature to our cutting-plane AL method via the two-or-three layer ReLU network: the
inclusion of a final convex solve which solves for the optimal parameter of the equivalent convex program to the two-or-three
layer ReLU network using the data acquired by the AL thus far.

Convexifying a Two-layer ReLU Network. To introduce this final convex solve, we first briefly overview the work of
(Pilanci & Ergen, 2020). We will focus on the two-layer ReLU network case, as the case for three-layer can be easily
extended by referencing the exact convex reformulation of the three-layer ReLU network given in the paper by (Ergen &
Pilanci, 2021b).

(Pilanci & Ergen, 2020) first introduced a finite dimensional, polynomial-size convex program that globally solves the
training problem for two-layer fully connected ReLU networks. The convexification of ReLU networks can be summarized
into a two-step strategy:

36

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

1. Project original feature to higher dimensions using convolutional hyperplane arrangements.

2. Convexify using convex regularizers, such as convex variable selection models.

First, as per Step 1), we briefly recall and define a notion of hyperplane arrangements for the neural network in Definition
C.1 and we can rewrite the ReLU constraint using the partitioned regions by the hyperplanes:

(2D(S)− In)Xw ≥ 0 (23)

Next, per Step 2), we define the primal problem and give its exact finite-dimensional convex formulation. Given data matrix
X ∈ Rn×d, we consider a two-layer network f(X; θ) : Rn×d → Rn with m neurons:

f(X; θ) =

m∑
j=1

(Xwj)+αj , (24)

where wj ∈ Rd, αj ∈ R are weights for hidden and output layers respectively, and θ = {wj , αj}mj=1. Supplied additionally
with a label vector y ∈ Rn and a regularization parameter β > 0, the primal problem of the 2-layer fully connected ReLU
network is the following:

p∗ := min
{wj ,αj}mj=1

1

2
∥f(X; θ)− y∥22 +

β

2

m∑
j=1

(∥wj∥22 + α2
j). (25)

The above non-convex objective is transformed into an equivalent convex program. For a detailed derivation, please refer to
(Pilanci & Ergen, 2020). We will give an overview of the key steps here. First, re-represent the above optimization problem
as an equivalent ℓ1 penalized minimization,

p∗ = min
∥wj∥2≤1∀j∈[m]

min
{αj}mj=1

1

2
∥f(X; θ)− y∥22 + β

m∑
j=1

|αj |. (26)

Using strong duality, the exact semi-infinite convex program to objective 25 is obtained:

p∗ = max
v∈Rn s.t. |vT (Xw)+|≤β∀w∈B2

−1

2
∥y − v∥22 +

1

2
∥y∥22. (27)

Under certain regularity conditions in (Pilanci & Ergen, 2020), the equivalent finite-dimensional convex formulation is the
following:

p∗ = min
{ui,u′

i}Pi=1,ui,u′
i∈Rd∀i

1

2
∥

P∑
i=1

D(Si)X(u′i − ui)− y∥22

+ β(

P∑
i=1

(∥ui∥2 + ∥u′i∥2))

(28)

subject to the constraints that

(2D(Si)− In)Xui ≥ 0, (2D(Si)− In)Xu′i ≥ 0, ∀i.

Here, β is a regularization parameter, and we denote {u∗i , u′
∗
i }Pi=1 as the solution to objective 28.

To see that the convex program outlined in 28 is indeed an exact reformulation of the two-layer ReLU network, we run the
convex solve on the spiral dataset and the quadratic regression dataset in Section 7 and compare it with standard stochastic
gradient descent technique. We also note here that for the sake of brevity, we will be referring to the solving of the exact
convex program with respect to the two-or-three layer ReLU networks interchangeably as “convex solve” or “final solve”.

First, using the same spiral dataset of randomly selected 80 points from 100 points Spiral (k1 = 13, k2 = 0.5, nshape = 50)
(detailed in Appendix H.4) and β = 0.001, the convex solve achieves an objective value of 0.0008, while stochastic

37

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

Figure 5. Decision boundary made by convex solve (left) and stochastic gradient descent (right) on the Spiral Dataset of nshape = 50.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

Figure 6. Decision boundary made by convex solve (left) and stochastic gradient descent (right) on the Spiral Dataset of nshape = 100.

gradient descent levels out at an objective value greater than 0.001. The final decision boundary on the spiral using the
convex solve (left) and SGD (right) is shown in Figure 5, where we have used marker “x” to indicate the train points
passed into each solver and triangle marker to indicate test points. While both methods capture the spiral perfectly in this
case, the advantage of the convex solve becomes more evident given more complex (e.g. in terms of shape) data. This
is demonstrated in Figure 6, where we have used a spiral dataset of randomly selected 80 points from 100 points Spiral
(k1 = 13, k2 = 0.5, nshape = 100). Similar results hold for the regression case. The convex solve for the two-layer ReLU
network returns an objective value of 4.142× 10−5. This aligns with the result of Figure 7 as the final prediction of the
convex solves aligns perfectly with the actual quadratic function.

Integration of the Final Convex Solve. Now we talk about how we can incorporate the convex program in 28 into our
cutting-plane AL method to potentially aid its performance. We first provide some justifications.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Quadratic Regression: convex ReLU versus SGD

True y = x^2
cvx
bp

Figure 7. Prediction made by convex solve (red) and stochastic gradient descent (cyan) on the regression dataset.

38

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

As we have mentioned in Section 6, since the prediction function

P∑
i=1

D(Si)X(u′i − ui) := f two-layer(X; θ) = [X1 −X1 ... XP −XP]θ,

is linear in θ := (u′1, u1, . . . , u
′
P , uP) with ui, u

′
i ∈ Rd along with the ReLU cuts, we preserve the convexity of the

parameter space after each cut. And hence, the final solve becomes well applicable. To introduce this step, we use the
short-hand notations in Section 6 and also, for the sake of brevity, we denote the exact convex objective in Equation 28 as
the following:

f obj(D; θ, β) =min
θ

1

2
∥

P∑
i=1

(D(Si)X)D(u
′
i − ui)− yD∥22

+ β(

P∑
i=1

(∥ui∥2 + ∥u′i∥2)),

(29)

where XD and yD are the slices of X and y at indices D.

Algorithm 8 Cutting-plane AL for Binary Classification with Lim-
ited Queries using Final Solve
1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θt ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ynt · f 2layer(xnt ; θ

t) < 0 then
9: DAL ← ADD(DAL, (xnt , ynt))

10: T t+1 ← T t ∩ {θ : ynt · f 2layer(xnt ; θ) ≥
0, C({nt}), C′({nt})}

11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget

15: θt ← SOLVE(f obj(DAL; θ
t, β), {C(DAL), C

′(DAL)})
16: return θt

Algorithm 8 shows how the final convex solve is
incorporated into our cutting-plane AL method
via the two-layer ReLU network with limited
queries. Other variations such as query synthesis
(Algorithm 2), inexact cuts (Algorithm 5), as well
as regression (Algorithm 6) can be adapted in the
same way. In Algorithm 8, SOLVE() is a convex
solve that solves the exact convex formulation
in Equation 28 with all the selected training data
pairs (xi, yi) | i ∈ DAL from the active learning
loop. In our implementation, we use CVXPY
and default to solver CLARABEL (Goulart &
Chen, 2024).

Upon examining Algorithm 8 and the objec-
tive function of the equivalent convex pro-
gram f obj(DAL; θ

t, β) in 28, a key difference
is the introduction of a regularization term, i.e.
β(
∑P

i=1(∥ui∥2 + ∥u′i∥2)). In more complex
tasks, the inclusion of the final convex solve,
and thus an additional regularization, tends to aid
the cutting-plane AL method in achieving faster

convergence in the number of queries. This is the case, for example, for the spiral dataset in our experiment (see Appendix
H.4). However, for simpler tasks, such as the quadratic regression prediction, adding regularization could slow down the
convergence (see Appendix H.5). Therefore, in our experiments, we emphasize that we have used the best cutting-plane
AL method, chosen from the version with or without the final convex solve. This is explicitly noted in the supplementary
sections, namely Appendix H.4 for the spiral experiment and Appendix H.5 for the quadratic regression task. We also
remark that due to the limitation in theory on the convexification of neural networks, such a convex solve is only viable up
to a three-layer ReLU network.

H.3. Active Learning Baselines

In this section, we introduce the various baselines used in the spiral task and the quadratic regression task in Section 7. We
also elaborate on the implementation details of each baseline discussed.

In addition to random sampling, which serves as a baseline for all other AL methods, and the linear cutting-plane AL
method (Algorithm 3 for classification and Algorithm 6 for regression), which provides a baseline for our cutting-plane NN
algorithm (Algorithm 4), demonstrating our extension from linear to nonlinear decision boundaries in the cutting-plane

39

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

AL framework, we also survey popular AL algorithms from the scikit-activeml library (Kottke et al., 2021) and the
DeepAL package (Huang, 2021).

We first introduce the baselines we implemented from the DeepAL package.

• Entropy Sampling (Settles, 2009). This technique selects samples for labeling based on the entropy of the predicted
class probabilities. Recall that the entropy for a sample x with predicted class probabilities p(y|x) is given by:

H(y|x) = −
∑
c

p(y = c|x) log p(y = c|x)

Higher entropy indicates greater uncertainty, making such samples good candidates for active learning.

• Bayesian Active Learning Disagreement (BALD) with Dropout (Gal et al., 2017a). BALD aims to choose samples that
maximize the mutual information I[y, θ|x,Dtrain] between predictions y and model parameters θ, given a sample x
and training data Dtrain. Mathematically, this is expressed as:

I[y, θ|x,Dtrain] = H[y|x,Dtrain]− Ep(θ|Dtrain)[H[y|x, θ]]

BALD with dropout extends this approach by using dropout during inference to approximate Bayesian uncertainty,
allowing for efficient estimation of uncertainty in deep learning models through Monte Carlo dropout.

• Least Confidence (Lewis & Gale, 1994a). This strategy selects the samples where the model is least confident in its
most likely prediction. For a given sample x, it is measured by the confidence of the predicted class ŷ, as follows:

LC(x) = 1−max
c

p(y = c|x)

Samples with lower confidence values are considered more uncertain and thus more informative for labeling.

Next, we introduce the baselines surveyed from scikit-activeml.

• Query by Committee (QBC) (Seung et al., 1992). The Query-by-Committee strategy uses an ensemble of estimators (a
“committee”) to identify samples on which there is disagreement. The committee members vote on the label of each
sample, and the sample with the highest disagreement is selected for labeling. This disagreement is often quantified
using measures like vote entropy:

Hvote(x) = −
∑
c

vc
C

log
vc
C

where vc is the number of votes for class c and C is the total number of committee members. This strategy focuses on
reducing uncertainty by selecting instances where committee members are in conflict.

• Greedy Sampling on the Feature Space (GreedyX) (Wu et al., 2019). GreedyX implements greedy sampling on the
feature space, aiming to select samples that increase the diversity of the feature space the most. The method iteratively
selects samples that maximize the distance between the newly selected sample and the previously chosen ones, ensuring
that the selected subset of samples represents diverse regions of the feature space. This is often formulated as:

max
xi∈D

min
xj∈Q

∥xi − xj∥2

where D is the set of all data points and Q is the set of already selected query points.

• Greedy Sampling on the Target Space (GreedyT) (Wu et al., 2019). This query strategy initially selects samples to
maximize diversity in the feature space and then shifts to maximize diversity in both the feature and target spaces.
Alternatively, it can focus solely on the target space (denoted as GSy). This approach attempts to increase the
representativeness of the selected samples in terms of both input features and target values. The optimization can be
formulated as:

max
xi∈D

min
xj∈Q

∥xi − xj∥2 and/or max
yi∈D

min
yj∈Q

∥yi − yj∥2

where D is the set of all data points andQ is the set of already selected query points, applied either to the feature space,
the target space, or both.

40

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

• KL Divergence Maximization (Kldiv) (Elreedy et al., 2019). This strategy selects samples that maximize the expected
Kullback-Leibler (KL) divergence between the predicted and true distributions of the target values. In this method, it is
assumed that the target probabilities for different samples are independent. The KL divergence is a measure of how one
probability distribution diverges from a second, reference distribution, and is given by:

DKL(P ∥ Q) =
∑
i

P (xi) log
P (xi)

Q(xi)

where P is the true distribution and Q is the predicted distribution. This method balances exploration and exploitation
by focusing on the areas where the current model’s uncertainty is greatest.

We used Query-By-Committee and Greedy Sampling on the Feature Space for both the spiral experiment and the quadratic
regression experiment, and used Greedy Sampling on the Target and KL Divergence Maximization only for the regression
task. As the readers may see in the descriptions provided above, both KL Divergence Maximization and Greedy Sampling
on the Target Space are primarily suited for regression tasks due to the way they handle target distributions and diversity in
the target space, which are more relevant in regression scenarios where the output values are continuous. Therefore, we have
only included them for the regression task to offer a more robust comparison to our AL method.

Algorithm 9 Deep Active Learning Baseline
1: DL ← SAMPLE(D, ninit)
2: DU ← D \ DL

3: θ0 ← TRAIN(DL)
4: t← 0
5: repeat
6: EU ← EMBEDDINGS(DU , θ

t)
7: {xnt , ynt} ← QUERY(EU ,DU)
8: DL ← ADD(DL, {xnt

, ynt
})

9: DU ← DU \ {xnt
, ynt
}

10: θt+1 ← TRAIN(DL)
11: t← t+ 1
12: until |DL| ≥ nbudget
13: return θt

We now discuss the implementation details for
each of the aforementioned baselines. We
implement random sampling and all DeepAL
baselines using the DeepAL pipeline, while
the scikit-activeml baselines are imple-
mented within their respective framework. We
note that the original DeepAL framework given
by (Huang, 2021) only implements active learn-
ing for classification tasks. Thus, we modified
the pipeline to allow AL methods surveyed from
DeepAL to also be able to handle regression
tasks. Since the modifications are minor, such
as changing the loss criterion from cross-entropy
to root mean square error loss, but not structural,
we omit this distinction here and refer the readers
to our submitted codes for details. Algorithm 9
outlines the general workflow of a deep active
learning baseline. Here, DL and DU refer to the

set of labeled and unlabeled training data respectively, and ninit is the number of initial data to be randomly selected and
labeled before the active learning loop.

It remains for us to discuss implementation details for scikit-activeml baselines. It is noteworthy that the default
scikit-activeml active learning method for both classification and regression is implemented using its own classifiers
or regressors, such as the mixture model classifiers for classification and the normal inverse Chi kernel regressor, instead of
trained using customizable deep neural nets, as in the case of DeepAL. For the sake of breadth in surveying popular active
learning baselines, we use the Python package skorch, a scikit-learn compatible wrapper for PyTorch models (Viehmann
et al., 2019), to integrate custom neural networks with scikit-activeml classifiers for the classification tasks, and
used popular scikit-activeml active learning methods trained with its default regressor, the normal inverse Chi kernel
regressor, for the regression tasks. In the classification case, we enforce the same ReLU architecture on all baselines for
fairness. And in the regression case, to ensure the optimal performance of the scikit-activeml baselines for the
robustness of comparison, we use the so-called “bagging regressor” in scikit-activeml, which is an ensemble method
that fits multiple base regressors (in our case, 4) on random subsets of the original dataset using bootstrapping (i.e., sampling
with replacement) to update the base normal inverse Chi kernel regressor. This method is known to improve query learning
strategies by reducing variance and improving robustness, ensuring that the baselines perform optimally (Abe & Mamitsuka,
1998).

Further further implementation details, such as how we implement the QBC method in the classification case using Skorch
by creating an ensemble of 5 classifiers using the exact same ReLU architecture with parameters in Table 2 but with different

41

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

random state of 0-4 respectively, and additional details on the specific implementation, please refer to our submitted codes.

Finally, we would like to again emphasize that towards a fair and robust comparison, we select the best performing number
of epochs (for a discussion on this, refer to Appendix H.4) and learning rate for AL baselines using deep neural networks
and use enhancements such as bagging regressors for the scikit-activeml baselines trained on its default regressors.

H.4. Synthetic Spiral Experiment

In this section, we provide additional implementation details and supplementary results on the synthetic spiral binary
classification experiment in Section 7.1.

Data Generation. We generate the two intertwined spiral used in Section 7 according to the following: the coordinates
(x1, x2) for the i-th data point of the spiral with label y are generated as

x1 = r cos(ϕ)y
k1

+ k2, x2 = r sin(ϕ)y
k1

+ k2, r = k3

(
k4−i
k4

)
, ϕ = k5iπ,

where k1, . . . , k5 are positive coefficients. In the implementation, index i is normalized to lie within the range from 0 to
nshape − 1, where nshape controls the shape of the spiral, so that the shape is independent of the total number of data points
generated. The bigger nshape is, the more complex the spiral (see for instance the spirals in Figure 5 versus Figure 6). In our
experiment, we use the spiral dataset with k1 = 13, k2 = 0.5, nshape = 50.

AL Implementation Details. To implement the cutting-plane AL method, we use 1000 simulations to randomly sample
the number of partitions in the hyperplane arrangements (Definition C.1). This determines the embedding size (or the
number of neurons). Table 1 summarizes the statistics with respect to each seed. In our implementation of the deep AL
baselines, we adjust the embedding size accordingly when using a different seed to ensure fair comparisons.

Seed 0 1 2 3 4

Neurons 623 607 605 579 627

Table 1. Number of neurons for each seed (0-4) sampled using 1000 simulations for the spiral dataset.

For all deep active learning baselines used in the Spiral case, we have set the hyper-parameters to be according to Table 2.
We empirically selected learning rate 0.001 from the choices {0.1, 0.01, 0.001} as it tends to give the best result among the
three for all baselines in both the classification and regression tasks. We also choose the number of epochs to be 2000 as it
also gives the best result among choices {20, 200, 2000} and show significant improvement from both 20 and 200.

Epochs Learning Rate Train Batch
Size

Test Batch Size Momentum Weight Decay

2000 0.001 16 10 0.9 0.003

Table 2. Hyper-parameters of deep AL baselines’ training networks with the Stochastic Gradient Descent (SGD) optimizer

In fact, the performance of the deep AL baselines hinges much on the number of epochs in the train step (see Algorithm
9. Even when the AL method gains access to the full data, if the number of epochs is small, we would still not obtain
satisfactory classification result. In the following, we explore the effect of number of epochs on classification accuracy for
the baselines. We fix seed = 0 and use the same spiral data generation used in Section 7.1 with a 4:1 train/test split along
with a budget of 20 queried points. Figure 8 to Figure 13 show the classification boundary with varying epochs = 20, 200,
and 2000.

For most baselines, we observe a significant improvement in the decision boundary between 200 and 2000 epochs. To ensure
a robust comparison across methods, we set the number of epochs to 2000. This mini experiment also underscores the
inefficiency of gradient-based training, as the accuracy rate heavily depends on the number of training epochs, highlighting
the need for a large number of iterations to achieve satisfactory results.

Experiment Results. We now give the deferred supplementary experiment results in Section 7.1. To start, per discussion
in Appendix H.2, we would like to discuss the inclusion of regularization through the final convex solve of the equivalent
convex program of the two-layer ReLU networks.

42

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

EntropySampling
Train Data
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

EntropySampling
Train Data
Test Data
Queried Data

(b) epoch = 200 (c) epoch = 2000

Figure 8. Entropy Sampling (20 Queries)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

RandomSampling
Train Data
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

RandomSampling
Train Data
Test Data
Queried Data

(b) epoch = 200 (c) epoch = 2000

Figure 9. Random Sampling (20 Queries)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

LeastConfidence
Train Data
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

LeastConfidence
Train Data
Test Data
Queried Data

(b) epoch = 200 (c) epoch = 2000

Figure 10. Least Confidence (20 Queries)

43

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

BALDDropout
Train Data
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

BALDDropout
Train Data
Test Data
Queried Data

(b) epoch = 200 (c) epoch = 2000

Figure 11. BALD with Dropout (20 Queries)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

greedyX
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

greedyX
Test Data
Queried Data

(b) epoch = 200

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

greedyX
Test Data
Queried Data

(c) epoch = 2000

Figure 12. GreedyX (20 Queries)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

qbc
Test Data
Queried Data

(a) epoch = 20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

qbc
Test Data
Queried Data

(b) epoch = 200

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

qbc
Test Data
Queried Data

(c) epoch = 2000

Figure 13. QBC (20 Queries)

44

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 14 shows the final decision boundary with (left) and without (right) the convex solve with the same data and setup
as in the spiral experiment in Section 7.1. We abbreviate “after final solve” as AFS and “before final solve” as BFS. It is
evident that the inclusion of regularization improves the performance of our cutting-plane active learning method, increasing
the accuracy rate on train/test set from 0.84/0.60 to 1.00/1.00. This is therefore the method we use for our cutting-plane
AL algorithm. We will see that regularization with the final convex solve does not always speed up the convergence of our
cutting-plane AL method in the number of queries. It tends to work less optimally when used on relatively simple dataset, as
we will see in Appendix H.5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

AFS-CVX
Train Data
Test Data
Queried Data

(a) AFS

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

BFS-CVX
Train Data
Test Data
Queried Data

(b) BFS

Figure 14. Decision boundary of cutting-plane AL via the two-layer ReLU network with (left) and without (right) final convex solve.

Table 3 presents the train and test accuracies on the binary spiral dataset. This corroborates the decision boundaries shown
in Figure 2. Finally, to demonstrate the consistency of optimal performance of our proposed method and to highlight its fast

Method Train Accuracy Test Accuracy

Cutting-plane (ours) 1.00 1.00
Linear Cutting-plane 0.50 0.50
Random Sampling 0.73 0.70
Entropy Sampling 0.76 0.70

BALD with Dropout 0.71 0.65
Least Confidence Sampling 0.64 0.55

Greedy Sampling (GreedyX) 0.59 0.60
Query By Committee (qbc) 0.59 0.60

Table 3. Train and test accuracies of binary classification on the Spiral (k1 = 12, k2 = 0.5, nshape = 50) dataset for cutting-plane AL via the 2-layer ReLU NN and various

deep AL baselines using seed = 0.

convergence, we plot the mean train/test accuracy rates against the number of queries for our method and the baselines with
error-bar generated by running 5 experiments on seeds 0-4. Figure 15 demonstrates the result.
H.5. Quadratic Regression Experiment

Data Generation and AL Implementation Details. We generate the experiment dataset in this section simply according
to the quadratic equation y = x2 without adding any noise. Since the dimension of the regression dataset goes down from
d = 3 in the spiral dataset (with the third dimension acting as bias for the ReLU networks) to d = 2 in the regression dataset,
we increase the number of simulations to 2000 to randomly sample partitions for hyperplane arrangements to maintain an
adequate embedding size. As in the spiral task, Table 4 summarizes the number of neurons sampled with respect to each
seed. Once again, in our implementation of the deep AL baselines, we adjust the embedding size accordingly when using
a different seed to ensure fair comparisons. As in the spiral experiment, we set the hyper-parameters for all deep active

45

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

0 10 20 30 40 50
Number of Queries

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
M

ea
n

Test Accuracy Mean versus Number of Queries on Binary Spiral
greedyX
EntropySampling
RandomSampling
LeastConfidence
BALDDropout
qbc
linear
Cutting-Plane (ours)

(a) Test

0 10 20 30 40 50
Number of Queries

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
Ac

cu
ra

cy
 M

ea
n

Train Accuracy Mean versus Number of Queries on Binary Spiral
greedyX
EntropySampling
RandomSampling
LeastConfidence
BALDDropout
qbc
linear
Cutting-Plane (ours)

(b) Train

Figure 15. Mean test and train accuracy rate across seeds (0-4) versus the number of queries for the 2-layer cutting-plane AL and various baselines.

46

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Seed 0 1 2 3 4

Neurons 160 160 157 159 160

Table 4. Number of neurons for each seed (0-4) sampled using 2000 simulations for the quadratic regression dataset.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Active Learning (Cutting-Plane)
True y = x^2
Test Data
Prediction (Cutting-Plane)

(a) AFS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Active Learning (Cutting-Plane)
True y = x^2
Test Data
Prediction (Cutting-Plane)

(b) BFS

Figure 16. Prediction of quadratic regression with cutting-plane AL via a two-layer ReLU network with (left) and without (right) convex solve.

learning baselines according to Table 2. In the quadratic regression task, we similarly observe improved performance in
deep AL baselines with a higher number of training epochs and a lower learning rate of 1× 10−3, ensuring that the baselines
provide a robust comparison. For baselines from scikit-activeml, we use the bagging regressor along with the default
regressor to enhance their performance (see Appendix H.3). For our cutting-plane AL method (Algorithm 6) and the linear
cutting-plane AL method (Algorithm 7), we choose the threshold value ϵ = 1× 10−3.

Experiment Results. We now present the deferred experiment results in the quadratic regression experiment. To start, we
discuss the performance of our cutting-plane AL method with and without convex solve. While using the full 80 training
data, the stand-alone convex solve achieves perfect prediction of quadratic regression (see Figure 7), Figure 16 shows
that including the regularization in our cutting-plane AL method with a query budget of 20 leads to slightly suboptimal
predictions compared to the non-regularized version. This could be because of the reduced complexity in the quadratic
regression task, where the relationship between the features and the target is simple and well-behaved and the model is less
likely to overfit. Therefore, the incorporation of regularization could slow down the parameter updates, leading to slower
convergence.

Method Train RMSE Test RMSE

Cutting-plane (ours) 0.0111 0.0100
Linear Cutting-plane (infeasible) 0.7342 0.7184

Random Sampling 0.0824 0.0483
Entropy Sampling 0.0599 0.0529

BALD with Dropout 0.0568 0.0408
Least Confidence Sampling 0.0599 0.0529

Greedy Sampling (GreedyX) 0.0745 0.0447
Query By Committee (qbc) 0.1245 0.1366

KL Divergence Maximization (kldiv) 0.1356 0.0811
Greedy Sampling Target (GreedyT) 0.3296 0.3106

Table 5. Train and test RMSE for the quadratic regression task (y = x2) using the cutting-plane AL with a 2-layer ReLU neural network and various deep AL baselines with

seed = 0.

The trend plot in Figure 17 clearly illustrates the faster convergence of our cutting-plane AL method without regularization
(BFS), compared to the regularized version (AFS), and significantly outpacing all other baselines. Therefore, for the
quadratic regression task, we use the cutting-plane AL method without final solve (BFS). Nevertheless, it is noteworthy that
both AFS and BFS cutting-plane AL method significantly outperforms all baselines and converging to the optimal prediction
at a considerably faster rate.

47

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

0 10 20 30 40 50
Number of Queries

10 2

10 1

Te
st

 L
og

 R
M

SE

Test Log-RMSE versus Number of Queries on Quadratic Regression

greedyX
greedyT
EntropySampling
RandomSampling
LeastConfidence
BALDDropout
qbc
kldiv
Cutting-Plane (AFS)
Cutting-Plane (BFS)

(a) Test

0 10 20 30 40 50
Number of Queries

10 2

10 1

Tr
ai

n
Lo

g
RM

SE

Test Log-RMSE versus Number of Queries on Quadratic Regression

greedyX
greedyT
EntropySampling
RandomSampling
LeastConfidence
BALDDropout
qbc
kldiv
Cutting-Plane (AFS)
Cutting-Plane (BFS)

(b) Train

Figure 17. Logarithm of mean test and train RMSE across seeds (0-4) versus the number of queries for the 2-layer cutting-plane AL and various baselines. This is an

augmented error-bar plot as right of Figure 3, with an additional distinguishment between the AFS and BFS cutting-plane AL method.

Now we present the deferred results for the quadratic regression experiment in Section 7.1. Table 5 documents the train
and test RMSE for our proposed cutting-plane AL against various deep AL baselines. In addition, Figure 18 presents the
corresponding prediction made by our proposed method and the complete set of surveyed baselines.

H.6. IMDB Data Examples

48

Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes

Figure 18. Predictions of various AL algorithms for quadratic regression task using the cutting-plane AL with a two-layer ReLU neural network and various deep AL baselines

(complete).

Examples Content Label

Review 1 “If you like original gut wrenching laughter you will like this movie. positiveIf you are young or old then you will love this movie, hell even ...”

Review 2 “An American Werewolf in London had some funny parts, but this negativeone isn’t so good. The computer werewolves are just awful...”

Review 3 “”Ardh Satya” is one of the finest film ever made in Indian Cinema. positiveDirected by the great director Govind Nihalani...”

Table 6. Examples of IMDB movie reviews

49

