
ToolNet: Connecting Large Language Models
with Massive Tools via Tool Graph

Anonymous ACL submission

Abstract

While achieving remarkable progress in a broad001
range of tasks, large language models (LLMs)002
remain significantly limited in properly using003
massive external tools. Existing in-context004
learning approaches simply format tools into a005
list of plain text descriptions and input them to006
LLMs, from which, LLMs generate a sequence007
of tool calls to solve problems step by step.008
Such a paradigm ignores the intrinsic depen-009
dency between tools and offloads all reasoning010
loads to LLMs, making them restricted to a lim-011
ited number of specifically designed tools. It012
thus remains challenging for LLMs to operate013
on a library of massive tools, casting a great014
limitation when confronted with real-world sce-015
narios. This paper proposes ToolNet, a plug-016
and-play framework that scales up the number017
of tools to thousands with a moderate increase018
in token consumption. ToolNet organizes tools019
into a directed graph. Each node represents020
a tool, and weighted edges denote tool transi-021
tion. Starting from an initial tool node, an LLM022
navigates in the graph by iteratively choosing023
the next one from its successors until the task024
is resolved. Extensive experiments show that025
ToolNet can achieve impressive results in chal-026
lenging multi-hop tool learning datasets and is027
resilient to tool failures.028

1 Introduction029

There is an emerging interest (Qin et al., 2023;030

Song et al., 2023; Yao et al., 2022; Patil et al.,031

2023; Yang et al., 2023) in unleashing the power of032

large language models (LLMs) to effectively inter-033

act with various tools (or APIs) for real-world tasks.034

Tool-augmented LLMs, when connected feasibly035

with massive APIs, can serve as an intermediate in-036

terface between average humans and complex tools,037

which may eventually reshape the vast ecosystem038

of applications. This endeavor has yielded sev-039

eral impressive industrial outcomes, such as New040

Bing the search engine (Microsoft Corporation,041

2023b), Copilot the office assistant (Microsoft Cor- 042

poration, 2023a), RT-2 the robot controller (Bro- 043

han et al., 2023), and WebGPT the web-browsing 044

agent (Nakano et al.). 045

Despite the remarkable progress, tool- 046

augmented LLMs are still in the experimental 047

stage and not yet ready to fully meet real-world 048

demands. Notably, while LLMs are designed 049

as generalists for multiple tasks, LLM-powered 050

agents are commonly customized with few-shot 051

in-context examples for narrow purposes. They 052

are limited to connecting with a small number 053

of specially designed tools. For example, Tool- 054

former (Schick et al., 2023) masters 5 tools such 055

as calculator, question-answering engine, calendar, 056

etc. Chameleon (Lu et al., 2023) specializes in 057

two knowledge-intensive question-answering tasks 058

with a set of well-curated tools, such as table 059

verbalizer and image captioner. 060

Scaling up the number of tools to thousands is 061

challenging for LLMs. This is not merely due 062

to the surging token consumption when tools are 063

prompted as input to LLMs, which commonly ex- 064

ceeds their token limits. More importantly, it is be- 065

yond LLMs’ capability to select the correct one(s) 066

from a library of vast tools through straightforward 067

in-context learning. According to (Hao et al., 068

2023), as the number of tools increases, LLMs 069

tend to hallucinate and make mistakes in calling 070

tools, causing steady performance degradation. In 071

response, researchers put huge efforts into training 072

LLMs to master massive tools (Qin et al., 2023; 073

Patil et al., 2023; Hao et al., 2023). While this 074

method could yield promising results, it brings pro- 075

hibitive computation costs and lacks adaptability to 076

new tools or tools with constant function updates. 077

Moreover, in a vast tool library, low-quality tools 078

should indeed be reckoned with. When misled by 079

tools, LLMs are prone to hallucinate. In response, 080

(Xie et al., 2023) employs beam search to explore 081

the most proper tool(s). However, token consump- 082

1

!!"

!!"

#$%&'(()*+,

-.+/

-.+/

012)32,(/

!""#$$$$$$$$$%&"'(
&&&'(()&4&&&&&&&&&&&&&&&&&5678
&&&'(()&9&&&&&&&&&&&&&&&&&5698
&&&'(()&:&&&&&&&&&&&&&&&&&565;
&&&'(()&8&&&&&&&&&&&&&&&&&565:-<=2,>?@&AB(/+.&(C&'(().

#2%&D+EF'（a）Conventional In-context Tool Learning

（b）ToolNet

Figure 1: Comparison of (a) prior in-context tool learn-
ing methods and (b) the proposed ToolNet. Convention-
ally, all tools are formatted as the input to an LLM for
step-by-step tool calling, posing scalability challenges
for using massive tools. ToolNet organizes tools into a
graph. An LLM chooses only from the successor tools
relative to its previous selection. An Evaluator assesses
the effectiveness of tools and dynamically modifies the
tool transition weights within the graph.

tion is multiplied, and without an explicit memory083

mechanism, the exploration experience cannot be084

leveraged for subsequent tasks. To address the is-085

sues above, we raise the following questions:086

Question 1. How to enable an LLM to cope with087

massive tools while retaining token efficiency?088

We analyze the multi-hop tool-use trajectories089

in ToolBench (Qin et al., 2023), recognized as the090

most extensive publicly available dataset dedicated091

to tool learning. As depicted in Figure 2, our anal-092

ysis reveals that tools generally have a restricted093

set of potential successor tools to be invoked. This094

observation signifies the sparse transition between095

tools. In essence, when a particular tool is invoked,096

the subsequent tool to be called can be constrained097

to a remarkably limited set of options. The present098

study leverages this tool-use pattern to connect an099

LLM with massive tools and retain token efficiency.100

Question 2. How can an LLM identify ineffective101

tools and modify its tool-utilization strategies for 102

future tasks? 103

(Shinn et al., 2023) shows that LLMs can ver- 104

bally reflect their tool-use trajectories for improve- 105

ments within ongoing interactions or episodes. In 106

this work, we consider fine-grained reflection at 107

the tool level. Every tool-use step is probed and 108

scored by an LLM. Scores will be used to adjust 109

the tool transition weights, where low-quality tools 110

will be restricted with reduced transition weights. 111

Notably, (Shao et al., 2023) shows that providing 112

an LLM with scores of candidate answers brings 113

significant performance improvements. Likewise, 114

we prompt an LLM with the transition weights of 115

tools. In this way, by encoding the experience into 116

a tool graph, failure calls to low-quality tools can 117

be significantly reduced. 118

To this end, this paper presents ToolNet, a sim- 119

ple yet effective paradigm that assists LLMs in 120

handling massive tools, learning to select appro- 121

priate tools, and avoiding calls to broken tools. A 122

comparison between ToolNet and other methods is 123

provided in Table 1. As is shown in Figure 1, Tool- 124

Net organizes the tools in a weighted directed graph. 125

The graph is built based on the tool-use trajectories 126

produced by an LLM. In turn, the LLM uses the 127

graph to reason its tool calls, a process that can be 128

conceptualized as navigating within this graph. Fur- 129

thermore, the graph can be online updated, thereby 130

enabling its adjustment to accommodate the fre- 131

quent updates of tools or the introduction of new 132

tasks. Extensive experiments are conducted on 133

five distinct datasets: SciQA (Lu et al., 2022a), 134

TabMWP (Lu et al., 2022b), MATH (Hendrycks 135

et al., 2021), APIBank (Li et al., 2023), and Tool- 136

Bench (Qin et al., 2023). The results indicate that 137

ToolNet consistently outperforms its counterparts 138

in terms of overall performance. Notably, it demon- 139

strates remarkable resilience against the interfer- 140

ence of noisy tools and achieves this superior per- 141

formance while utilizing significantly fewer tokens. 142

2 Problem Formulation 143

Tool-augmented LLMs interact with the environ- 144

ment through structured texts in natural language. 145

The general interaction process can be described 146

as follows: at step s, an LLM takes the current 147

environmental observation os along with a history 148

of interaction activities Cs as the input and pro- 149

duces a verbal thought ts ∈ L. Then, the LLM 150

interacts with the environment by taking an action 151

2

Table 1: A comparison of work that augments LLMs
with tool usage. adapt. denotes the adaptability to
new tools or tools with updates. NL denotes natural
language. Plug-Play means the LLMs can be equipped
and unequipped with a tool flexibly.

Method
API/Tool Use Framework

#APIs Adapt.
Token

Efficiency
Planning

Plug.
Play

Toolformer 5 – + - ✗

ReAct 3 + - NL ✓

ToT - – – NL ✓

Reflexion - + – NL ✓

Chameleon 15 - - NL ✓

HuggingGPT 24 + - NL ✓

Gorilla 1645 - + - ✗

RestGPT 100+ + - NL ✓

ToolNet (ours) 3992 ++ + NL+Graph ✓

as ∈ A, which can be described as a tuple of a tool152

name and its arguments, e.g., as = (tools, args),153

where tools ∈ T . Subsequently, the LLM gets154

a new observation os+1 from the environment E .155

By iterating the interaction process, the LLM may156

eventually resolve a given task.157

LLMs are mostly stateless. The history of in-158

teractions Cs is generally formulated as part of the159

input to LLMs. It helps an LLM recall the pre-160

vious process and infer the next action as+1. We161

define Cs as a queue of size K, consisting of obser-162

vations, thoughts and actions in the past, e.g., Cs163

= [(os−k, ts−k, as−k), · · · , (os−1, ts−1, as−1)]. In164

each step, a tuple of new thought, action, and ob-165

servation is appended to Cs, and if the maximum166

capacity is reached, the earliest tuple is popped out.167

In addition to Cs, the set of available tools T needs168

to be included as the input context as well, from169

which, the LLM may choose a proper one.170

Let Pθ denotes a tool-augmented LLM with pa-171

rameters θ. Formally, the interaction process de-172

scribed above can be formulated as follows.173

ts = Pθ(Cs ∪ os), (1)174

as = Pθ(Cs ∪ os, ts, T), (2)175

os+1 = E(as) (3)176

A predominant issue of existing tool-augmented177

LLMs is their heavy token consumption, which can178

be largely attributed to the long input context of Cs179

and T . A representative solution is by segmenting180

the long texts of Cs into paragraphs and compress-181

ing them into semantic embeddings. Subsequently,182

the semantic similarity scores between the candi-183

date paragraphs and the current observation os can184

be computed and ranked. Finally, Cs in Eq. 1- 2185

is replaced by the most relevant paragraphs as the 186

input to LLMs. Intuitively, this solution can be 187

extended to T , e.g., searching tools in T that are 188

the most relevant to the thought ts. However, ac- 189

cording to Eq. 1, ts is generated without the full 190

knowledge of T . The semantic information in ts 191

can be irrelevant to any tools in T . Moreover, in 192

a library of massive API functions, there can be 193

many tools sharing similar semantic information 194

but differing subtly in functionalities. Searching 195

tools by semantic embeddings can be coarse and 196

inaccurate when |T | goes large. Consequently, ex- 197

isting tool learning approaches either are restricted 198

to a limited number of specifically designed tools 199

or use instruction finetuning to augment the LLM 200

Pθ with the prior knowledge of T , which can be 201

computationally intensive. 202

3 ToolNet 203

The idea of ToolNet is simple. Instead of inputting 204

all tools in T to Pθ as in Eq. 2, we provide only 205

a subset Ts ⊂ T , according to a policy π and the 206

previous action as−1, i.e., 207

as = Pθ(Cs ∪ os, ts, Ts), (4) 208

where Ts = π(T , as−1). Markov assumption takes 209

effect in the generation of Ts. We describe π as a 210

weighted directed graph G = (V, E) that connects 211

all the tools in T . V and E denote the sets of 212

nodes and edges, respectively. Every tool in T 213

is regarded as a unique node in V . In addition, two 214

special nodes, start and end, are added into V . In 215

other words, V = T ∪ {start, end}. An edge e 216

= (vi, vj , wi,j) connects node vi to node vj , with 217

wi,j denotes the transition weight. Note that tools 218

along with the transition weights are formatted as 219

the input texts to LLMs. All nodes except start 220

and end have a self-transition edge that directs to 221

themselves. The start node directs to all the other 222

nodes, which in turn directs to the end. 223

To this end, an LLM taking actions is the same 224

as traveling in the graph G. Assume the LLM used 225

tools−1 = vi in the last iteration. The available 226

tools Ts in the next step are simply the out-neighbor 227

nodes of vi, e.g., Ts = oneigh(vi). If the graph G 228

is sparse, |Ts| ≪ |T |, bringing token efficiency to 229

tool-augmented LLMs. Notably, the start node 230

connects all tools. In other words, the LLM starts 231

with T1 = T , which bottlenecks the token consump- 232

tion and becomes impractical as |T | scales up. To 233

handle this problem, we leverage the semantic simi- 234

larity search approach mentioned in Section 2. The 235

3

1 2 3 4 5 >5
0

0.2

0.4

0.6

0.8

number of successors

pr
op

or
tio

n
G1
G2
G3

(a)

1 2 3 4 5 >5
0

0.2

0.4

0.6

0.8

number of tool calls

pr
op

or
tio

n

G1
G2
G3

(b)

Tool Category #Successors

jokes/random Social 49

jokes/search Social 33

weather/current Search 31

soundcloud Search 29

currency exchange Search 26

Reddit meme Social 24

Date Search 22

weather/forecast Search 22

nutrition analysis Health 20

(c)

Figure 2: The tool-use statistics on Toolbench, which consists of three subsets: G1, G2, and G3. (a) shows that
around 80% of tools have less than 6 successor tools called. (b) illustrates that over 90% of tools in the G1 and
G2 subsets, as well as over 50% of tools in the G3 subset, are called fewer than 6 times. (c) lists tools with the
most successor tools in the G3 subset. These statistics motivate the proposed ToolNet to construct a tool graph with
sparse connections of tools.

description of each tool is compressed into a se-236

mantic embedding, which is then ranked based on237

its similarity to the embedding of the initial task238

description o1. Only the K most relevant tools are239

kept to set up T1.240

An additional benefit introduced by ToolNet is241

the transition weights of tools in Ts, which measure242

the prior preference of tools. Based on the weights,243

tools can be sorted in order and formatted as the244

input context. The LLM can refer to the prefer-245

ence scores to make selections. In contrast, the246

existing approaches, such as ReAct and Reflexion,247

provide an LLM with tools of equal preference.248

The LLM relies solely on its internal reasoning249

ability to make a choice.250

3.1 Graph Construction251

The construction of the graph G is vital to the per-252

formance and efficiency. If all tools in G are mu-253

tually connected with equal edge weights, ToolNet254

becomes uninformative and degrades into the naive255

ReAct approach. A good graph G should be sparse,256

i.e., nodes have a small number of out-neighbors.257

Out-of-date tools that are no longer functional258

should be downweighted. Notably, graph construc-259

tion can be flexible. This paper considers static260

and dynamic graph construction approaches. Other261

graph operations, such as composition, pruning,262

and partition, are worthy of exploration but beyond263

the scope of this paper.264

3.2 Static Construction265

Static construction requires large amounts of tool-266

use trajectories, such as the massive handwritten267

code snippets on GitHub that call PyTorch API268

functions. The orders of API function calls can269

be leveraged to build up G. Tool-use trajectories 270

can also be generated by tool-augmented LLMs. 271

The multi-step reasoning trajectories represent se- 272

quences of tool calls. Several existing works such 273

as ToolBench (Qin et al., 2023), APIBench (Peng 274

et al., 2022), API-Bank (Li et al., 2023), and 275

ToolAlpaca (Tang et al.), have released their cu- 276

rated tool-use instances, from which ToolNet can 277

be constructed. Unfortunately, the quality of trajec- 278

tories generated from LLMs is of great concern. 279

The static construction of G is straightforward. It 280

is the same as 2-gram language modeling. Denote 281

D as a set of tool-use trajectories that have com- 282

pleted their tasks. A trajectory has a sequence of 283

tool uses, e.g., [tool1, · · · , tools, · · · , end], where, 284

for simplicity, we regard end as a normal tool. The 285

transition weight wi,j from node vi to node vj is 286

computed as follows, 287

wi,j =
ED [1 (tools = vi, tools+1 = vj)]

ED [1 (tools = vi)]
(5) 288

The start node in G is set up separately. It connects 289

all tools except the end with equal weights. When 290

tools become massive, a tool retriever based on 291

semantic similarity search can be adopted to select 292

the first one, tool1, as mentioned in Section 3. 293

3.3 Dynamic Construction 294

Tools are dynamically changing. They have life 295

cycles and may no longer be maintained by devel- 296

opers. Consequently, the edge weights of G need 297

timely finetuning, making static construction in- 298

applicable. Moreover, there is generally a lack of 299

large amounts of tool-use trajectories, especially 300

for the emergent plugins on ChatGPT. In this case, 301

dynamic construction of G is demanding. 302

4

G can be initialized either by static construc-303

tion or as a non-informative graph with fully con-304

nected tools. Then, dynamic construction iterates305

between generating tool-use trajectories and updat-306

ing G. The process of trajectory generation is the307

same as explained in Section 3. The update of G is308

important. Since the number of tool-use trajectories309

is limited, a fine-grained inspection of trajectories310

is needed. An LLM acts as a tool evaluator, tak-311

ing the whole trajectory as input and scoring every312

tool used. These scores are discrete integers in313

[−3, 3]. Evaluating the tools equates to assessing314

the nodes visited in G. We use ∆
(n)
i to denote the315

Evaluator’s score of node vi in the n-th iteration.316

Let s(n)i denote the accumulated score, e.g., s(n)i =317 ∑n
k=1∆

(k)
i . The transition weight w(n)

i,j is updated318

as follows.319

w
(n)
i,j = βw

(0)
i,j + (1− β)∆w

(n)
i,j , (6)320

∆w
(n)
i,j :=

f(s
(n)
i)∑

vj∈oneigh(vi) f(s
(n)
j)

, (7)321

f(x) :=

{
αx+ 1, x ≥ 0
eαx, x < 0

, (8)322

where f(x) maps accumulated scores to (0,+∞).323

∆w
(n)
i,j ∈ (0, 1] denotes the normalized gradient to324

update the transition weight. α and β are hyper-325

parameters. α controls the speed of updating. β326

interpolates between the prior weight w(0)
i,j and the327

weight learnt from dynamic construction.328

4 Experiments329

4.1 Setup330

Datasets. We conduct experiments on five datasets:331

(1) SciQA (Lu et al., 2022a), a question-answering332

benchmark in various scientific fields including333

multiple subjects like biology, geography, and334

ecosystems. (2) TabMWP (Lu et al., 2022b), a335

question-answering benchmark, where an LLM336

should answer questions according to a given Table.337

(3) MATH (Hendrycks et al., 2021), a question an-338

swering benchmark mathematical fields including339

7 categories: Prealgebra, Algebra, Number Theory,340

Counting and Probability, Geometry, Intermedi-341

ate Algebra, and Precalculus. (4) APIBank (Li342

et al., 2023), a multi-task benchmark consisting343

of various tools to evaluate the performance of344

tool-augmented LLMs. (5) ToolBench (Qin et al.,345

2023), a large-scale benchmark with 3451 APIs346

spanning distinct domains. Due to cost considera- 347

tions, we select subsets of these datasets for evalua- 348

tion. From the SciQA dataset, we randomly select 349

1,000 questions for evaluation. For TabMWP, we 350

utilize the test1k subset. Within the MATH dataset, 351

we exclusively consider level-5 questions, which 352

represent the highest difficulty level. Additionally, 353

we exclude geometry-related questions, aligning 354

with prior research (Drori et al., 2022; Wu et al., 355

2023). For APIBank, we focus on a specific subset, 356

specifically the test data falling within the lv1-lv2- 357

samples category, totaling 212 questions. In the 358

ToolBench dataset, we select a random subset of 359

1,000 questions from the G1 set. 360

Baselines. (1) ReAct (Yao et al., 2022). 361

Equipped with various tools, an LLM strategically 362

chooses one tool at a time for each step to address 363

specific tasks or questions, ensuring a step-by-step, 364

focused approach to problem-solving. (2) Reflex- 365

ion (Shinn et al., 2023)). Similar to ReAct, LLM 366

interacts with multiple tools in several steps. When 367

an LLM fails a task, it will be prompted to ver- 368

bally reflect on its reasoning trajectories. The self- 369

refined LLM can learn from the prior errors and 370

retry until the correct answer is submitted or the 371

maximum tries are reached. (3) Tree-of-Thought 372

(ToT) (Yao et al., 2023). It formulates the LLM 373

reasoning process as a tree of thoughts, where each 374

node within the tree symbolizes a segment of the 375

solution. At any given node, a thought genera- 376

tor module is responsible for the creation of new 377

nodes, effectively branching out the solution space. 378

Subsequently, each of these new nodes undergoes 379

evaluation. The progression and expansion of this 380

thought tree are governed by a specific search al- 381

gorithm, such as depth-first search (DFS), which 382

dictates the sequence and manner the nodes are 383

extended and explored. Implementation details. 384

We use gpt-3.5-turbo as the LLM in all our exper- 385

iments. Given a question or task instruction, the 386

LLM iteratively selects one from the available tools 387

till the Answer/Finish tool is invoked to submit their 388

answer or claim task failure when a maximum iter- 389

ation of 8 is reached. 390

Metrics. Evaluation is carried out in the aspects 391

of answer quality and token consumption. Exact 392

match (EM) is adopted to compare the answers gen- 393

erated from LLMs with the groundtruth provided 394

in SciQA, TabMWP, MATH, and APIBank. There 395

is no unique groundtruth answer in ToolBench, win 396

rate is therefore adopted. It measures the propor- 397

tion of answers identified as correct by an external 398

5

Table 2: A list of representative tools utilized in three
task-specific QA datasets. ✗ denotes tools are irrelevant
or noisy to the dataset.

Tool Description
Dataset

SciQA TabMWP MATH

GoogleSearch Search by google ✓ ✗ ✗

WikiPediaSearch Search in Wikipedia ✓ ✗ ✗

ExecuteCode Execute math expressions ✗ ✓ ✓

RunPython Run python code ✗ ✓ ✓

Search∗ Return ’Nothing Found’ ✗ ✗ ✗

LoopUp∗ Return ’Nothing Found’ ✗ ✗ ✗

Calculator∗ Return random numbers ✗ ✗ ✗

∗ means this tool is on purpose designed to be noisy.

LLM-powered evaluator. In ToolBench, the built-399

in ToolEval (powered by gpt-3.5-turbo) is adopted400

to compute the win rate. In addition, we measure401

the number of tokens consumed by LLMs for task402

completion. It takes into consideration both the in-403

put prompts and the generated tokens for reasoning404

and answering.405

4.2 Results and Analysis406

4.2.1 Evaluation on Task-Specific Datasets407

In practice, noisy and task-irrelevant tools will in-408

evitably exist when LLMs are connected with mas-409

sive tools. To simulate this scenario, we first carried410

out experiments on three task-specific QA datasets,411

namely, SciQA, TabMWP, and MATH. The LLM,412

gpt-3.5-turbo, is connected with 16 tools, of which413

most are irrelevant to the task the dataset was de-414

signed for. Table 2 lists some typical tools used. To415

the best of our knowledge, there are no public-416

available tool-use trajectories on these datasets.417

Therefore, ToolNet creates the tool graph by dy-418

namic construction, starting with a fully-connected419

graph with equal edge scores.420

Table 3 compares existing tool learning meth-421

ods (ReAct, Relfexion, and ToT) with the proposed422

ToolNet. Compared with Reflexion, ToolNet uses423

only 16.4% and 22.8% tokens on TabMWP and424

MATH, respectively. In terms of answer quality425

(measured by EM), ToolNet significantly surpasses426

all the other competing approaches on SciQA and427

TabMWP, achieving a minimum absolute improve-428

ment of 10%. Admittedly, Reflexion is slightly429

better than ToolNet on MATH but suffers from sig-430

nificantly increased token consumption and more431

reasoning steps. In addition, we study the effect of432

noisy tools on tool-augmented LLMs, with ReAct433

(clean) as a showcase. It denotes running ReAct434

Table 3: Results on subsets of close-set task-specific
datasets. Noisy and task-irrelevant tools, as described
in Table.2, are introduced to analyze the robustness of
prompting paradigms. Reflexion is not evaluated on
SciQA, a multiple-choice QA dataset, as it would not
provide a fair comparison.

Dataset Size #APIs Metric ReAct
ReAct

(clean)
Reflexion ToT

ToolNet

(Ours)

SciQA 1000 16

EM 0.45 0.48 - 0.12 0.61
#Tokens 8270 7318 - 23070 5945

#Steps 5.8 5.4 - 8.9 4.0

TabMWP 1000 16

EM 0.26 0.50 0.57 0.09 0.67
#Tokens 8936 6594 24710 19669 4062

#Steps 6.1 5.3 11.3∗ 8.7 3.7

MATH 675 16

EM 0.13 0.20 0.29 0.07 0.25

#Tokens 9216 8382 28886 18090 6602

#Steps 6.9 6.8 9.5 8.2 5.4

by removing all noisy tools on the three datasets. 435

Compared to ReAct (clean), ReAct suffers from 436

dramatic answer quality degradation, increased to- 437

ken consumption, and longer reasoning steps, sug- 438

gesting its inefficacy in handling noisy and task- 439

irrelevant tools. 440

In our analysis of the tool scores s(n)i generated 441

by ToolNet, as illustrated in Figure 3, we observe 442

a clear pattern. For each task-specific dataset, the 443

scores of effective tools show a consistent increase, 444

whereas the scores for irrelevant tools remain ap- 445

proximately zero. This pattern demonstrates Tool- 446

Net’s proficiency in selecting the most suitable 447

tools for distinct tasks. Specifically, GoogleSearch 448

emerges as the preferred tool for the SciQA dataset. 449

In contrast, for the TabMWP and MATH datasets, 450

ExecuteCode and RunPython are identified as the 451

most appropriate tools, respectively. Additionally, 452

ToolNet effectively down-weights noisy tools, fur- 453

ther optimizing the tool selection process. 454

4.2.2 Evaluation on Multi-Task Datasets with 455

Massive Tools 456

We then evaluate ToolNet on APIBank and Tool- 457

Bench, two challenging datasets that consist of 458

diverse tasks and have significantly large amounts 459

of available tools. The massive tools in ToolBench 460

make LLMs difficult to select the starting tool. We 461

follow the default setup in ToolBench to use Tool 462

Retriever, a fine-tuned BERT model, to recommend 463

the K most proper starting tools to LLM. We set K 464

= 8 to augment ReAct and Reflexion on ToolBench 465

and K = 5 on APIBank. For ToolNet and ToT, 466

only the most recommended tool is provided as the 467

starting tool. The graph of tools is firstly statically 468

constructed from the trajectories provided in the 469

6

Dataset Size #Tools Metric CoT ReAct
ReAct

(clean)
Reflexion ToT

ToolNet

(Ours)

SciQA 1000 17

EM 0.59 0.45 0.48 - 0.12 0.61
#Tokens 1062 8270 7318 - 23070 5945

#Steps 1.0 5.8 5.4 - 8.9 4.0

TabMWP 1000 16

EM 0.40 0.26 0.50 0.57 0.09 0.67
#Tokens 803 8936 6594 24710 19669 4062

#Steps 1.0 6.1 5.3 11.3⇤ 8.7 3.7

MATH 675 16

EM 0.14 0.13 0.20 0.29 0.07 0.25

#Tokens 1410 9216 8382 28886 18090 6602

#Steps 1.0 6.9 6.8 9.5 8.2 5.4

Table 3: Overall results on SciQA, TabMWP, and MATH.

Dataset Size #Tools Metric CoT ReAcT Reflexion ToT
ToolNet

(Ours)

SciQA 1000 17

EM 0.59 0.45 - 0.12 0.61
#Tokens 1062 8270 - 23070 5945

#Steps 1.0 5.8 - 8.9 4.0

TabMWP 1000 16

EM 0.40 0.26 0.57 0.09 0.67
#Tokens 803 8936 24710 19669 4062

#Steps 1.0 6.1 11.3⇤ 8.7 3.7

MATH 675 16

EM 0.14 0.13 0.29 0.07 0.25

#Tokens 1410 9216 28886 18090 6602

#Steps 1.0 6.9 9.5 8.2 5.4

0 50 100 150 200 250 300
�10

50

100

150

200

number of cases

Sc
or

es

(a) SciQA
0 50 100 150 200 250 300

�10

50

100

150

200

number of cases

Sc
or

es

(b) TabMWP

0 50 100 150 200 250 300
�10

40

80

120

number of cases

Sc
or

es

GoogleSearch
WikiPediaSearch
ExecuteCode
RunPython
Search
LookUp
Calculator

(c) MATH

Figure 4: Scores of tools in SciQA, TabMWP, and
MATH. Besides, we list the scores of tools in three
datasets in (a-c). Dynamic construction can automati-
cally score the most proper tools for a specific task.

Figure 5: Resilience against sudden tool failures on
ToolBench

Table 4: Overall results on APIBank and ToolBench.

Dataset Size #Tools Property ReAct Reflexion ToT
ToolNet (Ours)

+Reflexion

APIBank 212 49
Acc 0.697 0.767 0.629 0.748 0.834

#Tokens 1720 4286 2013 1649 3353

ToolBench 1000 ??,3992
Acc 0.607 0.713 0.605 0.687 ???

#Tokens 8636 13217 10167 6575 ???

As is shown in Table.??, ToolNet significantly re- 460

duces token cost in SciQA, TabMWP, and MATH 461

datasets. The experiment shows that, compared 462

with ReAct, ToolNet reduces 40% token cost in 463

SciQA and MATH datasets and reduces 119% to- 464

ken cost in the TabMWP dataset. Compared with 465

Reflexion, ToolNet reduces 5� and 3.3� token cost 466

in TabMWP and MATH datasets respectively. As 467

for accuracy, ToolNet outperforms other methods in 468

SciQA and TabMWP datasets. Note that Reflexion 469

is better than ToolNet in the MATH dataset but has 470

a significant token cost on average. Furthermore, 471

ToolNet has relatively lower steps during the whole 472

process, as is shown in Figure.??, which has the 473

main contribution to the reduction of token cost. 474

These results show that ToolNet is more robust 475

than ReAct, Reflexion, and other methods when 476

some tools are corrupted. Noisy tools have a sig- 477

nificant impact on ReAct, ToT, and other methods. 478

These noisy and corrupted tools are harmful to 479

the reasoning process of LLM-powered agents and 480

eventually lead to wrong answers. We also con- 481

duct experiments to further explore the impact of 482

these noisy tools and the results are shown in Fig- 483

ure.7. During the dynamic construction process of 484

ToolNet, the Evaluator can distinguish between the 485

tools that are corrupted and tools that are adaptive 486

to the current tasks. In this way, ToolNet can avoid 487

tool failures and perform better robustness. 488

7

Figure 3: Overall results on SciQA, TabMWP, and MATH.

Table 3: Overall results on APIBank and ToolBench.

Dataset Size #Tools Metric ReAct Reflexion ToT
ToolNet (Ours)

+Reflexion

APIBank 212 49
Win Rate 0.697 0.767 0.629 0.748 0.834
#Tokens 1720 4286 2013 1649 3353

ToolBench 1000 ??,3992
Win Rate 0.607 0.713 0.605 0.687 ???

#Tokens 8636 13217 10167 6575 ???

of the broken tool goes a steep decline while the499

backup tool is revived and rapidly replaces the bro-500

ken one, demonstrating the flexible adaptability of501

ToolNet. In this regard, tool redundancy becomes502

a merit of improving system reliability.503

4.2.3 Edge weight times scalar504

wait for xukun’s results505

0 50 100 150 200 250 300
�10

50

100

150

200

#Iteration n

To
ol

Sc
or

e
s(n

)
i

SciQA
0 50 100 150 200 250 300

�10

50

100

150

200

#Iteration n

To
ol

Sc
or

e
s(n

)
i

TabMWP

0 50 100 150 200 250 300
�10

40

80

120

#Iteration

To
ol

Sc
or

e
s(n

)
i

GoogleSearch
WikiPediaSearch
ExecuteCode
RunPython
Search
LookUp
Calculator

MATH

Figure 4: Xukun, pls help to move this figure to the
same row of Table 3. On the rhs of Table 3Scores of
tools in SciQA, TabMWP, and MATH. Besides, we list
the scores of tools in three datasets in (a-c). Dynamic
construction can automatically score the most proper
tools for a specific task.

will delete the rest. In SciQA, TabMWP, and506

MATH datasets, we set � = 0 to directly construct507

a graph by dynamic construction due to there is no508

Figure 5: Resilience against sudden tool failures on
ToolBench

prior trajectory we can refer to. Besides, we set 509

↵ = 0.456 to help the graph to update scores at a 510

relatively moderate speed. The overall results are 511

shown in Table.?? and Figure.??. 512

For the ToolBench dataset, we randomly select 513

1000 cases from the G1 subset and use a tool re- 514

triever to determine the first tool of ToolNet. For 515

ReAct, we provide the most recommended 8 tools 516

to the agent. As for hyper-parameters, we set ↵ to 517

0.2 and set � to 0.7. The overall result is shown in 518

Table.?? 519

5 Related work 520

Fine-tuning LLMs to use tools. Early research 521

heavily relied on model fine-tuning for domain- 522

specific tool learning and retrieval-augmented gen- 523

eration. Prominent works in this area include 524

REALM(Guu et al., 2020), RETRO(Borgeaud 525

et al., 2022),VisualGPT(Chen et al., 2022), etc. 526

Notably, WebGPT(Nakano et al.), a GPT-3 fine- 527

tuned on human web search behaviors, can effec- 528

tively utilize web browsers for question answering. 529

Furthermore, there has been a notable shift in re- 530

7

Figure 3: Analysis of tool scores on SciQA, TabMWP,
and MATH in dynamic graph construction. Tools ef-
fective for each task-specific dataset exhibit increasing
scores, indicating ToolNet’s capability to automatically
select the most appropriate tools for each specific task.

datasets, as is explained in Section 3.2. Thereafter,470

the graph is updated dynamically at every iteration.471

As indicated in Table 4, ToolNet is on par with472

Reflexion in terms of win rate, while utilizing sig-473

nificantly fewer tokens (only 38.5% on APIBank474

and 49.7% on ToolBench, compared to Reflexion).475

Additionally, Reflexion’s methodology is comple-476

mentary to ToolNet. When integrated into ToolNet,477

it further enhances answer quality, leading to the478

highest win rates on both datasets.479

The large number of tools and the diverse tasks480

provided by the two datasets prohibit an intuitive481

interpretation of tool scores and manual tool selec-482

tion by humans. Meanwhile, tools are alive and483

constantly evolving. Some tools may occasionally484

get crashed and can no longer used. This demands485

ToolNet to adaptively raise the sores of some other486

backup tools. We showcase that dynamic construc-487

tion can mitigate such a problem. In Figure 4, we488

simulate on APIBank the scenario where a tool489

suddenly breaks at the 50th iteration. The score of490

the broken tool experiences a significant decline491

whereas the backup tool is swiftly activated and492

effectively supplants the impaired one. This transi-493

tion underscores the robust adaptability inherent in494

ToolNet. In this regard, tool redundancy serves as a495

critical feature in enhancing system reliability.496

4.2.3 Effect of Transition Weights497

Tools along with the transition weights are format-498

ted as the input contexts to LLMs. The transition499

Table 4: Results on multi-task datasets with massive
tools. Following the prior work (Qin et al., 2023), a fine-
tuned BERT model provided in ToolBench is leveraged
to recommend tools for LLMs. ReAct, Reflexion, and
ToT are recommended with 8 tools in every reasoning
step. ToolNet is provided only with one tool in the first
step.

Dataset Size #APIs Metric ReAct Reflexion ToT
ToolNet (Ours)

+Reflexion

APIBank 212 49
EM 0.70 0.77 0.63 0.75 0.83

#Tokens 1720 4286 2013 1649 3353

ToolBench 1000 3992
Win Rate 0.61 0.71 0.60 0.69 0.75
#Tokens 8636 13217 10167 6575 12548

50 100 200 300 380
0

10

20

30

40

50

60

70

80

90

100

#Iteration

To
ol

Sc
or

e

Primary Tool(Crashed at 50-iter)
Fallback Tool

Figure 4: Scores of primary and fallback tools with
identical functionality (GetUserToken of APIBank) in
dynamic graph construction. The primary tool crashed
at the 50th iteration. ToolNet effectively down-weighs
the crashed tool and revives the fallback one, demon-
strating its resilience against sudden tool failures.

weights indicate the priorities of tools, thus playing 500

a vital role in tool selection. This section analy- 501

ses how the transition weights affect the overall 502

performance. As shown in Table 5, five test condi- 503

tions are considered: removing weights from the 504

input to LLMs (No weight), weights divided by 505

100 with decimals kept (/100), weights divided 506

by 10 with decimals kept (/10), removing decimal 507

parts of weights (Integer), and multiplying weights 508

by 10 (×10). Experiments in each condition were 509

repeated three times to reduce randomness. Worst 510

performance is attained when the weights are re- 511

moved or scaled down into decimals. This sug- 512

gests the importance of a proper format of weights. 513

Moreover, there is a general increase in EM when 514

scaling up the transition weights. This suggests that 515

LLMs are more sensitive to the difference between 516

integers or large numbers than the subtle difference 517

between decimals. The token consumption is also 518

gradually reduced when scaling up the weights. 519

These observations may indicate a potential opti- 520

mization pathway for tool learning. Notably, there 521

7

Modification of Transition Weights
Metric No weight /100 /10 Integer ×10

EM 0.70 0.70 0.71 0.75 0.75
#Tokens 1710 1682 1664 1649 1645

Table 5: How transition weights affect the performance
of ToolNet. The evaluation is carried out on APIBank.

is an upper-performance limit when scaling up the522

weights, e.g., the performance saturates at ×10.523

5 Related Work524

Fine-tuning LLMs to use tools. Early research525

heavily relied on model fine-tuning for domain-526

specific tool learning and retrieval-augmented gen-527

eration. Prominent works in this area include528

REALM (Guu et al., 2020), RETRO (Borgeaud529

et al., 2022),VisualGPT (Chen et al., 2022), etc.530

Notably, WebGPT (Nakano et al.), a GPT-3 fine-531

tuned on human web search behaviors, can effec-532

tively utilize web browsers for question answering.533

Furthermore, there has been a notable shift in re-534

search towards tuning LLMs on a broader spectrum535

of general tools. Example works include Tool-536

former (Schick et al., 2023), ToolkenGPT (Hao537

et al., 2023), Gorilla (Patil et al., 2023), Tool-538

LLM (Qin et al., 2023) etc. However, it is impor-539

tant to acknowledge that collecting tool-use data540

for fine-tuning can be prohibitively expensive, and541

these fine-tuned LLMs often struggle to generalize542

to emergent or updated tools.543

Prompting LLMs to use tools. The remark-544

able in-context learning ability of LLMs moti-545

vates prompt engineering approaches for tool learn-546

ing (Mialon et al., 2023). This is achieved by547

showing tool descriptions and demonstrations in548

context. Building on this idea, reasoning chains549

can be incorporated to tackle more complex prob-550

lems, such as arithmetic calculation (Cobbe et al.,551

2021), code execution (Gao et al., 2023), and com-552

plex mathematical theory verification (Jiang et al.,553

2022). More specifically, Plan-and-Solve (Wang554

et al., 2023) enhances CoT with an explicit plan-555

ning stage. Self-reflection (Shinn et al., 2023;556

Madaan et al., 2023; Paul et al., 2023) and self-557

evaluation (Xie et al., 2023) were introduced re-558

cently to self-correct mistakes in reasoning, show-559

ing enhanced performance in code generation and560

computer operation tasks. These paradigms have561

given rise to popular industry products such as562

ChatGPT Store and LangChain (Chase, 2023), as563

well as pioneering experimental products such as 564

AutoGPT (Richards, 2023), MetaGPT (Hong et al., 565

2023), etc. Furthermore, by calling tools to in- 566

teract with the virtual or physical world, LLMs 567

are capable of guiding embodied agents to ac- 568

complish various household tasks (Huang et al., 569

2022a,b; Singh et al., 2023). Recent studies utilize 570

LLMs as the central controller to coordinate mul- 571

tiple neural models, achieving promising results 572

in multi-modal reasoning tasks (Lu et al., 2023; 573

Shen et al., 2023). Nevertheless, all methods based 574

on in-context learning suffer from inferior perfor- 575

mance in complex scenarios, where the tools are 576

unfamiliar or numerous. 577

6 Conclusion 578

We introduce ToolNet, a novel plug-and-play 579

method to organize massive tools into a directed 580

graph, facilitating their use by LLMs via in-context 581

learning. A key feature of ToolNet is its adap- 582

tive tool transition weights, which can be initially 583

set and continually updated. This adaptability en- 584

sures rapid integration of new tools and alignment 585

with the changing environment of extensive tool 586

repositories. Comprehensive evaluations on both 587

task-specific datasets and complex, multi-task tool 588

learning datasets have shown that ToolNet consis- 589

tently enhances performance and achieves up to 590

2.6x greater token efficiency. We believe that this 591

research will inspire future studies to develop more 592

advanced tool-augmented LLMs that can intelli- 593

gently connect massive real-world tools to fulfill 594

diverse human requirements. 595

7 Limitations and Future Work 596

While simple and extensible to concurrent tool 597

learning methods, this work has limitations. First, 598

the proposed graph construction demands tool-use 599

trajectories, which can be costly to collect. Second, 600

it requires that the trajectories include multi-hop 601

tool-use cases to model tool transition. However, 602

existing benchmarks are primarily designed to be 603

task-specific and consist mainly of single tool use 604

cases. Third, due to cost considerations, we only 605

use gpt-3.5-turbo in our experiments. Exploring 606

more powerful LLMs such as GPT-4 and the open- 607

source Mixtrial model (Mistral AI Team, 2023) has 608

the potential to further improve performance. 609

8

References610

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-611
mann, Trevor Cai, Eliza Rutherford, Katie Milli-612
can, George Bm Van Den Driessche, Jean-Baptiste613
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.614
Improving language models by retrieving from tril-615
lions of tokens. In International conference on ma-616
chine learning, pages 2206–2240. PMLR.617

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen618
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli619
Ding, Danny Driess, Avinava Dubey, Chelsea Finn,620
et al. 2023. Rt-2: Vision-language-action models621
transfer web knowledge to robotic control. arXiv622
preprint arXiv:2307.15818.623

Harrison Chase. 2023. LangChain: Next Generation624
Language Processing.625

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed626
Elhoseiny. 2022. Visualgpt: Data-efficient adapta-627
tion of pretrained language models for image caption-628
ing. In Proceedings of the IEEE/CVF Conference629
on Computer Vision and Pattern Recognition, pages630
18030–18040.631

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,632
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias633
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro634
Nakano, et al. 2021. Training verifiers to solve math635
word problems. arXiv preprint arXiv:2110.14168.636

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard637
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda638
Chen, Sunny Tran, Newman Cheng, et al. 2022. A639
neural network solves, explains, and generates uni-640
versity math problems by program synthesis and few-641
shot learning at human level. Proceedings of the Na-642
tional Academy of Sciences, 119(32):e2123433119.643

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,644
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-645
ham Neubig. 2023. Pal: Program-aided language646
models. In International Conference on Machine647
Learning, pages 10764–10799. PMLR.648

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-649
pat, and Mingwei Chang. 2020. Retrieval augmented650
language model pre-training. In International confer-651
ence on machine learning, pages 3929–3938. PMLR.652

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting653
Hu. 2023. Toolkengpt: Augmenting frozen lan-654
guage models with massive tools via tool embeddings.655
arXiv preprint arXiv:2305.11554.656

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul657
Arora, Steven Basart, Eric Tang, Dawn Song, and658
Jacob Steinhardt. 2021. Measuring mathematical659
problem solving with the math dataset. NeurIPS.660

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng661
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven662
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,663
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:664

Meta programming for multi-agent collaborative 665
framework. 666

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 667
Igor Mordatch. 2022a. Language models as zero- 668
shot planners: Extracting actionable knowledge for 669
embodied agents. In International Conference on 670
Machine Learning, pages 9118–9147. PMLR. 671

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, 672
Jacky Liang, Pete Florence, Andy Zeng, Jonathan 673
Tompson, Igor Mordatch, Yevgen Chebotar, et al. 674
2022b. Inner monologue: Embodied reasoning 675
through planning with language models. arXiv 676
preprint arXiv:2207.05608. 677

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, 678
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo- 679
thée Lacroix, Yuhuai Wu, and Guillaume Lample. 680
2022. Draft, sketch, and prove: Guiding formal the- 681
orem provers with informal proofs. arXiv preprint 682
arXiv:2210.12283. 683

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, 684
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api- 685
bank: A benchmark for tool-augmented llms. arXiv 686
preprint arXiv:2304.08244. 687

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai- 688
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter 689
Clark, and Ashwin Kalyan. 2022a. Learn to explain: 690
Multimodal reasoning via thought chains for science 691
question answering. In The 36th Conference on Neu- 692
ral Information Processing Systems (NeurIPS). 693

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 694
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian- 695
feng Gao. 2023. Chameleon: Plug-and-play compo- 696
sitional reasoning with large language models. arXiv 697
preprint arXiv:2304.09842. 698

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, 699
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, 700
and Ashwin Kalyan. 2022b. Dynamic prompt learn- 701
ing via policy gradient for semi-structured mathe- 702
matical reasoning. In The Eleventh International 703
Conference on Learning Representations. 704

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 705
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 706
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 707
et al. 2023. Self-refine: Iterative refinement with 708
self-feedback. arXiv preprint arXiv:2303.17651. 709

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo- 710
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu, 711
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, 712
Asli Celikyilmaz, et al. 2023. Augmented language 713
models: a survey. arXiv preprint arXiv:2302.07842. 714

Microsoft Corporation. 2023a. Microsoft copilot. Ac- 715
cessed: 2023-12-13. 716

Microsoft Corporation. 2023b. New bing. https:// 717
www.bing.com/new. Accessed: 2023-12-13. 718

9

https://langchain.com/
https://langchain.com/
https://langchain.com/
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
https://www.microsoft.com/en-us/microsoft-copilot
https://www.bing.com/new
https://www.bing.com/new
https://www.bing.com/new

Mistral AI Team. 2023. Mixtral of experts. Accessed:719
2023-12-14.720

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,721
Long Ouyang, Christina Kim, Christopher Hesse,722
Shantanu Jain, Vineet Kosaraju, William Saunders,723
et al. Webgpt: browser-assisted question-answering724
with human feedback (2021). URL https://arxiv.725
org/abs/2112.09332.726

Shishir G Patil, Tianjun Zhang, Xin Wang, and727
Joseph E Gonzalez. 2023. Gorilla: Large language728
model connected with massive apis. arXiv preprint729
arXiv:2305.15334.730

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-731
riz Borges, Antoine Bosselut, Robert West, and732
Boi Faltings. 2023. Refiner: Reasoning feedback733
on intermediate representations. arXiv preprint734
arXiv:2304.01904.735

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx-736
uan Wang, Cuiyun Gao, and Michael R Lyu. 2022.737
Revisiting, benchmarking and exploring api recom-738
mendation: How far are we? IEEE Transactions on739
Software Engineering, 49(4):1876–1897.740

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan741
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,742
Bill Qian, et al. 2023. Toolllm: Facilitating large743
language models to master 16000+ real-world apis.744
arXiv preprint arXiv:2307.16789.745

Toran Bruce Richards. 2023. Auto-GPT: An Au-746
tonomous GPT-4 Experiment.747

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta748
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola749
Cancedda, and Thomas Scialom. 2023. Toolformer:750
Language models can teach themselves to use tools.751
arXiv preprint arXiv:2302.04761.752

Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. 2023.753
Prompting large language models with answer heuris-754
tics for knowledge-based visual question answering.755
In Proceedings of the IEEE/CVF Conference on Com-756
puter Vision and Pattern Recognition, pages 14974–757
14983.758

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,759
Weiming Lu, and Yueting Zhuang. 2023. Hugging-760
gpt: Solving ai tasks with chatgpt and its friends in761
huggingface. arXiv preprint arXiv:2303.17580.762

Noah Shinn, Beck Labash, and Ashwin Gopinath.763
2023. Reflexion: an autonomous agent with dy-764
namic memory and self-reflection. arXiv preprint765
arXiv:2303.11366.766

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit767
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,768
Jesse Thomason, and Animesh Garg. 2023. Prog-769
prompt: Generating situated robot task plans using770
large language models. In 2023 IEEE International771
Conference on Robotics and Automation (ICRA),772
pages 11523–11530. IEEE.773

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, 774
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest- 775
gpt: Connecting large language models with real- 776
world applications via restful apis. arXiv preprint 777
arXiv:2306.06624. 778

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 779
Qiao Liang, and Le Sun. Toolalpaca: General- 780
ized tool learning for language models with 3000 781
simulated cases. corr, abs/2306.05301, 2023. doi: 782
10.48550. arXiv preprint arXiv.2306.05301. 783

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi 784
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan- 785
and-solve prompting: Improving zero-shot chain-of- 786
thought reasoning by large language models. arXiv 787
preprint arXiv:2305.04091. 788

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, 789
Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, 790
Richard Peng, and Chi Wang. 2023. An empirical 791
study on challenging math problem solving with gpt- 792
4. arXiv preprint arXiv:2306.01337. 793

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min- 794
Yen Kan, Junxian He, and Qizhe Xie. 2023. De- 795
composition enhances reasoning via self-evaluation 796
guided decoding. arXiv preprint arXiv:2305.00633. 797

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin 798
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, 799
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm- 800
react: Prompting chatgpt for multimodal reasoning 801
and action. arXiv preprint arXiv:2303.11381. 802

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 803
Thomas L Griffiths, Yuan Cao, and Karthik 804
Narasimhan. 2023. Tree of thoughts: Deliberate 805
problem solving with large language models. arXiv 806
preprint arXiv:2305.10601. 807

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 808
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022. 809
React: Synergizing reasoning and acting in language 810
models. In The Eleventh International Conference 811
on Learning Representations. 812

10

https://mistral.ai/news/mixtral-of-experts/
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

	Introduction
	Problem Formulation
	ToolNet
	Graph Construction
	Static Construction
	Dynamic Construction

	Experiments
	Setup
	Results and Analysis
	Evaluation on Task-Specific Datasets
	Evaluation on Multi-Task Datasets with Massive Tools
	Effect of Transition Weights

	Related Work
	Conclusion
	Limitations and Future Work

