
Robustness of Graph Neural Networks at Scale

Simon Geisler, Tobias Schmidt, Hakan Şirin,

Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann

Department of Informatics
Technical University of Munich

{geisler, schmidtt, sirin, zuegnerd, bojchevs, guennemann}@in.tum.de

Abstract

Graph Neural Networks (GNNs) are increasingly important given their popularity
and the diversity of applications. Yet, existing studies of their vulnerability to
adversarial attacks rely on relatively small graphs. We address this gap and study
how to attack and defend GNNs at scale. We propose two sparsity-aware first-order
optimization attacks that maintain an efficient representation despite optimizing
over a number of parameters which is quadratic in the number of nodes. We show
that common surrogate losses are not well-suited for global attacks on GNNs. Our
alternatives can double the attack strength. Moreover, to improve GNNs’ reliability
we design a robust aggregation function, Soft Median, resulting in an effective
defense at all scales. We evaluate our attacks and defense with standard GNNs on
graphs more than 100 times larger compared to previous work. We even scale one
order of magnitude further by extending our techniques to a scalable GNN.

1 Introduction

103 104 105 106 107 108

#Edges e

GB

TB

PB

M
em

or
y

32GB
Products

arXiv

PGD
PR-BCD (ours)
PGD trend
Tesla V100

Figure 1: GPU memory consumption for a
global attack with Projected Gradient Descent
(PGD) [43], its quadratic extrapolation, and
our Projected Randomized Block Coordinate
Descent (PR-BCD) (§ 3). Both yield simi-
lar adversarial accuracy. Beyond attacks, our
defense (§ 4) also scales to these graphs.

The evidence that Graph Neural Networks (GNNs)
are not robust to adversarial perturbations is com-
pelling [14, 20, 50]. However, the graphs in previous
robustness studies are tiny. This is worrying, given
that GNNs are already deployed in many real-world
Internet-scale applications [5, 44]. For example,
PubMed [33] (19,717 nodes) is often considered to
be a large-scale graph and around 20 GB of memory
is required for an attack based on its dense adjacency
matrix. Such memory requirements are impractical
and limit advancements of the field. In this work, we
set the foundation for the holistic study of adversarial
robustness of GNNs at scale. We study graphs with
up to 111 million nodes for local attacks (i.e. attack-
ing a single node) and 2.5 million nodes for global at-
tacks (i.e. attacking all nodes at once). As it turns out,
GNNs at scale are also highly vulnerable to adversarial attacks. In Fig. 1, we show the substantial im-
provement of memory efficiency of our attack over a popular prior work for attacking a GNN globally.
Analogous to our attacks, our effective defense scales to graphs with 111 million nodes and beyond.

Scope. We focus on adversarial robustness w.r.t. structure attacks on GNNs for node classification

max
Ã s.t. kÃ�Ak0<�

L(f✓(Ã,X)) (1)

with loss function L (or its surrogate L
0), budget �, and fixed model parameters ✓. The GNN

f✓(A,X) is applied to a graph G = (A,X) with node attributes X 2 Rn⇥d, the adjacency matrix

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A 2 {0, 1}n⇥n, and m edges. We focus on evasion (test time) attacks, but our methods can be used
in poisoning (train time) attacks [49]. We distinguish between local attacks on a single node and
global attacks that target a large fraction of nodes with a shared budget �. We study white-box
attacks since they have the most powerful threat model and can be used to understand the robustness
w.r.t. “worst-case noise” of a model, as well as to assess the efficacy of defenses. For these reasons
white-box attacks are important and practical from the perspective of a defender.

Broader impact. Since we enable the study of robustness at scale, which previously was practically
infeasible, an adversary can potentially abuse our attacks. The risk is minimized given that we
assume perfect knowledge about the graph, model, and labels. Nonetheless, our findings suggest
that one should be careful when deploying GNNs, and highlight that further research is needed. To
mitigate this risk, we must be able to evaluate it. We also propose a scalable defense that shows
strong performance empirically but we urge practitioners to consider potential trade-offs, e.g.
improving robustness at the expense of accuracy for different groups of users.

Contributions. We address three major challenges hindering the study of GNNs’ adversarial robust-
ness at scale and propose viable solutions including an extensive empirical evaluation: (1) Previous
losses are not well-suited for global attacks on GNNs; (2) Attacks on GNNs scale quadratically in the
number of nodes or worse; (3) Similarly, previous robust GNNs are typically not scalable.

(1) Surrogate loss. We study the limitation of state-of-the-art surrogate losses for attacking the
accuracy of a GNN over all nodes [8, 9, 17, 27, 41, 43, 49] in § 2. Especially in combination with
small/realistic budgets � and on large graphs, previous surrogate losses lead to weak attacks. In
particular, Cross Entropy (CE) or the widely used Carlini-Wagner loss [6, 43] are weak surrogates for
such global attacks. Our novel losses that overcome these limitations easily improve the strength of
the attack by 100% on common datasets. For larger graphs, this gap even becomes more significant.

(2) Attacks. Attacks solving a discrete optimization problem easily become computationally infeasi-
ble because of the vast amount of potential adjacency matrices (O(2n

2

)). An approximate solution
can be found with first-order optimization but we then still optimize over a quadratic number of
parameters (n2). There is no trivial way to sparsify existing attacks as we need to represent each
edge explicitly to obtain its gradient (i.e. space complexity ⇥(n2)). Nevertheless, we overcome this
limitation and propose two strategies to apply first-order optimization without the burden of a dense
adjacency matrix. In § 3, we describe how to add/remove edges between existing nodes based on
Randomized Block Coordinate Descent (R-BCD) at an additional memory requirement of O(�).
Due to the limited scalability of traditional GNNs, we also consider the case where we attack PPRGo
[5], a scalable GNN. Here, we even obtain an algorithm with constant complexity in the nodes n.

(3) Defense. We propose Soft Median in § 4 – a computationally efficient, robust, differentiable
aggregation function inspired by Geisler et al. [18], by taking advantage of recent advancements in
differentiable sorting [31]. Using our Soft Median we observe similar robustness to [18], but with a
significantly lower memory footprint, which enables us to defend GNNs at scale.

2 Surrogate Losses for Global Attacks

During training and in first-order attacks, we ideally wish to optimize a target metric which is
often discontinuous (e.g. accuracy and 0/1 loss L0/1). However, for gradient-based optimization
we commonly substitute the actual target loss by a surrogate L

0
⇡ L (e.g. cross entropy for L0/1).

In the context of i.i.d. samples (e.g. images), a single example is attacked in isolation with its own
budget, which is similar to a local attack for GNNs. When a single node’s prediction is attacked,
it is often sufficient to maximize the cross entropy for the attacked node/image (untargeted attack):
CE(y,p) = � log(pc⇤). where y is the label and p is the vector of confidence scores.

Many global attacks for GNNs [8, 41, 43, 49] maximize the average CE to attack all nodes with a
combined budget �. However, a loss like CE can be ineffective, particularly when the number of
nodes is large in comparison to the budget �/n ! 0. While experimenting on large graphs, we often
observed that the CE loss increases even though the accuracy does not decline (see § B). As we can
see in Fig. 2, this is due to CE’s bias towards nodes that have a low confidence score. With CE and
a sufficiently small budget � ⌧ n we primarily attack nodes that are already misclassified, which
means that the classification margin = minc 6=c⇤ pc⇤ � pc is already negative.

2

0.0 0.5 1.0

Frequency

All nodes
(clean)

Att. nodes
(clean)

Att. nodes
(pert.)

(a) Loss: cross entropy

0.0 0.5 1.0

Frequency

All nodes
(clean)

Att. nodes
(clean)

Att. nodes
(pert.)

(b) Loss: tanh margin

Class. margin
�1.0 �0.67

�0.7 < �0.33

�0.3 < 0.00

0.0 < 0.33

0.3 < 0.67

0.7 < 1.00

Figure 2: Margin of test nodes vs. attacked nodes, before (“clean”) and after perturbation (“per-
turbed”). We attack the PubMed graph (Table 1) and a single-layer GCN with one percent of edges
(✏ = 0.01) as a budget. In stark contrast to the tanh margin (b), the CE loss (a) spends a lot of its
budget on misclassified nodes (i.e. < 0). See § B for more variants and details.

Global attack. In contrast to attacking a single image/node, a global attack on a GNN has to (1) keep
house with the budget � and (2) find edges that degrade the overall accuracy maximally (i.e. target
“fragile” nodes). Without additional information, intuitively, one would first attack low-confidence
nodes close to the decision boundary. Hence, the surrogate loss should have a minimal (maximally
negative) gradient at ! 0+ (i.e. approaching ! 0 from � 0). Moreover, if we solely want to
lower the accuracy, then we can stop attacking a node once it is misclassified1:

Definition 1 A surrogate loss L
0 for global attacks (I) should only incentivize perturbing nodes

that are correctly classified: @L0/@zc⇤ | <0 = 0 and (II) should favour nodes close to the decision
boundary: @L0/@zc⇤ | 0 < @L0/@zc⇤ | 1 for any 0 < 0 < 1.

Since Eq. 1 is in general a discrete and non-convex optimization problem that is often NP-complete [1,
3, 38, 45], we propose to study the surrogate loss under the subsequent simplifying assumptions.
Note that in an actual attack other influences (e.g. node degree) are still considered while solving
the optimization problem. Assumption 1: The set of attacked nodes is independent (their receptive
fields do not overlap). Particularly on large graphs with small budgets, �/n ! 0, deciding which
node to attack becomes an increasingly local decision since the receptive field becomes insignificant
in comparison to the rest of the graph. Assumption 2: The budget required to change the prediction of
node i depends (only) on the margin: �i = g(| i|) for some increasing and non-negative function
g(·). That is, the larger the margin i, the harder it is to attack node i. As stated in Proposition 1, with
these assumptions, an optimizer with a surrogate loss compliant with Definition 1 is also optimizing
the 0/1 loss L0/1 (for proof see § B.4).

Proposition 1 Let L0 be the surrogate for the 0/1 loss L0/1 used to attack a node classification algo-
rithm f✓(A,X) with a global budget �. Suppose we greedily attack nodes in order of @L0/@zc⇤(0)
@L0/@zc⇤(1) · · · @L0/@zc⇤(l) until the budget is exhausted � <

Pl+1
i=0 �i. Under Assumptions

1 & 2, we then obtain the global optimum of maxÃ s.t. kÃ�Ak0<� L0/1(f✓(Ã,X)) if L0 has the
properties (I) @L

0/@zc⇤ | <0 = 0 and (II) @L
0/@zc⇤ | 0 < @L0/@zc⇤ | 1 for any 0 < 0 < 1.

Even under the simplifying Assumptions 1 & 2, the Cross Entropy (CE) is not guaranteed to
obtain the global optimum. The (CE) violates property (I) and in the worst case only perturbs
nodes that are already misclassified (see Fig. 2). The Carlini-Wagner (CW) [6, 43] loss CW =
min(maxc 6=c⇤ zc�zc⇤ , 0) violates property (II). It is also not guaranteed to obtain the global optimum,
i.e. CW loss lacks focus on nodes close to the decision boundary. In the worst case, an attack with
CW spends all budget on confident nodes—without flipping a single one.

We propose the Masked Cross Entropy MCE = 1/|V+|
P

i2V+ � log(p(i)c⇤) which fulfills both proper-
ties by only considering correctly classified nodes V+ and, hence, reaches the global optimum under
the stated assumptions. Empirically, for a greedy gradient-based attack the MCE comes with gains
of more than 200% in strength (see Fig. 6). Surprisingly, if we apply MCE to a Projected Gradient
Descent (PGD) attack, we observe hardly any improvement over CE. We identify two potential
reasons for that. The first is due to the learning dynamics of PGD. Suppose a misclassified node does

1We simply write p = f✓(A,X) omitting that p belongs to specific node, i.e. pi of node i. We also overload
this with the logits / pre-softmax activation as z = f✓(A,X). See § A for an overview of the notation.

3

not receive any weight in the gradient update, now if the budget is exceeded after the update it is
likely to be down-weighted. This can lead to nodes that oscillate around the decision boundary (for
more details see § B). A similar behavior occurs for to the Carlini-Wagner loss in e.g. Fig. B.1 (e).

In Definition 2, we relax properties (I)/(II) and propose to overcome these limitations via
enforcing confidently misclassified nodes, i.e. we want the attacked nodes to be at a “safe”
distance from the decision boundary. We propose the tanh of the margin in logit space, i.e.
tanh margin = tanh(maxc 6=c⇤ zc � zc⇤). It obeys Definition 2 and its effectiveness is apparent from
Fig. 2. For the empirical evaluation see § 5 and for more results as well as details on all selected
losses see § B. In the appendix we also study further losses to deepen the understanding about
the required properties. Additionally, in § B.5, we give an alternative Proposition 1 for a relaxed
Assumption 2 s.t. E[�i| i] = g(| i|)

Definition 2 A surrogate loss L0 for global attacks that encourages confident misclassification (A)

should saturate lim !�1+ L
0 < 1 and (B) should favor points close to the decision boundary:

@L0/@zc⇤ | 0 < @L0/@zc⇤ | 1 < 0 for any 0 < 0 < 1 < 1 or �1 < 1 < 0 < 0.

3 Scalable Attacks

Beginning with [14, 50], many adversarial attacks on the graph structure have been proposed.
As discussed, gradient-based attacks such as [9, 41, 49, 50] aim for lower computational cost by
approximating the corresponding discrete optimization problem. However, they optimize all possible
entries in the dense adjacency matrix A which comes with quadratic space complexity ⇥(n2). Since
previous attacks come with limited scalability (e.g. see Fig. 1), GNNs robustness on larger graphs
is largely unexplored. First, we propose a family of attacks that does not require a dense adjacency
matrix and comes with linear complexity w.r.t. the budget �. Then, we further improve the complexity
of our attack for a scalable GNN called PPRGo [5].

Related work. Li et al. [26] evaluate their local adversarial attack SGA only on a graph with around
200k nodes and SGA is specifically designed for Simplified Graph Convolution (SGC) [40]. Note
that a two-layer SGC is identical to Nettack’s surrogate model. We consider arbitrary Graph Neural
Networks and we even scale our global attack to a graph ten times larger. With PPRGo we even
outscale them by factor 500. Feng et al. [17] partition the graph to lower the attack’s memory footprint
but still have a time complexity of O(n2). Dai et al. [14] scale their reinforcement learning approach
to a graph for financial transactions with 2.5 million nodes. In contrast to our work, they scale
their local attack only using a tiny budget � of a single edge deletion and only need to consider the
receptive field of a single node. We scale our local attack to 111M nodes and allow large budgets �.

Large scale optimization. In some big data use cases, the cost to calculate the gradient towards
all variables can be prohibitively high. For this reason, coordinate descent has gained importance
in machine learning and large-scale optimization [39]. Nesterov [29] proposed (and analyzed the
convergence of) Randomized Block Coordinate Descent (R-BCD). In R-BCD only a subset (called
a block) of variables is optimized at a time and, hence, only the gradients towards those variables
are required. In many cases, this allows for a lower memory footprint and in some settings even
converges faster than standard methods [30].

For clarity, we model the perturbations P 2 {0, 1}n⇥n explicitly (Pij = 1 denotes an edge flip):
max

P s.t. P2{0,1}n⇥n,
P

P�
L(f✓(A� P ,X)) . (2)

Here, � stands for an element-wise exclusive or and � denotes the edge budget (i.e. the number
of altered entries in the perturbed adjacency matrix). Naively, applying R-BCD to optimize towards
the dense adjacency matrix would only save some computation on obtaining the respective gradient.
It still has a space complexity of O(n2) on top of the complexity of the attacked model because we
still have to store up to n2 parameters. Note that the L0 perturbation constraint with limited budget
� implies that the solution will be sparse. We build upon this fact and in each epoch, in a survival-of-
the-fittest manner, we keep that part of the search space which is “promising” and resample the rest.
Despite the differences, we simply call our approach Projected Randomized Block Coordinate

Descent (PR-BCD) and provide the pseudo code in Algo. 1 (a preliminary version appeared in
[19]). On top of the GNN, PR-BCD comes with space complexity of ⇥(b) where b is the block size
(number of coordinates) since everything can be implemented efficiently with sparse operations. We
typically choose � to be a fraction of m and b > �, thus, in practice, we have a linear overhead.

4

Vanilla GCN Vanilla GDC Soft Median GDC

104 105 106 107

Block size b

0.60

0.65

0.70

0.75
A

cc
ur

ac
y

(a) Cora ML (n = 2.8k)

0 500 1000

Epochs t

0.4

0.6

A
cc

ur
ac

y

Block size b
1.0E + 06

2.0E + 06

1.0E + 07

(b) arXiv (n = 170k)

Figure 3: Influence of block size b on PR-BCD
(dashed L0 PGD [43]) with tanh margin loss and
✏ = 0.1. (a) shows adv. accuracy with three-sigma
error over five seeds. We resample Eres. = 50
epochs and then fine-tune 250. (b) shows adv.
accuracy over epochs t with E · b = const.

Algorithm 1 Projected Randomized Block
Coordinate Descent (PR-BCD)
1: Input: Gr. (A,X), lab. y, GNN f✓(·), loss L
2: Parameter: budget �, block size b, epochs E

& Eres., heuristic h(. . .), learning rate ↵t

3: Draw w/o replacement i02{0, 1, . . . , n2 � 1}b
4: Initialize zeros for p0 2 Rb

5: for t 2 {1, 2, . . . , E} do

6: ŷ f✓(A� pt�1,X)
7: pt pt�1 + ↵trpt�1[it�1]L(ŷ,y)
8: Projection pt ⇧E[Bernoulli(pt)]�(pt)
9: it it�1

10: if t Eres. then

11: maskres. h(pt)
12: pt[maskres.] 0
13: Resample it[maskres.]
14: P ⇠ Bernoulli(pE) s.t.

P
P �

15: Return A� P

PR-BCD. For L0-norm PGD we relax the discrete edge perturbations P from {0, 1}(n⇥n) to
[0, 1](n⇥n) as proposed by Xu et al. [43]. Each entry of P denotes the probability for flipping it. In
each epoch we only look at a randomly sampled, non-contiguous block of P of size b (line 3, line
10-13) and additionally ignore the diagonal elements (i.e. self-loops). If using an undirected graph, the
potential edges are restricted to the upper/lower triangular n⇥n matrix. In each epoch t 2 {1, 2, . . . },
p is added to / subtracted from the discrete edge weight (line 6). Note, we overload � s.t.
Aij �pij = Aij +pij if Aij = 0 and Aij �pij otherwise. We use p and P interchangeably while p
only corresponds to the current subset/block of Pit . After each gradient update (line 7), the projection
⇧E[Bernoulli(p)]�(p) adjusts the probability mass such that E[Bernoulli(p)] =

P
i2b pi � and that

p 2 [0, 1] (line 8). In the end we draw b sample s.t. P 2 {0, 1}(n⇥n) via P ⇠ Bernoulli(p) (line 14).

The projection ⇧E[Bernoulli(p)]�(p) likely results in many zero elements, but is not guaranteed to be
sparse (for details see § C.1). If p has more than 50% non-zero entries, we remove the entries with the
lowest probability mass such that 50% of the search space is resampled. Otherwise, we resample all
zero entries in p. However, one also might apply a more sophisticated heuristic h(p) which we leave
for future work (see line 11). After Eres. epochs we fine-tune p, i.e. we stop resampling and decay
the learning rate as in [43]. We also employ early stopping for both stages (t Eres. and t > Eres.
with the epoch t) such that we take the result of the epoch with highest loss L.

Block size b. With growing n it is unrealistic that each possible entry of the adjacency matrix was
part of at least one random search space of (P)R-BCD. As is apparent, with a constant search space
size, the number of mutually exclusive chunks of the perturbation matrix grows with ⇥(n2) and this
would imply a quadratic runtime. However, as evident in randomized black-box attacks [37], it is
not necessary to test every possible edge to obtain an effective attack. In Fig. 3 (a), we analyze the
influence of the block size b on the adversarial accuracy. On small datasets and over a wide range of
block sizes b, our method performs comparably (or sometimes even better) to its dense equivalent.
For larger graphs, we observe that the block size b has a stronger influence on the adversarial accuracy.
However, as shown in Fig. 3 (b), one might increase the number of epochs for an improved attack
strength. This indicates that PR-BCD successfully identifies the harmful edges to keep.

GR-BCD. As an alternative to PR-BCD, we propose Greedy R-BCD (GR-BCD) which greedily flips
the entries with the largest gradient in the block so that after E iterations the budget is met. It is even
a little bit more scalable as it does not require b > � (see § C.2 for details such as the pseudo code).

Limitations. We solely propose approximate attacks that do not provide any guarantee on how
well they approximate the actual optimization problem and, hence, only provide an upper bound
on e.g. the adversarial accuracy. We also recommend monitoring the relaxation error. One could
use certificates to get the respective lower bound, provided they were scalable enough. Even sparse
smoothing [4] might be too slow since we need many forward passes. As our attacks rely on the
gradient they also require that the victim model is (approximately) differentiable. Otherwise, the

5

approximation can become inappropriate. Moreover, we are limited by the scalability of the attacked
GNN as we discuss next. For the theoretical complexities of all studied attacks, we refer to § E.

Scalable GNNs. Up to now, we implicitly assumed that we have enough memory to obtain the
predictions and gradient towards the edges. GNNs that typically process the whole graph “at once”,
are inherently limited in their scalability. Our PR-BCD attack is even applicable when operating at
those limits (see experiments on Products in § 5). To push the limits further, we now consider more
scalable GNNs. Some notable scalable GNNs either sample subgraphs [7, 13] or, such as PPRGo [5],
simplify the message passing operation. Next, we extend our PR-BCD to a local attack on PPRGo
with constant complexity including the (Soft Median) PPRGo (we introduce the Soft Median in § 4).

PPRGo.To scale to massive graphs effectively, we need to obtain sublinear/constant complexity
w.r.t. the number of nodes. This severely restricts the possibilities of how one might approach a
global attack and is the reason why we now focus on local attacks (i.e. attacking single node i).
For an L-layer message passing GNN we need to recursively compute the L-hop neighborhood to
obtain the prediction of a single node. This makes it difficult to obtain a sublinear space complexity
(here including the GNN)—especially if one considers arbitrary edge insertions. In contrast,
PPRGo [5] leverages the Personalized Page Rank (PPR) matrix ⇧ = ↵(I � (1� ↵)D�1A)�1 (row
normalization) to reduce the number of explicit message passing steps to one (with feat. encoder fenc):

p = softmax [AGG {(⇧uv, fenc(xu)) , 8u 2 N0(v)}] (3)

Differentiable PPR Update. For a local attack on PPRGo, we require a differentiable update of
the respective PPR Scores for an edge perturbation on a weighted graph. We achieve this using the
Sherman-Morrison formula through a closed-form rank-one update of row i of the PPR matrix:

⇧̃i = ↵

✓
⇧

0
i �

⇧
0
iiv⇧

0

1 + v⇧0
:i

◆
(4)

where ⇧
0 = ↵�1

⇧ and, with degree matrix D, v = (Dii +
P

p)�1(Ai + p) � D�1
ii Ai. This

suffices to attack incoming edges of a node and since everything is differentiable (@L0/@p) we do not
need a surrogate model (common practice [26, 36, 50]). In § C.3, we give details on the derivation
and show how we can leverage the fact that PPRGo uses a top-k-sparsified PPR matrix to obtain
constant complexity O(bk) (assuming b ⌧ n and k ⌧ n). With � < b, our approach comes with
no restriction on how we can insert or remove incoming edges of a specific node. Other approaches
such as [14, 26] gain scalability via restricting the set of admissible nodes for edge perturbations.

4 Scalable Defense

To complete the robustness picture we now shift focus to defenses. Unfortunately, we are not aware
of any defense that scales to graphs significantly larger than PubMed. Thus, we propose a novel,
scalable defense based on a robust message-passing aggregation, relying on recent advancements
in differentiable sorting [31]. Our Soft Median not only comes with the best possible breakdown
point of 0.5 but also can have a lower error than its hard equivalent for finite perturbations (see § D.3).
Moreover, our Soft Median performs similarly to the recent Soft Medoid [18], but comes with better
computational complexity w.r.t. the neighborhood size, lower memory footprint, and enables us to
scale to bigger graphs. We can also use this aggregation neatly in the PPRGo architecture resulting in
the first defense that scales to massive graphs with over 111M nodes (see Eq. 3).

Background. We typically have the message passing framework of a GNN:

h
(l)
v = �(l)

h
AGG(l)

n⇣
Avu,h

(l�1)
u W (l)

⌘
, 8u 2 N0(v)

oi
(5)

with neighborhood N0(v) = N(v) [v including the node itself, the l-th layer message passing aggre-
gation AGG(l), embedding h

(l)
v , normalized adjacency matrix A, weights W (l), and activation �(l).

Related Work. Following Günnemann [20], we classify defenses into three categories: (1) pre-
processing [16, 22, 41], (2) training procedure [10, 43, 49], and (3) modifications of the architec-
ture [11, 18, 23, 35, 42, 46–48]. All these previous defenses were not evaluated on graphs substantially
larger than PubMed. Note GNNGuard [46] was only evaluated on a subset of arXiv, covering 20%
of the nodes and 6% of the edges. Even though our attacks lend themselves well for adversarial

6

training but we leave it for future work due to the overhead during training. Instead, we build the
observation of Geisler et al. [18] that common aggregations (e.g. sum or mean) in Eq. 5 are known to
be non-robust. They propose a differentiable robust aggregation for AGG(l) and call it Soft Medoid.
It is a continuous relaxation of the Medoid and requires the row/column sum over the distance matrix
of the embedding of the nodes in the neighborhood. Hence this operation has a quadratic complexity
w.r.t. the neighborhood size and comes with a sizable memory overhead during training and inference.

Soft Median. Intuitively, the Soft Median is a weighted mean where the weight for each instance is
determined based on the distance to the dimension-wise median x̄. This way, instances far from the
dimension-wise median are filtered out. We define the Soft Median as

µSoftMedian(X) = softmax (�c/T
p
d)> X = s>X ⇡ argminx02X kx̄� x0

k, (6)
with the distances cv = kx̄ � Xv,:k and number of dimensions d. We use X as well as X inter-
changeably. For a single dimension, this closely resembles the soft sorting operator as proposed
in [31] for the central element and can be understood as a soft version of the median. To apply it to
multivariate inputs, we rely on the dimension-wise median which can be computed efficiently for
practical choices of d. In contrast to the Soft Medoid, we do not require the distances between all
input instances which makes the Soft Median much more efficient. Assuming d is sufficiently small,
the Soft Median scales linearly with the number of inputs |N0(v)|.

The temperature. The temperature parameter T controls the steepness of the weight distribution s
between the neighbors. In the extreme case as T ! 0 we recover the instance which is closest to the
dimension-wise Median (i.e. argminx02X kx̄ � x0

k). In the other extreme case T ! 1, the Soft
Median is equivalent to the sample mean. We observe a similar empirical behavior as Geisler et al.
[18] and we decide on a temperature value in our experiments by grid search.

Breakdown point. For any finite T , our proposed Soft Median has the best possible breakdown
point of 0.5 as we state formally in Theorem 1 (for proof see § D.1). Note that despite the lower
complexity compared to Soft Medoid, we maintain the same breakdown point:

Theorem 1 Let X = {x1, . . . ,xn} be a collection of points in Rd with finite coordinates and
temperature T 2 [0,1). Then the Soft Median location estimator (Eq. 6) has the finite sample
breakdown point of ✏⇤(µSoft Median,X) = 1/nb(n+1)/2c (asympt. limn!1 ✏⇤(µSoftMedian,X) = 0.5).

Weighted sum Soft Medoid Soft Median

0.0 0.1 0.2

Fract. pert. edges ✏

0.05

0.10

0.15

L
2

er
ro

r

(a) absolute bias

0.0 0.1 0.2

Fract. pert. edges ✏

0.7

0.8

0.9

1.0

R
el

at
iv

e
L
2

er
ro

r

(b) relative bias

Figure 4: Empirical bias B(✏) for the second layer
of a GCN with GDC preproc. [25] network under
PGD attack with L2 distance. We use T = 0.2 and
a relative budget of ✏ = 0.25.

We define the weighted Soft Median as
µWSM(X,a) = C (s � a)>X (7)

where s is the softmax weight of Eq. 6 obtained
using the weighted dimension-wise Median, C
normalizes s.t.

P
s�a =

P
a, � is the element-

wise multiplication, and a the edges weights.
Similarly to [18], we recover the message pass-
ing operation of a GCN [24] for T ! 1.

Empirical robustness. The optimal breakdown
point only assesses worst-case perturbations.
Therefore, in Fig. 4, we analyze the L2 distance
in the latent space after the first message passing
operation for a clean vs. perturbed graph.
Empirically the Soft Median has a 20% lower
error than the weighted sum of a GCN (we call
it sum since the weights do not sum up to 1). While here the Soft Medoid seems to be more robust,
this is not consistent with the adversarial accuracy values in § 5. Interestingly, the Soft Median can
outperform its hard equivalent in terms of the finite error as we show in § D.3.

Limitations. Our Soft Median has the best possible breakdown point which is a (well-established)
indicator for robustness but does not prove adversarial robustness. As for most defenses, ours can
provide a false sense of robustness. If possible, use attacks and certification techniques to verify the
application-specific efficacy. Similar to the Soft Medoid in [18, 32], we show that the Soft Median
can improve the certified robustness in § D.4. Naturally, our Soft Median also comes with higher
cost than e.g. a naïve summation despite having the same asymptotic complexity. Nevertheless, the
overhead seems to be reasonable as we show in our experiments and in combination with PPRGo
one can mitigate the slightly higher memory requirements with smaller batch size.

7

5 Empirical Evaluation

Table 1: Dataset summary. For the dense adjacency matrix
we assume 4 bytes per entry. We represent the sparse (COO)
matrix via two 8 byte integer pointers and a 4 bytes float
value per edge. We highlight configurations above 30 GB.

Dataset #Nodes n Size (dense) Size (sparse)

Cora ML [2] 2.8 k 35.88 MB 168.32 kB
Citeseer [28] 3.3 k 43.88 MB 94.30 kB
PubMed [33] 19.7 k 1.56 GB 1.77 MB
arXiv [21] 169.3 k 114.71 GB 23.32 MB
Products [21] 2.4 M 23.99 TB 2.47 GB
Papers 100M [21] 111.1 M 49.34 PB 32.31 GB

In the following, we present our exper-
iments (consisting of approx. 2,500
runs) to show the efficacy and scal-
ability of our methods on the six
graphs detailed in Table 1. Attacks:

We benchmark our GR-BCD and
PR-BCD against PGD [43], greedy
FGSM (similar to Dai et al. [14]) as
well as DICE [37]. Defenses: Be-
sides regular/vanilla GNNs we com-
pare our Soft Median GDC/PPRGo
with Soft Medoid GDC [18], SVD
GCN [16], RGCN [48], and Jaccard
GCN [41]. For the Soft Median, we follow Soft Medoid GDC [18] and diffuse the adjacency matrix
with PPR/GDC [25] and use PPRGo’s efficient implementation to calculate the PPR scores. For the
OGB datasets we use the public splits and otherwise sample 20 nodes per class for training/validation.
We typically report the average over three random seeds/splits and the 3-sigma error of the mean.
The full setup and details about baselines are given in § F.1.For supplementary material including the
code and configuration see https://www.in.tum.de/daml/robustness-of-gnns-at-scale.

Time and memory cost. We want to stress again that most of the baselines barely scale to PubMed
using a common 11GB GeForce GTX 1080 Ti (as we do). We only use a 32GB Tesla V100 for
the experiments on Products with a full-batch GNN, since a three-layer GCN requires roughly 30
GB already during training. Extrapolating the overhead on PubMed to the largest dataset, Papers
100M, traditional attacks and defenses would require roughly 1 exabyte (1018 bytes) while for ours
11 GB suffice. Our attacks and defenses are also reasonably fast. On arXiv (170 k nodes), we train
for 500 epochs and run the global PR-BCD attack for 500 epochs. The whole training and attacking
procedure requires less than 2 minutes. Moreover, one epoch on Papers 100M with the local PR-BCD
attack takes less than 10 seconds. See § F.2 for further details and § E for theoretical complexities.

Surrogate Loss. We illustrate the losses in Fig. 5, where we clustered the losses in three groups. (1)
incentivizing low margins: Cross Entropy CE and margin. (2) focusing on high-confidence nodes:
Carlini-Wagner CW, the (neg.) CE of the most-likely, non-target class NCE, and ELU Margin. (3)
focusing on nodes close to the decision boundary: MCE (ours) and tanh margin (ours). In Fig. 6,
we see that the losses of category (3), or equivalently obeying the properties of Definition 1 or
Definition 2, are superior to the other losses. For example, with MCE and FGSM the accuracy drops
twice as much as with CE. A detailed discussion and mathematical formulation of all losses can be
found in § B. Additionally, we report further experiments backing our claims and discuss the losses’
properties in more detail. Subsequently, we use MCE for greedy attacks and tanh margin otherwise.

Robustness w.r.t. global attacks. In Table 2, we present the experimental results for our proposed
global attacks on the small dataset Cora ML since most baselines do not scale much further. Our
attacks are as strong as their dense equivalents despite being much more scalable. In Fig. 7, we

CE margin CW NCE elu margin MCE tanh margin

�1 0 1

�1

0

1

Su
rr

og
at

e
lo

ss
L
0

�1 0 1 �1 0 1

Logit margin maxc 6=c⇤zc⇤ � zc

Figure 5: Losses for the binary case. The losses are
grouped via their basic properties (see text).

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(a) GR-BCD

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(b) PR-BCD

Figure 6: Attacking GCN on Pubmed. The
lower the adv. accuracy the better the loss.

8

https://www.in.tum.de/daml/robustness-of-gnns-at-scale

Table 2: Comparing attacks (transfer from Vanilla GCN) and defenses. We show the adversarial
accuracy for ✏ = 0.1 on Cora ML, and the clean test accuracy (last column). We only highlight the
strongest defense as the attacks perform similarly. Our approaches are underlined. See § F.3 for
more datasets, budgets, and adaptive/direct attacks.

Attack FGSM GR-BCD PGD PR-BCD Acc.

Soft Median GDC 0.769 ± 0.002 0.765 ± 0.001 0.758 ± 0.002 0.752 ± 0.002 0.824 ± 0.002
Soft Median PPRGo 0.778 ± 0.001 0.781 ± 0.002 0.769 ± 0.001 0.770 ± 0.001 0.821 ± 0.001
Vanilla GCN 0.641 ± 0.003 0.622 ± 0.003 0.662 ± 0.003 0.645 ± 0.002 0.827 ± 0.003
Vanilla GDC 0.672 ± 0.005 0.677 ± 0.005 0.679 ± 0.002 0.674 ± 0.004 0.842 ± 0.003

Vanilla PPRGo 0.724 ± 0.003 0.726 ± 0.002 0.704 ± 0.001 0.700 ± 0.002 0.826 ± 0.002
Soft Medoid GDC 0.773 ± 0.005 0.775 ± 0.003 0.759 ± 0.003 0.761 ± 0.003 0.819 ± 0.002
SVD GCN 0.751 ± 0.007 0.755 ± 0.006 0.719 ± 0.005 0.724 ± 0.006 0.781 ± 0.005
Jaccard GCN 0.661 ± 0.002 0.664 ± 0.001 0.673 ± 0.002 0.667 ± 0.003 0.818 ± 0.003
RGCN 0.654 ± 0.007 0.665 ± 0.005 0.671 ± 0.007 0.664 ± 0.004 0.819 ± 0.002

Soft Median GDC
Soft Median PPRGo

Vanilla GCN
Vanilla GDC

Vanilla PPRGo
Soft Medoid GDC

0.00 0.05 0.10

Frac. edges ✏

0.65

0.70

0.75

A
dv

.a
cc

ur
ac

y

(a) Pubmed

0.00 0.05 0.10

Frac. edges ✏

0.2

0.4

0.6

A
dv

.a
cc

ur
ac

y

(b) arXiv

0.00 0.05 0.10

Frac. edges ✏

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(c) Products

Figure 7: PR-BCD (DICE dashed) on the large datasets (transfer) where the adversarial accuracy
denotes the accuracy after attacking with budget � = ✏m.

compare our PR-BCD attack on all baselines that fit into memory or can be trained within 24 hours
on the bigger datasets. On the large products dataset, it suffices to perturb roughly 2% of the edges
to push the accuracy below 60%, i.e. reaching the performance of an MLP [21]. We conclude that
GNNs on large graphs are indeed not robust (see also § F.5). Our defense Soft Median GDC and
Soft Median PPRGo are consistently among the best models tested over all scales. For example
with ✏ = 0.1, the accuracy of a Vanilla GCN drops by an absolute 20% while for the Soft Median
PPRGo we only lose 5%. To fit our Soft Median GDC on Products into memory, we had to reduce
the number of hidden dimensions in comparison to its baselines. However, note that even a Vanilla
GCN requires almost the entire memory of the 32 GB GPU. Despite the small sacrifice in clean
accuracy, we already outperform most baselines for a budget of ✏ > 0.01. We also faced similar
scaling limitations for the Soft Medoid GDC baseline on arXiv. This highlights the lower memory
requirements for our Soft Median. In § F.3, we present more exhaustive results and adaptive/direct
attacks supporting the robustness of our defense but highlighting the importance of adaptiveness.

Robustness w.r.t. local attacks. In Fig. 8, we compare the results of our local PR-BCD with Nettack
on Cora ML (undirected). We define the budget �i = ✏di and select the nodes for each budget
s.t. �i � 1. Similarly to Zügner et al. [50], we apply the attack only to the 10 nodes with highest
confidence, 10 with lowest, and 20 random nodes (all correctly classified). For more datasets
and budgets see § F.4. Our attack seems to be slightly stronger than Nettack on all architectures
and budgets. Nettack and PR-BCD use a different strategy to make the original combinatorial
optimization problem feasible (see § 1). Nettack uses a linearized surrogate model to select the
adversarial edges. Evidently, this leads to a weaker attack compared to relaxing the optimization
problem as we proposed with PR-BCD. On the large datasets Products and Papers 100M (directed),
we outperform the simple DICE baseline substantially. We compare to DICE since Nettack is not
scalable enough. In comparison to the small datasets, the Vanilla GCN/PPRGo are extremely fragile

9

Table 3: Attack success rate of PR-BCD (ours) and SGA [26] on a Vanilla GCN and Vanilla SGC [40].
The stronger attack is bold. For poisoning we retrain on the perturbed graph of an evasion attack.

Attack PR-BCD SGA
Frac. edges ✏, �i = ✏di 0.25 0.50 1.00 0.25 0.50 1.00

C
o
r
a

M
L

GCN evasion 0.38 ± 0.04 0.65 ± 0.04 0.96 ± 0.02 0.36 ± 0.04 0.51 ± 0.05 0.82 ± 0.03
poisoning 0.46 ± 0.05 0.79 ± 0.04 0.97 ± 0.02 0.47 ± 0.05 0.64 ± 0.04 0.95 ± 0.02

SGC evasion 0.45 ± 0.05 0.57 ± 0.05 0.97 ± 0.02 0.37 ± 0.04 0.43 ± 0.05 0.95 ± 0.02
poisoning 0.50 ± 0.05 0.66 ± 0.04 0.96 ± 0.02 0.47 ± 0.05 0.62 ± 0.04 0.97 ± 0.01

C
it

e
s
e
e
r GCN evasion 0.42 ± 0.05 0.66 ± 0.04 0.85 ± 0.03 0.34 ± 0.04 0.50 ± 0.05 0.72 ± 0.04

poisoning 0.53 ± 0.05 0.78 ± 0.04 0.94 ± 0.02 0.54 ± 0.05 0.76 ± 0.04 0.93 ± 0.02

SGC evasion 0.39 ± 0.04 0.62 ± 0.04 0.91 ± 0.03 0.35 ± 0.04 0.55 ± 0.05 0.85 ± 0.03
poisoning 0.49 ± 0.05 0.77 ± 0.04 0.92 ± 0.03 0.49 ± 0.05 0.74 ± 0.04 0.97 ± 0.01

a
r
X

iv GCN evasion 0.92 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.58 ± 0.05 0.90 ± 0.03 0.98 ± 0.01
poisoning 0.82 ± 0.03 0.99 ± 0.01 1.00 ± 0.00 0.52 ± 0.05 0.82 ± 0.04 0.98 ± 0.01

SGC evasion 0.91 ± 0.03 0.97 ± 0.01 1.00 ± 0.00 0.83 ± 0.04 0.94 ± 0.02 0.94 ± 0.02
poisoning 0.91 ± 0.03 0.97 ± 0.01 1.00 ± 0.00 0.83 ± 0.04 0.94 ± 0.02 0.94 ± 0.02

PR-BCD
Nettack
DICE

Soft Median PPRGo
Vanilla PPRGo
Vanilla GCN

0.25 0.5 1.0
Frac. edges ✏, �i = ✏di

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

(a) Cora ML

0.1 0.5

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

0.1 0.25

Frac. edges ✏, �i = ✏di

(b) Products (left) & Papers100M (right)

Figure 8: Adversarial classification margins
 ̃i of the attacked nodes. In (a), we com-
pare our local PR-BCD attack with Net-
tack [50] on (undirected) Cora ML. In (b),
we show the results on the (directed) large-
scale datasets Products (2.5 million nodes)
and Papers 100M (111 million nodes), respec-
tively. Our Soft Medoid PPRGo resists the
attacks much better than the baselines.

and much lower budgets �i suffice to flip almost
every node’s prediction. Our proposed defense Soft
Median PPRGo on the other hand remains similarly
robust as on the small datasets. On Papers 100M
with �i = 0.25, the Soft Median PPRGo reduces the
attacker’s success rate from around 90% to just 30%
(90% vs. 1% on Products with �i = 0.5).

In Table 3, we compare to the SGA attack of Li et al.
[26] that transfers the attacks from a SGC [40] sur-
rogate. With our PR-BCD we attack the respective
model directly. We follow SGA and obtain a poison-
ing attack by applying the perturbations of an evasion
attack to the graph before training. Our PR-BCD
clearly dominates SGA–even on SGC. This demon-
strates how generally applicable our PR-BCD is with-
out any modifications. We hypothesize that PR-BCD
is stronger since, in contrast to SGA, it does not con-
strain the edge perturbations to be within a subgraph.
Moreover, the large gap for a GCN highlights the im-
portance of adaptive attacks (i.e. no surrogate). Also
in terms of scalability, we find PR-BCD to be supe-
rior, even though SGA is efficient on graphs up to the
size of arXiv. However, on products, we observe that
for s = 3 SGC message passing steps we sometimes
require more than 11 Gb and s = 4 we typically
require more than 32 Gb. However, our PR-BCD
with PPRGo scales to graphs 2 magnitudes larger (Pa-
pers100M) and requires less than 11 GB (see § F.2).

6 Conclusion

We study the adversarial robustness of GNNs at scale.
We tackle all three of the identified challenges: (1)
we introduce surrogate losses for global attacks that
can double the attack strength, (2) we principally
scale first-order attacks that optimize over the
quadratic number of possible edges, and (3) we propose a scalable defense using our novel Soft
Median which is differentiable as well as provably robust. We show that our attacks and defenses are
practical by scaling to graphs of up to 111 million nodes. In some settings our defense reduces the
attack’s success rate from around 90 % to 1 %. Most importantly, our work enables the assessment
of robustness for massive-scale applications with GNNs.

10

Acknowledgments and Disclosure of Funding

This research was supported by the Helmholtz Association under the joint research school “Munich
School for Data Science - MUDS“.

References

[1] M. Andriushchenko and M. Hein. Provably robust boosted decision stumps and trees against
adversarial attacks. In Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2019.

[2] A. Bojchevski and S. Günnemann. Deep Gaussian embedding of graphs: Unsupervised inductive
learning via ranking. 6th International Conference on Learning Representations, ICLR, 2018.

[3] A. Bojchevski and S. Günnemann. Certifiable Robustness to Graph Perturbations. Neural
Information Processing Systems, NeurIPS, 2019.

[4] A. Bojchevski, J. Klicpera, and S. Günnemann. Efficient Robustness Certificates for Graph
Neural Networks via Sparsity-Aware Randomized Smoothing. 37th International Conference
on Machine Learning, ICML, 2020.

[5] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki, M. Lukasik, and
S. Günnemann. Scaling Graph Neural Networks with Approximate PageRank. International
Conference on Knowledge Discovery and Data Mining, KDD, 2020.

[6] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks. IEEE
Symposium on Security and Privacy, 2017.

[7] J. Chen, T. Ma, and C. Xiao. FASTGCN: Fast learning with graph convolutional networks via
importance sampling. 6th International Conference on Learning Representations, ICLR, 2018.

[8] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan. Fast gradient attack on network
embedding. arXiv:1809.02797, 2018.

[9] J. Chen, Y. Chen, H. Zheng, S. Shen, S. Yu, D. Zhang, and Q. Xuan. MGA: Momentum
Gradient Attack on Network. IEEE Transactions on Computational Social Systems, 2020.

[10] J. Chen, X. Lin, H. Xiong, Y. Wu, H. Zheng, and Q. Xuan. Smoothing Adversarial Training for
GNN. IEEE Transactions on Computational Social Systems, 2020.

[11] L. Chen, J. Li, Q. Peng, Y. Liu, Z. Zheng, and C. Yang. Understanding Structural Vulnerability in
Graph Convolutional Networks. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, Montreal, Canada, Aug. 2021. International Joint Conferences on
Artificial Intelligence Organization.

[12] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training Deep Nets with Sublinear Memory Cost.
arXiv preprint arXiv:1604.06174, 2016.

[13] W. L. Chiang, Y. Li, X. Liu, S. Bengio, S. Si, and C. J. Hsieh. Cluster-GCN: An efficient
algorithm for training deep and large graph convolutional networks. International Conference
on Knowledge Discovery and Data Mining, KDD, 2019.

[14] H. Dai, H. Li, T. Tian, H. Xin, L. Wang, Z. Jun, and S. Le. Adversarial attack on graph structured
data. 35th International Conference on Machine Learning, ICML, 3, 2018.

[15] D. Donoho and P. J. Huber. The notion of breakdown point. In A Festschrift For Erich L.
Lehmann. Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, CA, 1983, 1983.

[16] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis. All you need is Low
(rank): Defending against adversarial attacks on graphs. International Conference on Web
Search and Data Mining, WSDM, 2020.

11

[17] B. Feng, Y. Wang, X. Li, and Y. Ding. Scalable Adversarial Attack on Graph Neural Networks
with Alternating Direction Method of Multipliers. arXiv:2009.10233 [cs, stat], Sept. 2020.
arXiv: 2009.10233.

[18] S. Geisler, D. Zügner, and S. Günnemann. Reliable Graph Neural Networks via Robust
Aggregation. Neural Information Processing Systems, NeurIPS, (NeurIPS), 2020.

[19] S. Geisler, D. Zügner, A. Bojchevski, and S. Günnemann. Attacking Graph Neural Networks at
Scale. Deep Learning for Graphs at AAAI Conference on Artificial Intelligence, 2021.

[20] S. Günnemann. Graph neural networks: Adversarial robustness. In L. Wu, P. Cui, J. Pei, and
L. Zhao, editors, Graph Neural Networks: Foundations, Frontiers, and Applications, chapter 8.
Springer, Singapore, 2021.

[21] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open Graph
Benchmark: Datasets for Machine Learning on Graphs. 2020.

[22] M. Jin, H. Chang, W. Zhu, and S. Sojoudi. Power up! Robust Graph Convolutional Network
against Evasion Attacks based on Graph Powering. AAAI Conference on Artificial Intelligence,
2019.

[23] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang. Node Similarity Preserving Graph
Convolutional Networks. WSDM 2021 - Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, 2021.

[24] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
5th International Conference on Learning Representations, ICLR, 2017.

[25] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion Improves Graph Learning. Neural
Information Processing Systems, NeurIPS, 2019.

[26] J. Li, T. Xie, L. Chen, F. Xie, X. He, and Z. Zheng. Adversarial attack on large scale graph.
IEEE Transactions on Knowledge & Data Engineering, 2021.

[27] J. Ma, S. Ding, and Q. Mei. Towards More Practical Adversarial Attacks on Graph Neural
Networks. Neural Information Processing Systems, NeurIPS, (NeurIPS), 2020.

[28] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval, 2000.

[29] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optim., 22, 2012.

[30] Y. Nesterov and S. Stich. Efficiency of accelerated coordinate descent method on structured
optimization problems. Siam J. Optim., 27, 2017.

[31] S. Prillo and J. Martin Eisenschlos. SoftSort: A Continuous Relaxation for the argsort Operator.
37th International Conference on Machine Learning, ICML, 119, 2020.

[32] J. Schuchardt, A. Bojchevski, J. Klicpera, and S. Günnemann. Collective robustness certificates.
9th International Conference on Learning Representations, ICLR, 2021.

[33] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. AI Magazine, 2008.

[34] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of Graph Neural Network
Evaluation. arXiv:1811.05868 [cs, stat], June 2019. arXiv: 1811.05868.

[35] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang. Transferring robustness for graph neural
network against poisoning attacks. Conference on Web Search and Data Mining, WSDM, 2020.

[36] J. Wang, M. Luo, F. Suya, J. Li, Z. Yang, and Q. Zheng. Scalable attack on graph data by
injecting vicious nodes. Data Mining and Knowledge Discovery, 34(5), 2020.

12

[37] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan. Hiding individuals and commu-
nities in a social network. Nature Human Behaviour, 2(2), 2018.

[38] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon.
Towards Fast Computation of Certified Robustness for ReLU Networks. In 35th International
Conference on Machine Learning, ICML, July 2018.

[39] S. J. Wright. Coordinate Descent Algorithms. Mathematical Programming, 151, 2015.

[40] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying Graph Convolutional
Networks. In 36th International Conference on Machine Learning, ICML, May 2019.

[41] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu. Adversarial examples for
graph data: Deep insights into attack and defense. IJCAI International Joint Conference on
Artificial Intelligence, 2019-Augus, 2019.

[42] T. Wu, H. Ren, P. Li, and J. Leskovec. Graph Information Bottleneck. Neural Information
Processing Systems, NeurIPS, (NeurIPS), 2020.

[43] K. Xu, H. Chen, S. Liu, P. Y. Chen, T. W. Weng, M. Hong, and X. Lin. Topology attack and
defense for graph neural networks: An optimization perspective. IJCAI International Joint
Conference on Artificial Intelligence, 2019-Augus, 2019.

[44] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convo-
lutional neural networks for web-scale recommender systems. International Conference on
Knowledge Discovery and Data Mining, KDD, 2018.

[45] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient Neural Network
Robustness Certification with General Activation Functions. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2018.

[46] X. Zhang and M. Zitnik. GNNGuard: Defending Graph Neural Networks against Adversarial
Attacks. Neural Information Processing Systems, NeurIPS, (NeurIPS), 2020.

[47] Y. Zhang, S. Pal, M. Coates, and D. Ustebay. Bayesian Graph Convolutional Neural Networks
for Semi-Supervised Classification. AAAI Conference on Artificial Intelligence, 33, 2019.

[48] D. Zhu, P. Cui, Z. Zhang, and W. Zhu. Robust graph convolutional networks against adversarial
attacks. International Conference on Knowledge Discovery and Data Mining, KDD, 2019.

[49] D. Zügner and S. Günnemann. Adversarial attacks on graph neural networks via meta learning.
7th International Conference on Learning Representations, ICLR, 2019.

[50] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural networks for
graph data. International Conference on Knowledge Discovery and Data Mining, KDD, 2018.

13

	Introduction
	Surrogate Losses for Global Attacks
	Scalable Attacks
	Scalable Defense
	Empirical Evaluation
	Conclusion
	Notation
	Surrogate Losses
	Learning Dynamics
	What Nodes Are Being Attacked?
	Impact of Surrogate Losses on Attack Strength
	Proof of Proposition 1
	Alternative Version of Proposition 1

	Scalable Attacks
	L0 Projected Gradient Descent
	Projected and Greedy Randomized Block Coordinate Descent
	Derivation and Complexity of Personalized Page Rank Update

	Scalable Defense
	Proof of Theorem 1
	Weighted Soft Median
	Empirical Error
	Improving Provable Robustness

	Theoretical Complexities
	Empirical Evaluation
	Setup
	Time and Memory Cost
	Global Attacks
	Local Attacks
	Relationship of Graph Size and GNNs Robustness

	Checklist

