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Abstract. Despite deep convolutional neural networks’ great success in
object classification, recent work has shown that they suffer from a se-
vere generalization performance drop under occlusion conditions that do
not appear in the training data. Due to the large variability of occluders
in terms of shape and appearance, training data can hardly cover all
possible occlusion conditions. However, in practice we expect models to
reliably generalize to various novel occlusion conditions, rather than be-
ing limited to the training conditions. In this work, we integrate inductive
priors including prototypes, partial matching and top-down modulation
into deep neural networks to realize robust object classification under
novel occlusion conditions, with limited occlusion in training data. We
first introduce prototype learning as its regularization encourages com-
pact data clusters for better generalization ability. Then, a visibility map
at the intermediate layer based on feature dictionary and activation scale
is estimated for partial matching, whose prior sifts irrelevant information
out when comparing features with prototypes. Further, inspired by the
important role of feedback connection in neuroscience for object recog-
nition under occlusion, a structural prior, i.e. top-down modulation, is
introduced into convolution layers, purposefully reducing the contam-
ination by occlusion during feature extraction. Experiment results on
partially occluded MNIST, vehicles from the PASCAL3D+ dataset, and
vehicles from the cropped COCO dataset demonstrate the improvement
under both simulated and real-world novel occlusion conditions, as well
as under the transfer of datasets.

1 Introduction

In recent years, deep convolutional neural networks (DCNNs) have achieved
great success in computer vision tasks, like image classification [22,19,6] and
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Fig. 1. Overall architecture of TDMPNet. We use the convolution layers of VGG-16
as our feature extractor and conduct prototype matching on the features. We estimate
a visibility map from the pool-4 layer to focus on target object parts. The visibility
map is first used for top-down feedback modulation, reducing the contamination of
occlusion during feature extraction, and then for partial matching, sifting irrelevant
information out when comparing features and prototypes.

object detection [18,17]. However, widely used deep learning models are not ro-
bust under occlusion conditions, especially when ldocclusion does not appear in
the training data [3,25,31,8]. While occlusion conditions in accordance with the
training data may be solved by e.g. multi-label classification, it is impossible to
collect data covering all possible occlusion conditions, and novel occlusion condi-
tions are much tougher to tackle. Over-fitting on the limited training conditions
results in failure of generalization to novel occlusion conditions, which can cause
fatal consequences in real applications as shown in accidents of driver-assistant
systems [2]. In the real world, unexpected occlusion such as a flying tissue in
front of objects, which would look like a white box patch on the captured im-
age, always exists. Deep networks can be misguided when they have not seen
such a scene in the training data. Humans, on the other hand, are still able to
recognize objects under extreme occlusions by unexpected occluders [32]. There-
fore, a reliable computer vision model must be robust to novel occlusion other
than training conditions. In the following, occlusion refers to novel occlusion
conditions that do not appear in the training data.

A distribution inconsistency between training and testing data in terms of
occlusion causes failures of traditional DCNNs at image classification. Because
occlusion patterns are highly variable in terms of appearance and shape, includ-
ing all possible patterns in the training data is impossible, while biased occlusion
patterns do not improve the generalization performance in unbiased conditions
[8]. Hence, the inconsistency cannot be avoided and data efficiency regarding
occlusion should be considered. Therefore, our work focuses on training a model
on limited occlusions while being able to generalize to novel occlusion conditions
without assumptions on the occlusion patterns.
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There are two main challenges. The first is the over-fitting on the training
data, which reduces the generalization ability under novel occlusion conditions.
The second is that occluders will contaminate surrounding features during fea-
ture extraction. We introduce partial prototype matching to deal with the first
problem, and a top-down feedback modulation to tackle the second problem.

In cognitive science, prototype-matching is a popular theory for object recog-
nition. From mathematical perspective, prototypes can be viewed as cluster cen-
ters of points from the same class in an embedding space, and distance performs
as the matching function. Prototype learning after feature extraction is able to
deal with over-fitting [20], as it imposes regularization with a nearest neighbor
inductive bias to encourage compact data clusters. Furthermore, different pro-
totypes in one class are able to account for large changes in spatial patterns,
such as different viewpoints for 3D objects [8]. Prototypes have been introduced
and integrated into deep network structure in few-shot learning task [20] and for
rejection and class-incremental learning [27]. However, their distances are simply
euclidean distances, which cannot be used directly in occlusion conditions due
to the distortion of features in the occluded regions.

To tackle the problem of prototype matching under occlusion conditions,
we introduce partial matching with a visibility map to focus on target object
parts as illustrated in Figure 1. Wang et al. [24] first discovered that semantic
part representations for objects can be found from the internal states of trained
DCNNs, based on which Wang et al. [25] and Zhang et al. [31] developed semantic
part detection methods. Besides, larger activation scales of internal states are
also correlated with objects [30]. Inspired by these works, we employ a filter
with a visibility map on possible target object parts based on internal DCNN
states and a dictionary to sift out irrelevant information. Experiments show the
effective functioning of partial matching according to the filter.

In addition, we propose a top-down feedback modulation with the estimated
visibility map (the feedback connection shown in Figure 1) as a structural
prior because occluders also contaminate surrounding features during the fea-
ture extraction stage. The feedback modulation helps the bottom layers to filter
occlusion-induced distortions in the feature activations with high-level informa-
tion, so that areas around the occluders become less distorted. Our experiments
in Section 4 demonstrate the effective contamination reduction. Our top-down
modulation is related with some neuroscience conjectures. There are several neu-
roscience evidence show that recurrent and feedback connections play an impor-
tant role in object recognition when stimuli are partially occluded [5,15,21,16].
The main conjectures include that the recurrence fills missing data and that it
sharpens certain representations by attention refinement [14]. Here we assume
that top-down connection could be a neural modulation to filter occlusion-caused
anomalous activations.

There are also other techniques that implicitly encourage robustness under
occlusion, like cutout regularization [1]. Our model does not conflict with them
and can be further combined with these techniques to improve the robustness
under novel occlusion conditions.
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In summary, this paper makes the following contributions:

– We introduce partial prototype matching with a visibility map based on a
feature dictionary into deep neural networks for robust object classification
under novel occlusion, with limited occlusion in training data. The proto-
types and the visibility map are integrated into a neural network and can be
trained end-to-end.

– We further propose a top-down feedback modulation in convolution layers. It
imitates the neurological modulation from higher cortex to lower cortex and
serves as a structural inductive prior. Experiments show that the feedback
effectively reduce the contamination of occlusion during feature extraction.

– Extensive experiments on PASCAL3D+, MNIST, and COCO demonstrate
that the proposed model significantly improves the robustness of DCNNs
under both simulated and real novel occlusion conditions, as well as under
the transfer of datasets. Furthermore, our model can be combined with reg-
ularization methods for occlusion-robustness to improve the performance.

2 Related Work

Object classification under partial occlusion. Fawzi and Frossard [3] have
shown that DCNNs are not robust to partial occlusion when inputs are masked
out by patches. Devries and Taylor [1] and Yun et al. [29] proposed regularization
methods, e.g. cutout, by masking out patches from the images during training,
which can improve robustness under occlusion to some extent. Kortylewski et al.
[8] proposed dictionary-based Compositional Model. Their model is composed of
a traditional DCNN and a compositional model based on the features extracted
by DCNN. At runtime, the input is first classified by the DCNN, and will turn to
compositional model only when the prediction uncertainty exceeds a threshold,
because compositional models are less discriminative than DCNNs. Their model
is not end-to-end, does not consider contamination of occlusion during feature
extraction and requires a model of occluders. Kortylewski et al. [7] further ex-
tended this model to be end-to-end. Differently, our proposed model follows the
deep network architecture, reduces influence of occlusions both during and after
feature extraction, and is generalizable to novel occlusion conditions.

Prototype learning in deep networks. Prototype learning is a classical
method in pattern recognition. After the rise of deep neural networks, Yang et
al. [27] replace the traditional hand-designed features with features extracted by
convolutional neural networks in prototype learning and integrate it into deep
networks for both high accuracy and robust pattern classification. Prototypes
are also introduced in few-shot and zero-shot learning as part of metric learn-
ing [23,20]. Nevertheless, all these works use basic measures like euclidean or
cosine distance in prototype matching, which is not suitable for occlusion condi-
tions. We introduce a filter focusing on target object parts to extend prototype
matching to occlusion conditions.

Object part representation inside DCNNs. Wang et al. [24] found that
by clustering feature vectors at different positions from the intermediate layer
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of a pre-trained deep neural network, e.g. pool-4 layer in VGG, the patterns of
some cluster centers are able to reflect specific object parts. Wang et al. [25] and
Zhang et al. [31] use it for semantic part detection, and Kortylewski et al. [8]
use it to obtain part components in the compositional model. Related works also
include [11], which added a regularizer to encourage the feature representations
of DCNNs to cluster during learning, trying to obtain part representations. From
another perspective, Zhang et al. [30] tried to encourage each filter to be a part
detector by restricting the activations of each filter to be independent, and they
estimated the part position by the activation scale. These works demonstrate
that object part representation is available inside DCNNs, and activation scale
contains information. Based on these ideas, we obtain a filter with a visibility
map for partial prototype matching under occlusion by finding possible target
object parts with their representations and activation scales, and sifting out
other irrelevant information.

Feedback connections in deep networks. Despite top-down feedback
connection is an ubiquitous structure in biological vision systems, it is not used
in typical feed-forward DCNNs. Nayebi et al. [14] has summarized the function
conjectures of recurrence in the visual systems and explored possible recurrence
structures in CNNs to improve classification performance through architecture
search. As for classification task under occlusion, Spoerer et al. [21] explored
top-down and lateral connections for digit recognition under occlusion, but their
connections are simply convolutional layers without explicit functioning. As for
top-down feedback information, Fu et al. [4] learned to focus on smaller areas
in the image and Li et al. [10] designed a feedback layer and an emphasis layer.
But all of their feedback layers are composed of fully connected layers, which is
not interpretable. Some DCNN architectures also borrow the top-down feedback
idea, like CliqueNet [28]. Different from these works, our top-down feedback
modulation is composed of explainable visibility map focusing on target object
parts and is purposefully for reduction in contamination of occlusion.

3 Method

Our model is composed of three main parts. The first is prototype learning after
feature extraction. Following it is partial matching based on a filter focusing
on target object parts to extend prototype matching under occlusion. Finally,
top-down modulation is introduced to reduce the contamination of occlusion.

3.1 Prototype learning

We conduct prototype learning after feature extraction by DCNNs. Let x ∈
RH0×W0×3 denote the input image, our feature extractor is fθ : RH0×W0×3 →
RH×W×C , which is composed of convolution layer blocks in typical DCNNs. In
contrast to related works [20,27], our feature is a tensor fθ(x) ∈ RH×W×C rather
than a vector, in order to maintain spatial information for partial matching in the
next section. Suppose there are N classes for classification, we set M prototypes
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for each class to account for differences in spatial activation patterns. Therefore
prototypes are a set of tensors pi,j ∈ RH×W×C , where i ∈ {1, 2, ..., N} denotes
the class of the prototype, and j ∈ {1, 2, ...,M} represents the index in its class.

For feedforward prediction, the image is classified to the class of its nearest
prototype according to a distance function d : RH×W×C×RH×W×C → [0,+∞):

Pred(x) = arg min
i
{min

j
d(fθ(x), pi,j)}. (1)

The distance function d can simply be euclidean distance, but experiments
in Section 4.2 show that it improves networks slightly due to the contamination
of occlusion. A distance for partial matching will be introduced next section.

For backward update of parameters, we use cross entropy loss based on the
distances. To be specific, distances between the feature fθ(x) and prototypes pi,j
produce a probability distribution over classes:

Pr(y = k|x) =
exp(−γdk)∑N
i=1 exp(−γdi)

, (2)

where dk = minj d(fθ(x), pk,j), and γ is a parameter that control the hardness of
probability assignment. We set γ to be learned by network automatically. Then
based on the probability, cross entropy loss is defined:

Lce((x, k); θ, {pi,j}) = − logPr(y = k|x). (3)

Further, a prototype loss is added as the regularization of prototype learning:

Lp((x, k); θ, {pi,j}) = min
i,j

d(fθ(x), pi,j). (4)

Different from [27], we only consider the nearest prototype when computing
distances and probabilities, because our M prototypes in the same class are
designed to represent different states of objects, such as different viewpoints,
which may vary a lot in spatial distribution.

We initialize the prototypes by clustering the features of a sub dataset using
k-means algorithm [13]. It prevents the degeneration of multiple prototypes to
a single prototype.

3.2 Partial matching under occlusion

The core problem for extending prototype learning directly to occlusion condi-
tions is the matching function. Since occlusion will contaminate the object fea-
ture representation, simple distance between the feature and prototypes won’t
be valid enough to do classification. Experiments in Section 4.2 show that pure
prototype matching improves deep neural networks slightly. Focusing on valid
parts in features is required.

We employ a filter with a visibility map based on feature dictionary and acti-
vation scale to focus on valid unoccluded parts in features, which enables partial
matching. We learn a feature dictionary in the intermediate layer by clustering
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(a) (b) (c) (d)

Fig. 2. Visualizaion of activation scale in the pool-4 layer. It shows that the activation
scale at parts informative for classification, e.g. object parts, is larger than other areas.

feature vectors over the whole dataset on the feature map, which can represent
specific activation patterns of parts in the images. Specifically, feature dictio-

nary is obtained by clustering all normalized vector vk,i,j ∈ R1×1×Cl at position

(i, j) of the feature map f lθ(xk) ∈ RHl×W l×Cl at the intermediate layer l over the
dataset {xk}. Related works [24,8] show that cluster centers are mostly activated
by similar parts in the images, most of which are object parts. More detailed
visualization refer to related works [24,25,8]. Based on the feature dictionary
{Dk}, we compare the similarity between the vectors f lθ(x)i,j of the feature at

layer l and each component Dk: S(f lθ(x)i,j , Dk) =
f lθ(x)i,j

‖f lθ(x)i,j‖2
· Dk. The higher

the maximum similarity over {Dk} is, the more likely is the area a target object
part. Therefore, we can sift occlusion out by its low similarity.

However, there are also a few background activation patterns irrelevant to
classification in the dictionary. We use the relative scale of activations to filter
them out. As shown in the Figure 2, the scales of activations in a trained net-
work for most irrelevant background are much lower than objects. It is probably
because deep networks could learn to focus on image parts that contribute to
discrimination most. Considering activation scales is helpful to filter irrelevant
background and maintain most informative signals.

Combining the similarity with the feature dictionary and the activation scale
enables us to estimate a visibility map that focuses on unoccluded target object
parts. The formulation for focusing attention at postion (i, j) in layer l is:

ali,j = ReLU(max
k

fθ(x)li,j ·Dk). (5)

Since the scale of the activation after the ReLU function could be large,
we normalize ali,j . We use the following linear function with clipping since it
preserves proper relative relationship among activation scales:

Ali,j =
min(max(ali,j , al), au)

au
, (6)

where al and au are lower and upper thresholds that can be dynamically deter-
mined according to {ali,j}.

Subsequently, the visibility map is down-sampled to the same spatial scale of
fθ(x)i,j for partial matching. We let {Ai,j} denote it. Based on {Ai,j}, partial
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matching between the feature and prototypes is enabled. Let fθ(x) � A denote
the application of the filter by scaling vectors fθ(x)i,j with Ai,j . A distance for
partial matching under occlusion used for Eq.(1), (2) and (4) is defined as:

d(fθ(x), pi,j) =
1

2
‖fθ(x)�A− pi,j �A‖22 (7)

In this way, we only compare unoccluded target object parts based on the
estimated visibility map. Due to the high-dimension of fθ(x) and pi,j , we nor-
malize them on a unit sphere at first and compute the euclidean distance after
applying the filter, in order to obtain a valid distance.

We learn the feature dictionary {Dk} through clustering. So similar to pro-
totype learning, we initialize it with clustering result on the pre-trained neural
network, and add the clustering loss in the whole loss function during training:

LD =
∑
i,j

min
k

1

2

∥∥∥∥ fθ(x)i,j
‖fθ(x)i,j‖2

−Dk

∥∥∥∥2
2

(8)

Note that we simply add a normalization layer in the network to normalize
dk and ignore the notation in the formula.

3.3 Top-Down feedback modulation

Our proposed partial matching only sifts out irrelevant feature vectors when
comparing features and prototypes. However, occluders may also contaminate
its nearby feature vectors. We propose to filter the occlusion-caused anomalous
activitions in the lower layers to reduce such contamination and thus obtain
cleaner features around the occluder.

Based on the estimated visibility map at a higher layer, a top-down feedback
connection is introduced to reduce the contamination of occlusion in lower layers.
Formally, let {Abi,j} denote the up-sampling filter result of {Ali,j} to the same

spatial size as the bottom layer b, such as pool-1 layer, and f bθ as the function
from input to layer b. A new activation pattern at layer b can be obtained by
applying the filter to the old activation:

f bθ (x)new = f bθ (x)�Ab (9)

The new activation is again feed-forwarded, as a recurrent procedure. The
recurrence can be carried out for multiple times, gradually refining features to
reduce the contamination of occlusion. The upper threshold in Eq.(6) prevents
degeneration of the filter attention to only one point, and the lower threshold in
Eq.(6) prevents mistaken filtration due to the possible contamination of occlusion
from the bottom layer to top layers.

In summary, the overall architecture with our three components is shown in
Figure 1. Our overall loss function for training is:

L = Lce((x, k); θ, {pi,j}) + λ1Lp((x, k); θ, {pi,j}) + λ2LD (10)
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(a) (b) (c) (d) (e) (f)

(g) (h)

Fig. 3. Examples of synthetic occlusion and real-world occlusion. (a), (b), (c) corre-
spond to level 1-3 on PASCAL3D+; (d), (e), (f) correspond to level 1-3 on MNIST.
Different types of occlusion appearances are: white boxes (a&d), random noise (f),
textures (c&e), and natural objects (b). (g) and (h) are real-world occlusion conditions
from the COCO dataset.

4 Experiments

4.1 Dataset and settings

We evaluate our model for object classification on partially occluded MNIST
digits [9], vehicles from the PASCAL3D+ dataset [26], and vehicles from the
COCO dataset [12]. For PASCAL3D+ and MNIST, we simulate novel occlusion,
while for COCO, we split non-occlusion images and occlusion images, and test
both direct generalization from PASCAL3D+ to novel occlusion in COCO and
performance under training on non-occlusion COCO images.

First, to test the generalization ability to novel occlusion conditions in MNIST
and PASCAL3D+, we train our model on original images and test under simu-
lation of partial occlusion by masking out patches in the images and filling them
with white boxes, random noise or textures following [8], to imitate unexpected
occlusion in front of objects like flying tissues. In addition, we also use the images
provided in the VehicleSemanticPart dataset [25] for the PASCAL3D+ vehicles,
where occlusion was simulated by superimposing segmented objects over the
target object. Different occlusion levels are also defined corresponding to the
percentage of occlusion over objects based on the object segmentation masks
provided in the PASCAL3D+ and threshold segmentation of the MNIST digits.
Examples refer to Figure 3. We use the standard splits for the train and test
data. For the PASCAL3D+ dataset, we follow the setup in [24] and [8], that is
the task is to discriminate between 12 objects during training, while at test time
the 6 vehicle categories are tested.

Then, we crop the COCO dataset with the bounding box ground truth and
divide the occluded and unoccluded images manually, whose categories accord
with the setup of PASCAL3D+ above. We first directly employ the model trained
on PASCAL3D+ on the occluded images from COCO (occluders do not appear
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Table 1. Classification results for PASCAL3D+ and MNIST with different levels of
occlusion (0%, 20-40%, 40-60%, 60-80% of the object are occluded) and different types
of occlusion (w = white boxes, n = noise boxes, t = textured boxes, o = natural
objects). PrototypeNet denotes only replacing fully-connected layers in VGG by proto-
type learning, without top-down modulation. Without partial matching denotes simply
use euclidean distance for prototype matching. All prototype numbers in one class are
set to 4, to be the same as CompDictModel [8]. The best performance is in red font,
while the second best is in blue font.

PASCAL3D+ Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t o w n t o w n t o -

VGG 99.4 97.5 97.5 97.3 92.1 91.7 90.6 90.2 73.0 65.0 60.7 56.4 52.2 81.8

CompDictModel [8] 98.3 96.8 95.9 96.2 94.4 91.2 91.8 91.3 91.4 71.6 80.7 77.3 87.2 89.5

PrototypeNet without partial matching 99.2 97.1 97.6 97.2 95.3 91.2 93.0 91.3 81.3 61.9 60.9 57.9 61.5 83.5

PrototypeNet with partial matching 99.3 98.4 98.9 98.5 97.3 96.4 97.1 96.2 89.2 84.0 87.4 79.7 74.5 92.1

TDMPNet with 1 recurrence 99.3 98.4 98.9 98.7 97.2 96.1 97.4 96.4 90.2 81.1 87.6 81.2 76.8 92.3

TDMPNet with 2 recurrence 99.2 98.5 98.8 98.5 97.3 96.2 97.4 96.6 90.2 81.5 87.7 81.9 77.1 92.4

TDMPNet with 3 recurrence 99.3 98.4 98.9 98.5 97.4 96.1 97.5 96.6 91.6 82.1 88.1 82.7 79.8 92.8

TDMPNet with 4 recurrence 99.3 98.4 98.9 98.4 97.2 96.0 97.5 96.5 91.4 81.5 87.7 82.4 79.3 92.7

VGG + cutout [1] 99.4 98.1 97.9 98.2 93.8 94.8 92.3 92.4 81.3 75.4 67.7 66.3 64.8 86.3

TDMPNet + cutout 99.3 98.8 98.9 98.8 97.5 97.7 97.9 97.2 91.9 88.2 90.2 84.7 80.5 94.0

Human [8] 100.0 100.0 100.0 98.3 99.5

MNIST Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t w n t w n t -

VGG 99.4 76.8 63.1 71.4 51.1 41.9 43.2 24.9 25.7 23.5 52.1

CompDictModel [8] 99.1 85.2 82.3 83.4 72.4 71.0 72.8 45.3 41.2 43.0 69.4

PrototypeNet without partial matching 99.3 81.0 71.8 77.4 53.4 44.4 50.4 27.4 28.3 29.9 56.3

PrototypeNet with partial matching 99.4 86.3 78.8 82.9 67.3 56.1 59.7 43.6 36.8 37.6 64.9

TDMPNet with 1 recurrence 99.4 87.6 81.4 85.3 69.3 57.9 64.0 46.1 36.8 42.1 67.0

TDMPNet with 2 recurrence 99.4 88.2 82.2 85.5 70.6 59.8 64.9 47.0 38.8 42.8 67.9

TDMPNet with 3 recurrence 99.4 88.7 82.9 85.7 71.4 60.2 65.2 47.8 38.7 42.8 68.3

TDMPNet with 4 recurrence 99.5 89.3 84.2 86.3 72.7 61.6 66.3 49.3 40.0 44.0 69.3

VGG + cutout [1] 99.4 91.5 75.8 82.0 78.8 59.0 60.4 50.4 40.6 37.0 67.5

TDMPNet + cutout 99.4 92.2 95.4 93.5 79.7 84.1 78.5 57.7 59.0 51.4 79.1

Human [8] 100.0 92.7 91.3 64 84.4

in PASCAL3D+), to evaluate the generalization ability under real novel occlu-
sion and transferred datasets. Then, we train our model on non-occlusion images
from COCO and test on occluded images. We enrich the training data with PAS-
CAL3D+ due to the insufficiency of images. The occlusion examples are shown
in Figure 3.

We utilize convolution layers in a VGG-16 pre-trained on the ImageNet
dataset as the feature extraction part. Prototype learning is conducted on the
pool-5 layer. The visibility map is estimated from the pool-4 layer, and the
top-down modulation is imposed on pool-1 layer. We set feature dictionary com-
ponents to be 512 for all datasets and use von Mises-Fisher clustering result [8]
as the initialization. Other training details refer to the Supplementary Material.
We compare our model with VGG-16 finetuned on the datasets, dictionary-based
Compositional Model [8], and human baseline. We also compare cutout regular-
ization [1] in VGG and our model, which is similar to adding occlusion in the
training data as it masks out patches. The hole number and the length of cutout
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is set to be 1 and 48. Other training settings follow the previous settings. The
recurrence number of TDMPNet is three if unspecified.

4.2 Results on simulated novel occlusion

Results for classification at different occlusion levels are shown in Table 1. They
show that DCNNs do not generalize well under synthetic novel occlusion. TDMP-
Net significantly outperforms VGG in every occlusion conditions and remains
about the same accuracy when there’s no occlusion. Further augmented by
cutout regularization, our model achieves significantly best results.

Pure prototype learning improves DCNNs slightly. As shown in the
results, direct prototype learning with simple distance function has little im-
provement. Though it outperforms VGG in some conditions, the improvements
are low compared with follow-up results.

Partial matching plays a crucial role. As illustrated by the results,
partial matching significantly improves the performance. For the mean accuracy
over all conditions, it improves 10.3 percent on PASCAL3D+ and 14.5 percent
on MNIST compared with VGG. In the low occlusion level on PASCAL3D+,
partial matching achieves the best results even without top-down modulation.

Top-Down modulation works well for severe occlusions. Top-down
recurrence could effectively improve the performance in relatively hard tasks
that even human performance drops. As recurrence times goes up, the features
are more pure and therefore performance increases. A more detailed analysis is
in the following section. With top-down modulation, the finial mean accuracy
outperforms VGG 11 percent on PASCAL3D+ and 17.2 percent on MNIST,
reflecting its robustness under partial occlusion.

Combination with other techniques can further improve the per-
formance greatly. As shown in Table 1, cutout regularization can significantly
boost both VGG and TDMPNet. It shows that TDMPNet does not conflict with
other occlusion-robust techniques, and their combination can lead to better re-
sults. TDMPNet with cutout regularization achieves the best result for robust-
ness under synthetic novel occlusion, with a boost of 7.7 percent on PASCAL3D+
and 11.6 percent on MNIST compared with VGG with cutout regularization.

Comparison between TDMPNet and CompDictModel. Dictionary-
based Compositional Model [8] is a model that uses both VGG and a composi-
tional model for classification under partial occlusion. Details refer to Related
Work and the original paper. Results show that TDMPNet outperforms Comp-
DictModel in most conditions except Level-3 ’o’ condition in PASCAL3D+. A
possible reason is that CompDictModel requires a complex model of occlusion.
Differently, our model aims at generalization to novel occlusion conditions and
makes no assumptions on occlusion. Another reason is that CompDictModel
learn compositional models from the pool-4 layer, which may benefit certain
conditions. Detailed analysis refer to the Supplementary Material. In addition,
our model is end-to-end, with fewer parameters and is simpler in computation
compared with CompDictModel.
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Table 2. Classification results for cropped COCO. Transfer Accuracy is the direct
transfer generalization performance from PASCAL3D+ to cropped COCO. Accuracy
is the performance when trained on non-occlusion images of COCO with supplementary
images from PASCAL3D+, and tested on occlusion images of COCO.

Model Transfer Accuracy Accuracy

VGG 86.66 87.27

VGG + cutout 86.22 88.58

TDMPNet 86.92 89.45

TDMPNet + cutout 87.88 90.32

4.3 Results on real-world novel occlusion

Table 2 are the results of transfer generalization from PASCAL3D+ to novel oc-
clusion in cropped COCO dataset, and the results of training on non-occlusion
images from COCO with supplements. It shows actual improvement of TDMP-
Net under real-world novel occlusion, even under the transfer of datasets. As
shown in Table 2, under the transfer generalization, TDMPNet outperforms
VGG by 0.26 percent and TDMPNet with cutout demonstrate a more consider-
able improvement with 1.22 percent accuracy boost, while VGG with cutout do
not improve the performance. When trained on unoccluded images from COCO,
TDMPNet still demonstrate its superiority over VGG, with a boost of 2.18 per-
cent both without cutout and 1.74 percent both with cutout. Note that VGG
with cutout regularization does not generalize its improvement to transferred
datasets, while TDMPNet maintains the superiority. It demonstrates the better
generalization ability of TDMPNet under novel real-world occlusion conditions
and transferred datasets.

4.4 Comparison of prototype number

In the previous experiments, we set prototype number as 4 to compare with
CompDictModel. We further compare different prototype numbers and visualize
images that are assigned to the same prototype.

Multiple prototypes improve the performance. As shown in Table 3, 4
prototypes outperform 1 prototype, while 8 prototypes are about the same as 4
prototypes. It implies that modeling different spatial patterns enables prototypes
to be more inclusive, and 4 prototypes are enough to account for the spatial
variance in the PASCAL3D+ dataset.

Multiple prototypes maintain spatial structures. As shown in the Sup-
plementary Material, the four prototypes in our model mainly correspond to
different viewpoints with certain spatial structure. When there is only one pro-
totype for each class, network simply learns a metric to push all possible activa-
tion patterns at a position close with each other, to ensure that the prototype
is the closest to all entities. This may lose spatial structure of objects. Multiple
prototypes are able to tackle such problem effectively.
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Table 3. Comparison of different prototype numbers for TDAPNet on PASCAL3D+.
The best performance is in red font, while the second best is in blue font.

PASCAL3D+ Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t o w n t o w n t o -

1 prototype, 1 recurrence 99.2 97.9 98.5 97.9 96.4 95.1 96.5 95.2 88.6 79.1 84.8 77.9 75.1 90.9

1 prototype, 2 recurrence 99.2 97.9 98.3 97.9 96.3 95.1 96.6 95.0 89.1 78.9 85.2 78.2 75.5 91.0

1 prototype, 3 recurrence 99.0 98.0 98.3 97.8 96.5 94.7 96.3 95.3 89.5 79.7 85.2 79.0 76.9 91.2

4 prototype, 1 recurrence 99.3 98.4 98.9 98.7 97.2 96.1 97.4 96.4 90.2 81.1 87.6 81.2 76.8 92.3

4 prototype, 2 recurrence 99.2 98.5 98.8 98.5 97.3 96.2 97.4 96.6 90.2 81.5 87.7 81.9 77.1 92.4

4 prototype, 3 recurrence 99.3 98.4 98.9 98.5 97.4 96.1 97.5 96.6 91.6 82.1 88.1 82.7 79.8 92.8

8 prototype, 1 recurrence 99.3 98.7 98.9 98.7 97.5 96.4 97.5 96.7 89.6 81.1 87.6 80.9 74.7 92.1

8 prototype, 2 recurrence 99.4 98.7 99.0 98.6 97.7 96.1 97.5 96.8 90.8 82.5 88.7 82.5 78.6 92.8

8 prototype, 3 recurrence 99.3 98.6 99.1 98.6 97.6 96.2 97.5 96.7 91.4 82.4 88.2 83.0 78.6 92.9

4.5 Analysis of the filter functioning

(a) (b) (c) (d) (e) (f)

Fig. 4. Visualization of visibility maps. Lighter areas represent more focusing attention
and darker areas are likely to be filtered. (a) is the occluded image. (b) is the visibility
map only based on activation scale. (c) is the visibility map based on feature dictionary
and activation scale in the first feed-forward procedure. (d) is the visibility map where
feature dictionary enhance attention compared with (b). (e) is the visibility map where
feature dictionary reduce attention compared with (b). (f) is the final visibility map
after one top-down recurrence.

The classification results demonstrate the importance of the filter with visi-
bility maps for partial matching. We illustrate how the two components in the
filter contribute to focusing on informative parts through visualization of visi-
bility maps. As shown in the Figure 4, the activation scale (4(b)) increases the
filtering to the background in 4(a). Based on it the feature dictionary further
increases the filtering on the occluding parrots (4(e)) and enhance attention on
several positions (4(d)), resulting in visibility map 4(c). After a top-down recur-
rence, the filter further sifts irrelevant information out and mainly focuses on
target object parts (4(f)).

4.6 Analysis of the top-down modulation effect

We further validate the function of recurrent top-down modulation. It is designed
to reduce contamination of occlusion to its surroundings. Therefore, we compare
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Table 4. Contamination reduction percentage by top-down modulation on PAS-
CAL3D+. Larger number reflects better results.

Occ. Area Level-1: 20-40% Level-2: 40-60% Level-3: 60-80%

Occ. Type w n t o w n t o w n t o

TDMPNet with 1 recurrence 14.1% 15.2% 15.7% 12.5% 9.5% 9.2% 10.1% 11.7% 11.1% 11.1% 12.9% 10.9%

TDMPNet with 2 recurrence 16.7% 17.9% 18.6% 13.9% 10.3% 10.0% 10.9% 13.1% 13.0% 13.1% 15.3% 12.1%

TDMPNet with 3 recurrence 19.8% 21.1% 21.9% 16.0% 10.9% 10.7% 11.6% 15.3% 15.3% 15.5% 17.8% 14.1%

TDMPNet with 4 recurrence 19.9% 21.4% 22.2% 15.8% 10.6% 10.4% 11.4% 15.3% 15.6% 15.8% 18.2% 14.2%

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Visualization of difference reduction after one top-down recurrence at pool-4
layer. (a)&(e) are the occluded images. (b)&(f) are the activation difference between
clean and occluded images before top-down recurrence, while (c)&(g) are the activation
difference after top-down recurrence. Lighter areas represent more difference. (d)&(h)
are the difference reduction. Lighter areas represent more difference reduction.

the differences between the pool-4 feature of the clean images and the occluded
images before and after top-down recurrence. Specifically, let f0c , frc , f0o , fro
denote the pool-4 feature of the clean image before and after recurrence and
the occluded image before and after recurrence respectively, and let mo denote
the mask of occlusion area obtained by average down-sampling of the occlusion

ground truth. We compute Rc = 1− sum(|fro�mo−f
r
c�mo|)

sum(|f1
o�mo−f1

c�mo|)
as the contamination

reduction percentage. Results in Table 4 clearly show that top-down recurrence is
capable of reducing contamination in the bottom layer based on the information
from the top layer, and nearly the more the recurrence, the more the reduction.
Further, the visualization of difference reduction is in Figure 5, showing the
reduction of occlusion-caused difference in features surrounding the occluders.

5 Conclusion

In this work, we integrate inductive priors including prototypes, partial match-
ing, and top-down modulation into deep neural networks for robust object clas-
sification under novel occlusion conditions, with limited occlusion in training
data. The filter in partial matching extends prototype matching to occlusion
conditions, and the top-down modulation deals with the contamination of oc-
clusion during feature extraction. Our model significantly improves current deep
networks, and its combination with other regularization methods leads to better
results. Experiments demonstrate the superiority under both simulated and real
novel occlusion conditions and under the transfer of datasets.
Acknowledgements This work was partly supported by ONR N00014-18-1-
2119.
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