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Abstract

Hypernymy directionality prediction is an im-001
portant task in Natural Language Processing002
due to its significant usages in natural language003
understanding and generation. Many super-004
vised and unsupervised methods have been005
proposed for this task, but existing unsuper-006
vised methods do not leverage distributional007
pre-trained vectors from neural language mod-008
els, as supervised methods typically do. In this009
paper, we present a simple yet effective unsu-010
pervised method for hypernymy directionality011
prediction that exploits neural pre-trained word012
vectors in context, based on the distributional013
informativeness hypothesis. Extensive experi-014
ments on seven datasets demonstrate that our015
method outperforms or achieves comparable016
performance to existing unsupervised and su-017
pervised methods.018

1 Introduction019

Hypernymy, an Is-A relation, has garnered signifi-020

cant attention in the field of Natural Language Pro-021

cessing (NLP). It constitutes a transitive and asym-022

metric semantic link between a hypernym (also023

referred to as a superordination or a superset) and024

a hyponym (also referred to as a subordination or a025

subset) (Lyons, 1977). For instance, mammal is a026

hypernym of elephant, and fruit is a hypernym of027

banana. This hypernymy semantic relation plays a028

crucial role in various challenging NLP tasks, such029

as knowledge base construction (Snow et al., 2006;030

Navigli et al., 2011), natural language inference031

(Dagan et al., 2015; Williams et al., 2018), textual032

entailment (Dagan et al., 2015), question answering033

(Huang et al., 2008), text classification (Jang et al.,034

2021), and text generation (Biran and McKeown,035

2013).036

Hypernym detection is generally a two-step pro-037

cess: identifying hypernymy relations and pre-038

dicting the directionality of those relations. Hy-039

pernymy detection distinguishes hypernymy from040

other semantic relations, such as synonymy and 041

antonymy. Directionality prediction, on the other 042

hand, identifies which word in a given hypernymy 043

pair is the hypernym and which word is the hy- 044

ponym. For example, given the pair “animal” and 045

“cat”, directionality prediction would determine 046

whether “animal” is a hypernym of “cat” or vice 047

versa. In this paper, our focus is on the problem of 048

directionality prediction—determine whether A is 049

a hypernym of B or B is a hypernym of A. 050

For hypernymy directionality prediction, there 051

exist a wealth of unsupervised methods (Weeds 052

and Weir, 2003; Clarke, 2009; Kotlerman et al., 053

2010; Lenci and Benotto, 2012; Santus et al., 2014). 054

Many of these metrics are based on the distribu- 055

tional inclusion hypothesis (Weeds et al., 2004; 056

Kotlerman et al., 2010) and the distributional infor- 057

mativeness hypothesis (Santus et al., 2014). How- 058

ever, these existing methods, which were developed 059

some time ago, do not take advantage of the recent 060

pre-trained distributional vectors from neural lan- 061

guage models, such as BERT (Devlin et al., 2018) 062

and fastText (Bojanowski et al., 2017). Addition- 063

ally, most methods typically require a validation 064

set to tune the threshold for their metrics in order 065

to accurately identify the directionality. 066

In this paper, we propose a simple yet effec- 067

tive unsupervised metric, DECIDE1, for hypernymy 068

directionality prediction using pre-trained neural 069

word embedding. In our experiments involving 070

7 datasets, DECIDE shows superior or compara- 071

ble performance to existing unsupervised metrics. 072

We also compare our metric with state-of-the-art 073

supervised methods, showing superiority in han- 074

dling previously unseen data samples. We show 075

that existing supervised methods report optimistic 076

performance due to information overlap between 077

the train and test partitions of a datasets. 078

1DECIDE is an anagram of the bold letters from Centroid
Distance in Distributional ContExt.
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2 Related Works079

Several unsupervised directional measures have080

been proposed to tackle hypernymy prediction, es-081

pecially in the early stages of research. Weeds082

et al. (2004) introduced the notion of distributional083

generality, highlighting that more general words084

tend to manifest across a broader spectrum of con-085

texts compared to specific ones. Their research086

relied on the assumption that the contexts of a hy-087

ponym are expected to be included in those of its088

hypernym, known as the distributional inclusion089

hypothesis. Building upon this, Clarke (2009) em-090

ployed a partially ordered vector space to formalize091

distributional generality, while Lenci and Benotto092

(2012) extended the notion further by proposing093

that more general terms should exhibit high recall094

and low precision. Santus et al. (2014) introduced095

an entropy-based measure, SLQS, considering that096

hypernyms’ typical linguistic contexts might be097

less informative than those of hyponyms, known as098

the distributional informativeness hypothesis. They099

proposed a measure based on the intersection of100

mutually dependent contexts of target words.101

With the ascent of deep learning models, super-102

vised strategies have emerged to adapt word embed-103

dings through joint optimization models during pre-104

training or retrofitting models during fine-tuning.105

The former approaches reshaped the entire embed-106

ding space e.g., (Levine et al., 2020), which can be107

computationally expensive. In contrast, the latter108

methods (Yu et al., 2015; Luu et al., 2016; Ven-109

drov et al., 2016) fine-tuned word vectors to align110

with external linguistic constraints. While these111

methods are applicable to any pre-trained distribu-112

tional space, they only modify the vectors of words113

seen in constraints, leaving unseen word vectors114

unmodified. Glavaš and Vulic (2019) attempted115

to address this issue by building a model, named116

GLEN, which learns a function during training that117

can be used for unseen word pairs. All of these use118

lexical resources like WordNet to (weakly) super-119

vise the models.120

Similar to early unsupervised measures, we in-121

troduce an unsupervised directionality measure,122

named DECIDE, which is based on the idea of dis-123

tributional generality, specifically the distributional124

informativeness hypothesis. However, DECIDE is125

differentiated from previous work in that it takes126

advantage of neural word embeddings for context127

words, and does not require setting a threshold to128

decide directionality.129

3 Our Proposed Method: DECIDE 130

In this section, we present our measure for identify- 131

ing the hypernymy directionality between a given 132

hypernymy pair. Our measure operationalizes the 133

distributional informativeness hypothesis (Santus 134

et al., 2014), which states that more general terms 135

tend to occur in more general and diverse contexts 136

than specific terms. For example, the words that oc- 137

cur around “animal” can come from generic animal 138

characteristics, and their habitats, whereas context 139

words of “cat” are more specific to cats. 140

Figure 1: 2D visualization of context word embedding
of a Hypernym (Animal) and Hyponym (Cat).

Based on the distributional informativeness hy- 141

pothesis, we hypothesize that the context words 142

of a hypernym would have a broader distribution 143

compared to its hyponym’s context words in terms 144

of their meanings. To obtain the context words of 145

given two terms term1 and term2 in a hypernymy 146

relation, we first collect all sentences that contain 147

each term from a large corpus. Subsequently, we 148

tokenize these sentences using white spaces and 149

punctuation, and remove stop words and tokens 150

solely composed of numbers or symbols, retain- 151

ing the remaining words as context words. For 152

instance, in Figure 1 the two circles represents the 153

context words of two terms Animal and Cat. Using 154

these context words, we then identify the common 155

context words (intersecting region of the two cir- 156

cles in Figure 1). Then, we calculate the mean 157

vector of those common context words, m. From 158

the unique context words for term1 (e.g., triangles 159

in Figure 1) and term2 (e.g., rectangles in Figure 160

1), we determine the minimum number of unique 161

context words, n, and then select the n farthest 162

unique context words for term1 and term2, C
′
1 163

and C
′
2 , respectively. Finally, we compare the av- 164

erage distance between C
′
1 and C

′
2 from m. This 165

process is expressed in Figure 2. 166
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DECIDE(C1, C2)
Input:

C1 = context words unique to term1

C2 = context words unique to term2

n = min(|C1|, |C2|)
C

′
1 = n farthest context words from C1

C
′
2 = n farthest context words from C2

m = the average embedding of the common
context words

if 1
n

∑
c∈C′

1
(c−m) > 1

n

∑
c∈C′

2
(c−m):

return: term1 is a hypernym of term2

else:
return: term2 is a hypernym of term1

Figure 2: Synopsis of DECIDE for determining hyper-
nym direction.

4 Experiments167

We evaluate our approach on seven real-life168

datasets in four domains: general, medicine, mu-169

sic, and computer science. The datasets contain170

hypernym-hyponym pairs (u, v) with correspond-171

ing labels indicating the direction. The dataset172

statistics is shown in Table 1. To represent u and173

v, we use fastText (Bojanowski et al., 2017), pre-174

trained distributed vectors (d = 300) trained on175

Wikipedia.2176

Hypernymy datasets: The datasets from177

the general domain are Bless (Baroni and Lenci,178

2010), Weeds (Weeds et al., 2014), EVAlution179

(Santus et al., 2015) and LenciBennotto (Benotto,180

2015). The medicine and music datasets are from181

the SemEval-2018 Task9 Hypernym Discovery182

(Camacho-Collados et al., 2018). We use the test183

sets partitioned by Shwartz et al. (2016) for Weeds,184

EVAluation and LenciBennotto.185

We also construct a dataset in the Computer Sci-186

ence domain, with the hypernymy broadly defined187

covering concept-subconcept or topic-subtopic re-188

lations. For instance, a hypernym-hyponym pair in189

this dataset can be (“data structure”, “binary search190

tree”). We use GPT-3 (Brown et al., 2020) to build191

this dataset using the OpenAI API’s create comple-192

2In our preliminary experiments, we also explored the use
of Glove (Pennington et al., 2014) and BERT (Devlin et al.,
2018) embeddings, and observed that they yielded similar
results.

Dataset Original-
Pairs

Atmost
1-Entity
Unseen

Both-
Entities
Unseen

Bless 1,277 241 0
Weeds 1,321 175 3

EVAluation 3,035 1,799 18
LenciBenotto 1,724 1,524 224

Medical 3,256 3,185 1,545
Music 5,455 5,115 1,802

Comp.Sci 331 331 247

Table 1: The number of hypernym-hyponym pairs in
each data set. Second colum shows the number of orig-
inal entity-pairs. Third column shows the number of
entity-pairs where at least one entity of the pair is not
present in the training data. The fourth column shows
the number of entity-pairs where both the entities are
not present in the training data.

tion functionality. We tailored the prompt to gen- 193

erate a list of 20 subtopic names for a given topic, 194

beginning with “Computer Science” as the initial 195

topic and then using the resulting 20 subtopics as 196

subsequent prompts. The numbers of hypernymy 197

pairs in all the datasets are shown in Table 1. 198

Context corpus: To obtain context words in 199

the general domain, we use the wiki dump corpus 200

(Goldhahn et al., 2012). For the medicine domain, 201

we use a corpus provided by Camacho-Collados 202

et al. (2018), a 130M-word subset extracted from 203

the PubMed corpus of biomedical literature from 204

MEDLINE. For the music domain, a 100M-word 205

corpus is provided with the original dataset, which 206

includes Amazon reviews, music biographies and 207

Wikipedia pages about music theory and genres 208

(Oramas et al., 2016). Furthermore, for the com- 209

puter science education domain, we create a corpus 210

by extracting the Wikipedia pages of all the topics 211

and subtopics in our dataset. 212

4.1 Comparison with Unsupervised Methods 213

We first compare out methods with existing unsu- 214

pervised methods: SLQS (Santus et al., 2014), in- 215

vCL (Lenci and Benotto, 2012), ClarkDE (Clarke, 216

2009), cosWeeds (Lenci and Benotto, 2012), and 217

weedsPrec (Weeds et al., 2004). Note that, 218

cosWeeds, ClarkDE, and invCL has a value be- 219

tween 0 and 1; the higher the value, the more likely 220

the directionality holds for the given order. Thus, 221

these metrics need a threshold to decide on the hy- 222

pernym direction. We choose a threshold of 0.5 for 223

all these 3 methods. SLQS and WeedsPrec do not 224

need a threshold value. 225
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Unsupervised Supervised
Data SLQS invCL ClarkDE cosWeeds WeedsPrec GLEN-before GLEN-after DECIDE

Bless 0.54 0.51 0.59 0.51 0.51 0.89 N/A 0.50
Weeds 0.62 0.53 0.59 0.55 0.43 0.67 0.66 0.65

EVALuation 0.63 0.50 0.60 0.50 0.44 0.72 0.66 0.63
LenciBenotto 0.62 0.53 0.65 0.56 0.31 0.67 0.60 0.70

Medical 0.73 0.60 0.72 0.60 0.26 0.77 0.70 0.77
Music 0.64 0.54 0.66 0.56 0.34 0.67 0.58 0.65

Comp.Sci 0.82 0.56 0.62 0.60 0.20 0.50 0.53 0.85

Table 2: Performance of our measure, DECIDE on hypernymy directionality classification compared to existing
unsupervised measures (Accuracy). Note that GLEN-before is included in the table for comparison with GLEN-after
to illustrate the memorization problem.

The results in Table 2 show that our measure,226

DECIDE, outperforms most measures. Over the227

seven datasets, DECIDE ranks first in five and sec-228

ond in one. DECIDE performs particularly well on229

domain datasets such as Medical and Com. Sci230

with 0.77 and 0.85 accuracy, respectively. This231

is likely because high-quality context words can232

be obtained for domain datasets. On the general233

dataset, such as Bless, DECIDE’s performance is234

not as good (0.50 accuracy), but this is also true235

for the competing methods, as all of them perform236

relatively poorly on this dataset (accuracy values237

between 0.51 and 0.59). The second best unsuper-238

vised method in our experiment is ClarkDE, which239

has the best performance on two datasets, Bless240

(0.59 accuracy) and Music (0.66 accuracy).241

4.2 Comparison with Supervised Methods242

To compare our unsupervised method with super-243

vised models, we consider GLEN (Glavaš and244

Vulic, 2019), as this model is conceptually guar-245

anteed to work on unseen pairs. GLEN’s inpue246

is the fastText embedding of the hypernym and247

the fastText embedding of hyponym. We discard248

many supervised methods, such as order embed-249

ding (Vendrov et al., 2015) and LEAR (Rei et al.,250

2018), which produce tuned embedding vectors of251

seen hypernym pairs only and are therefore unable252

to produce prediction on unseen pairs. We train253

the GLEN model using the same training setup254

reported in the original paper and test it on two255

versions of each of the seven datasets: The first256

version uses the test data where at most one term of257

the entity pair may be present in the training data258

(shown in the third column of Table 1). The second259

version uses the test data where no terms of the260

entity pair are present in the training data (shown261

in the fourth column in Table 1). The results are262

shown under “GLEN-before” and “GLEN-after”263

columns in Table 2, respectively.264

Table 2 shows the results. As can be seen, DE-265

CIDE outperforms GLEN-after on five datasets, 266

while GLEN-after outperforms DECIDE on two 267

datasets by a narrow margin (0.66 vs 0.65, and 0.66 268

vs 0.63). Note that there are no results for GLEN- 269

after on the Bless dataset, as the number of in- 270

stances of this dataset is zero after overlap removal. 271

When we compare DECIDE with GLEN-before, 272

for which either the hypernym or hyponym entities 273

(but not both) from the test data may present in 274

the training data, GLEN’s performance improves 275

substantially. In fact, in this case GLEN outper- 276

forms DECIDE on four out of seven datasets. This 277

validates that supervised methods, like GLEN, can 278

boost their performance through information over- 279

lap between the training and test data, even if only 280

one element of the hypernym pair is in the training 281

data. This phenomenon was also reported by (Levy 282

et al., 2015), who showed that supervised methods 283

for this task suffer from the memorization prob- 284

lem, in which the model memorizes prototypical 285

hypernyms (“general words”), thereby failing to 286

generalize for word pairs where those prototypical 287

hypernyms are not part of the training data. 288

5 Conclusion 289

Our contributions are three folds: First, we intro- 290

duced a new measure, DECIDE, for hypernymy 291

directionality prediction that does not require set- 292

ting a threshold. DECIDE can be worked with 293

any neural pre-trained distributional space. Sec- 294

ond, our extensive experiments showed that DE- 295

CIDE outperforms or is on par with existing un- 296

supervised and supervised methods on previously 297

unseen samples, demonstrating its effectiveness. 298

Lastly, we also showed that existing supervised 299

methods do not generalize well on unseen sam- 300

ples, corroborating the previously reported claim 301

of the memorization problem by Levy et al. (2015). 302

Our code and dataset will be available at GitHub: 303

http://anonymous. 304
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6 Limitations305

The proposed measure, DECIDE, may exhibit sen-306

sitivity to the choice of corpus used to retrieve307

context words, similar to other context-based mea-308

sures, e.g., (Clarke, 2009; Lenci and Benotto, 2012;309

Santus et al., 2014). For example, a corpus of310

Wikipedia articles may yield different results from311

a corpus of scientific papers. Further investigations312

into the nature of context and how it affects hyper-313

nymy directionality would be beneficial, as well as314

studies on how to obtain the typical context of a315

term.316

In addition, our method does not incorporate317

the frequency of context words while remarkably,318

it outperforms other measures even without con-319

sidering frequencies. However, frequency could320

also play an important role in hypernymy direc-321

tionality, as shown in previous work, e.g., (Clarke,322

2009; Lenci and Benotto, 2012; Santus et al., 2014).323

Therefore, combining our current distributional324

space distances with frequency information could325

lead to further improvements. We leave this explo-326

ration for future work.327

7 Ethical Consideration328

As with any measures, inaccuracies in the predic-329

tions made by our proposed measure could poten-330

tially result in unintended and erroneous outcomes331

in applications. For example, if the measure is used332

to predict the hypernymy directionality between333

two terms in a medical context, a wrong prediction334

could lead to a misdiagnosis or incorrect treatment.335

It is important to use our measure responsibly and336

to be aware of its limitations. It is also important337

to validate the predictions of the measure against338

other sources of information before using them in339

any critical applications.340
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