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Abstract

Hypernymy directionality prediction is an im-
portant task in Natural Language Processing
due to its significant usages in natural language
understanding and generation. Many super-
vised and unsupervised methods have been
proposed for this task, but existing unsuper-
vised methods do not leverage distributional
pre-trained vectors from neural language mod-
els, as supervised methods typically do. In this
paper, we present a simple yet effective unsu-
pervised method for hypernymy directionality
prediction that exploits neural pre-trained word
vectors in context, based on the distributional
informativeness hypothesis. Extensive experi-
ments on seven datasets demonstrate that our
method outperforms or achieves comparable
performance to existing unsupervised and su-
pervised methods.

1 Introduction

Hypernymy, an Is-A relation, has garnered signifi-
cant attention in the field of Natural Language Pro-
cessing (NLP). It constitutes a transitive and asym-
metric semantic link between a hypernym (also
referred to as a superordination or a superset) and
a hyponym (also referred to as a subordination or a
subset) (Lyons, 1977). For instance, mammal is a
hypernym of elephant, and fruit is a hypernym of
banana. This hypernymy semantic relation plays a
crucial role in various challenging NLP tasks, such
as knowledge base construction (Snow et al., 2006;
Navigli et al., 2011), natural language inference
(Dagan et al., 2015; Williams et al., 2018), textual
entailment (Dagan et al., 2015), question answering
(Huang et al., 2008), text classification (Jang et al.,
2021), and text generation (Biran and McKeown,
2013).

Hypernym detection is generally a two-step pro-
cess: identifying hypernymy relations and pre-
dicting the directionality of those relations. Hy-
pernymy detection distinguishes hypernymy from

other semantic relations, such as synonymy and
antonymy. Directionality prediction, on the other
hand, identifies which word in a given hypernymy
pair is the hypernym and which word is the hy-
ponym. For example, given the pair “animal” and
“cat”, directionality prediction would determine
whether “animal” is a hypernym of “cat” or vice
versa. In this paper, our focus is on the problem of
directionality prediction—determine whether A is
a hypernym of B or B is a hypernym of A.

For hypernymy directionality prediction, there
exist a wealth of unsupervised methods (Weeds
and Weir, 2003; Clarke, 2009; Kotlerman et al.,
2010; Lenci and Benotto, 2012; Santus et al., 2014).
Many of these metrics are based on the distribu-
tional inclusion hypothesis (Weeds et al., 2004;
Kotlerman et al., 2010) and the distributional infor-
mativeness hypothesis (Santus et al., 2014). How-
ever, these existing methods, which were developed
some time ago, do not take advantage of the recent
pre-trained distributional vectors from neural lan-
guage models, such as BERT (Devlin et al., 2018)
and fastText (Bojanowski et al., 2017). Addition-
ally, most methods typically require a validation
set to tune the threshold for their metrics in order
to accurately identify the directionality.

In this paper, we propose a simple yet effec-
tive unsupervised metric, DECIDE!, for hypernymy
directionality prediction using pre-trained neural
word embedding. In our experiments involving
7 datasets, DECIDE shows superior or compara-
ble performance to existing unsupervised metrics.
We also compare our metric with state-of-the-art
supervised methods, showing superiority in han-
dling previously unseen data samples. We show
that existing supervised methods report optimistic
performance due to information overlap between
the train and test partitions of a datasets.

'DECIDE is an anagram of the bold letters from Centroid
Distance in Distributional ContExt.



2 Related Works

Several unsupervised directional measures have
been proposed to tackle hypernymy prediction, es-
pecially in the early stages of research. Weeds
et al. (2004) introduced the notion of distributional
generality, highlighting that more general words
tend to manifest across a broader spectrum of con-
texts compared to specific ones. Their research
relied on the assumption that the contexts of a hy-
ponym are expected to be included in those of its
hypernym, known as the distributional inclusion
hypothesis. Building upon this, Clarke (2009) em-
ployed a partially ordered vector space to formalize
distributional generality, while Lenci and Benotto
(2012) extended the notion further by proposing
that more general terms should exhibit high recall
and low precision. Santus et al. (2014) introduced
an entropy-based measure, SLQS, considering that
hypernyms’ typical linguistic contexts might be
less informative than those of hyponyms, known as
the distributional informativeness hypothesis. They
proposed a measure based on the intersection of
mutually dependent contexts of target words.

With the ascent of deep learning models, super-
vised strategies have emerged to adapt word embed-
dings through joint optimization models during pre-
training or retrofitting models during fine-tuning.
The former approaches reshaped the entire embed-
ding space e.g., (Levine et al., 2020), which can be
computationally expensive. In contrast, the latter
methods (Yu et al., 2015; Luu et al., 2016; Ven-
drov et al., 2016) fine-tuned word vectors to align
with external linguistic constraints. While these
methods are applicable to any pre-trained distribu-
tional space, they only modify the vectors of words
seen in constraints, leaving unseen word vectors
unmodified. Glava$ and Vulic (2019) attempted
to address this issue by building a model, named
GLEN, which learns a function during training that
can be used for unseen word pairs. All of these use
lexical resources like WordNet to (weakly) super-
vise the models.

Similar to early unsupervised measures, we in-
troduce an unsupervised directionality measure,
named DECIDE, which is based on the idea of dis-
tributional generality, specifically the distributional
informativeness hypothesis. However, DECIDE is
differentiated from previous work in that it takes
advantage of neural word embeddings for context
words, and does not require setting a threshold to
decide directionality.

3 Our Proposed Method: DECIDE

In this section, we present our measure for identify-
ing the hypernymy directionality between a given
hypernymy pair. Our measure operationalizes the
distributional informativeness hypothesis (Santus
et al., 2014), which states that more general terms
tend to occur in more general and diverse contexts
than specific terms. For example, the words that oc-
cur around “animal” can come from generic animal
characteristics, and their habitats, whereas context
words of “cat” are more specific to cats.

//// zegan; “\\\\Common context
) N e~
/ /\/ meouk\
/Y X
/ bamboos /8 %\ n \
/ v /fish\ kitty \
v amphibian | \ R one
herbivore [ | °'°"ﬁ
walk | |
\ e /
; S \paws . /
horn \/< toys /
\ v / Cat's context
Y giraffe -

Animal's context

Figure 1: 2D visualization of context word embedding
of a Hypernym (Animal) and Hyponym (Cat).

Based on the distributional informativeness hy-
pothesis, we hypothesize that the context words
of a hypernym would have a broader distribution
compared to its hyponym’s context words in terms
of their meanings. To obtain the context words of
given two terms termy and terms in a hypernymy
relation, we first collect all sentences that contain
each term from a large corpus. Subsequently, we
tokenize these sentences using white spaces and
punctuation, and remove stop words and tokens
solely composed of numbers or symbols, retain-
ing the remaining words as context words. For
instance, in Figure 1 the two circles represents the
context words of two terms Animal and Cat. Using
these context words, we then identify the common
context words (intersecting region of the two cir-
cles in Figure 1). Then, we calculate the mean
vector of those common context words, m. From
the unique context words for term; (e.g., triangles
in Figure 1) and terms (e.g., rectangles in Figure
1), we determine the minimum number of unique
context words, n, and then select the n farthest
unique context words for term; and terms, Ci
and Cé , respectively. Finally, we compare the av-
erage distance between € and Cj from m. This
process is expressed in Figure 2.



DECIDE(C, C3)

Input:
C1 = context words unique to termg
Cs = context words unique to terms

n = min(|C1], |Cal)
C'| = n farthest context words from Cy
Cé = n farthest context words from Cs

m = the average embedding of the common
context words

if % ZCEC; (C B m) > % ZCEC; (C B m):

return: term; is a hypernym of terms
else:
return: terms is a hypernym of term;

Figure 2: Synopsis of DECIDE for determining hyper-
nym direction.

4 Experiments

We evaluate our approach on seven real-life
datasets in four domains: general, medicine, mu-
sic, and computer science. The datasets contain
hypernym-hyponym pairs (u, v) with correspond-
ing labels indicating the direction. The dataset
statistics is shown in Table 1. To represent v and
v, we use fastText (Bojanowski et al., 2017), pre-
trained distributed vectors (d = 300) trained on
Wikipedia.?

Hypernymy datasets:  The datasets from
the general domain are Bless (Baroni and Lenci,
2010), Weeds (Weeds et al., 2014), EVAlution
(Santus et al., 2015) and LenciBennotto (Benotto,
2015). The medicine and music datasets are from
the SemEval-2018 Task9 Hypernym Discovery
(Camacho-Collados et al., 2018). We use the test
sets partitioned by Shwartz et al. (2016) for Weeds,
EVAluation and LenciBennotto.

We also construct a dataset in the Computer Sci-
ence domain, with the hypernymy broadly defined
covering concept-subconcept or topic-subtopic re-
lations. For instance, a hypernym-hyponym pair in
this dataset can be (“data structure”, “binary search
tree”’). We use GPT-3 (Brown et al., 2020) to build
this dataset using the OpenAl APT’s create comple-

*In our preliminary experiments, we also explored the use
of Glove (Pennington et al., 2014) and BERT (Devlin et al.,
2018) embeddings, and observed that they yielded similar
results.

Dataset  Original- Atmost Both-
Pairs 1-Entity Entities
Unseen  Unseen
Bless 1,277 241 0
Weeds 1,321 175 3
EVAluation 3,035 1,799 18
LenciBenotto 1,724 1,524 224
Medical 3,256 3,185 1,545
Music 5,455 5,115 1,802
Comp.Sci 331 331 247

Table 1: The number of hypernym-hyponym pairs in
each data set. Second colum shows the number of orig-
inal entity-pairs. Third column shows the number of
entity-pairs where at least one entity of the pair is not
present in the training data. The fourth column shows
the number of entity-pairs where both the entities are
not present in the training data.

tion functionality. We tailored the prompt to gen-
erate a list of 20 subtopic names for a given topic,
beginning with “Computer Science” as the initial
topic and then using the resulting 20 subtopics as
subsequent prompts. The numbers of hypernymy
pairs in all the datasets are shown in Table 1.

Context corpus: To obtain context words in
the general domain, we use the wiki dump corpus
(Goldhahn et al., 2012). For the medicine domain,
we use a corpus provided by Camacho-Collados
et al. (2018), a 130M-word subset extracted from
the PubMed corpus of biomedical literature from
MEDLINE. For the music domain, a 100M-word
corpus is provided with the original dataset, which
includes Amazon reviews, music biographies and
Wikipedia pages about music theory and genres
(Oramas et al., 2016). Furthermore, for the com-
puter science education domain, we create a corpus
by extracting the Wikipedia pages of all the topics
and subtopics in our dataset.

4.1 Comparison with Unsupervised Methods

We first compare out methods with existing unsu-
pervised methods: SLQS (Santus et al., 2014), in-
vCL (Lenci and Benotto, 2012), ClarkDE (Clarke,
2009), cosWeeds (Lenci and Benotto, 2012), and
weedsPrec (Weeds et al.,, 2004). Note that,
cosWeeds, ClarkDE, and invCL has a value be-
tween 0 and 1; the higher the value, the more likely
the directionality holds for the given order. Thus,
these metrics need a threshold to decide on the hy-
pernym direction. We choose a threshold of 0.5 for
all these 3 methods. SLQS and WeedsPrec do not
need a threshold value.



Unsupervised Supervised

Data SLQS invCL ClarkDE cosWeeds WeedsPrec | GLEN-before GLEN-after | DECIDE
Bless 0.54 0.51 0.59 0.51 0.51 0.89 N/A 0.50
Weeds 0.62 0.53 0.59 0.55 0.43 0.67 0.66 0.65
EVALuation 0.63 0.50 0.60 0.50 0.44 0.72 0.66 0.63
LenciBenotto 0.62 0.53 0.65 0.56 0.31 0.67 0.60 0.70
Medical 0.73 0.60 0.72 0.60 0.26 0.77 0.70 0.77
Music 0.64 0.54 0.66 0.56 0.34 0.67 0.58 0.65
Comp.Sci 0.82 0.56 0.62 0.60 0.20 0.50 0.53 0.85

Table 2: Performance of our measure, DECIDE on hypernymy directionality classification compared to existing
unsupervised measures (Accuracy). Note that GLEN-before is included in the table for comparison with GLEN-after

to illustrate the memorization problem.

The results in Table 2 show that our measure,
DECIDE, outperforms most measures. Over the
seven datasets, DECIDE ranks first in five and sec-
ond in one. DECIDE performs particularly well on
domain datasets such as Medical and Com. Sci
with 0.77 and 0.85 accuracy, respectively. This
is likely because high-quality context words can
be obtained for domain datasets. On the general
dataset, such as Bless, DECIDE’s performance is
not as good (0.50 accuracy), but this is also true
for the competing methods, as all of them perform
relatively poorly on this dataset (accuracy values
between 0.51 and 0.59). The second best unsuper-
vised method in our experiment is ClarkDE, which
has the best performance on two datasets, Bless
(0.59 accuracy) and Music (0.66 accuracy).

4.2 Comparison with Supervised Methods

To compare our unsupervised method with super-
vised models, we consider GLEN (Glavas and
Vulic, 2019), as this model is conceptually guar-
anteed to work on unseen pairs. GLEN’s inpue
is the fastText embedding of the hypernym and
the fastText embedding of hyponym. We discard
many supervised methods, such as order embed-
ding (Vendrov et al., 2015) and LEAR (Rei et al.,
2018), which produce tuned embedding vectors of
seen hypernym pairs only and are therefore unable
to produce prediction on unseen pairs. We train
the GLEN model using the same training setup
reported in the original paper and test it on two
versions of each of the seven datasets: The first
version uses the test data where at most one term of
the entity pair may be present in the training data
(shown in the third column of Table 1). The second
version uses the test data where no terms of the
entity pair are present in the training data (shown
in the fourth column in Table 1). The results are
shown under “GLEN-before” and “GLEN-after”
columns in Table 2, respectively.

Table 2 shows the results. As can be seen, DE-

CIDE outperforms GLEN-after on five datasets,
while GLEN-after outperforms DECIDE on two
datasets by a narrow margin (0.66 vs 0.65, and 0.66
vs 0.63). Note that there are no results for GLEN-
after on the Bless dataset, as the number of in-
stances of this dataset is zero after overlap removal.
When we compare DECIDE with GLEN-before,
for which either the hypernym or hyponym entities
(but not both) from the test data may present in
the training data, GLEN’s performance improves
substantially. In fact, in this case GLEN outper-
forms DECIDE on four out of seven datasets. This
validates that supervised methods, like GLEN, can
boost their performance through information over-
lap between the training and test data, even if only
one element of the hypernym pair is in the training
data. This phenomenon was also reported by (Levy
et al., 2015), who showed that supervised methods
for this task suffer from the memorization prob-
lem, in which the model memorizes prototypical
hypernyms (“general words”), thereby failing to
generalize for word pairs where those prototypical
hypernyms are not part of the training data.

5 Conclusion

Our contributions are three folds: First, we intro-
duced a new measure, DECIDE, for hypernymy
directionality prediction that does not require set-
ting a threshold. DECIDE can be worked with
any neural pre-trained distributional space. Sec-
ond, our extensive experiments showed that DE-
CIDE outperforms or is on par with existing un-
supervised and supervised methods on previously
unseen samples, demonstrating its effectiveness.
Lastly, we also showed that existing supervised
methods do not generalize well on unseen sam-
ples, corroborating the previously reported claim
of the memorization problem by Levy et al. (2015).
Our code and dataset will be available at GitHub:
http://anonymous.



6 Limitations

The proposed measure, DECIDE, may exhibit sen-
sitivity to the choice of corpus used to retrieve
context words, similar to other context-based mea-
sures, e.g., (Clarke, 2009; Lenci and Benotto, 2012;
Santus et al., 2014). For example, a corpus of
Wikipedia articles may yield different results from
a corpus of scientific papers. Further investigations
into the nature of context and how it affects hyper-
nymy directionality would be beneficial, as well as
studies on how to obtain the typical context of a
term.

In addition, our method does not incorporate
the frequency of context words while remarkably,
it outperforms other measures even without con-
sidering frequencies. However, frequency could
also play an important role in hypernymy direc-
tionality, as shown in previous work, e.g., (Clarke,
2009; Lenci and Benotto, 2012; Santus et al., 2014).
Therefore, combining our current distributional
space distances with frequency information could
lead to further improvements. We leave this explo-
ration for future work.

7 Ethical Consideration

As with any measures, inaccuracies in the predic-
tions made by our proposed measure could poten-
tially result in unintended and erroneous outcomes
in applications. For example, if the measure is used
to predict the hypernymy directionality between
two terms in a medical context, a wrong prediction
could lead to a misdiagnosis or incorrect treatment.
It is important to use our measure responsibly and
to be aware of its limitations. It is also important
to validate the predictions of the measure against
other sources of information before using them in
any critical applications.
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