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Abstract
Taking inspiration from developmental learning,
we present a novel reinforcement learning archi-
tecture which hierarchically learns and represents
self-generated skills in an end-to-end way. With
this architecture, an agent focuses only on task-
rewarded skills while keeping the learning process
of skills bottom-up. This bottom-up approach al-
lows to learn skills that 1- are transferable across
tasks, 2- improves exploration when rewards are
sparse. To do so, we combine a previously defined
mutual information objective with a novel curricu-
lum learning algorithm, creating an unlimited and
explorable tree of skills. We test our agent on
simple gridworld environments to understand and
visualize how the agent distinguishes between its
skills. Then we show that our approach can scale
on more difficult MuJoCo environments in which
our agent is able to build a representation of skills
which improve over a baseline both transfer learn-
ing and exploration when rewards are sparse.

1. Introduction
In reinforcement learning (RL), an agent learns by trial-
and-error to maximize the expected rewards obtained from
actions performed in its environment (Sutton & Barto, 1998).
However, many RL agents usually strive to achieve one goal
using only low-level actions. In contrast, as human being,
when we want to go to work, we do not think about every
muscle we contract in order to move; we just take abstract
decisions such as Go to work. Low-level behaviors such
as how to walk are already learned and we do not need to
think about them. Learning to walk is a classical example
of babies developmental learning, which refers to the ability
of an agent to spontaneously explore its environment and
acquire new skills (Barto, 2013). Babies do not try to get
walking behaviors all at once, but rather first learn to move
their legs, to crawl, to stand up, and then, eventually, to
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walk. They are intrinsically motivated since they act for
the inherent satisfaction of learning new skills (Ryan & Deci,
2000) rather than for an extrinsic reward assigned by the
environment.

Several works are interested in learning abstract actions,
also named skills or options (Sutton et al., 1999), in the
framework of deep reinforcement learning (DRL) (Aubret
et al., 2019). Skills can be learned with extrinsic rewards
(Bacon et al., 2017), which facilitates the credit assignment
(Sutton et al., 1999). In contrast, if one learns skills with
intrinsic motivation, the learning process becomes bottom-
up (Machado et al., 2017), i.e. the agent learns skills before
getting extrinsic rewards. When learning is bottom-up, the
agent commits to a time-extended skill and avoids the usual
wanderlust due to the lack, or the sparsity, of extrinsic re-
wards. Therefore, it can significantly improve exploration
(Machado & Bowling, 2016; Nachum et al., 2019b). In
addition, these skills can be used for different tasks, empha-
sizing their potential for transfer learning (Taylor & Stone,
2009). These properties make intrinsic motivation attractive
in a continual learning framework, which is the ability of
the agent to acquire, retain and reuse its knowledge over a
lifetime (Thrun, 1996).

Several works recently proposed to intrinsically learn such
skills using a diversity heuristic (Eysenbach et al., 2019;
Achiam et al., 2018), such that different states are covered
by the learned skills. Yet several issues remain: 1- the agent
is often limited in the number of learned skills or requires
curriculum learning (Achiam et al., 2018); 2- most skills
target uninteresting parts of the environment relatively to
some tasks; thereby it requires prior knowledge about which
features to diversify (Eysenbach et al., 2019); 3- the agent
suffers from catastrophic forgetting when it tries to learn
a task while learning skills (Eysenbach et al., 2019); 4-
discrete time-extended skills used in a hierarchical setting
are often sub-optimal for a task. With diversity heuristic,
skills are indeed not expressive enough to efficiently target
a goal (Eysenbach et al., 2019; Achiam et al., 2018).

In this paper, we propose to address these four issues so
as to improve the approaches for continually learning
increasingly difficult skills with diversity heuristics. We
introduce ELSIM (End-to-ended Learning of reusable Skills
through Intrinsic Motivation), a method for learning rep-
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resentations of skills in a bottom-up way. The agent au-
tonomously builds a tree of abstract skills where each skill
is a refinement of its parent. First of all, skills are learned
independently from the tasks but along with tasks; it guar-
antees they can be easily transferred to other tasks and may
help the agent to explore its environment. We use the op-
timization function defined of DIAYN (Eysenbach et al.,
2019) which guarantees that states targeted by a skill are
close to each other. Secondly, the agent selects a skill to
refine with extrinsic or intrinsic rewards, and learns new sub-
skills; it ensures that the agent learns specific skills useful
for tasks through an intelligent curriculum, among millions
of possible skills.

Our approach contrasts with existing approaches which ei-
ther bias skills towards a task (Bacon et al., 2017), reducing
the possibilities for transfer learning, or learn skills dur-
ing pretraining (Eysenbach et al., 2019). We believe our
paradigm, by removing the requirement of a developmental
period (Metzen & Kirchner, 2013) (which is just an unsu-
pervised pretraining), makes naturally compatible develop-
mental learning and lifelong learning. Therefore, we em-
phasize three properties of our ELSIM method. 1-Learning
is bottom-up: the agent does not require an expert super-
vision to expand the set of skills. It can use its skills to
solve different sequentially presented tasks or to explore its
environment. 2- Learning is end-to-end: the agent never
stops training and keeps expanding its tree of skills. It grad-
ually self-improves and avoids catastrophic forgetting. 3-
Learning is focused: the agent only learns skills useful for
its high-level extrinsic/intrinsic objectives when provided.

Our contributions are the following: we introduce a new
curriculum algorithm based on an adaptation of diversity-
based skill learning methods. Our objective is not to be
competitive when the agent learns one specific goal, but to
learn useful and reusable skills along with sequentially
presented goals in an end-to-end fashion. We show ex-
perimentally that ELSIM achieves good asymptotic per-
formance on several single-task benchmarks, improves ex-
ploration over standard DRL algorithms and manages to
easily reuse its skills. Thus, this is a step towards lifelong
learning agents.

This paper is organized as follows. First, we introduce the
concepts used in ELSIM, especially diversity-based intrin-
sic motivation (Section 2). In Section 3, the core of our
method is presented. Then, we explain and visualize how
ELSIM works on simple gridworlds and compare its per-
formances with state-of-the-art DRL algorithms on single
and sequentially presented tasks learning (Section 4). In
Section 5, we detail how ELSIM relates to existing works.
Finally, in Section 6, we take a step back and discuss EL-
SIM. Pseudo-codes, full experiments, additional details and
hyper-parameters can be found in the long version of the
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2. Background
2.1. Reinforcement learning

A Markov decision process (MDP) (Puterman, 2014) is
defined by a set of possible states S; a set of possible actions
A; a transition function P : S × A× S → P(s′|s, a) with
a ∈ A and s, s′ ∈ S; a reward functionR : S×A×S → R;
the initial distribution of states ρ0 : S → [0; 1]. A stochastic
policy π maps states to probabilities over actions in order to
maximize the discounted cumulative reward defined by ςt =
[
∑∞
t=0 γ

trt] where γ ∈ [0, 1] is the discount factor. In order
to find the action maximizing ς in a state s, it is common to
maximize the expected discounted gain following a policy
π from a state-action tuple defined by:

Qπ(s, a) = E
at∼π(st)

st+1∼P (st+1|st,at)

[ ∞∑
t=0

γtR(st, at, st+1)

]
(1)

where s0 = s, a0 = a. To compute this value, it is possible
to use the Bellman Equation (Sutton & Barto, 1998).

2.2. Obtaining diverse skills through mutual
information objective

We characterize a skill by its intra-skill policy; thereby a
skill is a mapping of states to probabilities over actions.
One way to learn, without extrinsic rewards, a set of dif-
ferent skills along with their intra-skill policies is to use an
objective based on mutual information (MI).

In (Eysenbach et al., 2019), learned skills should be as
diverse as possible (different skills should visit different
states) and distinguishable (it should be possible to infer
the skill from the states visited by the intra-skill policy). It
follows that the learning process is 4-step with two learning
parts (Eysenbach et al., 2019): 1- the agent samples one
skill from an uniform distribution; 2- the agent executes the
skill by following the corresponding intra-skill policy (ran-
domly initialized); 3- a discriminator learns to categorize
the resulting states to the assigned skill; 4- at the same time,
these approximations reward intra-skill policies (cf. eq. 5).

The global objective can be formalized as maximizing the
MI between the set of skills G and states S′ visited by intra-
skill policies, defined by (Gregor et al., 2017):

I(G;S′) = H(G)−H(G|S′) (2)
= E g∼p(g)

s′∼p(s′|πgθ ,s)
[log p(g|s′)− log p(g)] (3)

1https://arxiv.org/abs/2006.12903
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where πgθ is the intra-skill policy of g ∈ G and is parameter-
ized by θ; p(g) is the distribution of skills the agent samples
on; and p(g|s′) is the probability to infer g knowing the
next state s′ and intra-skill policies. This MI quantifies the
reduction in the uncertainty of G due to the knowledge of
S′. By maximizing it, states visited by an intra-skill policy
have to be informative of the given skill.

A bound on the MI can be used as an approximation to avoid
the difficulty to compute p(g|s′)(Barber & Agakov, 2003;
Gregor et al., 2017) :

I(G,S′) ≥ E g∼p(g)
s′∼p(s′|πgθ ,s)

[log qω(g|s′)− log p(g)] (4)

where qω(g|s′) is the discriminator approximating p(g|s′).
In our case, the discriminator is a neural network param-
eterized by ω. qω minimizes the standard cross-entropy
−Eg∼p(g|s′) log qω(g|s′) where s′ ∼ πgθ .

To discover skills, it is more efficient to set p(g) to be uni-
form as it maximizes the entropy of G (Eysenbach et al.,
2019). Using the uniform distribution, log p(g) is constant
and can be removed from eq. 4. It follows that one can max-
imize eq. 4 using an intrinsic reward to learn the intra-skill
policy of a skill g ∈ G (Eysenbach et al., 2019):

rg(s′) = log qω(g|s′). (5)

Similarly to (Eysenbach et al., 2019), we use an additional
entropy term to encourage the diversity of covered states. In
practice, this bonus is maximized through the use of DRL
algorithms: Soft Actor Critic (SAC) (Haarnoja et al., 2018)
for continuous action space and Deep Q network (DQN)
with Boltzmann exploration (Mnih et al., 2015) for discrete
one.

3. Method
In this section, we first give an overview of our method and
then detail the building of the tree of skills, the learning of
the skill policy, the selection of the skill to refine and how
ELSIM integrates this in an end-to-end framework.

3.1. Overview: building a tree of skills

To get both bottom-up skills and interesting skills relatively
to some tasks, our agent has to choose the skills to improve
thanks to the extrinsic rewards, but we want that our agent
improves its skills without extrinsic rewards. The agent
starts by learning a discrete set of diverse and distinguish-
able skills using the method presented in Section 2.2. Once
the agent clearly distinguishes these skills using the covered
skill-conditioned states with its discriminator, it splits them
into new sub-skills. For instance, for a creature provided
with proprioceptive data, a moving forward skill could be
separated into running and walking. The agent only trains

on sub-skills for which the parent skill is useful for the
global task. Thus it incrementally refines the skills it needs
to accomplish its current task. If the agent strives to sprint,
it will select the skill that provides the greater speed. The
agent repeats the splitting procedure until its intra-skill pol-
icy either reach the maximum number of splits or become
too deterministic to be refined.

The hierarchy of skills is maintained using a tree where
each node refers to an abstract skill that has been split and
each leaf is a skill being learned. We formalize the hierarchy
using sequence of letters where a letter’s value is assigned
to each node:

• The set of skills G is the set of leaf nodes. A skill
g ∈ G is represented by a sequence of k + 1 letters :
g = (l0, l1, ..., lk). When g is split, a letter is added
to the sequence of its new sub-skills. For instance,
the skill g = (l0 = 0, l1 = 1) can be split into two
sub-skills (l0 = 0, l1 = 1, l2 = 0) and (l0 = 0, l1 =
1, l2 = 1).

• The vocabulary V refers to the values which can be
assigned to a letter. For example, to refine a skill into
4 sub-skills, we should define V = {0, 1, 2, 3}.

• The length L(g) of a skill is the number of letters it
contains. Note that the length of a skill is always larger
than its parent’s.

• l:k is the sequence of letters preceding lk (excluded).

We use two kind of policies: the first are the intra-skill poli-
cies. The learning of these intra-skill policies is described
in Section 3.2. The second type of policy is task-dependent
and responsible to choose which skill to execute; we call it
the tree-policy (see Section 3.3).

3.2. Learning intra-skill policies

In this section, we detail how intra-skill policies are learned.
We adapt the method presented in Section 2.2 to our hier-
archical skills context. Two processes are simultaneously
trained to obtain diverse skills: the intra-skill policies learn
to maximize the intrinsic reward (cf. eq. 5), which requires
to learn a discriminator qω(g|s′). Given our hierarchic skills,
we can formulate the probability inferred by the discrimina-
tor as a product of the probabilities of achieving each letter
of g knowing the sequence of preceding letters, by applying
the chain rule:

rg(s′) = log qω(g|s′) = log qω(l
0, l1, . . . , lk|s′)

= log

k∏
i=0

qω(l
i|s′, l:i) =

k∑
i=0

log qω(l
i|s′, l:i). (6)
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Gathering this value is difficult and requires an efficient
discriminator qω. As it will be explained in Section 3.4,
in practice, we use one different discriminator for each
node of our tree: ∀i, qω(li|s′, l:i) ≡ q:iω(li|s′).

For instance, if |V | = 2, one discriminator q∅ω will be used to
discriminate (l0 = 0) and (l0 = 1) but an other one, ql

0=0
ω

will discriminate (l0 = 0, l1 = 0) and (l0 = 0, l1 = 1).

It would be difficult for the discriminators to learn over all
letters at once; the agent would gather states for several
inter-level discriminators at the same time and a discrimi-
nator would not know which part of the gathered states it
should focus on. This is due to the fact that discriminators
and intra-skill policies simultaneously train. Furthermore,
there are millions of possible combinations of letters when
the maximum size of sequence is large. We do not want
to learn them all. To address these issues, we introduce a
new curriculum learning algorithm that refines a skill
only when it is distinguishable. When discriminators suc-
cessfully learn, they progressively extends the sequence of
letters; in fact, we split a skill (add a letter) only when its
discriminator has managed to discriminate the values of its
letter. Let’s define the following probability:

p:kfinish(l
k) = Esfinal∼π:k+1

[
q:kω (l

k|sfinal)
]
. (7)

where sfinal is the state reached by the intra-skill policy
at the last timestep. We assume the discriminator q:kω has
finished to learn when: ∀v ∈ V, p:kfinish(l

k = v) ≥ δ
where δ ∈ [0, 1] is an hyperparameter. Choosing a δ close
to 1 ensures that the skill is learned, but an intra-skill policy
always explores, thereby it may never reach an average
probability of exactly 1; we found empirically that 0.9 works
well.

To approximate eq. 7 for each letters’ value v, we use
an exponential moving average p:kfinish(l

k = v) = (1 −
β)p:kfinish(l

k = v) + βq:kω (l
k = v|sfinal) where sfinal ∼

π:k+1 and β ∈ [0; 1]. Since we use buffers of interactions
(see Section 3.4), we entirely refill the buffer before the
split.

Let us reconsider eq. 6.
∑k−1
i=0 log qω(l

i|s′, l:i) is the part
of the reward assigned by the previously learned discrimina-
tors. It forces the skill to stay close to the states of its parent
skills since this part of the reward is common to all the
rewards of its parent skills. In contrast, log qω(lk|s′, l:k) is
the reward assigned by the discriminator that actively learns
a new discrimination of the state space. Since the agent is
constrained to stay inside the area of previous discrimina-
tors, the new discrimination is uncorrelated from previous
parent discriminations. In practice, we increase the impor-
tance of previous discriminations with a hyper-parameter

α ∈ R:

rg(s′) = log qω(l
k|s′, l:k) + α

k−1∑
i=0

log qω(l
i|s′, l:i). (8)

This hyper-parameter is important to prevent the agent to
deviate from previously discriminated areas to learn more
easily the new discrimination.

3.3. Learning which skill to execute and train

For each global objective, a stochastic policy, called tree-
policy and noted πT (with T the tree of skills), is responsible
to choose the skill to train by navigating inside the tree at
the beginning of a task-episode. This choice is critical in our
setting: while expanding its tree of skills, the agent cannot
learn to discriminate every leaf skill at the same time since
discriminators need states resulting from the intra-skill poli-
cies. We propose to choose the skill to refine according
to its benefit in getting an other reward (extrinsic or in-
trinsic), thereby ELSIM executes and learns only interesting
skills (relatively to an additional reward).

To learn the tree-policy, we propose to model the tree of
skills as an MDP solved with a Q-learning and Boltzmann
exploration. The action space is the vocabulary V ; the state
space is the set of nodes, which include abstract and actual
skills; the deterministic transition function is the next node
selection; if the node is not a leaf, the reward function RT is
0, else this is the discounted reward of the intra-skill policy
executed in the environment divided by the maximal episode
length. Each episode starts with the initial state as the root
of the tree, the tree-policy selects the next nodes using Q-
values. Each episode ends when a leaf node has been chosen,
i.e. a skill for which all its letters has been selected; the last
node is always chosen uniformly (see Section 3.4).

Let us roll out an example using the tree-policy displayed
in Figure 1. The episode starts at the root of the tree; the
tree-policy samples the first letter, for example it selects
l0 = 0. Until it reaches a leaf-node, it samples new let-
ters, e.g. l1 = 1 and l2 = 0. The tree-policy has reached
a leaf, thereby it will execute and learn the skill (0, 1, 0).
Then, the state-action tuple ((0, 1), (0)) is rewarded with the
scaled discounted reward of the task. This reward is prop-
agated via the Q-learning update to previous state-action
tuples ((∅), (0)) and ((0), (1)) to orientate the tree-policy
to (0, 1, 0).

The MDP evolves during the learning process since new
letters are progressively added. The Q-values of new skills
are initialized with their parent Q-values. However, eq. 6 en-
sures that adding letters at the leaf of the tree monotonically
increases Q-values of their parent nodes. The intuition is
that, when splitting a skill, at least one of the child is equal
or better than the skill of its parent relatively to the task.
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We experimentally show this in Section 4.2. The resulting
curriculum can be summarized as follows: the tree will be
small at the beginning, and will grow larger in the direction
of feedbacks of the environment.

We now sum up the process of the tree-policy: 1-an agent
runs an episode inside the MDP of skills; the sequence of
actions represents a skill; 2- the agent executes the intra-skill
policy of the skill; 3- the tree-policy is rewarded according
to how well the intra-skill policy fits the task and the Q-
learning applies.

3.4. Simultaneous training of the tree-policy and
intra-skill policies

The MI objective requires the skill distribution to remain
uniform (cf. eq. 5), however that is not our case: the agent
strives to avoid some useless skills while focusing on others.
In our preliminary experiments, ignoring this leads us to
catastrophic forgetting of the learned skills since discrimina-
tors forget how to categorize states of the skills they never
learn on. To bypass this issue and sample uniformly, we
assign to each node i of our tree a replay buffer containing
interactions of the intra-skill policy with the environment, a
RL algorithm and a discriminator (q:iω). At each split, intra-
skill policies and buffers of a node are copied to its children;
for the first node, its intra-skill policies are randomly initial-
ized and its buffer is empty.

This way, the entire training is off-policy: the intra-skill
policy fills the replay buffer while the discriminator and
intra-skill policies learn from the interactions that are uni-
formly extracted from their buffers. We split the lifetime of
a node into two phases: 1-the learning phase during which
next letter’s values are sampled uniformly; the tree-policy
is uniform at this node; 2-the exploitation phase during
which the tree-policy chooses letters with its Boltzmann
policy (Section 3.3).

Then, at each step, the agent runs the tree-policy to select
the discriminator in the learning phase that will learn. The
discriminator samples a mini-batch of data from its chil-
dren’s (all leaves) buffers and learns on it. Then, all children
intra-skill policies learn from the intrinsic feedback of the
same interactions, output by the selected discriminator and
all its parents according to eq. 6.

Once a node enters the exploitation phase, an hyper-
parameter η regulates the probability that each parent’s
discriminator learn on its children data. Their learning inter-
actions are recursively sampled uniformly on their children.
This post-exploration learning allows a node to expand its
high-reward area. Without this mechanism, different un-
covered states of the desired behaviour may be definitively
attributed to different fuzzy skills, as shown in Section 4.1.

Figure 1 gives an example of a potential tree and how dif-

ferent phases coexist; the skills starting by (0, 1) seem to be
the most interesting for the task since each letter sampling
probability is high. Skills (0, 1, 0), (0, 1, 1), (1, 0) and (1, 1)
are being learned, therefore the sampling probability of their
last values is uniform.

4. Experiments
The first objective of this section is to study the behavior of
our ELSIM algorithm on basic gridworlds to make the visu-
alization easier. The second purpose is to show that ELSIM
can scale with high-dimensional environments. We also
compare its performance with a non-hierarchical algorithm
SAC (Haarnoja et al., 2018) in a single task setting. Finally
we show the potential of ELSIM for transfer learning.

4.1. Study of ELSIM in gridworlds

In this section, we analyze how skills are refined on simple
gridworlds adapted from gym-minigrid (Chevalier-Boisvert
& Willems, 2018). Unless otherwise stated, there is
no particular task (or extrinsic reward), thereby the
tree-policy is uniform. The observations of the agent are
its coordinates; its actions are the movements into the
four cardinal directions. To maximize the entropy of the
intra-skill policy with a discrete action space, we use the
DQN algorithm (Mnih et al., 2015). The agent starts an
episode at the position of the arrow (see figures) and an
episode resets every 100 steps, thus the intra-skill policy
lasts 100 steps. At the end of the training phase, the skills
of all the nodes are evaluated through an evaluation phase
lasting 500 steps for each skill. In all figures, each tile
corresponds to a skill with |V | = 4 that is displayed at the
top-left of the tile. Figure 2 and 4 display the density of the
states visited by intra-skill policies during the evaluation
phase: the more red the state, the more the agent goes over it.

Do the split of skills improve the exploration of an agent ?
Figure 2 shows some skills learned in an environment of 4
rooms separated by a bottleneck. We first notice that the
agent clearly separates its first skills (0), (1), (2), (3) since
the states covered by one skill are distinct from the states of
the other skills. However it does not escape from its starting
room when it learns these first skills. When it develops
the skills close to bottlenecks, it learns to go beyond and
invests new rooms. It is clear for skills (1) and (2) which,
with one refinement, respectively explore the top-right (skill
(1, 0)) and bottom-left (skills (2, 0), (2, 2), (2, 3)) rooms.
With a second refinement, (2, 3, 0) even manages to reach
the farthest room (bottom-right). This stresses out that
the refinement of a skill also allows to expand the states
covered by the skill, and thus can improve the exploration
of an agent when the rewards are sparse in an environment.
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Figure 1. Representation of a part of the tree of skills with |V | = 2 and the value of tree-policy in each node. White nodes are actual leaves
of the tree; the discriminator is inactive. Yellow nodes represent nodes for which the discriminator can not differentiate its sub-skills;
the tree-policy samples uniformly. Nodes are blue when the discriminator can distinguish its sub-skills; the tree-policy samples using
Q-values.

Do the split of skills correct a wrong over-generalization of
a parent skill ? Figure 3 shows the evolution of the intrinsic
reward function for some skills . The environment contains
a vertical wall and settings are the same as before, except
the Boltzmann parameter set to 0.5. At the beginning, skill
(1) is rewarding identically left and right sides of the wall.
This is due to the generalization over coordinates and to the
fact that the agent has not yet visited the right side of the
wall. However it is a wrong generalization because left and
right sides are not close to each other (considering actions).
After training, when the agent begins to reach the right side
through the skill (3, 2), it corrects this wrong generalization.
The reward functions better capture the distance (in actions)
between two states: states on the right side of the wall are
attributed to skill (3) rather than (1). We can note that other
parts of the reward function remain identical.

Can the agent choose which skill to develop as a priority
? In this part, we use the same environment as previously,
but states on the right side of the wall give an extrinsic
reward of 1. Thus the agent follows the tree-policy to
maximize its rewards, using Boltzmann exploration, and
focus its refinement on rewarding skills. Figure 4 shows
all the parent skills of the most refined skill which reaches
L(g) = 6. The agent learns more specialized skills in the
rewarding area than when no reward is provided .

Summary. We illustrated the following properties of ELSIM:
1- it expands a previously learned rewarding area when it
discovers new states; we show in Section 4.2 that it improves
exploration when the rewards are sparse; 2- adding letters
corrects over-generalization of their parent discriminator;
3- it can focus the skill expansion towards task-interesting
areas.

4.2. Performance on a single task

In this part, we study the ability of ELSIM to be competi-
tive on high-dimensional benchmarks 2 without any prior
knowledge. For ELSIM, we set the maximum skill length
to 10, which is reached in HalfCheetah.

Figure 5 respectively shows the average reward per episode
for different environments. Shaded areas color are upper-
bounded (resp. lower-bounded) by the maximal (resp. mini-
mal) average reward.

First, the MountainCarContinuous environment represents
a challenge for the exploration as it is a sparse reward envi-
ronment: the agent receives the reward only when it reaches
the goal. In this environment, ELSIM outperforms SAC
by getting a higher average reward. It confirms our results
(cf. Section 4.1) on the positive impact of ELSIM on
the exploration. There is a slight decrease after reaching
an optima, in fact, ELSIM keeps discovering skills after
finding its optimal skill. On Pendulum and LunarLander,
ELSIM achieves the same asymptotic average reward than
SAC, even though ELSIM may require more timesteps. On
HalfCheetah, SAC is on average better than ELSIM. How-
ever we emphasize that ELSIM also learns other skills.
For example in HalfCheetah, ELSIM learns to walk and flip
while SAC, that is a non-hierarchical algorithm, only learns
to sprint.

4.3. Transfer learning

In this section, we evaluate the interest of ELSIM for transfer
learning. We take skills learned by intra-policies in Section
4.2, reset the tree-policy and restart the learning process on
HalfCheetah and HalfCheetah-Walk. HalfCheetah-Walk is
a slight modification of HalfCheetah which makes the agent
target a speed of 2 . Intra-skill policies learning was stopped
in HalfCheetah.

The same parameters as before are used, but we use MBIE-

2HalfCheetah has a state space and action space respectively
of 17 and 6 dimensions.
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Figure 2. Some skills learned by the agent in an environment composed of four rooms.

Figure 3. Discriminator’s probability of achieving skills (1), (3)
and their sub-skills in every state (i.e. q(g|s)). The more red the
state, the more rewarding it is for the skill. The left side corre-
sponds to the preliminary stage of the learning process (timestep
128.104); the right side corresponds to the end of the learning
process (timestep 640.104).

Figure 4. One path in the tree of skills learned by the agent with
an extrinsic reward of 1 on the upper right side of the wall.

EB (Strehl & Littman, 2008) to explore the tree . Fig-
ure 6 shows that the tree-policy learns to reuse its previously
learned skills on HalfCheetah since it almost achieves the
same average reward as in Figure 5. On HalfCheetah-Walk,
we clearly see that the agent has already learned skills to
walk and that it easily retrieves them. In both environments,
ELSIM learns faster than SAC, which learn from scratch. It
demonstrates that skills learned by ELSIM can be used for
other tasks than the one it has originally been trained on.

5. Related work
Intrinsic motivation in RL is mostly used to improve explo-
ration when rewards are sparse or to learn skills (Aubret
et al., 2019). The works that learn skills with intrinsic re-
wards are close to our approach and can be classified in
two major categories. The first category strives to explic-
itly target states. The reward is defined either as a distance
between agent’s state and its goal state (Levy et al., 2019),
or as the difference between the change in the state space
and the required change (Nachum et al., 2018). However,
to efficiently guide the agent, the reward functions require a
good state representation (Nair et al., 2018; Nachum et al.,
2019a).

Intrinsic motivation as diversity heuristic. Our work

mostly falls into this category, which strives to define a
skill based on a MI objective (cf. Section 2.2). Seminal
works already learn a discrete set of diverse skills (Florensa
et al., 2017; Eysenbach et al., 2019). In contrast to them,
we manage to learn both the skill and the skill-selection
policy in an end-to-end way and we propose an efficient
way to learn a large number of skills useful for the tasks the
agent wants to accomplish. Recent works (Warde-Farley
et al., 2019; Co-Reyes et al., 2018) try to learn a continuous
embedding of skills, but do not integrate their work into
an end-to-end hierarchical learning agent. DADS (Sharma
et al., 2019) learn skills using a generative model over ob-
servations rather than over skills. While this is efficient on
environments with simple observation space, this is com-
putationally ineffective. In our work, rather than learning
a continuous skill embedding, we strive to select and learn
skills among a very large number of discretized skills. As
a consequence, we focus our learned skill distribution only
on task-interesting skills and we do not rely on a parametric
state distribution. Continual learning. Other works pro-
posed a lifelong learning architecture. Some assume that
skills are already learned and learn to reuse them; for ex-
ample H-DRLN (Tessler et al., 2017) uses a hierarchical
policy to choose between ground actions and skills. They
also propose to distill previously learned skills into a larger
architecture, making their approach scalable. In contrast,
we tackle the problem of learning skills in an end-to-end
fashion, thereby our approach may be compatible. Similarly
to us, CCSA (Kompella et al., 2017) addresses the catas-
trophic forgetting problem by freezing the learning of some
experts. They mix two unsupervised learning methods to
find and represent goal states, and then learn to reach them.
However, their unsupervised algorithm only extracts linear
features and they manually define a first set of skills. One
particular aspect of continual learning is Meta-RL: how can
an agent learn how to learn ? Traditional methods assume
there exists a task distributions and try to generalize over it
(Finn et al., 2017; Duan et al., 2016); this task distribution
serves as prior knowledge. In (Gupta et al., 2018), the au-
thors address this issue and apply MAML (Finn et al., 2017)
on an uniform distribution of tasks learned by DIAYN (Ey-
senbach et al., 2019). However, learning is neither focused,
nor end-to-end. In the continuity of this work, CARML
(Jabri et al., 2019) mixes the objective of DADS (Sharma
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Figure 5. Average reward per episode in classical environments (HalfCheetah-v2 (Todorov et al., 2012), LunarLanderContinuous-v0
(Shariff & Dick, 2013), MountainCarContinuous-v0 (Moore, 1990) and Pendulum-v0) for SAC and ELSIM (averaged over 4 seeds). We
use our own implementation of SAC except for HalfCheetah for which the blue curve is the average reward of SAC on 5 seeds, taken
from (Haarnoja et al., 2018). We stopped the simulation after convergence of SAC.
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Figure 6. Average reward per episode in HalfCheetah and
HalfCheetah-Walk. We use our own implementation of SAC for
HalfCheetah-Walk. The black curve is the average reward of a
random tree-policy that uses the transfered skills.

et al., 2019) and Meta-RL; it alternates between generating
trajectories of the distribution of tasks and fitting the task
distribution to new trajectories. While CARML discovers
diverse behaviors with pixel-level state space, it cannot learn
a global objective end-to-end like ELSIM.

State abstraction. Our method can be viewed as a way
to perform state abstraction (Li et al., 2006). Rather than
using this abstraction as inputs to make learning easier, we
use it to target specific states. The application of our refine-
ment method bounds the suboptimality of the representation,
while the task-independent clustering ensures that skills are
transferable. In contrast to our objective, existing methods
usually tackle suboptimality for a task without addressing
transfer learning or exploration (Akrour et al., 2018; Abel
et al., 2016). The k-d tree algorithm (Friedman et al., 1977)
has been used to perform state abstraction over a continu-
ous state space (Uther & Veloso, 1998), but as above, the
splitting process takes advantage of extrinsic reward and
previously defined partitions are not adapted throughout the
learning process. In the domain of developmental robotics,
RIAC and SAGG-RIAC (Baranes & Oudeyer, 2009; 2010)
already implement a splitting algorithm building a tree of
subregions in order to efficiently explore the environment
and learn a forward model. More precisely, they split the
state space to maximize either the sum of variance of interac-
tions already collected or the difference of learning progress

between subregions. However, these heuristics do not scale
to larger continuous environments. In contrast, we assign
states to subregions according to the proximity of states and
use these subregions as reusable skills to solve several tasks.
ASAP (Mankowitz et al., 2016) partitions the goal space,
but does not use intrinsic motivation and the partitions are
limited to hyper-plans.

6. Conclusion
We proposed ELSIM, a novel algorithm that continually re-
fines discrete skills using a recently defined diversity heuris-
tic (Eysenbach et al., 2019). To do so, the agent progres-
sively builds a tree of different skills in the direction of
a high-level objective. As shown in Section 4, ELSIM
expands the area associated to a skill thanks to its ex-
ploratory behavior which comes from adding latent vari-
ables to the overall policy. ELSIM also focuses its train-
ing on interesting skills relatively to some tasks. Even
though the agent is often learning a task, the skills can be de-
fined independently from a specific task and we showed that
ELSIM possibly makes them transferable across different
tasks of a similar environment. Since the agent does not
need extrinsic reward to learn, we show that it can improve
exploration on sparse rewards environments. We believe
that such a paradigm is appropriate for lifelong learning.

Currently, our method allows to avoid the problem of catas-
trophic forgetting, but the counterpart is an increase of the
memory footprint, which is a recurrent issue in methods
based on trees. Several works addressing catastrophic for-
getting may be adapted to our work, e.g. (Lopez-Paz &
Ranzato, 2017) and could potentially improve transfer learn-
ing between neural networks at different levels of our tree.
In addition, ELSIM quickly gets stuck in local optimas in
more difficult environments such as BipedalWalker-v2 or
Pybullet environments. The main limitation of our approach
is that we cannot select several skills in one episode, such as
one would make within the option framework (Sutton et al.,
1999). To be adapted, the tree-policy should be dependent
on the true state and the diversity heuristic should maximize
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Es∼U(s) I(G,S′|S) rather than eq. 6 like in (Sharma et al.,
2019). Thus the curriculum algorithm should be modified.
It would result that the semantic meaning of a skill would
be no longer to target an area, but to produce a change in the
state space. We plan to address these issues in future work.
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