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ABSTRACT

Recent self-supervised representation learning methods have shown impressive
results in learning visual representations from unlabeled images. This paper aims
to improve their performance further by utilizing the architectural advantages of
the underlying neural network, as the current state-of-the-art visual pretext tasks
for self-supervised learning do not enjoy the benefit, i.e., they are architecture-
agnostic. In particular, we focus on Vision Transformers (ViTs), which have
gained much attention recently as a better architectural choice, often outperform-
ing convolutional networks for various visual tasks. The unique characteristic of
ViT is that it takes a sequence of disjoint patches from an input image and pro-
cesses patch-level representations internally. Inspired by this, we design a simple
yet effective visual pretext task, coined Patch-Aware Self-Supervision (PASS), for
learning better patch-level representations. To be specific, we enforce invariance
against each patch and its neighbors, i.e., each patch treats similar neighboring
patches as positive samples. Consequently, training ViTs with PASS produces
more semantically meaningful attention maps patch-wisely in an unsupervised
manner, which can be beneficial, in particular, to downstream tasks of a dense
prediction type. Despite the simplicity of our scheme, we demonstrate that it can
significantly improve the performance of existing self-supervised learning meth-
ods for various visual tasks, including object detection and semantic segmentation.

1 INTRODUCTION

Recently, self-supervised learning (SSL) has achieved successful results in learning visual repre-
sentations from unlabeled images with a variety of elaborate pretext tasks, including contrastive
learning (He et al., 2020; Chen et al., 2020a;b), clustering (Caron et al., 2020), and pseudo-labeling
(Grill et al., 2020; Caron et al., 2021; Chen & He, 2021). The common nature of their designs is on
utilizing different augmentations from the same image as the positive pairs, i.e., they learn represen-
tations to be invariant to the augmentations. The SSL approaches without utilizing human-annotated
labels have been competitive with or even outperformed the standard supervised learning (He et al.,
2016) in various downstream tasks, including image classification (Chen et al., 2020b), and object
detection (Caron et al., 2021), and image segmentation (Caron et al., 2021).

Meanwhile, motivated by the success of Transformers (Vaswani et al., 2017) in natural language
processing (Devlin et al., 2018; Brown et al., 2020), Vision Transformers (ViTs; Dosovitskiy et al.
2020; Touvron et al. 2020; 2021) have gained much attention as an alternative to convolutional
neural networks (CNNs) with superior performance over CNNs in various visual tasks (Touvron
et al., 2020; Radford et al., 2021). For example, ViT-S/16 (Touvron et al., 2020) has a 1.8× faster
throughput than ResNet-152 (He et al., 2016) with a higher accuracy in the ImageNet (Deng et al.,
2009) benchmark.

There have been several recent attempts to apply existing self-supervision techniques to ViTs (Chen
et al., 2021b; Xie et al., 2021c; Caron et al., 2021). Although the techniques have shown to be
also effective with ViTs, they do not fully utilize architectural advantages of ViTs, i.e., their pretext
tasks are architecture-agnostic. For example, ViTs are able to process patch-level representations,
but pretext tasks used in the existing SSL schemes only use image-level supervision. As a result,
existing self-supervised ViTs (Chen et al., 2021b; Caron et al., 2021) tend to produce inaccurate at-
tention maps at the final layer of ViTs for each image patch as shown in the second row of Figure 1.
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Figure 1: Visualization of top-10% patches obtained by thresholding self-attention maps of query
patches (top) in the last layer of ViT-S/16 trained with DINO (middle) and DINO + PASS (bottom).
While the selected patches obtained by DINO are not semantically correlated with its query patch,
PASS encourages the model to learn semantic correlations among patches.

This limitation inspires us to investigate the following question: how to utilize architectural char-
acteristics of ViTs for improving the quality of learned representations without human-annotated
supervision?

Contribution. In this paper, we propose Patch-Aware Self-Supervision (PASS), a simple yet ef-
fective scheme for learning patch-level representations, which can be beneficial to various visual
downstream tasks. Our self-supervised learning module, PASS, can be incorporated into any image-
level self-supervision scheme, e.g., DINO (Caron et al., 2021), MoCo-v3 (Chen et al., 2021b) and
MoBY (Xie et al., 2021c), for learning both global (i.e., image-level) and local (i.e., patch-level)
information simultaneously. Figure 1 shows that PASS enhances the quality of self-attention maps
of DINO, which is an evidence that PASS encourages to learn better patch-level representations.

Our key idea for designing PASS is to treat semantically similar neighboring patches as positive
samples motivated by the following prior knowledge: adjacent patches often share a common se-
mantic context. Since there might be multiple positive patches (but we do not know exactly which
patches are positive), we first select a fixed number of candidates for positive patches using the co-
sine similarity between patch representations of the current model. Here, some of them might be
noisy (e.g., not positive), and for the purpose of denoising, we utilize an attention-based aggregation
module (Touvron et al., 2021) for pruning and summarizing the selected neighboring patches. Then,
we minimize the distance between each patch representation and the corresponding summarized
one. We provide an overall illustration of PASS in Figure 2.

In our experiments, we incorporate the proposed self-supervised learning scheme, PASS, into the
state-of-the-art image-level self-supervision, DINO (Caron et al., 2021).1 To demonstrate the effec-
tiveness of PASS, we pre-train ViT-S/16 on the ImageNet (Deng et al., 2009) dataset and evaluate
the pre-trained ViT on a wide range of dense prediction downstream benchmarks: (a) COCO object
detection and instance segmentation (Lin et al., 2014), (b) ADE20K semantic segmentation (Zhou
et al., 2017), and (c) DAVIS 2017 video instance segmentation (Pont-Tuset et al., 2017). For exam-
ple, our method not only improves DINO (Caron et al., 2021) significantly from 31.13 to 38.18 in
mIoU metric but also outperforms other baselines, e.g., 37.28 of DetCo (Xie et al., 2021a) and 37.19
of DenseCL (Wang et al., 2021b), simultaneously on the ADE20K semantic segmentation task.

2 METHOD

In this section, we introduce Patch-Aware Self-Supervision (PASS), a simple yet effective framework
for learning better patch-level representations, which is tailored to Vision Transformers (Dosovitskiy
et al., 2020) for utilizing their unique architectural advantages. We first review Vision Transformers

1Nevertheless, the joint usage of PASS and other image-level SSL frameworks (Chen et al., 2021b; Xie
et al., 2021c) is also possible.
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Figure 2: Illustration of the proposed framework, Patch-Aware Self-Supervision (PASS). Top:
image-level self-supervision, which minimizes the distance between the final representations of two
differently augmented images. Bottom: patch-aware self-supervision (ours) which minimizes the
distance between the final representations of each patch and its positives. We use both types of
self-supervision for learning image-level and patch-level representations simultaneously.

with recent self-supervised learning frameworks (Chen et al., 2021b; Caron et al., 2021; Xie et al.,
2021c) in Section 2.1, and then present details of PASS in Section 2.2. Figure 2 illustrates the overall
framework of our method, PASS.

2.1 PRELIMINARIES: SELF-SUPERVISED VISION TRANSFORMER

Vision Transformers. Let x ∈ RH×W×C be an image where (H,W ) is the resolution of x and C
is the number of channels. Vision Transformers (ViTs; Dosovitskiy et al. 2020) treat the image x as
a sequence of non-overlapping patches {x(i) ∈ RP 2C}Ni=1 (i.e., tokens) where each patch has a fixed
resolution (P, P ). Then, the patches are linearly transformed to D-dimensional patch embeddings
e(i) = Ex(i)+E

(i)
pos ∈ RD where E ∈ RD×P 2C is a linear projection and E(i)

pos ∈ RD is a positional
embedding for the patch index i. ViTs also prepend the [CLS] token, which represents the entire
patches (i.e., the given image x), to the patch sequence with a learnable embedding e[CLS] ∈ RD.
The resulting input sequence e is e = [e[CLS]; e(1); e(2); . . . ; e(N)]. Then, ViTs take the input e
and output all the patch-level and image-level (i.e., [CLS] token) representations with a transformer
encoder.2 For conciseness, we use fθ to denote the whole process of a ViT parameterized by θ3 as
follows:

fθ(x) = fθ([e
[CLS]; e(1); e(2); . . . ; e(N)]) = [f

[CLS]
θ (x); f

(1)
θ (x); f

(2)
θ (x); . . . ; f

(N)
θ (x)], (1)

2We omit the details of the transformer encoder (Vaswani et al., 2017) of which each layer consists of the
self-attention module, skip connection and multi-layer perceptron (MLP).

3Note that θ contains all the transformer encoder paraemeters and embedding parametersE,Epos, and e[CLS].
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Figure 3: Illustration of positive matching. For a given query patch, we find semantically similar
(i.e., positive) patches from its neighborhood using the cosine similarity on the representation space.

where f [CLS]θ (x) and f (i)θ (x) are the final representations of the [CLS] token and the i-th patch, re-
spectively. Remark that f [CLS]θ (x) is utilized for solving image-level downstream tasks such as image
classification (Dosovitskiy et al., 2020; Touvron et al., 2020; 2021) while the patch-level represen-
tations {f (i)θ (x)}Ni=1 are done for dense prediction tasks, e.g., object detection (Carion et al., 2020)
and semantic segmentation (Xie et al., 2021b).

Self-supervised learning with ViTs. The recent literature (Chen et al., 2021b; Xie et al., 2021c;
Caron et al., 2021) has attempted to apply self-supervised learning (SSL) frameworks to ViTs. They
commonly construct a positive pair (x,x+) by applying different augmentations to the same image,
and then learn their representations to be similar, i.e., invariant to augmentations. We here provide a
generic formulation of this idea.4 To this end, we denote two ViT backbone networks as fθ and fθ̃,
and their projection heads as gθ and gθ̃ are parametrized by θ and θ̃, respectively. Then, the generic
form can be written as follows:

LSSL({x,x+}; θ, θ̃) := D(gθ(f
[CLS]
θ (x)), sg(gθ̃(f

[CLS]

θ̃
(x+)))), (2)

where D is a distance function and sg is the stop-gradient operation. Note that the distance D and
the architecture choice of g depend on the type of self-supervision; for example, Caron et al. (2021)
update θ̃ by the exponential moving average of θ, and use Kullback-Leibler (KL) divergence as D,
where the projection heads gθ̃ and gθ are designed to produce a probability distribution over the final
feature dimension.

We remark that the idea of constructing a positive pair (x,x+) of augmented images is architecture-
agnostic, which means it does not fully utilize architectural benefits of ViTs. For example, ViTs can
handle patch-level representations {f (i)θ (x)}, but the recent SSL frameworks use only f [CLS]θ (x) as
described in (2). This motivates us to explore the following question: how to construct patch-aware
self-supervision, i.e., positive pairs of patches?

2.2 PASS: PATCH-AWARE SELF-SUPERVISION

Recall that our goal is to learn better patch-level representations, which can be beneficial to various
type of downstream tasks. Our key idea is to consider neighboring patches as positive samples based
on the continuous nature of image patches. Overall, PASS aims to learn patch-level representations
via predicting self-supervision constructed by the following procedure: for each patch x(i), Positive
Matching first finds a set of candidates for positive patch indices P(i) from its neighborhood N (i)

(see Figure 3), and then Aggregation Module aggregates their representations {f (j)θ (x)}j∈P(i) as
self-supervision for x(i) (see Figure 2).

Neighboring patches. Given a query patch x(i), we assume that there exists a semantically similar
patch x(j) in its neighborhoodN (i), because neighboring patches {x(j)}j∈N (i) often share a seman-
tic context with the query x(i). Let {x(j)}j∈N (i) be a set of neighboring patches, whereN (i) is a set
of patch indices in the neighborhood. We simply use N (i) to be adjacent patches (i.e., |N (i)| = 8),
and empirically found that this choice is important for selecting candidates for positive patches (see
Section 4.4 for ablation experiments).

4Built upon this formulation, one can additionally consider negative pairs for contrastive learning or asym-
metric architectures such as a prediction head (Chen et al., 2021b; Xie et al., 2021c).
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Matching positives from the neighborhood. To sample positive (i.e., semantically similar) patches
from the neighborhood N (i), we measure the semantic closeness between the query patch x(i)

and its neighboring patch x
(j)
θ for all j ∈ N (i). To this end, we use the cosine similarity on the

representation space, i.e.,

s(i, j) = f
(i)
θ (x)>f (j)θ (x)/||f (i)θ (x)||2||f (j)θ (x)||2.

We take top-k positive patches {x(j)}j∈P(i) based on the similarity scores s(i, j), where P(i) is a set
of patch indices of top-k patches inN (i). We use k = |P(i)| = 4 in our experiments (see Section 4.4
for analysis on the effect of k).

Aggregation module. PASS enforces a query patch x(i) and its positives {x(j)}j∈P(i) to be similar
as the patch-level self-supervision. To this end, we extract an aggregated representation from the
positives by utilizing the [CLS] token, which already has a role for aggregating information in all
the patches {xi}Ni=1 (Dosovitskiy et al., 2020). We add an aggregation module hθ, which is also
called class-attention module (Touvron et al., 2021), after fθ to output an aggregated representation
hθ(fθ(x)). By following the implementation of Touvron et al. (2021), we separate the [CLS] token
from the front of fθ to hθ. In other words, the input sequence of fθ becomes [e(1); e(2); . . . ; e(N)],
and the input representation sequence of hθ is [e[CLS]; f

(1)
θ (x); f

(2)
θ (x); . . . ; f

(N)
θ (x)]. Then, the

output of the aggregation module hθ(fθ(x)) is:

hθ(fθ(x)) := hθ(e
[CLS], {f (j)θ (x)}j=1,...,N ) = h

[CLS]
θ (x). (3)

Also, we denote hP
(i)

θ (x) := hθ(e
[CLS], {f (j)θ (x)}j∈P(i)) as the aggregated representation of posi-

tives {f (j)θ (x)}j∈P(i) for the given query x(i).

Training objective. The generic form of the PASS objective can be written as follows:

LPASS(x; θ, θ̃) :=
1

N

N∑

i=1

D(gθ(f
(i)
θ (x)), sg(gθ̃(h

P(i)

θ̃
(x)))), (4)

where D is a distance function and sg is the stop-gradient operation. We found that the aggregation
module h is crucial for generating better self-supervision (see Section 4.4 for ablation experiments).
Then, the overall training objective is defined as below:

Ltotal({x,x+}; θ, θ̃) = LSSL({x,x+}; θ, θ̃) + λLPASS(x; θ, θ̃) (5)

where λ is a hyperparameter. Note that we use separate projections heads (i.e., non-shared weights)
for LSSL and LPASS, respectively. The ov erall training scheme is also illustrated in Figure 2.

3 RELATED WORKS

Transformer-like architectures for vision tasks. Vision Transformer (ViT; Dosovitskiy et al.
2020) is the pioneering architecture built on top of Transformer (Vaswani et al., 2017) for vision
tasks such as image classification. While Dosovitskiy et al. (2020) pre-train ViTs on a large-scale
dataset like JFT300M (Sun et al., 2017) to achieve a high accuracy, Touvron et al. (2020) introduce
several optimization strategies tailored to ViTs to be more data-efficient; for example, they achieve
competitive performance on ImageNet (Deng et al., 2009) without utilizing external data compared
to existing convolutional neural networks (CNNs) such as EfficientNet (Tan & Le, 2019). Inspired
by the success of the Vision Transformers, a number of variants (Graham et al., 2021; Heo et al.,
2021; Liu et al., 2021; Pan et al., 2021; Wang et al., 2021a; Wu et al., 2021; Zhang et al., 2021)
have been developed. They commonly incorporate convolutional designs into ViTs, e.g., a spatial
down-sampling operation (Pan et al., 2021; Wu et al., 2021) or a hierarchical structure that considers
various patch sizes (Wang et al., 2021a; Liu et al., 2021).

Self-supervised learning. For learning visual representations from a large number of unlabeled
images, self-supervised learning (He et al., 2020; Chen et al., 2020a;b; Grill et al., 2020; Caron et al.,
2020; 2021; Chen et al., 2021b; Xie et al., 2021c) has become a remarkable research direction, as it
can be effectively transferred to various downstream applications like image classification. Much of
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Table 1: Object detection and instance segmentation results on the COCO benchmark (Lin et al.,
2014). APbb and APmk denote bounding box and mask average precision (AP), respectively. We use
publicly available pre-trained models for baselines. † denotes results performed in our codebase.

Detection Segmentation

Method Backbone Epoch Param.(M) APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

MoCo-v2 ResNet50 200 26 38.9 59.2 42.4 35.5 56.2 37.8
SwAV ResNet50 200 26 38.5 60.4 41.4 35.4 57.0 37.7
DenseCL ResNet50 200 26 40.3 59.9 44.3 36.4 57.0 39.2
ReSim ResNet50 200 26 40.3 60.6 44.2 36.4 57.5 38.9
DetCo ResNet50 200 26 40.1 61.0 43.9 36.4 58.0 38.9

DINO† ViT-S/16 300 22 40.8 63.4 44.2 37.3 59.9 39.5
+ PASS (ours) ViT-S/16 200 22 41.5 64.1 44.8 38.0 60.8 40.3

the progress comes from exploiting the instance discrimination task (Wu et al., 2018), which learns
representations by maximizing the similarity between augmented images originated from the same
image and minimizing the similarity between different images. Recently, several approaches (Grill
et al., 2020; Caron et al., 2020; 2021) have also shown successful results without using negative
pairs; for example, Grill et al. (2020) enforces two representations of a positive pair to be similar
with an asymmetric architecture. On the other hand, Pinheiro et al. (2020); Wang et al. (2021b); Xie
et al. (2021a); Xiao et al. (2021) propose self-supervised leaning frameworks for dense prediction
tasks. Their common design is to match regions between two augmented images, e.g., regions have
the same location, while our method matches neighboring regions (ı.e., image patches) within the
same image for all areas.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed self-supervised learning framework,
patch-aware self-supervision (PASS), through extensive large-scale experiments. Specifically, we
compare PASS with existing SSL frameworks in various dense prediction benchmarks: (a) COCO
object detection and segmentation (Section 4.1), (b) ADE20K segmentation (Section 4.2), and (c)
DAVIS video segmentation (Section 4.3). The details of experimental setups are described in each
section and Appendix B. We also provide ablation experiments to verify the contribution of each
component of our framework in Section 4.4.

Baselines. We consider a variety of existing SSL frameworks developed for ViT (Touvron et al.,
2020) and ResNet (He et al., 2016) architectures: (a) self-supervised ViTs: DINO (Caron et al.,
2021) and MoCo-v3 (Chen et al., 2021b); and (b) self-supervised ResNets: MoCo-v2 (Chen et al.,
2020b), SwAV (Caron et al., 2020), DenseCL (Wang et al., 2021b), ReSim (Xiao et al., 2021) and
DetCo (Xie et al., 2021a). We use ViT-S/16 (22M parameters) and ResNet50 (26M parameters)
since they are conventional choices and have the similar number of parameters. We denote our
method built upon an existing method by “+ PASS”, e.g., DINO + PASS.

Implementation details. For pre-training, we incorporate the PASS objective with the state-of-the-
art SSL framework, DINO (Caron et al., 2021), as described in (5). We pre-train ViT-S/16 (Touvron
et al., 2020) on ImageNet (Deng et al., 2009) for 200 epochs with a batch size of 1024. We fol-
low DINO’s training details (e.g., optimizer, learning rate schedule). For the projection head of the
PASS objective, we follow the architecture of DINO except the final dimension K = 4096. For
the distance function D, we use the KL divergence in LPASS (4) following DINO. For our aggrega-
tion module, we follow the implementation of class-attention (Touvron et al., 2021) without their
normalization technique. The other training details are provided in Appendix A.

4.1 COCO OBJECT DETECTION AND SEGMENTATION

Setup. We evaluate pre-trained models on the COCO object detection and instance segmentation
tasks (Lin et al., 2014). Specifically, all models are fine-tuned on the COCO train2017 split with
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Table 2: (a) Semantic segmentation on ADE20K (Zhou et al., 2017), and (b) video object segmen-
tation on DAVIS 2017 (Pont-Tuset et al., 2017). We use publicly available pre-trained models for
baselines. All results are performed in our codebase.

(a) ADE20K

Method Backbone Epoch Param.(M) mIoU aAcc mAcc

MoCo-v2 ResNet50 200 26 35.76 77.63 45.08
SwAV ResNet50 200 26 35.40 77.49 44.92
DenseCL ResNet50 200 26 37.19 78.53 47.08
ReSim ResNet50 200 26 36.61 78.38 46.36
DetCo ResNet50 200 26 37.28 78.42 46.73

DINO ViT-S/16 300 22 31.13 75.98 41.43
+ PASS (ours) ViT-S/16 200 22 38.18 79.42 49.31

(b) DAVIS 2017

(J&F)m Jm Fm
55.5 56.0 55.0
57.4 57.6 57.3
50.7 52.6 48.9
49.3 51.2 47.3
56.7 57.0 56.4

60.7 59.1 62.4
61.4 59.7 63.1

the standard 1x schedule, and then evaluated on the COCO val2017 split. To perform detection
and segmentation, we use Mask R-CNN (He et al., 2017) with FPN (Lin et al., 2017). We follow
the fine-tuning details of El-Nouby et al. (2021) including the optimizer and the FPN architecture.

Results. Table 1 shows that our PASS consistently improves DINO in both detection and segmenta-
tion tasks, and consequently, DINO + PASS outperforms all the baselines. For example, the bound-
ing box average precision (i.e., APbb) of DINO + PASS is 0.7 points higher than that of DINO. One
can find similar results in the segmentation task; for example, DINO + PASS achieves 38.0 mask
average precision (i.e., APmk), which is 0.7 points higher than DINO, and also 1.6 points higher
than the best ResNet-based baseline, DenseCL (Wang et al., 2021b). We emphasize that the im-
provements from our framework are even achieved with a smaller number of pre-training epochs
(i.e., 200 epochs). These results demonstrate that the advantages of our framework are not only high
performance, but also training efficiency.

4.2 ADE20K SEMANTIC SEGMENTATION

Setup. We evaluate segmentation performance of pre-trained models on the ADE20K (Zhou et al.,
2017) benchmark, which contains 150 fine-grained semantic categories and 25k training images.
All models are fine-tuned with Semantic FPN (Kirillov et al., 2019) under the standard 40k iteration
schedule. We follow the training details of Contributors (2020). We report three evaluation metrics:
(a) mean Intersection of Union (mIoU) averaged over all semantic categories, (b) all pixel accuracy
(aAcc), and (c) mean accuracy of each class (mAcc).

Results. As shown in Table 2(a), DINO + PASS achieves significant improvements over DINO in
all the metrics; for example, DINO + PASS achieves 7.05 and 7.88 points higher than DINO in
terms of the mIoU and mAcc metrics, respectively. Also, DINO + PASS consistently outperforms
all the CNN-based SSL baselines; for example, in terms of the mIoU metric, our method achieves
38.18 point, while DetCO and DenseCL do 37.28 and 37.19 points, respectively. These comparisons
across the architectures verify the effectiveness of PASS.

4.3 DAVIS VIDEO OBJECT SEGMENTATION

Setup. We evaluate video object segmentation performance of pre-trained models on the DAVIS
2017 benchmark (Pont-Tuset et al., 2017). We follow the experimental protocol in Jabri et al. (2020);
Caron et al. (2021), which does not require training costs. To be specific, it evaluates the quality
of frozen representations of image patches by segmenting scenes with a nearest neighbor between
consecutive frames. We report two evaluation metrics of mean region similarity Jm, and mean
contour-based accuracy Fm. We also report their average score (J&F)m.

Results. In Table 2(b), DINO + PASS not only consistently improves DINO, but also largely surpass
the other baselines. For example, PASS improves the Fm score of DINO from 62.4 to 63.1, while
DenseCL and ReSim achieve only 48.9 and 47.3, respectively. We present visualizations of video
object segmentation results obtained by DINO and DINO + PASS in Figure 4. As shown in the
figure, PASS clearly enhances the video segmentation quality. Overall, we observe that our method
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Figure 4: Visualization of segmentation results. Top: input video frames. Middle and Bottom: seg-
mentation results obtained by DINO and DINO + PASS (ours), respectively. PASS clearly improves
the segmentation results, which is an evidence that PASS encourages the patch representations to
learn semantic information of each object.

encourages the model to produce more meaningful segmentation maps, which also demonstrate the
effectiveness of our framework in learning better patch-level representations.

4.4 ABLATION STUDY

We perform ablation studies to further understand how PASS works. Specifically, we assess the
individual effects of PASS’s components and show that each of them has an orthogonal contribution
to the overall improvements. To this end, we pre-train ViT-Ti/16 on the MS COCO train2007
dataset for 200 epochs with a batch size of 256. Table 3 summarizes the results of semantic segmen-
tation performance on the ADE20K benchmark (Zhou et al., 2017).

Effect of neighboring patches. We demonstrate the effect of considering neighboring patches as
positive candidates. Without the consideration (i.e., “w/o Neighbors”), we use the entire patches
as the candidates. As shown in the the third and fourth rows in Table 3(a), selecting positives
from the neighboring patches shows better performance (e.g., 25.83 mIoU) on the segmentation
task compared to considering the entire patches (e.g., 22.03 mIoU). This result verifies that positive
patches tend to be adjacent as we expected.

Effect of positive matching. Our positive matching module selects top-k patches as positives from
the neighborhood using the cosine similarity on the representation space. To demonstrate the effect
of this module, we use all neighboring patches as positives (i.e., w/o “Matching” or k = 8). As
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Table 3: Ablation studies on (a) each contribution of three components in our method: the neigh-
boring patches (“Neighbors”), positive matching (“Matching”) and aggregation module (“Aggrega-
tion”); and (b) varying the number of positive patches used in positive matching. All models are
pre-trained on the COCO benchmark (Lin et al., 2014). We evaluate the pre-trained models using
the semantic segmentation benchmark, ADE20K (Zhou et al., 2017).

(a) Ablation study on component contributions

Method mIoU aAcc mAcc

DINO 21.81 72.21 29.61
+ PASS (ours) 25.83 74.41 35.04
w/o “Neighbor” 22.03 72.09 29.96
w/o “Matching” 9.49 61.63 13.14
w/o “Aggregation” 16.04 68.16 22.28

(b) Ablation study on “Matching”

# positives mIoU aAcc mAcc

8 9.49 61.63 13.14
4 25.83 74.41 35.04
2 23.59 73.10 31.76
1 9.51 61.82 13.19

shown in the fifth row in Table 3, we found that aggregating all neighboring patches is harmful for
learning representations. Table 3(b) also shows the effect of k. We empirically found that using
only the top-1 patch (i.e., k = 1) is also not effective, and aggregating only few patches (k = 2 or
4) is essential for the performance. As observed in Table 3(b), we select k = 4 patches among the
neighborhood in the positive matching module.

Effect of aggregation module. We here validate the contribution of our aggregation module (“Ag-
gregation”) which aims at aggregating multiple patch representations. To this end, we simply replace
the aggregation module by the average pooling operation. The last row in Table 3(a) shows the per-
formance of DINO + PASS without “Aggregation”, which underperforms the baseline, DINO. This
is an evidence that our attention-based aggregation module is a crucial component of our framework.

5 CONCLUSION

We propose Patch-Aware Self-Supervision (PASS), a simple yet effective self-supervised learning
framework for learning visual representations of individual image patches. Our key idea is to treat
semantically similar neighboring patches as positives. Specifically, we select semantically similar
(i.e., positive) patches from the neighborhood, and then enforce invariance against each patch and its
positives. Through the extensive experiments, we demonstrate the effectiveness of our framework
in various downstream tasks, including object detection and semantic segmentation. We believe that
this work would guide many research directions for self-supervised learning.

ETHICS STATEMENT

Due to the absence of supervision, self-supervised learning often requires a vast number of training
samples to obtain meaningful representations, for example, Codex (Chen et al., 2021a) is trained on
159GB python code collected from public repositories in GitHub. Here, the data collection process
may cause unexpected social issues, e.g., privacy infringement, because it is impossible to check
all the data in person. In this respect, researchers are responsible to develop data-efficient self-
supervised learning schemes. We believe that designing a new type of self-supervision (e.g., patch-
level instead of image-level self-supervision) would be a promising research direction towards the
data-efficient self-supervised learning.

REPRODUCIBILITY STATEMENT

We describe the additional training details of the model in Appendix A, and evaluation details in
Appendix B. One can find our reproducible code in the supplementary material.
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A TRAINING SETUP

A.1 TRAINING DATASETS

We use the ImageNet (Deng et al., 2009) dataset for large-scale pre-training, and the MS COCO (Lin
et al., 2014) dataset with train2007 split for medium-scale pre-training.

ImageNet (Deng et al., 2009) is a 1000-class natural image dataset that contains 1,281,167 train-
ing images, 50,000 validation images. The dataset can be downloaded at https://www.
image-net.org/challenges/LSVRC/index.php.

COCO (Lin et al., 2014) is a large-scale object detection, segmentation, and captioning dataset
published by Microsoft. We use train2007 split for pre-training in Sec 4.4. The dataset can be
downloaded at https://cocodataset.org/#download.

A.2 TRAINING DETAILS

We pre-train ViT-S/16 (Touvron et al., 2020) on the ImageNet (Deng et al., 2009) dataset for 200
training epochs with a batch size of 1024. In the case of the joint usage of DINO (Caron et al., 2021)
and our framework PASS (“DINO + PASS”), we follow details of DINO, which also is available at
https://github.com/facebookresearch/dino. We specify several details as follows:

• Projection head. Caron et al. (2021) uses a single hyperparameter K for the final output
dimension. For the SSL projection head, we use K = 65536, and K = 4096 for the PASS
projection head.

• Momentum encoder. We use a momentum value of exponential moving average to 0.996.

• Teacher temperature. Caron et al. (2021) uses three hyperparameters for the intial and
final values and warmup epochs for teacher temperature. We use 0.04 as the initial, 0.07 to
the final and 30 epochs for warmup.

• Gradient clipping. We use the maximal value of gradient norm to be 3.0.

• Optimizer. We use adamw optimizer with learning rate of 0.0005 under linear scaling rule.
We also use cosine scheduling with minimum learning rate of 0.00001. For weight decay,
we use 0.04 as the initial, 0.4 to the final.

• Multi-crop augmentation. We use (0.25, 1.) of global crop scale and (0.05, 0.25) of local
crop scale. We use 2 global crops and 2 local crops.

• Aggregation module. We use two lengths of class-attention blocks (Touvron et al., 2021)
without Layerscale normalization (Touvron et al., 2021) as our aggregation module.

• Loss weight. We use our loss weight λ = 0.1.

We use the same hyperparameters when we pre-train ViT-Ti/16 on the COCO dataset in Table 3,
except a batch size of 256, K = 4096 for the SSL projection head.

B EVALUATION SETUP

B.1 EVALUATION DATASETS

For evaluation, we use the MS COCO (Lin et al., 2014), the ADE20K (Zhou et al., 2017), and the
DAVIS-2017 benchmarks.

ADE20K (Zhou et al., 2017) is a semantic segmentation dataset contains 150 fine-grained semantic
categories and 25k images. The dataset can be downloaded at http://groups.csail.mit.
edu/vision/datasets/ADE20K/toolkit/index_ade20k.pkl.

DAVIS 2017 (Pont-Tuset et al., 2017) is a dataset for video object segmentation. It contains a total of
150 videos that consists of 60 training, 30 validation, and 60 testing videos. We use 480p image res-
olution. The dataset can be downloaded at https://davischallenge.org/davis2017/
code.html.
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B.2 EVALUATION DETAIL

We evaluate transferring performances of pre-trained models to various downstream tasks as follows:

• COCO object detection and instance segmentation. We follow the basic configura-
tion of mmdetection((Chen et al., 2019), which is available at https://github.
com/open-mmlab/mmdetection for fine-tuning Mask R-CNN (He et al., 2017) with
FPN (Lin et al., 2017) and 1x schedule. In addition, we adapt augmentation, opti-
mizer and FPN architecture for ViT-S/16 architecture from (El-Nouby et al., 2021), which
is available at https://github.com/facebookresearch/xcit/tree/main/
detection.

• ADE20K semantic segmentation. We follow the all configuration of mmsegmentation
(Contributors (2020); https://github.com/open-mmlab/mmsegmentation)
for fine-tuning Semantic FPN (Kirillov et al., 2019) with 40k iterations, as it supports
ViT-S/16 architecture.

• DAVIS 2017 video object segmentation. We follow evaluation protocol of Caron et al.
(2021), which is available at https://github.com/facebookresearch/dino.

14

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/facebookresearch/xcit/tree/main/detection
https://github.com/facebookresearch/xcit/tree/main/detection
https://github.com/open-mmlab/mmsegmentation
https://github.com/facebookresearch/dino

	Introduction
	Method
	Preliminaries: Self-supervised Vision Transformer
	PASS: Patch-aware self-supervision

	Related works
	Experiments
	COCO object detection and segmentation
	ADE20K semantic segmentation
	DAVIS video object segmentation
	Ablation study

	Conclusion
	Training setup
	Training datasets
	Training details

	Evaluation setup
	Evaluation datasets
	Evaluation detail


