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Abstract

The Platonic Representation Hypothesis claims
that recent foundation models are converging to
a shared representation space as a function of
their downstream task performance, irrespective
of the objectives and data modalities used to train
these models (Huh et al., 2024). Representa-
tional similarity is generally measured for indi-
vidual datasets and is not necessarily consistent
across datasets. Thus, one may wonder whether
this convergence of model representations is con-
founded by the datasets commonly used in ma-
chine learning. Here, we propose a systematic
way to measure how representational similarity
between models varies with the set of stimuli used
to construct the representations. We find that the
objective function is a crucial factor in determin-
ing the consistency of representational similarities
across datasets. Specifically, self-supervised vi-
sion models learn representations whose relative
pairwise similarities generalize better from one
dataset to another compared to those of image
classification or image-text models. Moreover,
the correspondence between representational sim-
ilarities and the models’ task behavior is dataset-
dependent, being most strongly pronounced for
single-domain datasets. Our work provides a
framework for analyzing similarities of model
representations across datasets and linking those
similarities to differences in task behavior.

“Equal contribution 'Machine Learning Group, Tech-
nische Universitdt Berlin, Berlin, Germany 2Hector Fellow
Academy, Karlsruhe, Germany *European Laboratory for Learn-
ing and Intelligent Systems (ELLIS), Tiibingen, Germany
“BIFOLD—Berlin Institute for the Foundations of Learning and
Data, Berlin, Germany 3 Aignostics, Berlin, Germany 6Anthropic,
California, United States of America. Correspondence to:
Laure Ciernik <ciernik@tu-berlin.de>, Lukas Muttenthaler
<lukas.muttenthaler @tu-berlin.de>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

Representation learning has seen remarkable progress in
recent years, with state-of-the-art models achieving or even
surpassing human-level performance in a wide range of
computer vision tasks (Radford et al., 2021; Dehghani et al.,
2023; Oquab et al., 2024; Zhai et al., 2023; Muttenthaler
et al., 2024). With this progress in task performance, model
representation spaces tend to approach each other irrespec-
tive of the models’ training data or architecture (Huh et al.,
2024). Even between models trained on different modalities,
better task performances result in more similar representa-
tions. Two questions naturally arise from this phenomenon:
Do pairwise similarities of model representations transfer
from one dataset to another, and are they generally linked
to the models’ downstream behavior?

Investigating the correspondence between representation
and behavior has a long history in representation learning
and adjacent fields (e.g. Hermann & Lampinen, 2020; Su-
cholutsky et al., 2023). Two models can have different
intermediate layer representations even though they show
the same task behavior (Muttenthaler et al., 2023; Lampinen
et al., 2024). However, if two models show different behav-
ior, one can be certain that the output layer representations
are different, since identical output representations map to
the same behavior. What remains unclear is how behavior
(e.g., downstream task accuracy) is affected by the con-
vergence of model representations (i.e., the similarity of
representations). Does this relationship depend on the simi-
larity measure at hand, or may it be due to the nature of a
dataset?

The field lacks consensus on how to define (pairwise) repre-
sentational similarity (cf. Kriegeskorte et al., 2008; Korn-
blith et al., 2019a; Williams et al., 2021; Duong et al., 2023;
Sucholutsky et al., 2023) and how to systematically measure
its relationship to behavior (cf. Geirhos et al., 2021; Mut-
tenthaler et al., 2023; Sucholutsky et al., 2023; Lampinen
et al., 2024). Here, we use similarity measures that are
widely used and have been empirically proven to be useful
for measuring representational similarity of neural networks,
such as Centered Kernel Alignment (CKA; Kornblith et al.,
2019a; Raghu et al., 2021), and Representational Similarity
Analysis (RSA; Kriegeskorte et al., 2008).
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However, pairwise representational similarity is usually
measured for a single dataset and not across datasets. It
may be that the representations of two vision models are
highly similar for a dataset of raccoons but dissimilar for
a dataset of sunflowers — due to their different domains.
Similarly, the representations of two models may exhibit
high similarity for satellite data but show low similarity for
images of fruit — because of the images’ different structure.

Thus, it appears crucial to scrutinize the factors that de-
termine pairwise representational similarity across sets of
stimuli. Knowing about those factors will enable us to gen-
eralize pairwise representational similarity across datasets
and more effectively find model sets that have learned a sim-
ilar representation of the world. For a large set of diverse
vision models, we examine their pairwise representational
similarities for both structured and unstructured datasets
from different domains. Our contributions and findings are
as follows:

* We propose a principled way of measuring the consis-
tency of pairwise similarity across datasets, by mea-
suring whether the (relative) pairwise similarities of
model representations from one dataset are transferable
to the (relative) pairwise similarities of another dataset.

* We find that the objective function is a crucial factor
for determining the consistency of pairwise representa-
tional similarities across datasets, whereas architecture
and model size do not appear to be major factors. In
particular, SSL. models show more reliable generaliza-
tion across stimulus sets compared to image-text and
supervised models.

¢ Qur findings show the same trend across different sim-
ilarity measures, including those that emphasize local
versus global representational structure.

» Pairwise similarities of model representations strongly
correlate with the models’ differences in task perfor-
mance for single-domain datasets, while multi-domain
datasets show highly variable and specialized datasets
consistently low correlations.

2. Related work

Measuring the similarity of deep neural networks. Repre-
sentational similarity measures quantify the degree of over-
lap between the representations of two models when pro-
cessing the same input. They have been used as a tool to un-
derstand deep neural networks (Li et al., 2015; Nguyen et al.,
2021; Mehrer et al., 2020), investigate human-machine
alignment (Sucholutsky et al., 2023; Xu & Vaziri-Pashkam,
2021), and as an objective for model distillation (Tian et al.,
2020; Saha et al., 2022; Zong et al., 2023). Different repre-
sentational similarity measures have been proposed, includ-

ing Canonical Correlation Analysis (CCA; Hotelling, 1992;
Morcos et al., 2018), Singular Vector Canonical Correla-
tion Analysis (SVCCA; Raghu et al., 2017), the previously
mentioned CKA and RSA, among others (e.g., Williams
et al., 2021; Ding et al., 2021; Barannikov et al., 2022; Cui
et al., 2022). They can be distinguished from functional sim-
ilarity measures, such as performance difference (Klabunde
et al., 2025), error consistency (Geirhos et al., 2020b), and
true-positive agreement (Hacohen et al., 2020), which are
based on model outputs rather than internal representa-
tions (Klabunde et al., 2025), or model stitching (Bansal
et al., 2021; Csiszarik et al., 2021; Merullo et al., 2023),
which measures compatibility, not similarity, of internal
representations (Hernandez et al., 2022).

Importantly, similarity measures may differ in the invari-
ances they evoke and the properties of representational
spaces they capture (Klabunde et al., 2025). For example,
local structures may be better captured by measures based
on nearest neighbors (Huh et al., 2024) or localized kernels
(Kornblith et al., 2019a), while capturing global similarities
may be better achieved by wide kernels. Here, we make use
of kernel-based CKA, as it allows probing both local and
global representation structures by varying the kernel, does
not require the compared representations to be of the same
dimension, and is widely used (e.g., Raghu et al., 2021;
Maniparambil et al., 2024; Saha et al., 2022; Zong et al.,
2023; Ding et al., 2019; Baratin et al., 2021).

Drivers of similarity in vision models. In contrast to lan-
guage processing systems (e.g., Achiam et al., 2023; Team
et al., 2023), vision models are trained with a wide range of
different learning objectives. These include (a) supervised
learning objectives using classification datasets such as Ima-
geNet (Krizhevsky et al., 2012b); (b) SSL objectives with
a reconstruction or multi-view matching loss (Chen et al.,
2020a; Caron et al., 2021; He et al., 2022); and (c) objectives
for jointly learning image and text representations (Radford
et al., 2021; Zhai et al., 2023). This makes them interesting
candidate models for analyzing representational similari-
ties. The trend to larger model sizes (e.g. Dehghani et al.,
2023) combined with increased dataset sizes (e.g. Schuh-
mann et al., 2022; Oquab et al., 2024) and multi-modality
appears to be leading to a convergence of model represen-
tations (Huh et al., 2024). Similarity between otherwise
identical networks trained from different random initializa-
tions increases with width (Morcos et al., 2018; Kornblith
et al., 2019a), as predicted by theoretical studies of proper-
ties of neural networks in the infinite width limit (Lee et al.,
2018; Matthews et al., 2018; Yang & Hu, 2021). Huh et al.
(2024) hypothesize that convergence is further driven by
task generality and inductive bias. Other works find that
architecture and dataset (Raghu et al., 2021) play a central
role in determining the representational structure of a model.
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Consistency of similarity. Beyond the similarity function,
representational comparisons depend on both the extraction
layer (Kornblith et al., 2019a; Raghu et al., 2021) and the
(probe) dataset (Cui et al., 2022). For example, measuring
similarity for a subset of a data distribution can yield dif-
ferent similarities than measuring it for the whole dataset,
albeit maintaining the ranking of similarities between mod-
els (Brown et al., 2024). However, recent work demon-
strated that representational similarities (e.g., measured via
RSA) can be used to effectively select (downstream) task-
specific models (Dwivedi & Roig, 2019; Borup et al., 2023).
From a behavioral perspective, it has been shown that the
ranking of the agreement of ImageNet classifier pairs gen-
eralizes to out-of-distribution data (Baek et al., 2022). Due
to the limited scope of prior work (e.g., only studying a few
models (Klabunde et al., 2023; Brown et al., 2024), the driv-
ing factors of the consistency of representational similarities
across vision datasets have not yet been identified.
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Figure 1: Pairwise similarity analysis framework. Let A
and B be two sets of stimuli and © and ® be two sets of
models. For each dataset, we use all models within the two
sets to extract representations, e.g., Z j; being the features
extracted from dataset A using model f. Subsequently, for
each pair of models (fy, f4), where fy € © and f, € D,
we compute the CKA similarity between their representa-
tions (i.e., CKA(Z f{’ Z f;“’)), yielding a similarity vector
8(a,0,2)- This vector can be displayed as a matrix, where
each entry represents the similarity between two models for
a single dataset. In the scatter plot, we contrast two such
vectors computed on the same model sets but evaluated on
different datasets A and B. The Pearson correlation coeffi-
cient p between the similarities quantifies the consistency
of similarities across the two datasets. The distribution of p
across all dataset pairs, R (O, ©), indicates the consistency
of (relative) representational similarities across stimuli.

3. Methods

In this section, we propose a novel approach for analyzing
the consistency of representational similarities across
multiple datasets. Fig. 1 illustrates this framework.

Extracting representations. We are interested in compar-
ing the similarities of different vision models. We perform
this comparison by extracting their latent representations
and examining them. Let fp : RY — RP be a pretrained
neural network function parameterized by a fixed set of
parameters € that maps the d-dimensional images to p-
dimensional vector representations. Let X € R™*? be
a dataset of n stacked images. For each image = € R? in a
dataset, we extract its corresponding latent representations
fo(x) = z € RP. For supervised models, we typically
use the penultimate layer to extract this representation; for
self-supervised vision models, the average pooling layer;
and for image-text models, the image encoder. We denote
by Z € R™*P the matrix of stacked vector representations,
which is unique for each model and dataset combination.

Computing representational similarities for a dataset.
We compute the similarity between two models fy and f
for a dataset by applying CKA to their vector representations
Z7%o and Z/+. CKA computes the similarity based on the
normalized Hilbert-Schmidt Independence Criterion (Gret-
ton et al., 2005), applied to the kernel matrices of both
representations. Using CKA with a linear kernel focuses
on global similarity structure, while an RBF kernel with
small o measures local similarity structure (Kornblith et al.,
2019a; Alvarez, 2023). We compared their behavior (shown
in Fig. 3 and in Appx. F) and observed similar trends for
both kernels. Therefore, we use CKA with a linear kernel
for the remainder of this paper if not mentioned otherwise.

Computing the similarity requires the full kernel matrix
over the dataset, which scales quadratically with the num-
ber of data points. Hence, the exact computation becomes
intractable for large datasets. However, we demonstrate
in Appx. C that for CKA linear a diverse subset of 10,000
samples is sufficient to accurately estimate the similarities
of two models for an ImageNet-scale dataset.

Representational similarities across datasets. Because
image representations depend on both a model and a dataset,
the representational similarities between two models may
vary across different datasets. To quantify how consistent
these similarities remain across datasets (i.e., the transfer-
ability of similarity relationships), we compute the correla-
tion coefficient for pairwise model similarities (measured for
a large set of model pairs) between datasets. We can then
analyze these correlations for specific subsets of models
grouped by their training factors.

Specifically, we scrutinize how the pairwise similarities
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of models from two model sets, © and P, correspond
between two datasets, A and B. By computing the
pairwise representational similarities between all model
pairs (fg, fo), separately for each dataset, where fp €
O, fo € ® and fy # fy, we obtain a similarity vec-
tor s € R, where k denotes the number of distinct
model combinations. A similarity vector for two sets of
models and a dataset X is then defined as s(x 0,.4) =
L

(CKAZE, Z%) 1 foe©. 1o €@ fo £ £5) €RE.

To quantify the consistency of similarities between two
datasets A and B, we use the Pearson correlation coefficient
between the similarity vectors s(4,0,) and s(B,e,3), 1.€.,
p(5(4,0,8), S(B,0,)). The Pearson correlation measures
the degree to which the similarity trends between models
are preserved across datasets, focusing on the relative po-
sitioning of model pairs rather than the absolute similarity
values. In other words, if two models f; and fy are more
similar than f, and fy, on one dataset, a high Pearson cor-
relation coefficient indicates that this relationship transfers
to the other dataset. Conversely, a low correlation value
suggests that the models’ relationships shift significantly
depending on the dataset, showing variability in processing
different data distributions. Thus, the Pearson correlation co-
efficient is a meaningful indicator of how dataset-dependent
or dataset-invariant the model similarities are.

To assess the consistency of these correlations across
dataset pairs, we examine the distribution of cor-
relation coefficients for all possible dataset pairs
within the set of available datasets D : R(O,P) =
{p (S(A7@)q>), 8(37@@)) | A BeD A 75 B} The
spread of the correlation coefficients across all dataset pairs
indicates the consistency of the relative pairwise model
similarities (similarity consistency).

4. Experiments

Our experiments investigate the consistency of represen-
tational similarities between vision models across various
datasets using our framework. Following the experimental
setup (§4.1), we first analyze how model similarities trans-
fer across datasets (§4.2, 4.4) and find consistent model
groups through similarity clustering (§4.3). We then in-
vestigate how model and dataset characteristics influence
similarity consistency (§4.5 and 4.6), and conclude by exam-
ining the relationship between representational similarities
and models’ performance differences on downstream tasks
(§4.7). The code and the data to run our analyses and re-
produce the experimental results are publicly available at
https://github.com/lciernik/similarity
_consistency.

4.1. Setup

Models. We evaluated 64 vision models, representing a di-
verse range of architectures, training paradigms, and param-
eter scales. We focused on general-purpose vision models
trained on large-scale datasets (minimum ImageNet-1k size)
with broad semantic diversity, excluding models trained on
specialized or synthetic datasets. A complete list of models
and their characteristics can be found in Appx. A.

Model grouping. Instead of focusing on the representa-
tional similarities of individual model pairs, we analyze
aggregated similarities between sets of models. We cate-
gorize models based on four attributes: training objective,
training data (size), model architecture, and model size (see
Tab. 3). This allows us to examine how different model
characteristics relate to the behavior of representational sim-
ilarities while acknowledging that these attributes are often
correlated across models (see Fig. 9).

Datasets. We evaluated pairwise model similarities across
20 datasets from the CLIP benchmark (Cherti & Beau-
mont, 2022) and 3 datasets from Breeds (Santurkar et al.,
2021). This set includes various VTAB datasets as well
as ImageNet-1k. Following the categorization proposed
in (Zhai et al., 2020), we classified the datasets into three
main types: natural (e.g., ImageNet-1k), specialized (e.g.,
PCAM), and structured (e.g., DTD) image datasets. Further-
more, we partition the natural image datasets into single-
and multi-domain categories. A list of all datasets can be
found in Tab. 1.

4.2. Do representational similarities transfer across
datasets?

The transferability of model similarities across diverse
datasets is crucial for model comparison and selection. If
similarities are consistent across datasets, we can evaluate
models on a single dataset and generalize their relationships
to other datasets. We analyzed this by computing pairwise
CKA similarities for all model pairs across our datasets.

Model similarities (e.g., the range of values and the similar-
ity trends) appear to vary across datasets (Fig. 2, Appx. D).
We observe the highest similarity within image-text mod-
els (yellow boxes), while a group of self-supervised mod-
els (white boxes) shows consistent similarity trends across
datasets. Yet, there are also model groups with higher vari-
ability (cyan boxes), mainly containing supervised models.
The standard deviation matrix (rightmost matrix in Fig. 2)
quantifies these differences, indicating that model similari-
ties do not transfer uniformly across datasets.

To further investigate the transferability of model similari-
ties across datasets, we examine the relationship between
the mean and standard deviation of similarity values. The
left panel in Fig. 3 shows an inverse U-shape trend (fur-
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Figure 2: Representational similarity using linear CKA. Left to right: natural multi- and single-domain, and specialized
datasets, followed by mean and standard deviation across all datasets. Models (rows and columns) are ordered by a
hierarchical clustering of the mean matrix. Yellow and white boxes highlight regions with more stable similarity patterns
across datasets, corresponding to some image-text (yellow) and self-supervised model pairs (white), while cyan boxes show

higher variability for mainly supervised model pairs.

ther analyzed in Appx. E): model pairs with extreme mean
similarities exhibit low variability, while variability for mid-
range similarities is higher. To verify that this observed
variability is not an artifact of the similarity metric, we com-
pare the mean similarity values obtained using linear CKA
with two other metrics: CKA with an RBF kernel where
o = 0.2 (a local similarity measure, cf., Appx. F for o
selection) and RSA using Spearman correlation (a global
similarity measure). The high correlations among these
measures confirm that mid-range similarity values consis-
tently vary across metrics, indicating limited stability across
datasets.

Given this variability, we investigate persistent trends in
model relationships across datasets by addressing two ques-
tions: a) Can we identify subgroups of models whose simi-
larity to other models (consistently) cluster across different
datasets? b) Do the relative representational similarities
within or between these subgroups remain stable/consistent
across datasets? Answering these questions will allow us to
make generalizable, albeit potentially weaker, claims about
models’ relationships from a single data source.
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Mean RSA spearman
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Figure 3: Variability of representational similarities across
datasets. Left: Mean versus standard deviation of pairwise
similarities. Center/Right: Mean similarity values using
CKA RBF (¢ = 0.2) or RSA as a function of linear CKA.
High Pearson correlation coefficients indicate consistency
across different similarity metrics.

4.3. Do representational similarities cluster according to
model categories?

We qualitatively assess the alignment between our prede-
fined model categories (§4.1) and the clustering patterns

observed in the t-SNE embedding of the model-model simi-
larity matrices, as illustrated in Fig. 4. The training objective
appears to be the most distinctive categorization, with all
image-text and most SSL models forming distinct clusters
across all three datasets. The objective and dataset cate-
gories show substantial overlap, potentially confounding
further analysis. For instance, only image-text models have
been trained on XLarge datasets, while all models trained
on ImageNet-21k are supervised models (Appx. A). Addi-
tionally, no image-text model has been trained on ImageNet-
1k or ImageNet-21k. In contrast, no obvious clustering is
discernible based on architecture or model size. These ob-
servations provide initial evidence that the training objective
might play a key role in representational similarity.
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Figure 4: t-SNE visualization of model similarity matrices
for ImageNet-1k, Flowers, and PatchCamelyon (PCAM)
datasets. Embeddings are color-coded by model attributes:
training objective, architecture, training data, and model
size.
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4.4. Do relative representational similarities remain
consistent across different datasets?

Given the observation that representational similarities are
not directly transferable across datasets but depend on both
the models and the dataset, we now examine the consistency
of relative representational similarities across dataset pairs.
Following the method described in §3, the top row of Fig. 5
reveals positive correlations between pairwise model sim-
ilarities across three exemplary dataset pairs. Across all
dataset pairs, the mean Pearson correlation coefficient is
0.756 (std=0.124). This indicates that the ordering of pair-
wise model similarities is largely consistent across datasets,
suggesting a degree of transferability in the relationships
of representational similarities. However, the high standard
deviation and the distributions of similarities shown in Fig. 5
suggest the existence of model-pair groups that may exhibit
distinct consistencies of similarity values.

The second row in Fig. 5 shows model pairs within the
same training objective, highlighting differences in group-
specific consistency levels. We find that SSL models show
the strongest similarity consistency across datasets, image-
text models form a cluster of generally high similarities, and
supervised models achieve the weakest consistency. In the
following section, we will analyze the aggregated measure
across all dataset pairs and revisit all categories in detail.
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Figure 5: Pairwise representational similarities for model
pairs across three dataset combinations: ImageNet-1k vs.
Flowers, ImageNet-1k vs. PCAM, and Flowers vs. PCAM.
Top row: Pearson correlation coefficients for all model
pairs. Bottom row: Same data, with colored points high-
lighting model pairs within the same training objective cate-
gory ((I)Img-Txla s and (I)Sup)'

4.5. Which model categories influence similarity
consistency?

Fig. 6 shows the distribution of Pearson correlation coeffi-
cients R(©, ®) for each combination of model sets (O, ®)
across all dataset pairs.
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Figure 6: Distribution of correlation coefficients for model
similarities across dataset pairs (consistency values). Each
subplot represents a model category: training objective,
architecture, training data, and model size. Within each
category, distributions show the similarity consistencies
between model set combinations (e.g., B(Pime-rxt; Psup))-
The boxes in each subplot are sorted in decreasing median
correlation. The dotted line indicates the overall median,
while the gray area spans the 25th to 75th percentiles of cor-
relations across all model pairs (no category consideration).

the highest similarity consistency, even when compared to
models with different training objectives. This suggests
that their relative similarities are most transferable across
datasets, likely due to the ability of SSL to capture dataset-
independent features. In contrast, supervised models show
the weakest correlations, particularly when compared to
image-text models (Pyo.1xi, Psyp), indicating a less reliable
transfer of relative pairwise similarities across datasets.

Model architecture. While no significant differences in
similarity consistency exist between transformers and con-
volutional networks, comparisons across architectures show
slightly lower consistency, potentially indicating distinct
architectural inductive biases.

Training data. We find a low median correlation and

a high variance for the model set pairs ( , )
and ( , ). However, these effects may be con-
founded by the training objectives, as both and

are mainly image-text models, while con-
sists of supervised models. On the other hand, ®x;x, which
includes models trained on an ImageNet-21k-like dataset
but with diverse training objectives, does not show the same
trend. Consequently, training data (size) appears to have
a less significant impact on the consistency of similarities
than other factors. However, this applies to models trained
on large and diverse datasets; as shown in Appx. I, training
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on less diverse data noticeably affects consistency.

Model size. Models in the same size category show a higher
similarity consistency than models of different size cate-
gories (e.g., Oga and Oy,c). This indicates model size
influences the transferability of relative similarities across
datasets, though less significantly than training objective.

Our analysis identifies the training objective as a primary
factor influencing similarity consistency, with model size
playing a less pronounced role. Self-supervised models
consistently demonstrate above-average correlations across
datasets. The effects of model architecture and training
data (when mainly considering dataset size) are minimal,
suggesting that these factors are less critical in determining
the transferability of relative similarities across datasets (see
Appx. G for an analysis using single-element model sets
controlling for model architecture and size).

4.6. Do dataset categories influence similarity
consistency?

Previously, we analyzed similarity consistency from the
perspective of models, noting substantial variation in con-
sistency across all dataset pairs. In this section, we shift
our focus to identifying groups of datasets that exhibit more
stable relative similarities, aiming to uncover variables that
might explain these variations.

The top panel in Fig. 7 shows the Pearson correlations
of all model pairs for each dataset pair individually, i.e.,
P (S(A,r,Ban)s S(B,dan,dan)) Tor all datasets pairs (A, B).
The consistency of representational similarities varies
strongly across dataset pairs, showing higher consistency
within dataset categories than across them, as exemplified
by high consistencies within natural multi-domain datasets
but lower ones when paired with specialized datasets. We
hypothesize that high-consistency dataset categories largely
share visual features. For example, the Breeds datasets,
Caltech-101, Country-211, STL-10, and Pets contain (often-
times centered) natural objects and scenes. For CIFAR-10
and CIFAR-100, the particularly high consistency may also
be supported by their relatively low resolution. Moreover,
some datasets are inconsistent with almost any other dataset,
particularly FGVC Aircraft and medical imaging datasets
(Diabetic Retinopathy and PCAM) — most likely due to
their unique visual structure, which differs across medical
domains. Interestingly, ImageNet-1k exhibits a milder yet
significant pattern of inconsistency, in particular, in combi-
nation with CIFAR-10 and CIFAR-100.

To investigate whether specific dataset categories are respon-
sible for the difference in consistency observed in the last
section, we focus on the correlations for the model sets with
the highest ( , ) and lowest (Prye-x, Psup) consis-
tency (see the bottom left and right panels of Fig. 7). The

two matrices reveal distinctly different patterns, highlighting
how model categories influence similarity consistency.

For SSL model pairs, we generally observe high consis-
tency across most datasets, with FGVC Aircraft being an
exception, showing lower correlations with the rest. This
confirms that SSL models tend to produce more transferable
similarity structures across datasets. In contrast, image-
text/supervised model pairs show relatively higher consis-
tency for multi-domain than single-domain datasets, sug-
gesting better similarity transfer when semantic categories
in the dataset match the training data of the models. How-
ever, Pascal VOC 2007 appears as an outlier when compared
to ImageNet-1k and its subsets, likely because its bounding-
box-cropped images lack contextual information, causing
single-domain-like behavior.

Natural Natural Special- Struc-
(single-dom.) ized tured
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Figure 7: Pearson correlation of representational similarities
for all dataset pairs computed on different model sets. Top:
all available model pairs; Bottom left: SSL. models ( s

); Bottom right: image-text and supervised models
(Prmg-txt» Psup). Dataset categories are delineated by dotted
lines.

Overall, we observe the highest consistency within multi-
domain image datasets, suggesting that models are con-
sistent when dealing with diverse semantic categories. In
contrast, we find weaker consistency for (Prmetxi» Psup)
between multi-domain and single-domain datasets, indicat-
ing that even though these models effectively generalize
across diverse datasets, their representational structures dif-
fer substantially when evaluated on single domains. Self-
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supervised models do not exhibit this sensitivity to datasets;
their similarity relationships appear to be more stimuli-
invariant, maintaining consistent similarities regardless of
whether the data is multi-domain or single-domain.

4.7. Can representational similarity predict
performance gaps?

To investigate the relationship between downstream task
performance and representational similarity, we contrast
two measures for each dataset: (1) the CKA value for each
model pair and (2) the absolute difference in classification
performance, referred to as performance gap (see Appx. B
for details on performance computation). Fig. 8 shows this
relationship for one dataset per category (see Fig. 21 & 22
for additional datasets). While prior work suggests well-
performing models produce similar representations (Huh
et al., 2024), we find this relationship is dataset-dependent.

Natural (multi-domain) Natural (single-domain)

ImageNet-1k Flowers
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Figure 8: Model similarity (CKA linear) versus absolute
difference in downstream task performance (top-1 accuracy)
for model pairs across four dataset categories: natural multi-
domain, natural single-domain, specialized, and structured.
The color of each point indicates the downstream task accu-
racy of the better-performing model.

Natural multi-domain datasets, such as ImageNet-1k,
show weak negative correlation between similarity and per-
formance gap. Many model pairs achieve high performance
despite low representational similarity (yellow dots in the
lower left corner). This suggests that multi-domain datasets
might provide richer contextual information, enabling mul-
tiple high-performance strategies that do not converge to
similar representations. However, correlation coefficients in
this dataset category show notable variability (see Appx. J).

Natural single-domain and Structured datasets, in con-
trast, exhibit a strong negative correlation between similar-
ity and performance gap. The absence of high-performing,
dissimilar model pairs suggests a close link between per-
formance and representational similarity, indicating that

successful models in these datasets rely on capturing spe-
cific discriminative features for closely related classes. Ob-
serving this behavior in both structured and single-domain
datasets suggests that models may depend on representing
more structural attributes to distinguish between classes.
However, the limited number of structured datasets restricts
broader conclusions.

In summary, our analysis shows different trends depend-
ing on the dataset. Multi-domain datasets support a wider
range of successful strategies, while performing well on
single-domain and structured datasets appears to require
a more limited set of features, resulting in stronger cor-
relations between performance and similarity. This phe-
nomenon aligns with findings from previous studies, which
have shown that models can leverage contextual cues in
multi-domain datasets to achieve strong performance with-
out developing robust, generalizing features (Lapuschkin
et al., 2019; Geirhos et al., 2019; 2020a).

5. Discussion

The representations of foundation models appear to con-
verge to a canonical representation, irrespective of their
training data and objectives (Huh et al., 2024). However,
this may just be an artifact of the datasets that the commu-
nity commonly uses for evaluation. Thus, in this paper, we
presented a systematic way of analyzing pairwise similar-
ities of model representations across sets of stimuli. This
approach allowed us to examine whether representational
similarities generalize across datasets and identify variables
influencing their consistency.

We found that the training objective of models is a central
factor for determining the consistency of pairwise represen-
tational similarities across datasets, whereas architecture
and model size appear less important. Among training
paradigms, image-text training leads to the most similar
representation spaces, irrespective of the model’s training
data or architecture. For individual datasets, SSL model
representations are not as similar among themselves as the
representations of image-text models, but the pairwise sim-
ilarities between SSL models and other models are highly
consistent across different datasets.

We hypothesize that both image-text and supervised mod-
els learn distinct semantic categories during training that
lead to representations whose features overfit to these cate-
gories and, thus, do not generalize well to datasets that do
not contain them. In contrast, self-supervised pure vision
models, which are not constrained to learn explicit semantic
categories during training, may develop representations that
better accommodate diverse stimuli. This leads to relative
pairwise similarities that vary less across datasets than the
similarities of image-text or supervised model representa-
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tions.

Alternatively, the SSL model representations, usually ex-
tracted from the average pooling layer (cf., Chen et al.,
2020b; Muttenthaler et al., 2023; Tian et al., 2024), may be
further away from the models’ task behavior than the image
encoder and penultimate layer representations from image-
text and supervised models. One benefit of our framework
is that it can be applied to the representations of any model
layer, allowing future work to test this hypothesis. Further-
more, in contrast to image-text and supervised models, the
tasks used to train SSL models are extremely heterogeneous.
This may yet be another reason for the higher consistency
of representational similarities among SSL models.

Finally, we have shown that the pairwise similarities be-
tween model representations are only in part predictive of
their differences in downstream task behavior. While we
observe a strong correlation on datasets with limited con-
textual information, for others, e.g., ImageNet-1k, there is
no obvious correspondence between the pairwise similari-
ties of model representations and the models’ differences
in task performance. Moreover, the relationship between
pairwise similarities and task performance is substantially
different between natural multi-domain datasets. This is
surprising in light of recent findings that have shown a con-
vergence of model representations as a function of task
performance (Huh et al., 2024) and a strong linear rela-
tionship between a model’s ImageNet performance (i.e.,
performance on the training set distribution) and its down-
stream accuracy (Kornblith et al., 2019b). This suggests that
the transferability of pairwise similarities across datasets
follows a more complex relationship than the transferability
of task performance. While different objectives and hy-
perparameters lead to similar task performances (Kornblith
et al., 2021), they seem to change the similarity spaces of
the learned representations in a way that affects the relation-
ship between pairwise model similarities and differences in
downstream behavior between datasets. Therefore, whether
the claims of The Platonic Representation Hypothesis hold
or not depends on the nature of a dataset rather than being
true for all sets of stimuli.

Conclusion. In summary, we presented a blueprint for sys-
tematically analyzing pairwise representational similarities
across different sets of stimuli. This allowed us to demon-
strate that pairwise similarities rarely transfer from one
dataset to another and depend on both the models’ objec-
tive functions and the datasets’ structure and domain. The
community has long optimized for finding the optimal hy-
perparameters to improve task performance (e.g. Tolstikhin
et al., 2021; Steiner et al., 2022; Liu et al., 2022; Dehghani
et al., 2023) but neglected its ramifications for the similarity
structure of the models’ representation spaces. Only few
recent works investigated how representations are affected

by training tasks (e.g. Lampinen et al., 2024; Kornblith et al.,
2021). We believe that pinpointing the variables of model
training affecting (dis-)similarities between model represen-
tations beyond the training dataset will ultimately help to
build more interpretable systems with which humans are
more likely to interact (Lake & Baroni, 2023; Sucholutsky
et al., 2023; Muttenthaler et al., 2024; Tessler et al., 2024).
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Appendix
A. Models and Datasets

We considered 23 downstream datasets (Tab. 1) and 64 pretrained vision models (Tab. 2) in our analysis. For each dataset,
we selected the training split, potentially subsetted for large datasets as described in Appx. C, to compute the model
representational similarities, while we use the validation or test split to compute downstream performance.

Table 1: Datasets of clip-benchmark and breeds and their domains according to (Zhai
et al., 2020) with additional separation of natural images into multi- and single-domain.

Natural (multi-domain) ‘ Natural (single-domain) ‘ Specialized ‘ Structured
Caltech101 Cars Diabetic Retinopathy FER2013
CIFAR-10 FGVC Aircraft EuroSAT Dmlab
CIFAR-100 Flowers PatchCamelyon (PCam) | DTD
Country211 GTSRB RESISC45

ImageNet-1k Pets

STL-10 SVHN

Pascal VOC 2007

Entity-30 (Breeds)

Living-17 (Breeds)

NonLiving-26 (Breeds)

Models. The models were chosen to represent a diverse set of training datasets, training objectives, model sizes, and
architectures. Training objectives include standard supervised learning (Sup), self-supervised learning (SSL), and image-text
alignment (Img-Txt). The models have been trained on datasets spanning four classes of increasing scale and semantic
diversity. The most focused class consists of ImageNet-1k (IN1k; (Deng et al., 2009)) with 1,000 object categories, followed
by models trained on ImageNet-21k (IN21k; (Ridnik et al., 2021)) or a combination of IN21k and IN 1k, expanding to 21,000
categories. The ”Large” class encompasses COYO-700M (Byeon et al., 2022), LAION400M (Schuhmann et al., 2021),
LVD-142M (Oquab et al., 2024), and WIT-400M (Radford et al., 2021), which move beyond curated object categories to
include broader visual concepts and text descriptions. Finally, the ”XLarge” class includes LAION2B (English subset of
LAIONSB (Schuhmann et al., 2022)), Merged2B (merged version of LAION2B and COYO-700M; (Sun et al., 2023)),
and WebLlI (Chen et al., 2023), which contain billions of image-text pairs covering an extremely wide range of visual
and semantic content. In terms of architecture, the models employ a range of designs, including Convolutional Neural
Networks (CNNs) such as ResNet, EfficientNet, ConvNeXt, and VGG, as well as Transformer-based models like ViT and
Swin-Transformer. Further, we divide the models into four different size categories, ranging from small, with around 12
million parameters, to xlarge, with over 1.4 billion parameters. Tab. 3 summarizes the number of models in each category,
and Fig. 9 shows the distribution of models across pairs of categories, highlighting the relationships between different model
attributes.

Table 3: Number of models in each attribute category.

Category Nr. models | Category Nr. models

Training objective Training data

Image-Text (Img-Txt) 14 ImageNet-1k (IN1k) 37

Self-Supervised (SSL) 20 ImageNet-21k (IN21k) 9

Supervised (Sup) 30 Large 11
XLarge 7

Architecture Class Model Size

Convolutional (CNN) 24 small < 100M parameter 32

Transformer (TX) 40 medium < 200M parameter 14
large < 400M parameter 8
xlarge > 400M parameter 10

Preprocessing. To extract the latent representations for each model-dataset combination, we used the Python package
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thingsvision (Muttenthaler & Hebart, 2021). Images were resized to 256px and center-cropped to 224px before
applying the model-specific normalizations from the pretraining. Tab. 2 specifies exactly which layers were used for
each model. For ViT models, we used the CLS token representations after the final LayerNorm module. We applied
L2-normalization to ensure all feature vectors are of unit length.

Training objective vs. Architecture Training objective vs. Training data Training objective vs. Model size

Img-Txt - 2 Img-Txt- 0O 0 7 7 Img-Txt- 1 6 0 7

SSL - SSL 0 4 0 SSL 0 2 2
Sup Sup 9 0 0 Sup 6 1
= x VIR = £ o ¢
= = =z 2 < < g =] 2 2
© = z 38 3 s g5 & =z
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Figure 9: Distribution of models across paired categories. Each heatmap shows the count of vision models for different
combinations of model categories: training objective (Sup: supervised, SSL: self-supervised learning, Img-Txt: image-text),
architecture (CNN: convolutional neural networks, TX: transformers), training data (IN1k: ImageNet-1k, IN21k: ImageNet-
21k, Large/XLarge: larger datasets), and model size (small to xlarge)

B. Downstream task performance

We evaluated each model’s downstream task performance on every dataset by calculating the top-1 accuracy of a linear
probe trained on features extracted from the corresponding training set. Each model was evaluated with 3 different random
seeds on each dataset, and the mean top-1 accuracy across seeds was used. Hyperparameter selection was performed with a
validation set of 20% of the training set and the remaining training data for optimization. We followed the binary search
procedure described in (Radford et al., 2021) and searched for the optimal weight decay parameter X in the interval between
1075 and 102 in 96 logarithmically spaced steps. This was done for all learning rates 7 € {10°}*_;. After hyperparameter
selection, the linear probe was retrained on the full training set and evaluated on the respective test set (validation set for
Imagenet-1k). All linear probes are trained for 20 epochs, using the AdamW optimizer (Loshchilov & Hutter, 2019) and a
cosine schedule for learning rate decay (Loshchilov & Hutter, 2017).

C. CKA sensitivity to the number of samples in dataset

Our analysis of model similarities requires reliable CKA measurements while managing computational constraints. To
identify the minimum number of samples needed for stable CKA values, we analyzed ImageNet-1k subsets with varying
samples per class (k € 1,5,10, 20, 30,40). We generated pairwise similarity matrices (Fig. 10) and assessed stability by
comparing the absolute differences between consecutive sample sizes (Fig. 11). The results show that most CKA variants
converged with 10,000 samples (k=10), with only CKA RBF (¢ = 0.2) requiring more samples (30,000, k=30) for stability.

To further assess CKA stability across different samples, we conducted bootstrapping experiments using six representative
models (OpenCLIP ViT-L, OpenCLIP RN50, ResNet-50, ViT-L, DINOv2 ViT-L, and SimCLR RN50—the same anchor
models described in Appx. G). For CKA linear, we performed 500 bootstrap iterations with 10,000 images per subset. For
CKA RBF (0 = 0.2), we performed 500 bootstrap iterations with 30,000 images per subset. For each bootstrap sample, we
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extracted features from all six models and computed CKA values between each model pair.

Fig. 12(a) confirms the stability of CKA linear values across all model pairs, while for CKA RBF (o = 0.2), Fig. 12(b)
reveals that even when using the larger 30,000 samples per subset, we still observe slightly higher variability compared to
CKA linear.

These findings indicate that local similarity measures (RBF kernel) are more sensitive to specific stimuli than global
similarity measures (linear kernel). This aligns with theoretical expectations, as stimulus-specific fine-grained details have a
greater influence on local similarity measurements.

Based on these findings, we applied stratified subsampling to limit all datasets to 10,000 or 30,000 samples for CKA linear
and CKA RBF (o = 0.2), respectively.

CKA RBF 0.2 CKA RBF 0.4 CKA RBF 0.6 CKA RBF 0.8 CKA linear

40 samples per class 30 samples per class 20 samples per class 10 samples per class 5 samples per class 1 samples per class

Figure 10: Pairwise model representational similarity matrices using different dataset sizes (1-40 samples per ImageNet-1k
class) and metrics (CKA RBF 0.2-0.8 to linear).
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Figure 11: Distribution of absolute differences of pairwise model representational similarities for each CKA variant measured
on subsets of ImageNet-1k with consecutive sample sizes per class (1—5, - - -, 30—40). Most CKA variants converge at
k = 10 samples per class, with CKA RBF (o = 0.2) requiring larger sample sizes for stability.
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Figure 12: Distribution of CKA values between model representations across 500 randomly sampled ImageNet- 1k subsets
for different model pairs. (a) Linear CKA computed on 10k samples per subset. (b) RBF CKA (¢ = 0.2) computed on 30k
samples per subset.
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D. Similarity matrices for different datasets

In § 4.2, we showed that similarity measurements are not directly transferable across datasets due to their high variability. Fig.
2 displays representational similarity matrices computed using CKA linear across three selected datasets, along with the mean
and standard deviation matrices across all evaluation datasets. In Fig. 13, we show additional similarity matrices for three
representative datasets from each dataset category (see Appx. A for details). The yellow-boxed models, containing image-text
models, are most similar on natural image datasets. In contrast, the white-boxed models, containing self-supervised models,
show the highest similarity on specialized EuroSAT and PCAM datasets. The cyan-boxed models, containing supervised
models, are most dataset dependent, showing high similarity on Pets but low similarity on ImageNet-1k.

ImageNet-1k CIFAR-100 Caltech-101

-1.0
-0.8
Natural -06
(multi-domain) 04
-0.2
-0.0
-1.0
-0.8
Natural -06
(single-domain) ™!
-0.2
-0.0
-1.0
-0.8
-0.6

Specialized
-0.4
-0.2
=B N
-1.0
-0.8
-0.6

Structured
-0.4
-0.2
-0.0

Figure 13: Representational similarity of model pairs, calculated with linear CKA. For each dataset category, three evaluation
datasets are displayed.

E. Variation of CKA values near the upper bound

The CKA similarity measure is bounded between 0 and 1, with values close to 1 indicating highly similar representations.
However, this upper bound might lead to saturation effects. To better differentiate between highly similar model represen-
tations, we apply two nonlinear transformations: arccos and tan. Both transformations expand the range of high CKA
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values, with tan slightly reducing variation for low similarity values. These transformations amplify the inverse U-shape

relationship noted in Section 4.2 (Fig. 14), suggesting that the relationship between mean and variance of similarities is
robust across different scales.
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Figure 14: Mean versus standard deviation of CKA values after nonlinear transformations. Left: arccos transformation
inverts the scale, mapping high similarities to low values and vice versa. Right: tan transformation. Both transformations
make the inverse U-shape relationship more pronounced.

F. Influence of similarity metric on similarity consistency

In our main analysis, we used CKA linear as a global similarity metric. Fig. 3 shows strong positive correlations between
mean representational similarities across datasets when measured with different metrics. Here, we investigate whether this
stability extends to similarity consistency distributions when using alternative metrics.
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Figure 15: Relationship between similarity consistency values measured with different similarity metrics across all model
sets and dataset pairs. From left to right: CKA linear vs. CKA RBF (¢ = 0.4), CKA linear vs. CKA RBF (¢ = 0.2), CKA
RBF (¢ = 0.2) vs. CKA RBF (¢ = 0.4), and CKA linear vs. RSA Spearman. Correlations are measured using Pearson
correlation. Each point represents the similarity consistency value for a pair of datasets and model sets.

Local similarity metrics When examining local similarity structures, we leverage the flexibility of CKA with an RBF
kernel. The kernel bandwidth parameter o controls sensitivity to local structure, allowing us to capture different aspects of
representational similarity. Notably, Fig. 10 reveals that pattern differences between CKA linear and CKA RBF (¢ = 0.2)
are substantially more pronounced than those between CKA linear and CKA RBF (o = 0.4). This suggests that the latter
partially captures global similarity structures rather than purely local ones. Indeed, the correlation between similarity
consistency values measured with CKA linear and CKA RBF (¢ = 0.4) is strong (Fig. 15, leftmost panel), while it is
substantially lower between CKA linear vs. CKA RBF (o = 0.2) (Fig. 15, second panel). The correlation between similarity
consistency values measured with the two different sigmas (¢ = 0.2 and o0 = 0.4) (Fig. 15, third panel) is in between,
strengthening the hypothesis that CKA RBF (o = 0.4) partially captures global structure. Therefore, we use CKA RBF
(o = 0.2) as our local similarity metric.

We observe the same overall pattern as in Fig. 6 of the main text for the CKA RBF (o = 0.2) similarity metric: the objective
is a main influencing factor for similarity consistency, while network architecture and model size are less important (Fig. 16).
However, the distributions of consistency values reveal two interesting observations. For local similarity, supervised model
pairs (Psyp, Psyp) are more consistent than the image-text model pairs (Pime.1xi» Prmg-Tx), Which are better at representing
global structure. In addition, models trained on IN21k ( , ) are more consistent than models trained on IN1k

22



Objective drives the consistency of representational similarity across datasets

(PNik, Pivik)- Their ordering flipped compared to Fig. 6, where (Pnjx, Pinik) model pairs are more consistent in their
global structure. IN21k contains substantially more classes (21.843) and a higher percentage of the classes are leaf nodes
in the WordNet (Princeton University, 2010) tree (76.71% for IN21k vs. 65% for IN1k), representing more fine-grained
entities. The representation must contain more fine-grained details to distinguish these classes, dominating local similarities.

Other global similarity metrics In Fig. 17, the correlation between the two global measures (CKA linear and RSA
Spearman) is moderate. Even with this reduced correlation strength, similarity consistency measured using RSA Spearman
exhibits the same patterns as CKA linear, particularly regarding the model category we found to be most influential — the
training objective (see Fig. 17).

The analysis presented in this section suggests that our observations on the influence of the training objective on similarity
consistency hold for multiple metrics.
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Figure 16: Distribution of similarity consistencies for each model set pair based on CKA RBF (o = 0.2) representational
similarities. The boxes are sorted in decreasing median correlation. The dotted line indicates the overall median, while the
gray area spans the 25th to 75th percentiles of correlations across all model pairs.

G. Validating training objective effects through controlled anchor model analysis

To validate our findings regarding the influence of different model categories (§4.5), we conducted a controlled analysis using
six carefully selected anchor models: OpenCLIP RN50, OpenCLIP ViT-L, SimCLR RN50, DINOv2 ViT-L, ResNet-50, and
ViT-L. These models were chosen to create systematic variations across training objectives (image-text, self-supervised,
and supervised learning), while controlling for architecture (convolutional ResNet-50 vs transformer ViT-L) and model
size. This controlled setup helps verify whether the patterns observed in our main analysis persist when comparing
individual representative models to broader model sets. For each anchor model, we define a single-element model set (e.g.,
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Figure 17: Distribution of similarity consistency values for each model set pair within the training objective category, based
on RSA Spearman representational similarities

DopencLip RN50) and compute its similarity consistency with different model groups (e.g., R(PopencLip RN50, ).

Fig. 18 shows the correlation coefficient distributions across dataset pairs, focusing on training objectives as they emerged
as the most influential factor for similarity consistency. The results support our main findings while providing additional
insights. Self-supervised models ( , ) consistently show the highest median correlations
and lowest variations when compared with any anchor model, regardless of the anchor’s training objective. Surprisingly,
for global similarity, even image-text (OpenCLIP RN50, OpenCLIP ViT-L) and supervised (ResNet-50, ViT-L) anchor
models correlate more strongly with than with their own categories (®yye1and Pg,p, respectively). However, the
image-text anchors show high variation of similarity consistency for local similarity measures and all training objectives.
We also observe a notable pattern of weak correlations between image-text anchors and supervised models (®s,;) and vice
versa. These patterns remain remarkably consistent across different architectures and model sizes, suggesting that training
objectives, rather than architectural choices or model sizes, primarily drive similarity relationships across datasets.
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Figure 18: Distribution of Pearson correlation coefficients between anchor models (OpenCLIP RN50, OpenCLIP ViT-
L, SimCLR RN50, DINOv2 ViT-L, ResNet-50, ViT-L) and models trained with different objectives. Each box shows
correlations across all dataset pairs between one anchor model and models from specific sets (e.g., , ®sup). Results
for CKA RBF (0 = 0.2) and CKA linear are separated by dotted lines. Subplot titles are colored according to the anchor
model’s subcategory.
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H. Effect of evaluation data on similarity consistency

In the main analysis, we examined similarity consistency across model categories for all evaluation datasets (§4.5) and
across individual datasets for all models (§4.6). Here, we investigate whether model category effects differ between natural
and non-natural (specialized and structured) datasets, as non-natural datasets represent out-of-distribution data for many
models (Fig. 19).

The primary finding from §4.5 holds: training objective remains the dominant factor influencing similarity consistency
regardless of dataset type. However, similarity consistency between image-text and supervised models (Pimo.rxts Psup)
shows lower medians and higher variance on natural datasets compared to non-natural ones. For natural datasets, supervised
models might encode features tightly coupled to class-label supervision, which diverge from the semantically richer,
language-aligned representations of image-text models. Conversely, on non-natural datasets where both model types operate
further from their training distributions, this representational gap narrows as both might rely on more generalized features.
Complementary, the analysis—examining how training dataset composition affects these patterns—is presented in the next
section.
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Figure 19: Distribution of similarity consistencies for natural (single- and multi-domain) and non-natural (specialized and
structured) datasets. Representational similarities for each model set pair are computed with CKA linear.

I. Effect of training data domain on similarity consistency

In our main analysis, we restricted our focus to general-purpose vision models trained on large-scale datasets with diverse
semantic classes (§ 4.1). This focus was motivated by the Platonic representation hypothesis, which suggests that as the
semantic diversity of training data approaches the complexity of reality itself, representations should increasingly converge
(Huh et al., 2024). However, Conwell et al. (2024) demonstrated that training data is a key driver of representational
similarity between models, potentially more significant than architecture, training objective, or choice of similarity metric.
In this section, we examine how this observation manifests in terms of representational consistency.

To investigate the role of training data domain, we selected four architectures (AlexNet (Krizhevsky et al., 2012a),
DenseNet161 (Huang et al., 2017), ResNet18 (He et al., 2016), and ResNet50 (He et al., 2016)) with available pre-trained
weights for both the general-purpose ImageNet-1k and the scene-specific Places365 (Zhou et al., 2018) datasets. Models
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were sourced from torchvision', using default ImageNet weights and Places365 weights from the official GitHub repository?.

This selection of models allowed us to isolate the training data effect on similarity consistency while fixing the other
characteristics: training objective (Supervised), architecture type (CNN), and model size (small).

We evaluated similarity consistency across the 23 downstream datasets for all model set pairs:
(PN, ) ( , ), and (D, P,y), where O, contains all models.

Our analysis reveals two main observations. First, as shown in Fig. 20, Places365-trained model pairs demonstrate more
consistent representational similarities compared to ImageNet-1k-trained pairs We hypothesize that domain-specific training
constrains the solution space more tightly, whereas the greater diversity of semantic classes in ImageNet-1k allows for more
varied learned representations across models. This distinction is particularly interesting in light of the platonic representation
hypothesis. While domain-specific models show higher consistency, this may reflect convergence to specialized solutions
rather than to general representations of reality. In contrast, the lower consistency among ImageNet-1k-trained models likely
reflects the challenge of learning representations that capture broad semantic diversity. This consistency might be even lower
for models trained with supervised objectives since they can exploit different confounders and shortcuts when learning to
classify the diverse set of classes.

Second, the distributions R(® Nk, Pinik), B(PiNik, ), and R(®,, ®,;) exhibit similar distribution spreads. Addi-
tionally, R(®,y, ©,;) shows a distribution similar to R(®P N, Pinik) in Fig. 6. This suggests that including domain-specific
models alongside general-purpose ones might not fundamentally alter the representational similarity consistency patterns
observed in our analysis.

(PiNvik, PiNik)s

Our analysis shows that the training data domain significantly influences representational similarity consistency, though
mixing domain-specific and general-purpose models preserves the broad distribution patterns of correlation coefficients
observed in ImageNet-1k models alone.
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Figure 20: Distribution of Pearson correlation coefficients for model similarities computed with different similarity
metrics across dataset pairs, i.e., R(Pix, Pvik)s B(PiNik, ), R( , ), and R(Py, P,y), with
®iNik containing the four IN1k and containing the four Places365 pre-trained models. @, contains all eight
models.

J. Distribution correlation coefficients downstream task performance vs. model similarity

In §4.7, we examined the correlations between representational similarity and classification performance gaps across
three datasets from each of the four dataset categories: Natural (multi-domain), Natural (single-domain), Specialized, and
Structured. We observed stronger negative correlations for the Natural (single-domain) datasets. Fig. 22 extends this analysis
by illustrating the correlation coefficients for all evaluated datasets. We can confirm that natural (single-domain) datasets
exhibit the strongest negative correlations overall on this larger set of datasets, with the SVHN dataset being the sole outlier.

Interestingly, ImageNet-1k exhibits the weakest negative correlation between performance gap and representational similarity.

"https://pytorch.org/vision/stable/index.html
https://github.com/CSAILVision/places365
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We hypothesize that this is due in part to the high diversity of classes in ImageNet-1k, along with its rich set of confounders
and contextual cues, which enable networks to approach the classification task in multiple ways. This may be exacerbated
by the fact that some of the evaluated networks were pretrained on ImageNet-1k or ImageNet-21k, which could have
encouraged the learning of dataset-specific features that perform well on ImageNet but fail to generalize to other datasets.

While our categorization of natural datasets into single-domain and multi-domain revealed an interesting difference in
the relationship between downstream task performance and model similarity—especially between the ImageNet-1k and
single-domain datasets like Flowers or Pets—the correlation coefficients for these categories still overlap. We hypothesize
that our binary sub-categorization of Natural datasets is insufficient for capturing a clear distinction for two reasons: (1)
Datasets lie on a spectrum between the two (hypothetical) extremes of encompassing all possible domains and encompassing
exactly one. For instance, ImageNet-1k has a relatively rich set of domains, containing 1,000 diverse classes, whereas
CIFAR-10 only contains 10 classes of vehicles and animals. (2) Datasets differ in the amount of contextual information (e.g.,
the object’s background) they offer. We assume that contextual information plays an important role in the number of viable
features a dataset classification can be solved with. A large number of viable features means that multiple well-performing
but dissimilar strategies may exist. Consequently, multi-domain datasets with limited contextual information may behave
more like single-domain datasets. For example, the PASCAL VOC 2007 dataset, when used for single-label classification,
makes use of tight bounding-box crops around the object to be classified, thereby reducing the available context. Similarly,
in low-resolution datasets such as CIFAR-10 and CIFAR-100, contextual information may be reduced due to the loss of
background information. While we have not quantified it, we found the Caltech-101 dataset to contain much cleaner object
backgrounds than ImageNet-1k, also suggesting reduced contextual information.

Natural(multi — domain) Natural(single — domain) Specialized Structured
ImageNet-1k Flowers Diabetic Retinopathy DTD
a r coeff.: -0.31 o8 r coeff.: -0.76 0.0a r coeff.: -0.40 0.78 0.6 r coeff.: -0.69 0.8
e ! .
& 0.6 0.77
g 04 0.7 0.g 0.03 0.4 . 07
c 0.4 0.76
Eo2 0.6 002 0.6
£0. .
s 0.2 0.75 0277
S 0.5 0.6 0-01 i ‘
% 0.0 0.01 0.00 o « %74 00 o 0.5
CIFAR-100 Pets EuroSAT Dmlab
206 r coeff.: -0.68 0.9 0.89 r coeff.: -0.82 r coeff.: -0.45 0.96 r coeff.: -0.40 || 0.60
8 0.8 0.15 96 (5
Soa 08 0] 0.94 0-35
c 0.10
g 0.49 06 0.92 0.1 : 0.50
07 . . R .
0.2 i 5
g0 0.2 0.4 005 0.90 045
& 0.6 : ’
0.0 0.0 0.2 0.00 0.88 0.0
Entity-30 Stanford Cars PCAM FER2013
a r coeff.: -0.35 r coeff.: -0.63 0.08 r coeff.: -0.13 r coeff.: -0.58 0.7
o 0.3 0.7 0.8 0.3
o 0.89 ® 0.06 0.86
o
20.2
] 0.6 057 % 6 0,04 0.84 02 0.6
£ %
0.4
501 os 021 5% 0.02 y 082 01
£
5 : i 0.2 5 05
%00 0.01 ~ 0.00 — 0.0 s
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Similarity value Similarity value Similarity value Similarity value

Figure 21: Model similarity (CKA linear) vs. absolute difference in downstream task performance (top-1 accuracy) for model
pairs for three datasets per dataset category ( natural multi-domain, natural single-domain, specialized, and structured). The
color of each point indicates the downstream task accuracy of the better-performing model. Pearson correlation coefficients
are shown in each subplot.
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Figure 22: Pearson correlation coefficients between downstream task performance gap and model representation similarity
for all 23 datasets grouped by dataset category.
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Table 2: Pretrained neural networks that we considered in our analyses.

Model name Source Rep. Layer Tr?lini}ig Training Training Architecture Architecture Mf)del ‘Model
objective data data class class size  size class

Kakaobrain-Align KakaoBrain (2023) pooler Img-Txt COYO-700M Large EfficientNet CNN 62.IM small
OpenCLIP-EVAO1-g-14-plus-merged2b-s11b-b114k Sun et al. (2023) visual Img-Txt Merged2B XLarge  ViT TX 1.4B xlarge
OpenCLIP-EVAO1-g-14-laion400m-s11b-b4 1k Sun et al. (2023) visual Img-Txt LAION400M Large ViT TX 1.1B xlarge
OpenCLIP-EVA02-B-16-merged2b-s8b-b131k Sun et al. (2023) visual Img-Txt Merged2B XLarge ViT TX 149.7M medium
OpenCLIP-EVA02-L-14-merged2b-s4b-b131k Sun et al. (2023) visual Img-Txt Merged2B XLarge  ViT TX 427.8M xlarge
OpenCLIP-RN50-openai Radford et al. (2021) visual Img-Txt WIT-400M Large ResNet CNN 102.0M medium
OpenCLIP-ViT-B-16-SigLIP-webli Zhai et al. (2023) visual Img-Txt WebLlI XLarge  ViT TX 203.2M medium
OpenCLIP-ViT-B-16-laion2b-s34b-b88k Radford et al. (2021) visual Img-Txt LAION2B XLarge  ViT X 149.6M medium
OpenCLIP-ViT-B-16-laion400m-e32 Radford et al. (2021) visual Img-Txt LAION400M Large ViT TX 149.6M medium
OpenCLIP-ViT-B-16-openai Radford et al. (2021) visual Img-Txt WIT-400M Large ViT TX 149.6M medium
OpenCLIP-ViT-L-14-laion2b-s32b-b82k Radford et al. (2021) visual Img-Txt LAION2B XLarge  ViT TX 427.6M xlarge
OpenCLIP-ViT-L-14-laion400m-e32 Radford et al. (2021) visual Img-Txt LAION400M Large ViT TX 427.6M xlarge
OpenCLIP-ViT-L-14-openai Radford et al. (2021) visual Img-Txt WIT-400M Large ViT TX 427.6M xlarge
vit-huge-patch14-clip-224.laion2b Radford et al. (2021) norm Img-Txt LAION2B XLarge  ViT TX 632.1M xlarge
barlowtwins-rn50 Zbontar et al. (2021) avgpool SSL INTk INTk ResNet CNN 23.5M small
dino-rn50 Caron et al. (2021) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
dino-vit-base-p16 Caron et al. (2021) norm SSL IN1k IN1k ViT X 85.8M small
dino-vit-small-p16 Caron et al. (2021) norm SSL IN1k IN1k ViT X 21.7M small
dino-xcit-medium-24-p16 Caron et al. (2021) norm SSL IN1k IN1k ViT X 83.9M small
dino-xcit-small-12-p16 Caron et al. (2021) norm SSL IN1k INIk ViT TX 25.9M small
dinov2-vit-base-p14 Oquab et al. (2024) norm SSL LVD-142M  Large ViT X 86.6M small
dinov2-vit-giant-p14 Oquab et al. (2024) norm SSL LVD-142M  Large ViT TX 1.1B xlarge
dinov2-vit-large-p14 Oquab et al. (2024) norm SSL LVD-142M  Large ViT TX 304.4M large
dinov2-vit-small-p14 Oquab et al. (2024) norm SSL LVD-142M  Large ViT TX 22.1IM small
jigsaw-rn50 Noroozi & Favaro (2016) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
mae-vit-base-p16 He et al. (2022) norm SSL IN1k INI1k ViT TX 86.4M small
mae-vit-huge-p14 He et al. (2022) norm SSL IN1k IN1k ViT X 630.8M xlarge
mae-vit-large-p16 He et al. (2022) norm SSL IN1k INIk ViT TX 303.3M large
mocov2-rn50 Chen et al. (2020c) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
pirl-rn50 Misra & van der Maaten (2020) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
rotnet-rn50 Gidaris et al. (2018) avgpool SSL INIk INIk ResNet CNN 23.5M small
simclr-rn50 Chen et al. (2020a) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
swav-rn50 Caron et al. (2020) avgpool SSL IN1k IN1k ResNet CNN 23.5M small
vicreg-rn50 Bardes et al. (2022) avgpool SSL INTk INTk ResNet CNN 23.5M small
beit-base-patch16-224 Bao et al. (2022) norm Sup IN21k + IN1k IN21k ViT X 86.5M small
beit-base-patch16-224.in22k-ft-in22k Bao et al. (2022) norm Sup IN21k IN21k ViT TX 102.6M medium
beit-large-patch16-224 Bao et al. (2022) norm Sup IN21k + IN1k IN21k ViT TX 304.4M large
beit-large-patch16-224.in22k-ft-in22k Bao et al. (2022) norm Sup IN21k IN21k ViT TX 325.8M large
convnext-base Liu et al. (2022) head.flatten Sup INIk INIk ConvNeXt CNN 88.6M small
convnext-large Liu et al. (2022) head.flatten Sup IN1k IN1k ConvNeXt CNN 197.8M medium
deit3-base-patch16-224 Touvron et al. (2021) norm Sup IN1k IN1k ViT TX 86.6M small
deit3-base-patch16-224.fb-in22k-ft-in1k Touvron et al. (2021) norm Sup IN21k + IN1k IN21k ViT TX 86.6M small
deit3-large-patch16-224 Touvron et al. (2021) norm Sup IN1k IN1k ViT TX 304.4M large
deit3-large-patch16-224.fb-in22k-ft-in1k Touvron et al. (2021) norm Sup IN21k + IN1k IN21k ViT TX 304.4M large
efficientnet-b3 Tan & Le (2019) avgpool Sup IN1k IN1k EfficientNet CNN 12.2M small
efficientnet-b4 Tan & Le (2019) avgpool Sup IN1k IN1k EfficientNet CNN 19.3M  small
efficientnet-b5 Tan & Le (2019) avgpool Sup INIk INIk EfficientNet CNN 30.4M small
efficientnet-b6 Tan & Le (2019) avgpool Sup IN1k IN1k EfficientNet CNN 43.0M small
efficientnet-b7 Tan & Le (2019) avgpool Sup IN1k IN1k EfficientNet CNN 66.3M small
resnetl52 He et al. (2016) avgpool Sup INIk INIk ResNet CNN 60.2M small
resnet50 He et al. (2016) avgpool Sup IN1k IN1k ResNet CNN 25.6M small
resnext50-32x4d He et al. (2016) global_pool Sup IN1k IN1k ResNeXt CNN 25.0M small
seresnet50 Hu et al. (2018) global_pool Sup INITk INI1k SE-ResNet CNN 28.IM small
swin-base-patch4-window7-224 Liu et al. (2021) global_pool Sup IN1k IN1k Swin-Transformer TX 87.8M small
swin-base-patch4-window7-224.ms-in22k Liu et al. (2021) global_pool Sup IN21k IN21k Swin-Transformer TX 109.1IM medium
swin-large-patch4-window7-224 Liu et al. (2021) global_pool Sup IN1k IN1k Swin-Transformer TX 196.5M medium
swin-large-patch4-window7-224.ms-in22k Liu et al. (2021) global_pool Sup IN21k IN21k Swin-Transformer TX 228.6M medium
vggl6 Simonyan & Zisserman (2015) classifier.3  Sup INIk INIk VGG CNN 138.4M medium
vggl9 Simonyan & Zisserman (2015)  classifier.3  Sup IN1k IN1k VGG CNN 143.7M medium
vit-base-patch16-224 Dosovitskiy et al. (2021) norm Sup IN1k IN1k ViT TX 86.6M small
vit-base-patch16-224.augreg-in21k Dosovitskiy et al. (2021) norm Sup IN21k IN21k ViT X 102.6M medium
vit-huge-patch14-224.orig-in2 1k Dosovitskiy et al. (2021) norm Sup IN21k IN21k ViT TX 630.8M xlarge
vit-large-patch16-224 Dosovitskiy et al. (2021) norm Sup IN1k IN1k ViT TX 304.3M large
vit-large-patch16-224.augreg-in2 1k Dosovitskiy et al. (2021) norm Sup IN21k IN21k ViT TX 325.7M large

29



