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ABSTRACT

We introduce Deceptive-NeRF, a novel methodology for few-shot NeRF re-
construction, which leverages diffusion models to synthesize plausible pseudo-
observations to improve the reconstruction. This approach unfolds through three
key steps: 1) reconstructing a coarse NeRF from sparse input data; 2) utilizing the
coarse NeRF to render images and subsequently generating pseudo-observations
based on them; 3) training a refined NeRF model utilizing input images augmented
with pseudo-observations. We develop a deceptive diffusion model that adeptly
transitions RGB images and depth maps from coarse NeRFs into photo-realistic
pseudo-observations, all while preserving scene semantics for reconstruction. Fur-
thermore, we propose a progressive strategy for training the Deceptive-NeRF, us-
ing the current NeRF renderings to create pseudo-observations that enhance the
next iteration’s NeRF. Extensive experiments demonstrate that our approach is ca-
pable of synthesizing photo-realistic novel views, even for highly complex scenes
with very sparse inputs. Codes will be released.

1 INTRODUCTION

Since its debut Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) have achieved unprece-
dented results in novel view synthesis to date. While producing visually pleasing results, a vanilla
NeRF requires a large number of training views and is prone to generating severe artifacts when
dealing with particularly sparse observations. This issue considerably hampers the further and more
practical applications of NeRFs, considering the casual data collection conditions of lay users, such
as one where images are collected using their mobile devices.

To address this issue, recent works have explored several strategies. Pre-training approaches lever-
age large-scale datasets comprising various scenes for injecting prior knowledge (Yu et al., 2021b;
Chen et al., 2021; Chibane et al., 2021; Jang & Agapito, 2021; Johari et al., 2022). Regulariza-
tion approaches employ a range of regularizations derived from depth supervision, patch render-
ing, semantic consistency, visibility, or frequency pattern (Deng et al., 2022b; Roessle et al., 2022;
Guangcong et al., 2023; Niemeyer et al., 2022; Jain et al., 2021; Seo et al., 2023b; Wynn & Tur-
mukhambetov, 2023; Somraj & Soundararajan, 2023; Yang et al., 2023; Seo et al., 2023a). Although
these techniques have contributed in improving the reconstruction quality of few-shot NeRF, unde-
sirable artifacts can still be observed in the synthesized novel views, where tailored heuristic factors
specific to individual scenes are still needed to generate usable results.

Recent progress in image synthesis using diffusion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Rombach et al., 2022; Zhang & Agrawala, 2023) boosts 3D content generation, by transferring
the natural image prior learned from Internet-scale 2D data to 3D settings (Deng et al., 2022a; Xu
et al., 2022; Melas-Kyriazi et al., 2023; Zhou & Tulsiani, 2022; Liu et al., 2023; Chan et al., 2023;
Gu et al., 2023) 1. An intuitive approach to utilizing diffusion models for few-shot novel view
synthesis is to employ them as a “scorer” to evaluate the quality of NeRF-rendered images and
thus a regularizer for NeRF training. This approach however necessitates a large diffusion model be
inferred at each training step of the radiance field, which is a very computationally intensive process.

1Note 3D content generation from images differs fundamentally from few-shot novel view synthesis. This
work tackles the latter where the goal is “reconstruction” rather than “generation”.
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Figure 1: Overview of Deceptive-NeRF. 1) Given a sparse set of input images associated with
their camera poses, we first train a coarse NeRF to render coarse novel view images and depth
maps. 2) We use a deceptive diffusion model to fine-tune RGB-D images from the coarse NeRF to
synthesize pseudo-observations from corresponding viewpoints. 3) We train a fine NeRF using
both input images (real) and pseudo-observations (fake) as our final reconstruction of the scene
while enforcing consistency across the fake images from different viewpoints.

In this paper, we propose Deceptive-NeRF, a strategy that efficiently leverages large diffusion mod-
els for few-shot NeRF reconstruction, as shown in Figure 1. Instead of using diffusion models only
as a means to regularize the quality of NeRF-rendered images, we directly take the images produced
by diffusion models as auxiliary observations, complementing the sparse inputs, to train a NeRF.
Specifically, our method consists of three key steps: 1) reconstruct a coarse NeRF model from given
sparse views; 2) generate pseudo-observations based on the coarse model renderings; 3) train a
fine NeRF model from both input views and pseudo-observations to produce a high-quality recon-
struction. To generate plausible pseudo-observations consistent with the input views, we propose a
deceptive diffusion model, refining coarse RGB and depth images. This novel approach tackles the
issue of sparsity by “densifying” observations, while not demanding excessive time or computation,
thanks to the one-time usage of diffusion models. We further propose a progressive training strategy
that at each iteration uses the current NeRF model renderings to generate pseudo-observations for
the training of the next iteration’s NeRF. In summary, our contributions include the following:

• We propose a novel approach for few-shot novel view synthesis that leverages large diffu-
sion models to generate pseudo-observations, instead of using them as a “scorer” to provide
training signals.

• To generate photo-realistic pseudo-observations that faithfully preserve scene semantics
and input view consistency, we propose a deceptive diffusion model.

• Extensive experiments and ablation studies validate our key design choices and demonstrate
improvements over current state-of-the-art methods for few-shot novel view synthesis.

2 RELATED WORK

Novel view synthesis via NeRF. Novel view synthesis, the problem of synthesizing new viewpoints
given a set of 2D images, has recently attracted much attention. Using continuous 3D fields and
volumetric rendering, Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) have enabled a new
and effective approach for novel view synthesis. Follow-up works have since emerged to enhance
NeRFs and expand their applications, such as modeling dynamic scenes (Zhang et al., 2021; Park
et al., 2021; Pumarola et al., 2021; Tretschk et al., 2021), acceleration (Yu et al., 2021a; Fridovich-
Keil et al., 2022; Chen et al., 2022; Müller et al., 2022), and 3D scene editing (Liu et al., 2021; Zhang
et al., 2021; Wang et al., 2022; Jang & Agapito, 2021; Kobayashi et al., 2022). Despite significant
progress, NeRFs still struggle to synthesize novel views when there are only a limited number of
input views, i.e., when handling few-shot novel view synthesis.
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Few-shot NeRF. Several studies have been conducted to enhance the rendering quality of NeRF
when provided with only sparse observations. Pre-training methods (or transfer learning techniques)
utilize prior knowledge from extensive datasets of 3D scenes to generate novel views from the given
sparse observations (Yu et al., 2021b; Chen et al., 2021; Chibane et al., 2021; Jang & Agapito, 2021;
Johari et al., 2022). Regularization approaches (Seo et al., 2023a) employ a range of regularizations
derived from depth supervision, patch rendering, semantic consistency, visibility, or frequency pat-
tern (Deng et al., 2022b; Roessle et al., 2022; Guangcong et al., 2023; Niemeyer et al., 2022; Jain
et al., 2021; Seo et al., 2023b; Wynn & Turmukhambetov, 2023; Somraj & Soundararajan, 2023;
Yang et al., 2023; Seo et al., 2023a). Among them, (Roessle et al., 2022; Deng et al., 2022b) use the
estimated depth information as supplementary supervision for more stable optimization. (Jain et al.,
2021; Niemeyer et al., 2022) impose regularization on rendered patches from semantic consistency,
geometry, and appearance. (Yang et al., 2023) regularizes the visible frequency range of NeRF’s
inputs to avoid overfitting when training starts. Other attempts include the use of cross-view pixel
matching (Truong et al., 2023), cross-view feature matching (Chen et al., 2023b; Du et al., 2023),
ray-entropy regularization (Kim et al., 2022), and visibility priors (Somraj & Soundararajan, 2023).
Yet, no existing approach can excel across diverse complex scenes, where scene-specific heuristic
adjustments are required to generate good results.

DiffusioNeRF (Wynn & Turmukhambetov, 2023) regularizes NeRF with a prior over scene geome-
try and color from denoising diffusion models. While also utilizing diffusion models, our approach is
different from DiffusioNeRF in the following aspects: 1) DiffusioNeRF uses an unconditional gen-
eration model to generate RGBD patches, while our approach uses a conditional generation model
to fine-tune artifacts whole images. 2) DiffusioNeRF leverages a trained DDM model to regularize
NeRF-rendered image patches. In contrast, our method directly uses images refined by deceptive
diffusion model as input to produce the fine NeRF.

Diffusion models for view synthesis. Recently, diffusion models (Ho et al., 2020; Nichol & Dhari-
wal, 2021), a powerful class of generative models that follows a Markov process to denoise inputs,
have demonstrated notable success on conditional generation (Zhang & Agrawala, 2023; Rombach
et al., 2022), such as text-to-image generation (Ramesh et al., 2022; Saharia et al., 2022b; Zhang &
Agrawala, 2023), image super-resolution (Li et al., 2022; Saharia et al., 2022c), and inpainting (Lug-
mayr et al., 2022; Saharia et al., 2022a). By capitalizing on powerful 2D diffusion models, a number
of works have advanced the frontier of 3D computer vision tasks, such as 3D content generation.
DreamFusion (Poole et al., 2022) and Magic3D (Lin et al., 2022) perform text-guided 3D generation
by optimizing a NeRF from scratch. Closer to our work, (Chen et al., 2023a; Karnewar et al., 2023;
Melas-Kyriazi et al., 2023; Deng et al., 2022a; Zhou & Tulsiani, 2022; Gu et al., 2023) deal with
3D-aware conditional image generation. To achieve this, (Liu et al., 2023) uses a diffusion model
trained on synthetic data as geometric priors to synthesize novel views given one single image.
(Zhou & Tulsiani, 2022) transfers 3D consistent scene representation from a view-conditioned dif-
fusion model to improve few-shot novel view synthesis. Unlike these methods that utilize diffusion
models in a 3D setting, our approach does not employ them as a “scorer” for regularization. Instead,
we use the images generated by the diffusion model as auxiliary pseudo-observations directly for
NeRF training. As a result, our method avoids inferring the diffusion model at every training step.

3 METHOD

To enable plausible and 3D-consistent predictions given only sparse-view observations, we take
advantage of diffusion models to “densify” the inputs using the approach illustrated in Figure 1. We
first train a coarse NeRF from the input views, creating conditions for the generation of pseudo-
observations (Section 3.2). Then, given the rendered RGB-D images from the coarse NeRF, we
propose a deceptive diffusion model (Section 3.3) to refine these images into pseudo-observations.
We use these plausible pseudo-observations to supplement the input views and train a fine NeRF
using a progressive training strategy(Section 3.4).

3.1 BACKGROUND

Neural Radiance Fields. A radiance field is a continuous function f mapping a 3D coordinate
x ∈ R3 and a viewing directional unit vector d ∈ S2 to a volume density σ ∈ [0,∞) and RGB
values c ∈ [0, 1]3. A neural radiance field (NeRF) (Mildenhall et al., 2020) uses a multi-layer
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perceptron (MLP) to parameterize this function:

fθ : (x,d) 7→ (σ, c) (1)

where θ denotes MLP parameters. While existing NeRF variants employ explicit voxel grids (Yu
et al., 2021a; Fridovich-Keil et al., 2022; Chen et al., 2022) instead of MLPs to parameterize this
mapping for improved efficiency, our proposed approach is compatible with both MLP-based NeRFs
and voxel grid-based variants.

Volume Rendering. Rendering each image pixel given a neural radiance field fθ involves casting a
ray r(t) = o+ td from the camera center o through the pixel along direction d. The predicted color
for the corresponding pixel is computed as:

Ĉ =

K∑
k=1

T̂ (tk)α(σ(tk)δk)c(tk), (2)

where T̂ (tk) = exp
(
−
∑k−1

k′=1
σ(tk)δ(tk)

)
, α (x) = 1− exp(−x), and δp = tk+1 − tk. A vanilla

NeRF is optimized over a set of input images and their camera poses by minimizing the mean
squared error (photometric loss):

Lpho =
∑
r∈R
∥Ĉ(r)−C(r)∥22 (3)

3.2 COARSE NERF FROM SPARSE INPUTS

Given only a few observations of a scene, i.e., input images {Ci
input} with associated viewpoints

{ϕi
input}, Using these sparse inputs, we first train an initial coarse NeRF, denoted by Rcoarse, to obtain

a rough reconstruction of the scene. The goal of this coarse NeRF reconstruction is to generate initial
RGB images and depth predictions at novel views, which will be used as control images feeding into
the deceptive diffusion model to generate pseudo-observations at the same viewpoints.

To avoid NeRF’s over-fast convergence on high-frequency components of inputs, we use a linearly
increasing frequency mask to regulate the visible frequency spectrum based on the training time
steps (Yang et al., 2023). We randomly sample novel views {ϕi

pseudo} within a bounding box defined
by the outermost input views and render corresponding RGB-D images with Rcoarse:

(Ĉi
coarse, D̂

i
coarse) = Rcoarse(ϕ

i
pseudo). (4)

Although the resulting synthesized images and depth maps still exhibit inevitable and obvious arti-
facts, they can provide some good guidance for the deceptive diffusion model to obtain refined novel
view images as plausible pseudo-observations.

3.3 DECEPTIVE DIFFUSION MODEL

We propose a 2D diffusion model G that conditions on a coarse RGB image Ĉcoarse and its cor-
responding depth prediction D̂coarse from Rcoarse to synthesize a refined natural image (pseudo-
observation) Ĉpseudo from the same viewpoint:

Ĉfine = G(Ĉcoarse, D̂coarse), (5)

where G in essential rectifies images from the coarse NeRF and is thus termed the deceptive diffu-
sion model. The photo-realistic natural images generated serve as plausible pseudo-observations to
cover scarcely observed regions.

Our approach capitalizes on latent diffusion models (Rombach et al., 2022), which leverages natural
image priors derived from internet-scale data to help ameliorate unnaturalness caused by few-shot
NeRFs. Artifacts generated by NeRFs often float in empty space and are therefore highly conspicu-
ous in depth prediction. To provide additional guidance, we condition this process on NeRF’s depth
predictions.
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To this end, given a dataset of triplets
{(

Ci
fine,C

i
coarse,D

i
coarse

)}
, we fine-tune a pre-trained diffusion

model, consisting of a latent diffusion architecture with an encoder E , a denoiser U-Net ϵθ, and a
decoder D. We solve for the following objective to fine-tune the model:

min
θ

Ez∼E,t,ϵ∼N (0,1)∥ϵ− ϵθ(zt, t, c(Ccoarse,Dcoarse, s))∥22, (6)

where the diffusion time step t ∼ [1, 1000] and c(Ccoarse,Dcoarse, s) is the embedding of the coarse
RGB image, depth estimation, and a text embedding s of the coarse image.

Text embedding. To derive a text embedding from the input coarse NeRF image, we first generate
a text prompt s0 using a pre-trained image captioning network. While image captioning reliably
provides descriptive textual representations for most coarse NeRF images, its efficacy can diminish
for images of lower quality or those with pronounced artifacts. To counteract this, we adopt the
textual inversion (Gal et al., 2022). We optimize a shared latent text embedding s∗ shared by all
the input observations and coarse NeRF images. By concatenating the embeddings we formulate a
composite feature s = [s0, s∗] that encapsulates both the semantic and visual attributes of the input
image. This combined strategy not only ameliorates the shortcomings of image captioning but also
ensures the stylistic congruence of the generated pseudo-observations with the input images.

Effective control upon diffusion models. To enable large pre-trained diffusion models (e.g., Stable
Diffusion) to refine RGB-D renderings from coarse NeRFs and synthesize photo-realistic pseudo-
observations, we fine-tune them conditioned on the coarse NeRF RGB-D renderings. To enable
diffusion models to learn such specific input conditions without disrupting their prior for natural
images, we leverage ControlNet (Zhang & Agrawala, 2023) to efficiently implement the training
paradigm discussed below while preserving the production-ready weights of pre-trained 2D diffu-
sion models.

Data augmentation for the deceptive diffusion model. To enable the deceptive diffusion model
to generate an artifact-free image from the same viewpoint with the coarse NeRF’s rendered RGB
image and depth map, we need to construct a dataset of triplets

{(
Ci

fine,C
i
coarse,D

i
coarse

)}
. Specif-

ically, this is achieved by training two versions of NeRF for the same scene: a fine version of
NeRF trained on all images and a coarse version of NeRF trained on only one-fifth of the images.

Training Stage I

Training Stage II

Figure 2: Data augmentation for the deceptive diffusion
model. In the first stage, we augment the training samples
by using noisy RGB images and depth maps as inputs, and
the denoised RGB images as training targets. In the second
stage, we use coarse NeRF RGB images and depth maps as
inputs, and fine NeRF RGB images from the same viewpoint
as training targets.

By rendering from the same view-
point, such a coarse-fine NeRF duo
can render paired training data sam-
ples. However, due to limited compu-
tational resources, we cannot afford
to conduct NeRF duos training across
a plethora of scenarios. Therefore,
as illustrated in Figure 2, we intro-
duce a data augmentation paradigm
to mitigate the computational cost as-
sociated with preparing training data.
Rather than exclusively relying on
image pairs derived from NeRF duos,
we exploit a more straightforward
data source during the initial phase
of training. We add random Gaus-
sian noise to RGB images, utilizing
these noised images and accompa-
nying depth maps as training inputs,
while retaining the original RGB im-
ages as the training objectives. In this
manner, we can readily obtain train-
ing samples by simply pairing RGB-
depth data and introducing noise.
Following the initial stage, we revert
to employing coarse-fine image pairs
synthesized by opposing NeRFs during the subsequent phase of training. While there is a discernible
distinction between the two stages, the first stage adeptly equips our deceptive diffusion model with
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DDM

DDM

DDM

Figure 3: Progressive Deceptive-NeRF training. At each iteration, we use the current NeRF ren-
derings to create pseudo-observations to enhance the next iteration’s NeRF training.

the necessary prior knowledge to estimate RGB images based on depth maps (with the guidance of
imperfect RGB images).

3.4 FINE NERF WITH PSEUDO-OBSERVATIONS

Using the deceptive diffusion model, we obtain plausible pseudo-observations of the scene, de-
noted as {Ci

pseudo}. Thanks to the natural image prior from the latent diffusion model, the pseudo-
observations can eliminate the artifacts in the images rendered by the coarse NeRF. As our final 3D
representation of the scene, we train a fine NeRF Rfine model by combining the original input images
(real) and pseudo-observations (fake). Given that pseudo-observations generated by the deceptive
diffusion model can sometimes be inconsistent with input images, we adopt a strategy of differential
selection. Specifically, we sample twice the number of required pseudo-observations for {ϕi

pseudo}
and generate corresponding fine images for all of them. We then select the top 50% with the highest
perceptual similarity to input images, quantified through the LPIPS metric, for fine NeRF training.

In doing so, Deceptive-NeRF alleviates the struggle of NeRF in the face of sparse observations by
synthesizing fake but plausible observations. It should be noted that because the deceptive diffu-
sion model does not constrain cross-view consistency when synthesizing images, inconsistencies
may exist between the pseudo-observations and the input images. However, we found that such
inconsistencies were automatically corrected during the training of the fine NeRF.

Despite general improvement in the rendering quality with the procedure discussed above, we iden-
tified that there exists a potential pitfall where the generated details might not completely align with
the real scenario. To mitigate this issue, we propose a progressive training scheme as illustrated in
Figure 3: In each iteration, we sample new viewpoints and use the current NeRF to render the RGB
and depth maps. Then, the deceptive diffusion model generates pseudo-observations from these
renderings. Enhancing existing observation sets with pseudo-observations, we train a new NeRF for
the next iteration.

4 EXPERIMENTAL RESULTS

In this section, we evaluate our proposed Deceptive-NeRF method both qualitatively and quantita-
tively across a variety of challenging scenarios. We present comparisons of our model with state-
of-the-art approaches and conduct an analysis of the building components of our approach. Please
refer to our supplementary document and video for additional experimental results.

4.1 EXPERIMENTAL SETTINGS

DDM training. Our dataset for training the deceptive diffusion model is derived from Hyper-
sim (Roberts et al., 2021). Hypersim contains 461 photorealistic synthetic indoor scenes and 77,400
images associated with depth maps. In the first stage, we corrupt 60,000 images by adding additive
Gaussian noise with a standard deviation of 0.3. We use these noisy images and their depth maps
as training input and the original images as training targets. For the second stage, we train coarse
and fine NeRF duos for the same scenes, where coarse NeRFs are trained only with one-fifth of the
images. Coarse NeRFs render RGB images and depth maps as training inputs while fine NeRFs
render fine RGB images from the same viewpoints as training targets. We use 40 scenes and 2,000
images for the data generation of this stage. With such a dataset, we fine-tune a pre-trained Stable
Diffusion model with ControlNet (Zhang & Agrawala, 2023) into our deceptive diffusion model.
We set four control map channels to match the RGB-D inputs and use all default parameters for the
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Ground TruthOursDietNeRF FreeNeRF DiffusioNeRF

Figure 4: Qualitative comparison on Hypersim. Our Deceptive-NeRF synthesizes novel views
with fewer artifacts, while baseline approaches tend to produce unreasonable reconstructions or
floating artifacts. Zoom in for a detailed comparison.

fine-tuning task. We resize all images to a resolution of 512x512. We finetune our model on a single
NVIDIA GeForce RTX 3090 Ti GPU for 10 days.

Deceptive-NeRF implementation details. For both the coarse and fine NeRF models, we adopt
the Nerfacto method from NerfStudio (Tancik et al., 2023) as the backbone, utilizing the default
proposal sampling, scene contraction, and appearance embeddings. We set Niter = 3 for our pro-
gressive training strategy. We set the total number of synthesized pseudo-observations to be twice
the number of input views, and at each iteration, we generate #pseudo-obs.

#iterations of them. At each iteration,
we double the number of generated observations and discard the defective 50%. We randomly sam-
ple novel views {ϕi

pseudo} within the bounding box defined by the outermost input cameras. Based
on our experiments, we discuss the computational consumption of our approach in the appendix.

Datasets and Metrics. We evaluate the performance of our Deceptive-NeRF method and the
baseline methods on the Hypersim (Roberts et al., 2021), as and LLFF (Mildenhall et al., 2019)
datasets. Hypersim presents a challenging benchmark for few-shot indoor scene novel view syn-
thesis. We assess different approaches using scenes that were held out from our DDM training
dataset. While LLFF has been extensively adopted for evaluating novel view synthesis algorithms,
the dataset features mostly forward-facing scenes and are less challenging, where Deceptive-NeRF
and existing competitive approaches perform comparably well. Thus the relevant LLFF results are
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Table 1: Quantitative comparison on Hypersim. best second-best third-best
PSNR(↑) SSIM(↑) LPIPS(↓)

Method 5-view 10-view 20-view 5-view 10-view 20-view 5-view 10-view 20-view

Mip-NeRF 360 10.73 13.28 14.41 0.239 0.250 0.511 0.593 0.566 0.549
PixelNeRF 7.76 8.31 10.90 0.221 0.380 0.374 0.542 0.571 0.503
MVSNeRF 11.58 12.00 14.42 0.271 0.274 0.315 0.563 0.512 0.457
DS-NeRF 13.79 13.66 18.80 0.388 0.431 0.488 0.515 0.511 0.481
DietNeRF 13.01 13.51 18.62 0.417 0.479 0.481 0.541 0.527 0.472
RegNeRF 15.65 18.59 19.26 0.491 0.501 0.519 0.516 0.451 0.362
DiffusioNeRF 16.40 17.22 19.88 0.451 0.470 0.656 0.432 0.404 0.416
FlipNeRF 15.43 17.47 19.36 0.456 0.569 0.585 0.350 0.415 0.312
FreeNeRF 17.20 18.06 20.20 0.599 0.671 0.706 0.431 0.286 0.237
Ours 18.85 19.86 21.21 0.649 0.724 0.765 0.326 0.296 0.227

deferred to the supplementary material. We quantitatively analyze our approach and baselines us-
ing three metrics, including peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM) (Wang et al., 2004), mean absolute error (MAE), and learned perceptual image patch sim-
ilarity (LPIPS) (Zhang et al., 2018). All quantitative results reported are computed by averaging
held-out testing views (different from all input views as well as pseudo-observations). Furthermore,
to demonstrate the generalization ability of our trained model on indoor scenes beyond Hypersim,
we report experimental results on the ScanNet (Dai et al., 2017) and 3D-FRONT (Fu et al., 2021)
datasets in the appendix.

Baselines. We compare our method with several methods within a similar scope. Among them, mip-
NeRF 360 (Barron et al., 2022) stands as a state-of-the-art general NeRF model. PixelNeRF (Yu
et al., 2021b), MVSNeRF (Chen et al., 2021), and SRF (Chibane et al., 2021) are representative
pre-trained methods, exploiting the DTU and LLFF datasets for pre-training. We also compare our
approach against diverse regularization approaches, including DS-NeRF (Deng et al., 2022b), Diet-
NeRF (Jain et al., 2021), RegNeRF (Niemeyer et al., 2022), DiffusioNeRF (Wynn & Turmukham-
betov, 2023), FlipNeRF (Seo et al., 2023a), and FreeNeRF (Yang et al., 2023). We also consider
neural implicit surface reconstruction approaches (Yu et al., 2022a; Oechsle et al., 2021; Wang et al.,
2021; Yu et al., 2022b) . However, as they prioritize accurate reconstruction of object surface and
require dense observations (typically around 100 input views), they fail to give reasonable results in
our few-shot setting.

4.2 COMPARISON

In Table 1, we present the quantitative results. Our Deceptive-NeRF outperforms competing meth-
ods across almost all the evaluated metrics. Specifically, for the 5-view and 20-view settings, our
approach is superior in every metric. In the 10-view setting, Deceptive-NeRF achieves the highest
PSNR and SSIM and only ranks second in LPIPS. For a visual comparison, we provide qualitative
results of our approach and baselines on the Hypersim dataset with 5 input views in Figure 4. While
other methods can produce reasonable novel view renderings, Deceptive-NeRF excels in capturing
object-level details. Our results aren’t marred by the ambiguous pixels observed in the outputs of
competing methods.

4.3 ABLATON STUDY

We conduct ablation studies on the following design choices using the Hypersim dataset under the
20-view setting: 1) Progressive Training. To assess the effectiveness of our progressive training
strategy, we experiment with a variant of our method that omits progressive training. This variant
directly generates all pseudo-observations and employs them to train a fine NeRF, which then serves
as the final scene representation. 2) Depth Conditioning. Our deceptive diffusion model generates
pseudo-observations conditioned on rendered depth maps. To gauge the significance of this choice,
we train a variant that solely conditions on raw RGB images for generating pseudo-observations. 3)
Data Augmentation. We evaluate the impact of our data augmentation procedure when training our
deceptive diffusion model. Specifically, we train the model without the initial stage and rely solely
on coarse-fine NeRF pairs to generate training samples. 4) Text Embedding. Our approach to

8



Under review as a conference paper at ICLR 2024

Table 2: Quantitative ablation study. best second-best third-best supplement

Progressive Depth Two-stage Caption Inversion Filtering PSNR (↑) SSIM (↑) LPIPS (↓)
✓ ✓ ✓ ✓ L 19.90 0.555 0.358

✓ ✓ ✓ ✓ L 18.79 0.489 0.352
✓ ✓ ✓ ✓ L 20.49 0.619 0.290
✓ ✓ ✓ ✓ L 21.59 0.758 0.236
✓ ✓ ✓ ✓ L 20.58 0.744 0.239
✓ ✓ ✓ ✓ ✓ L 22.41 0.812 0.202
✓ ✓ ✓ ✓ ✓ W 22.37 0.811 0.217

Ground Truth w/o progressive w/o depth w/o textual inversionw/o two-stage Ours

Figure 5: Qualitative ablation study. Our full model synthesizes novel views with fewer artifacts
and finer details.

text embedding integrates both image captioning and textual inversion. This combination addresses
severely artifacted images while ensuring stylistic consistency. We test two variants of our model,
one without image captioning and the other without textual inversion. As illustrated in Figure 5
and Table 2, our complete model synthesizes the most photorealistic novel views and outperforms
other methods in all quantitative metrics. 5) Filtering. We employ a top-50% filtering strategy to
discard inconsistent pseudo-observations. In addition to using the LPIPS metric (“L”) to measure
the perceptual similarity between input images and pseudo-observations, we also experiment with
the confidence score of NeRF-W (“W ”) (Martin-Brualla et al., 2021; Talebi & Milanfar, 2018). The
final reconstruction results obtained through these two strategies are close.

In addition, we provide quantitative and qualitative evaluations of pseudo-observations in the ap-
pendix.

5 DISCUSSION

Limitations. While leveraging 2D diffusion models to enhance 3D neural representations in a novel
manner, our approach faces several limitations. First, the pseudo-observations generated by the
deceptive diffusion model are not guaranteed to accurately reflect ground truth. Consequently, our
results may appear deceptively realistic yet incorrect. Furthermore, Deceptive-NeRF is still dealing
with a reconstruction problem and not capable of generating 3D content from scratch. In our ex-
periments, since we trained the model on the Hypersim dataset (indoor scenes), performance degra-
dation was observed when generalizing it to general real-world scenes. In the future, our approach
holds promise for generalization to a broader range of scenes, particularly as large-scale datasets
encompassing general 3D scenes become increasingly available in the future.

Conclusion. We introduce Deceptive-NeRF, which synthesizes plausible pseudo-observations for
improving NeRF reconstruction from sparse input. A coarse NeRF model is first reconstructed from
the given sparse input and subsequently renders coarse novel views. Our deceptive diffusion models
turn novel views rendered by the coarse NeRF into pseudo-observations. The deceptive diffusion
model generates pseudo-observations that faithfully preserve the semantics underlying the given
scene while consistent with the sparse inputs. Finally, we use pseudo-observations to produce a
high-quality reconstruction with a progressive NeRF training strategy. Extensive experiments and
comparisons demonstrate that our method is effective and can generate perceptually high-quality
NeRF reconstructions even with highly sparse inputs.
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APPENDIX

A VIDEO

For better visualization of our reconstruction results, we create a set of video visualizations with free-
viewpoint rendering. We highly recommend to watch supplementary video.mp4 for more results.

B PSEUDO-CODE FOR PROGRESSIVE DECEPTIVE-NERF TRAINING

Algorithm 1 Progressive Deceptive-NeRF Training
1: Input: Images Cinput with associated camera poses ϕinput
2: C← Cinput
3: ϕ← ϕinput
4: NeRFcurrent ← TRAINNERF(C, ϕ)
5: for i = 1 to Niter do
6: ϕpseudo ← SAMPLENOVELVIEW(ϕ)
7: Ccoarse,Dcoarse ← RENDERNERF(NeRFcurrent, ϕpseudo)
8: Cfine ← RECTIFY(Ccoarse,Dcoarse)
9: Cfine ← DISCARDDEFECTIVE(Cfine)

10: APPEND(C,Cfine)
11: APPEND(ϕ, ϕpseudo)
12: NeRFcurrent ← TRAINNERF(C, ϕ)

13: NeRFfinal ← NeRFcurrent

C COMPUTATIONAL CONSUMPTION

Fine-Tuning Diffusion Model. Our model was fine-tuned using a single NVIDIA GeForce
RTX 3090 Ti GPU over a period of 10 days. Please kindly note that this timeframe was
achieved with personal computer-level resources. Enhanced computational resources and ad-
vanced techniques Hu et al. (2022) should significantly reduce this duration. Furthermore, this
is a one-time process, allowing the adapted model to be applied directly to per-scene NeRF
training without further fine-tuning.

Per-Scene NeRF Training. With the fine-tuned diffusion model, we conducted per-scene
NeRF training on a single NVIDIA GeForce RTX 3090 Ti GPU. The purpose of the process is
twofold: 1) training the radiance field and 2) generating pseudo-observations with the diffusion
model. For example, in an experiment on Hypersim with 10 training views, our progressive
training approach produced 40 images (50% discarded due to defects), taking 3 minutes. The
bulk of the time (42 minutes) was for radiance field training, with progressive training at
Niter = 3 resulting in 4× 30000 training steps. The time spent on both aspects is summarized
in Table A:

Table A: Time analysis for per-scene NeRF training.
Synthesizing Pseudo-Observations Radiance Fields Training

Time 3 minutes 42 minutes

A comparative analysis of the time with and without progressive strategy is presented below.
The times reported encompass both pseudo-observation generation and serial radiance field
optimization.
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Table B: Comparison of Runtime with Progressive and without Progressive Training.
w/ progressive w/o progressive

Time 45 minutes 22 minutes

Despite integrating a diffusion model and serial radiance field training, our approach does
not markedly increase runtime. The diffusion model’s role is limited to a mere 3 minutes
for pseudo-observation synthesis. This is in contrast to recent studies that combine NeRF and
diffusion models, which necessitate diffusion model inference at each NeRF training step. This
efficiency significantly reduces computational overhead. In fact, our method is faster than most
baselines, which generally exceed an hour. (Since various methods implement upon different
frameworks in their official codes, we refrain from a formal runtime comparison, providing
this only as a reference.)

D EVALUATION OF PSEUDO-OBSERVATIONS

In this section, we qualitatively and quantitatively assess our generated pseudo-observations
and validate the effectiveness of our deceptive diffusion model. For comparison, given coarse
NeRF-generated images, we use image restoration models instead of our deceptive diffusion
model to synthesize pseudo-observations. The experimental setup follows that of Section 4.3.
The image restoration model we adopt is Restormer (Zamir et al., 2022), a popular image
restoration model with state-of-the-art performance. Its officially released code provides mod-
els for a number of image restoration tasks including image denoising, image deraining, mo-
tion deblurring, and defocus deblurring.

In the qualitative results shown in Figure A, pseudo-observations synthesized by our decep-
tive diffusion model demonstrate effective removal of the floating artifacts caused by sparse
observation in coarse NeRFs, also mitigating blurriness. In contrast, image restoration models
fail to convert coarse NeRF images into reasonable pseudo-observations. This is primarily
because they are designed and trained for specific image restoration tasks, not for generating
pseudo-observations.

In Table C, we report quantitative results, including the similarity between generated pseudo-
observations and their ground truth (measured in terms of p-PSNR, p-SSIM, and p-LPIPS),
as well as the performance of the complete model on the novel view synthesis task. The
model employing our deceptive diffusion model synthesizes the most photo-realistic pseudo-
observations and achieves the best final performance in novel view synthesis.

In summary, our deceptive diffusion model, specifically tailored for generating pseudo-
observations from coarse NeRF images and utilizing depth and texture cues, effectively elim-
inates floating artifacts and blurriness in coarse NeRF images, thereby producing natural
pseudo-observations.

Table C: Quantitative evaluation of pseudo-observations. The model with our deceptive diffusion
model synthesizes the most photo-realistic pseudo-observations and achieves the best performance
in novel view synthesis.

Method p-PSNR (↑) p-SSIM (↑) p-LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Denoising 16.39 0.716 0.325 18.77 0.716 0.274
Deraining 16.11 0.707 0.338 18.48 0.712 0.271
Motion Deblurring 16.04 0.705 0.324 19.01 0.701 0.251
Defocus Deblurring 16.13 0.691 0.334 18.20 0.724 0.285
Deceptive Diffusion Model (Ours) 19.24 0.754 0.256 19.85 0.770 0.231
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Ground Truth Coarse NeRF Image 
(Ours) Motion Deblurring Denoising Pseudo-Observations

(Ours)

Figure A: Qualitative evaluation of pseudo-observations. Pseudo-observations synthesized by our
deceptive diffusion model can remove the floating artifacts and blurriness caused by sparse observa-
tion in coarse NeRFs.

E EXPERIMENTAL RESULTS ON 3D-FRONT AND SCANNET

To verify the generalization ability of our method, we evaluate our model trained on Hyper-
Sim (Roberts et al., 2021) on synthetic (3D-FRONT (Fu et al., 2021)) and real (ScanNet (Dai
et al., 2017)) indoor datasets using 10 input views and compared it with FreeNeRF (Yang et al.,
2023).In the qualitative results presented in Figure B, our approach better recovers objects in
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the scene, such as the toy and the sink and produces fewer artifacts than the baseline approach.
In Table D, our method also performs better in terms of all metrics.

Our experimental results demonstrate the generalization ability of our method. The deceptive
diffusion model trained on indoor data can perform well on other indoor datasets. Our method
has the potential to generalize to more general 3D scenes beyond indoor settings if large-scale
3D data becomes available in the future.

Ground Truth FreeNeRF Ours Ground Truth FreeNeRF Ours

(a) 3D-FRONT

(b) ScanNet

Figure B: Qualitative comparison on 3D-FRONT and ScanNet. Our approach better recovers
objects in the scene, such as the toy and the sink with fewer artifacts.

Table D: Quantitative comparison on 3D-FRONT and ScanNet. Our method performs better in
terms of all metrics.

3D-FRONT ScanNet
Method PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

FreeNeRF 23.09 0.807 0.237 19.41 0.677 0.306
Ours 25.09 0.827 0.168 22.55 0.745 0.198

F EXPERIMENTAL RESULTS ON LLFF

We display qualitative comparisons on LLFF in Figure C and quantitative comparisons in Table E.
Since the model was trained on the Hypersim dataset (indoor scenes) and was not fine-tuned on
LLFF, an expected performance degradation was observed. However, our method still achieves re-
sults that are either outperforming or on par with state-of-the-art approaches. Looking ahead, our
approach has the potential to generalize to more diverse scenes as large-scale datasets of general 3D
scenes become more accessible in the future.
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(a) 3 Input Views

(b) 6 Input Views

RegNeRF FreeNeRF Ground TruthOurs

Figure C: Qualitative comparison on LLFF.

Table E: Quantitative comparison on LLFF. best second-best third-best
PSNR(↑) SSIM(↑) LPIPS(↓)

Method 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF 17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503
PixelNeRF 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430
MVSNeRF 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244
mip-NeRF 16.11 22.91 24.88 0.401 0.756 0.826 0.460 0.213 0.160
DietNeRF 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183
RegNeRF 18.84 23.22 24.88 0.573 0.770 0.826 0.345 0.203 0.159
FreeNeRF 19.63 23.73 25.13 0.612 0.779 0.827 0.308 0.195 0.160
Ours 19.69 23.81 25.01 0.609 0.768 0.821 0.315 0.193 0.161
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