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Abstract

When deep neural networks became state of the art image classifiers, numerous max pooling
operations were an important component of the architecture. However, modern computer
vision networks typically have few if any max pooling operations. To understand whether
this trend is justified, we develop a mathematical framework analyzing ReLU based approx-
imations of max pooling, and prove a sense in which max pooling cannot be replicated. We
formulate and analyze a class of optimal approximations, and find that residual can be made
exponentially small in the kernel size, but only with an exponentially wide approximation.
This work gives a theoretical basis for understanding the reduced use of max pooling in newer
architectures. Since max pooling does not seem necessary, we conclude that empirically the
inputs on which max pooling is distinct – those with a large difference between the max and
other values –is not a pattern prevalent in natural images.

1 Introduction

When convolutional neural networks first became state of the art image classifiers, max pooling was a
fundamental aspect of modelling. More recent work has argued that max pooling operations are not necessary
because strided convolutions composed with ReLU nonlinearity is simpler and more flexible (Springenberg
et al. (2015)). Practice has followed this observation: early models such as VGG (Simonyan & Zisserman
(2015)) and AlexNet (Krizhevsky et al. (2017)) featured several max pooling layers, but more recent models
such as ResNets (He et al. (2016)) feature only a single max pooling layer, and some – such as InceptionV3
(Szegedy et al. (2016)) and mobilenetV3 (Howard et al. (2019)) – have none at all.1

This paper examines whether max pooling is a remnant of an earlier era when image classifiers were motivated
by the visual cortex. We find that for some inputs, max pooling constructs very different features than an
approximation by ReLU nonlinearity, thus it expresses a different inductive bias and can be appropriate in
some situations. We derive comprehensive bounds on the error realized by approximating max functions with
the composition of ReLU and linear operations, and find that a simple divide and conquer algorithm cannot
be improved upon. We show that evaluating accurate approximations must be computationally complex,
and present a mathematically interesting and efficient method for constructing (though not evaluating) these
approximxations.

Our result does not imply that omitting max pooling from image classifiers is wrong. Rather, it says when
it could be wrong. Max pooling will be strictly more expressive than a ReLU-based approximation on inputs
with a large difference between the maximum and other values within pools.

Practice finds that max pooling is adequately replaced by ReLU nonlinearity and strided convolution, thus
we infer that this characteristic is not empirically common in natural images.

Our main contributions are (1) introducing a novel generalization of max pooling (Section 4), (2) proving
that the max function cannot be represented by simpler elements of this function class (Theorem 4), and

1All statements about historical models refer to their implementation in Torchvision (Marcel & Rodriguez (2010)), described
at https://pytorch.org/vision/stable/models.html.
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(3) analyzing experimentally the size and quality of approximations (Section 5). Other contributions are (1)
formulating a sensible notion of separation for max pooling (Theorem 1, Theorem 2), and (2) connecting
mathematically the average of subpool maximums with order statistics (Theorem 3).

2 Related work

The starting point for our study is the folk wisdom, demonstrated empirically in Springenberg et al. (2015),
that strided convolution composed with nonlinearity, is preferable to max pooling because linear-ReLU blocks
can fit a max pooling mapping if appropriate, and can seamlessly fit another functional form if not.

At the same time, much early work was concerned with analyzing the neurological basis of deep learning
models, and actual analysis of mammal’s eyes and brains have shown max pooling to be a biologically
plausible operation (cf. for example Fukushima (1980); Riesenhuber & Poggio (1999)). Thus, we want to
examine whether (1) max pooling can be efficiently simplified to linear operations and ReLU nonlinearity,
and if not, (2) what would need to be true of data in order for this difference to be empirically unnecessary.

Boureau et al. (2010) is an early work comparing average and max pooling from an average-case statistical
perspective. Like us, they also identify the dimensionality of the input as a key quantity. Despite a quite
different method of analysis, they reach a complimentary conclusion. In their framework, sparse or low-
probability features correspond to the corners of the input domain in our analysis. However, their result is
notably weaker in comparing against only average pooling.

Serra et al. (2018), Arora et al. (2018), Bartlett et al. (2019), and Hanin & Rolnick (2019) have proposed
and studied notions of the relative complexity of piecewise linear deep neural networks, but none examine
specifically max pooling. Possibly, this is because it is mistakenly believed max pooling can be built up
from a small number of ReLU layers. Most nonlinearities, xor example hard tanh (Collobert, 2004) = x 7→
ReLU(x + 1) − 1 − ReLU(x − 1), leaky ReLU (Maas et al., 2013)) = x 7→ ReLU(x) − .01 × ReLU(−x),
ReLU6 (Krizhevsky, 2012) = x 7→ ReLU(x) − ReLU(x − 6), and hard sigmoid (Courbariaux et al., 2015)
= x 7→ (ReLU(x + 3)−ReLU(x− 3))/6, can, so this is understandable. However, one of our main results is
to show that this is not true of max pooling. Our work does not apply to many other sources of nonlinearity,
such as attention mechanisms.

Hertrich et al. (2021) is closely related to the theoretical component of our work. This study addresses
similar aspects of ReLU-based approximations to the max function, and proves a technical sense in which
max pooling is more expressive than just ReLUs. However, their proof technique relies crucially upon the
discontinuity at zero, a dynamic not shared by our analysis, which is restricted to nonnegative inputs. We give
precise error bounds, and are able to compare the errors of a large parameterized family of approximations
with considerable precision to offer a more precise grasp of the practical tradeoff that applied approximations
entail. Table 1 summarizes several results on the approximation of the maximum function by linear-ReLUs
blocks.

Grüning & Barth (2022) find that min pooling can also be a useful pooling method. This is evidence that
supports and is rationalized by our analysis in terms of the quantiles of the input to the pooling method.
Essentially, if the true data is strongly determined by the nonlinear behavior of quantiles, then ReLU-based
approaches are relatively disadvantaged.

3 The complexity of max pooling operations

In this section, we prove that in a simplified model, max pooling requires depth – multiple layers of ReLU
nonlinearity are needed to effect the same computation, and more layers are needed for larger kernel sizes.

3.1 Simplifications

In the design of deep learning architectures, max pooling reduces dimensionality by summarizing the val-
ues of spatially nearby inputs. As a simplified mathematical model, we examine the approximation of a
max function, putting aside “pooling”-specific considerations like stride, padding, and dilation which are
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Depth Features Result
⌈log2 d⌉ small width exact trivial Theorem 2
1 width ↑ ∞ approximation possible (Hornik, 1991; Cybenko, 1989)
⌈log2 d⌉ − 1 width ↑ ∞ exact impossible on Rd (Hertrich et al., 2021)
⌈log2 d⌉ − 1 Md(R) exact impossible on [0, 1]d (Theorem 4)
⌈log2 d⌉ − 1 width ↑ ∞ approximation experimentally difficult on [0, 1]d (Section 5)

Table 1: A taxonomy of approximations to the max function by linear-ReLUs blocks in d dimensions. Md(R)
is our function class introduced in Section 4. The quality of the approximation depends crucially on depth,
and as far as we are aware, this is the first paper to examine the finite width case.

ultimately linear pre-and post-processing. Similarly we treat as a general linear function any operator that
amounts to a linear transformation at inference time, such as batch normalization, convolution, reindexing,
or average pooling. Finally, we discuss only ReLU nonlinearities. We term these networks purely feedforward
ReLU networks. Purely feedforward ReLU networks concisely reduce all aspects of the architecture to just
the number of layers and their widths.

The phrase “order” indicates the size of the argument to a function. Thus, for example, the maximum over
a 3× 3 kernel is an order 9 max function.

3.2 Max pooling as a feature-builder

Telgarsky (2016) showed that deep neural networks cannot be concisely simulated by shallow networks. Their
approach is to demonstrate a classification problem that is easy for deep networks, but is provably difficult
for shallow networks. We do similarly by building a test problem on which max pooling succeeds and ReLU
fails. However, Theorem 1 shows that for any dimensionality, a narrow purely feedforward network with a
single source of nonlinearity can emit the same output as max pooling. Thus, prediction accuracy is not the
correct metric by which to compare nonlinearities.
Theorem 1. There exists a purely feedforward ReLU network f : Rd → R with d hidden neurons such that
for all ξ ∈ R, f(x− ξ) ≤ 0 ⇐⇒ max{x1, . . . , xd} ≤ ξ.

Proof.

max{x1, . . . , xd} ≤ ξ ⇐⇒ x1 ≤ ξ and . . . and xd ≤ ξ ⇐⇒
d∑

k=1
ReLU(xk − ξ) ≤ 0.

Max pooling is used in the construction of intermediate layer features, and not directly in the computation
of final logits. Thus, in what follows we examine the ability of a purely feedforward ReLU network to
achieve the same real-valued output as a max pooling operation with L∞ error. And since diminishing the
representation capacity of a single neuron necessarily reduces the expressivity of an entire network, we focus
on a single neuron for simplicity.

3.3 Computing max using ReLU

Theorem 1 shows a positive result on the complexity of functions that composition of linear and ReLU
functions can represent. In this section we begin developing our negative results.

The maximum of two values can be computed using the relationship

max(a, b) = (ReLU(a− b) + ReLU(b− a) + a + b)/2. (1)
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There appears to be no tractable generalization of this formula for dimension d > 2. For example, in
Appendix A, we give the analogous equation for the ternary case, and see that it is not linear in ReLU
features. Building upon this, the appendix contains a heuristic argument that expressing the maximum of
more than four variables without function composition may not be possible in general.

Nevertheless, Theorem 2 shows how with additional depth a purely feedfoward ReLU network can compute
the maximum of many variables by recursively forming pairwise maxes.
Theorem 2. max: Rd → R can be written as a ⌈log2(d)⌉-hidden layer purely feedforward ReLU network,
where the kth hidden layer has width 22+⌈log2(d)⌉−k.

Sketch of Proof. A variant of Equation 1 that is applicable to purely feedforward ReLU networks is

max(x, y) = (g ◦ ReLU ◦ f)(x, y) where

f(x, y) =


+x− y
−x + y
+x + y
−x− y


g(x) = (x0:n/4 + xn/4:n/2 + xn/2:3n/4 − x3n/4:n)/2.

(2)

Here xn1:n2 means the n1th through the (n2 − 1)th elements of x (inclusive), and n is the dimension of the
input. f and g are linear. At the cost of quadrupling every layer width, ReLU can evaluate pairwise maxes
and ⌈log2(d)⌉ iterations of pairwise maxima can compute the maximum of d variables.

As an example, the max of five variables is simply written as three iterations of pairwise maxes:

max(x1, x2, x3, x4, x5) = max(z1, z2)
where z1 = max(z3, z4), z2 = max(z5, z6)
where z3 = max(x1, x2), z4 = max(x2, x3), z5 = max(x3, x4), z6 = max(x4, x5).

Theorem 2 is an upper bound on the width and depth necessary to evaluate a max function. Corresponding
lower bounds are more intricate. Table 1 outlines various possible converses, and the next section discusses
the function class that characterizes our innovation.

4 The class of subpool max averages, Md(R)

Our work pertains to a particular function class, Md(R). In subsection 4.1 we describe Md(R), and in
Section 5 we justify the relevance of this function class to deep learning.

4.1 Subpool maxes

For a vector x ∈ Rd and index set J ⊆ {1, . . . , d} we term max{xj : j ∈ J} the J-subpool max of x. In words:
subset the vector to those indices in J , then take the maximum element. For example, if x = (3, 2, 10, 5),
then the {1, 2, 4}-subpool max of x is max(3, 2, 5) = 5. J-subpool maxes are generalizations of the max
function that trade off complexity and accuracy in the sense that for J1 ⊆ J2, the J1-subset max but simpler
to compute than the J2-subset max, but the error of a J1-subpool max will always be at least that of a
J2-subpool max.

Let C(j, r, d) denote the jth (out of
(

r
d

)
) subset of {1, . . . , d} of size r in the lexicographic ordering. For

example, C(1, 2, 3) = {1, 2}, C(2, 2, 3) = {1, 3} and C(3, 2, 3) = {2, 3}. To keep the notation manageable, let
ωjr(x) denote the C(j, r, d)-subpool max of x (the dimension d can be inferred from the size of x). And in
order to more elegantly model a constant intercept, let the C(1, 0, d)-subpool max be = 1.
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r = 1

r = 2

r = 3

r = 4

Figure 1: Averaged subpool maxes for d = 5. The numerical value of each node is presented as inverted
grayscale. Each row r = 1, 2, 3, 4 indicates the averaged subpool maxes over pools of order r. As the order
of the subpool maxes grows, the average value (on the right) grows darker towards the actual max.

Linear combinations of J-subpool maxes are a natural class of estimators to the max function. We organize
subsets J by (1) the size of the subset, r, and (2) the subset index of that size, j. For R ⊆ {0, 1, . . . , d−1, d}
let

Md(R) =

x 7→
∑
r∈R

(d
r)∑

j=1
βj

rωjr(x) : βj
r ∈ R

 (3)

be the set of all linear combinations of r-subpool maxes, r ∈ R. Let a general element of Md(R) be called
an R-estimator. Theorem 4 shows that max ̸∈ Md({0, 1, . . . , d − 1}), with a bound on the L∞ error from
this function class. First, however, we present Theorem 3, connecting the average of subpool maxes to order
statistics.
Theorem 3. Let S(x; r, d) ≜ 1

(d
r)

∑(d
r)

j=1 ωjr(x) be the average of all subpool maxes of x ∈ Rd of order r.
Let x(j) (the subscripts being enclosed in parentheses) denote the jth largest element of a vector x (order
statistics notation).

S(x; r, d) = 1(
d
r

) d−r+1∑
j=1

(
d− j

r − 1

)
x(j). (4)

Sketch of Proof. x(j) is the largest value within a subpool if and only if all indices less than j are excluded
from that subpool and j is not excluded. For a subpool of size r the r−1 remaining values must be amongst
the d−j values x(j+1), . . . , x(d). Thus, amongst all subpools of size r, there will be

(
d−j
r−1

)
in which the largest

value is x(j).

To cultivate some intuition, here are some corner cases. S(x; 1, d) is a simple average, but S(x; d − 1, d) =
((d−1)x(1) +x(2))/d, is mostly the max value, with only the second-largest value contributing – a reasonable
approximation to x(1). For example, at the point x =

(
0 0 . . . 1

)
, the error of an order-1 approximation is

x(1)−S(x; 1, d) = 1−1/d. While for an order d−1 approximation it is much less, at x(1)−S(x; d−1, d) = 1/d.
In essence, the average of subpool maxes of an order r ∈ R give a summary of the quantiles of the distribution
via a particular weighted average, with better fidelity to the max for larger r. The idea is demonstrated
further in Figure 1.

Theorem 4 gives our main result. In order to build a unitless measure, we take as the input domain the
d-dimensional unit cube.

5
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Theorem 4. Let ||f ||∞ denote the the L∞ norm over the unit cube: ||f ||∞ = supx∈[0,1]d |f(x)|. Let dist(R) =
minm∈Md(R) ||m−max ||∞.

dist({0, 1}) = 1
2

d− 1
d

(5)

dist({d− 1}) = 1/(2d− 1) (6)
dist({0, d− 1}) = 1/(2d) (7)

dist({0, 1, d− 1}) = 1/(2(d + 1)) (8)
dist({0, 1, d− 2, d− 1}) = 1/d2 (9)
dist({0, 1, 2, . . . , d− 1}) = 1/2d. (10)

Sketch of Proof. The idea of the proof is as follows. We first establish symmetry as a property of any optimal
estimator. Then we assume that the L∞ norm of the error is characterized by a few key inputs (corners of
the unit cube). Under this conjecture, the norm is optimized by evaluating the error at each such point,
recognizing the tension between them, and finding the coefficients which equate them. Given the conjectured
error, we then prove it is optimal by contradiction using a variant of Farkas’ lemma.

Equation 5 gives a linear model as a baseline for the max. The error is high, and in higher dimensions,
not much different to a constant model (obviously, the least error that an intercept alone can obtain is .5 =
dist({0})).

Equation 6 shows that error declining with dimensionality is achievable with a higher order term. Contrasting
Equation 7 to Equation 6 quantifies the additivity of the intercept. Including an intercept helps, but primarily
in low dimensions, which makes sense as an intercept does not scale with dimensionality. Since the intercept
requires negligible computation, we assume its inclusion subsequently. Including the average as a feature
entails no meaningful further nonlinearity, and reduces the error from 1/(2d) to 1/(2(d + 1)) (Equation 8),
thus we assume its inclusion subsequently.

Equation 9 is important for understanding how the error falls with the addition of further strongly dimension-
sensitive terms: appending d− 2 to {0, 1, d− 1} improves the rate of convergence from O(1/d) to O(1/d2).
Equation 10 gives the best-case rate of convergence: if all lower order terms are included, then the error is
O(1/2d). Contrasting this with Equation 9, we see that the inclusion of many lower order terms is apparently
necessary for low error. Qualitatively, Equation 10 implies that max ̸∈ Md({0, 1, . . . , d− 1}), though it can
be approximated well within the function class.

Let f⋆
R : Rd → R denote the optimal estimate based on terms in R. L∞ error can be high, even if f⋆

R ≈ max
on most of the domain. If the the high error could not be realized in practice, because the measure of the
domain on which it arises is miniscule, then our result would be only a technicality with little practical
relevance. Theorem 5 shows that this is not the case, with a lower bound on the measure of a set on which
the L1 norm is high.
Theorem 5. For ϵ < dist(R)/2, let W (ϵ; R) = {x ∈ [0, 1]d : |x(1)− f⋆

R(x)| ≥ ϵ} denote the subset of the unit
cube where the error of f⋆

R is at least ϵ. Then for all R with 0 ∈ R, vol(W (ϵ; R)) ≥ (dist(R)/2− ϵ)d, where
vol is the Lebesgue measure over [0, 1]d.

In Appendix C we solve for the L2 error of Equation 10 and find that it is also not zero. Thus: not only can
the error be high, it is moreover high on average, and at many points on the domain.

5 Experimental evidence on the relevance of Md(R)

Each Md(R) is a subset of all possible deep neural networks of a given depth. It would harm the analysis
of this paper if a more general class of purely feedforward ReLU approximations can achieve significantly
less error. This section presents experimental evidence that in approximating the max function, Md(R) is
an adequate proxy for all networks of the same depth. It does this by showing that additional capacity does
not appear to improve the quality of the approximation.
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In order to do this, we coin a new function class that generalizesMd(R). Every purely feedforward DNN f ,
can be written as

f = (x 7→Wkx + bk) ◦ ReLU ◦ . . . ReLU ◦ (x 7→W0x + b0) (11)

where Wj , bj , j = 0, 1, . . . , k are the weights and biases of the linear layers, and k is the depth. Appendix E
presents a concrete and efficient algorithm for representing f⋆

R in the form of Equation 11. For example, via
this procedure with d = 9 and R = {0, 1, 7, 8}, f⋆

R can be computed by a purely feedforward ReLU network
with hidden layer widths 78, 122, 182.

For f given in Equation 11, let w(f) ∈ Nk+1 contain the number of columns of W0, W1, . . . , Wk, that is, the
widths of the hidden layers. Let Gk denote the set of all depth k purely feedforward DNNs, and for µ > 0 let

Gd(R, µ) = {g ∈ G⌈log2(max R)⌉ : w(g) ≤ µ× w(f⋆
R)}. (12)

In words: Gd(R, µ) is the set of all neural networks that are at most µ times as wide as f⋆
R, the opti-

mal estimator in Md(R). The properties Md(R) ⊆ Gd(R, 1), µ1 < µ2 =⇒ Gd(R, µ1) ⊆ Gd(R, µ2) and
limµ↑∞ Gd(R, µ) = G⌈log2(max R)⌉ characterize the sense in which Gd(R, µ) represent a parameterized interpo-
lation between Md(R) and all networks of a given depth.

5.1 Experimental setup

Independent test and train datasets are generated uniformly on the unit cube with 10000 rows. L∞ loss
is directly optimized by an Adam optimizer (with PyTorch default parameters). Results are similar with
MSE loss. We use Kaiming initialization for weight matrices and a small positive constant initialization for
the biases. A batch size of 512 is used throughout, and the data set is shuffled over epochs. Training is
stopped when the improvement in the test error of is less than .005 over the preceding five epochs, or after
500 epochs. All computations are run on a mix of inexpensive, consumer-grade graphics processing units
(GPUs), and all experiments described in this section can be run in a few GPU-days. We repeat all analyses
over ten pseudorandom number generator seeds, with both the data being generated differently, and different
randomness in the fitting (e.g. the shuffling over minibatches). In addition to the average, we shade the
region enclosed by ±1.96 standard devations, which can be interpreted as a 95% confidence interval.

5.2 Results

Our experimental evidence consists of assessing how expressiveness of fitted elements of Gd(R, µ) depends on
µ. If expressiveness, quantified as performance on a randomly-generated problem instance, is not substan-
tially increased for progressively greater µ, then a conclusion that holds forMd(R) materially also holds for
Gd. As our expressiveness measure, we have two different metrics:

1. err(R, µ): the empirical L∞ error of a DNN ∈ Gd(R, µ) optimized to model x 7→ x(1)

2. relerr(R, µ): the empirical L∞ error of a DNN ∈ Gd(R, µ) optimized to model x 7→ x(1) − f⋆
R(x)

err(R, µ) measures directly the approximation error, and finding that it falls reliably with µ for each R
would be strong evidence thatMd(R) is an inadequate function class, since error can be reduced by stepping
outside of it. This is not what we see.

relerr(R, µ) is an indirect error measure that is necessary because although our fitting does not find a
good optimum does not mean that a superior procedure could not. This measure isolates some of the
difficulties that a standard stochastic gradient descent (SGD) procedure might have in modelling max pooling
operations.

We focus on µ starting at 1, because this corresponds to the width of f⋆
R.2 Universal approximation theorems

(UATs) ensure that that there is a network that achieves arbitrarily low error as µ ↑ ∞. However, like our
2Note however that there are non-width reasons that, even for µ = 1, Md(R) ⊊ Gd(R, 1). One is that Gd(R, µ) allows

intercepts in the linear layers, despite not being present in f⋆
R (cf. Appendix E). Gd(R, µ) also imposes no low-rank structure
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(a) err({0, 1, d − 2, d − 1}, µ)
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(b) err({d}, µ)
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(c) relerr({0, 1, d − 2, d − 1}, µ)

Figure 2: Fitting error and model size in d = 9 for several R. d is the problem dimension. err and relerr
are described in subsection 5.2 and capture, respectively the empirical error of directly fitting the max
function, and the empirical error of fitting the max function minus f⋆

R (the optimal estimator in Md(R)),
given general networks with width proportional to µ. Plotted here are error measures as a function of
µ ∈ {1, 2, . . . , 8}. Test errors are in blue, train in black. Green shading gives a 95% confidence interval for
test error over 10 pseudorandom number generator seeds

SGD analysis, UATs make make no guarantees about fitting. Thus, we really have little guidance about how
high of a µ could be required. We present µ as large as 8, based on GPU memory considerations.

Figure 2 introduces our main experimental result: fitting error does not reliably fall as µ rises. Figure 2(a)
hints at the difficulty of SGD fitting for err – with R = {0, 1, 7, 8} in d = 9 a criterion of 0.01235 (= 1/d2

cf. Equation 9) is achievable at µ = 1, however no µ comes near this value. We further examine this trend in
Figure 2(b), where in fact zero error is attainable, however the observed error is little improved. It appears
that a standard SGD procedure has trouble even achieving dist(R). Thus, predicting x(1)−f⋆

R(x) is plausibly
easier than predicting x(1) alone. This is why in Figure 2(c) we examine relerr(R, µ). Here as well, we see
practically no reduction in error with larger µ.

An estimator that achieves an relerr(R, µ), in turn implies a realizable err(R, µ + 1), by adding f⋆
R to

both sides. Thus, we take Figure 2(c) to be strong evidence that more expressiveness does not practically
enable lower error in approximating x(1).

Figure 3 shows the same pattern of incremental width not being effectively utilized to reduce error across
model sizes. This figure focuses on relerr with d = 10 at R = {0, 1, d − 1}, {0, 1, d − 2, d − 1}, and
{0, 1, 2, 3, . . . , d− 1}.

This analysis shows that greater width does not seem to decrease approximation error. From this, we
conclude that although our main results are proven only forMd(R), empirically they translate well to more
general and powerful function classes within the space of all purely feedforward networks.

5.3 The complexity of Md(R)

Equation 6 and Equation 10 represent quite disparate orders of estimation error. This surprising dispersion
is better understood by appreciating just how many different estimators Md(R) covers for different R.

The complexity of Md({0, 1, 2, . . . , d − 1}) is high, whilst elements of Md({0, 1, d − 1}) can be simple.
Figure 4 demonstrates this by plotting the number of parameters in a deep neural network representation of
an R-estimator (described in Appendix E).

on the weight matrices, despite a straightforward representation of the theoretical weights as the outer product of matrices
roughly one quarter as large (via the quadrupling of layer sizes implied by Equation 2). The larger is the class of models that
does not substantially reduce error, the more conservative are our experimental findings.
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Figure 3: Fitting error and model size in d = 10. relerr is described in subsection 5.2 and captures
the empirical error of fitting the max function minus our estimator f⋆

R, given general networks with width
proportional to µ. Plotted here are error measures as a function of µ ∈ {1, 2, . . . , 8}. Test errors are in blue,
train in black. Green shading gives a 95% confidence interval for test error over 10 pseudorandom number
generator seeds.
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(a) Parameter count for R ordered by size, then lex-
icographically within sizes. Different |R| are denoted
with differing background colors.
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as in Figure 4(a).

Figure 4: Model size and error in d = 12

Figure 4(a) relates the parameter counts to R. This ranges from less than 3500 parameters for R = {0, 1, 2},
to nearly 50 million for R = {0, 1, . . . , d−1}. Figure 4(b) further relates the model size to the L∞ error bound
computed in Appendix D to convey a sense of how many parameters are needed to achieve a given error.
In both plots, we group models by |R|, indicated by color. These figures demonstrate that the complexity
of approximations can vary widely in the complexity (as quantified by the number of parameters), and also
accuracy, indeed with there being better and worse ways to allocate parameters through a network.

6 Conclusion

Motivated by a marked trend in the design of computer vision architectures, we have posed and answered
the question: can max pooling be replaced by linear mappings composed with ReLU activations? And when
would doing so give a model that is considerably different?

To do this, we first showed why distance in intermediate feature space is the correct notion of comparison.
Next, we established a simple baseline: max pooling with kernel size of d can be computed by a block

9
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of log2(d) depth and moderate width. We next introduced subpool max averages as a tractable class of
approximators, and proved that the max function in d dimensions cannot be written as the linear combination
of subpool max averages of order < d, though the error can be made as low as 1/2d. By establishing
experimentally that the class of subpool max averages was not significanly less expressive than more general
function classes, we extended our analysis to wider networks not constrained to have a fixed weight pattern.
As a byproduct of this analysis, we are able to also visualize the complexity of all approximators.

In future, we hope to further examine practical implications of this analysis, establishing experimentally
that there me be some non-accuracy reasons to prefer max pooling, such as adversarial robustness. Some
preliminary evidence on these conjectures is presented in subsection F.1.
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