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Abstract
Mixture-of-experts (MoE) is gaining increas-001
ing attention due to its unique properties and002
remarkable performance, especially for lan-003
guage tasks. By sparsely activating a subset004
of parameters for each token, MoE architec-005
ture could increase the model size without sac-006
rificing computational efficiency, achieving a007
better trade-off between performance and train-008
ing costs. However, the underlying mechanism009
of MoE still lacks further exploration, and its010
modularization degree remains questionable.011
In this paper, we make an initial attempt to012
understand the inner workings of MoE-based013
large language models. Concretely, we compre-014
hensively study the parametric and behavioral015
features of three recent MoE-based models and016
reveal some intriguing observations, including017
(1) Neurons act like fine-grained experts. (2)018
The router of MoE usually selects experts with019
larger output norms. (3) The expert diversity020
increases as the layer increases, while the last021
layer is an outlier. Based on the observations,022
we also provide suggestions for a broad spec-023
trum of MoE practitioners, such as router de-024
sign and expert allocation. We hope this work025
could shed light on future research on the MoE026
framework and other modular architectures.027

1 Introduction028

The advent of Large Language Models (LLMs) rev-029

olutionized the field of Natural Language Process-030

ing. LLMs researchers are continually pushing the031

boundaries of Language Models by scaling up both032

model size and the column of training data, sig-033

nificantly enhancing the capabilities of these mod-034

els. This escalation in training cost and complexity035

necessitates innovative solutions to better balance036

between pre-training efficiency and model perfor-037

mance. One emerging solution to this end is the038

Mixture-of-Experts (MoE) (Shazeer et al., 2017)039

architecture. The MoE framework facilitates the040

computational efficiency of the model by dynami-041

cally routing inputs to a subset of experts, allowing042

for substantial model scaling while maintaining 043

training costs and leading to numerous influential 044

advancements in the field (Reid et al., 2024; Jiang 045

et al., 2024; Dai et al., 2024; Team, 2024). 046

Beyond efficiency, another attractive trait of 047

MoE architecture is its modular design and learn- 048

ing paradigm. This modularization could enable 049

more flexible and potentially more generalizable 050

handling of diverse data and tasks within a single 051

MoE model by assigning them to more special- 052

ized experts. Despite its widespread adoption, it 053

remains an open question whether existing MoE- 054

based LLMs truly leverage this modularity in their 055

knowledge distribution or model behaviors across 056

different experts. In other words, is MoE a simple 057

ensemble of homogeneous experts or a modular 058

combination of heterogeneous experts? Answering 059

the above question comprehensively is non-trivial. 060

Therefore, in this paper, we take the first step by in- 061

vestigating three recent MoE-based LLMs (Mixtral 062

8x7B (Jiang et al., 2024), DeepSeekMoE (Dai et al., 063

2024), and Grok-11) from two critical perspectives: 064

model parameters and model behaviors. We aim to 065

explore common and distinct features and behav- 066

iors among different experts, further shedding light 067

on the inner mechanisms of MoE-based models. 068

Specifically, we examine the correlation between 069

experts’ parameters, gates, and their output features 070

given text inputs. Before diving into deeper anal- 071

yses, we briefly summarize some of our empirical 072

conclusions (detailed in Sec 6) and observations: 073

• Neurons in the Feed-Forward Networks (FFN) 074

layer are fine-grained experts. Both the gate 075

embedding and the gate projection matrix for 076

experts perform the choosing operation: the 077

former determines the expert selection while 078

the latter controls the neuron activation. Mean- 079

while, we observe that their similar heat maps 080

exhibit correlation, revealing that from the gate 081

1https://github.com/xai-org/grok-1
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projection perspective, the expert neurons can082

probably be regarded as ’tiny’ experts with one083

neuron.084

• Increasing the number of experts in deeper lay-085

ers but reducing it in the last layer. We observe086

that the similarities between experts’ parameters087

and outputs continuously decrease with the in-088

crease in layer number while suddenly increas-089

ing in the last layer.090

• Employing the norm as the routing mecha-091

nism is a reasonable choice. For Mixtral and092

DeepSeek models, we find that the gate usually093

selects experts with larger output norms.094

• When analyzing the correlation between experts,095

measuring the similarities between weight ma-096

trices is, to some extent, equivalent to measur-097

ing the averaged similarities of expert outputs.098

• Compared with some special initialization099

schemes, training MoE from scratch is more100

likely to facilitate expert diversity. This stems101

from the observations that there exist stronger102

correlations (e.g., higher similarities) between103

Mixtral experts’ parameters and behaviors,104

while DeepSeek and Grok, which are trained105

from scratch, do not show such correlations.106

2 Preliminary: Mixture-of-Experts107

Mixture-of-Experts models enhance transformers108

by replacing the original feed-forward networks109

(FFNs) with N parallel FFNs combined with a110

router. These N FFNs are also called experts111

and denoted as En for n ∈ [1, N ]. The router112

g(·;G, k), parameterized by G and an integer k,113

assigns the input x to a score distribution over the114

experts, g(x;G, k) ∈ RN . Typically, the router115

g consists of a simple linear layer followed by a116

softmax and a Top-k function.117

Given x ∈ Rh, the output y ∈ Rh is the118

weighted sum of the outputs from all experts:119

y =
∑
n∈N

gn(x;G, k)En(x)120

When k for Top-k is smaller than N , only a sub-121

set of experts is involved in the computation. This122

is known as Sparse Mixture-of-Experts (SMoE).123

The experts of our chosen models follow the124

style in LLaMA (Touvron et al., 2023), which con-125

sists of three linear layers and operates as:126

Expert(x) = Wdown(Wupx⊙Act(Wgatex)) (1)127

where ⊙ denotes element-wise multiplication and128

the activation function is abbreviated as Act. Given129

the three weight matrices Wup,Wgate ∈ Rdmid×dhid 130

and Wdown ∈ Rdhid×dmid , we define a neuron as 131

the combination of the row vectors Wup[i, :] and 132

Wgate[i, :], along with the column vector Wdown[:, i]. 133

Thus, each expert contains dmid neurons. 134

3 Overview 135

Our experiments are conducted on several open- 136

source MoE models, namely Mixtral 8x7B, 137

DeepSeekMoE, and Grok-1, which demonstrate 138

impressive performance across various domains. 139

To further study the similarities and differences be- 140

tween a standard transformer and an MoE model, 141

we include Mistral 7B (Jiang et al., 2023) as one 142

of our investigated models. Some basic informa- 143

tion about these models and the abbreviations of 144

the model names used throughout our paper are 145

summarized in Tab 1. The analysis is divided into 146

two sections, focusing on the model parameters 147

(static) and the model behaviors with text inputted 148

(dynamic). Unless otherwise stated, cosine sim- 149

ilarity is employed for all experiments involving 150

similarity measurement. 151

4 Analysis of Static Parameters 152

From a high-level perspective, the knowledge a 153

model learns is encoded in its parameters. Hence, 154

investigating weight matrices is a nartural way to 155

examine a model. In this section, we study the 156

correlation between parameters of: (i) MoE experts 157

(and FFNs for Mistral), (ii) gate embeddings, which 158

are two vital components of MoE. 159

4.1 Weight Matrices of Experts 160

MoE models replace FFNs in standard transformers 161

with experts. Thus, following (Geva et al., 2020; 162

Qiu et al., 2024), the projection matrices of the 163

experts can be regarded as keys and values: the col- 164

umn vectors of Wdown represent the possible out- 165

puts; the row vectors of Wup produce the weights 166

for each possible output; the row vectors of Wgate 167

decide whether to activate the corresponding neu- 168

rons. Therefore, investigating the weight matrices 169

is a straightforward way to understand the experts’ 170

behaviors. To study from different views, we ana- 171

lyze both the matrix and the neuron levels. 172

4.1.1 Matrix-level 173

In this part, we explore the similarity of weight 174

matrices between all experts in every layer for the 175

three projection matrices Wup, Wgate, and Wdown. 176
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Model Abbreviation # MoE layers # experts Topk Hidden size Intermidate size
(dhid) (dmid)

Mixtral 8x7B Mixtral 32 8 2 4096 14336
Mistral 7B Mistral 32 N/A N/A 4096 14336
DeepSeekMoE DeepSeek 27 64 routed + 2 shared 6 2048 1408
Grok-1 Grok 64 8 2 6144 32768

Table 1: Basic information of models used for analysis. The abbreviations are used throughout our paper.

The similarity is calculated based on the flattened177

matrices vectors and illustrated in Fig. 1. We178

denote “F” as the Mistral FFN and “SE” as the179

DeepSeek shared expert in all the figures. Note180

that the figures of different models do not share the181

same color-bar.182

Common2. The heat maps of the three matri-183

ces show similar patterns. Since the weight matri-184

ces are large, directly flattening them gives high-185

dimension vectors. We employ principal compo-186

nents analysis (PCA) to convert the flattened vec-187

tors to two-dimensional space. The resulting fig-188

ures show that the expert distribution across the189

three weight matrices is also generally alike for190

Mixtral and DeepSeek. More details are presented191

in Append A.1.192

Mixtral and Mistral. The cosine similarities be-193

tween Mixtral experts (See) mostly lie between 0.2194

to 0.4, while the similarities between the experts195

and the Mistral FFN (Sef ) are about 0.6. Yet the196

values tend to be lower for deep (22th-30th) layers.197

A “dark cross” can be observed in some layers and198

corresponds with the outliers in the 2D space pro-199

jected by PCA, indicating that the corresponding200

expert is relatively distinct from the others. Inter-201

estingly, this cross appears in Expert 3 the most202

frequently, which suggests that this expert might203

have learned some special attributes. It is worth204

noting that the cross usually pass through the entire205

heat map, including the last row of FFN. Hence,206

when a Mixtral expert differs from other experts, it207

is also less similar to the FFN of Mistral.208

DeepSeek and Grok. Since the shared experts209

of DeepSeek are implemented as a single MLP210

block with hidden size larger than the routed ex-211

perts, their flattened vectors cannot be directly com-212

pared and thus we omit the shared experts for this213

experiment. Fig. 1 demonstrates that the similar-214

ities between the DeepSeek routed and Grok ex-215

perts are close to zero. While Mixtral’s training216

method remains unrevealed, DeepSeek and Grok217

are known to be trained from scratch. This experi-218

ment shows that Mixtral might be trained by some219

special schemes, leading to less diverse experts220

training from scratch. (Wu et al., 2022)221

2The observations shared by all of our investigated models
are written in the Common part.

4.1.2 Neuron-level 222

In Sec 4.1, we measure the parameter similarity 223

between experts in matrix level. However, the 224

calculation of cosine similarity is position-related. 225

Assume that the neurons of two experts are sim- 226

ilar but in different order, the similarity of their 227

weight matrices will be much lower than expected. 228

To address this, we propose two approaches to in- 229

vestigate the correlation in neuron level: averag- 230

ing and reordering. Averaging simply averages 231

the rows (for Wup and Wgate) or the columns (for 232

Wdown) of the weight matrices and then calculates 233

the similarity of the resulting vectors across experts. 234

For reordering, we apply the Jonker-Volgenant al- 235

gorithm, typically used for solving linear assign- 236

ment problems, to find the optimal order of neu- 237

rons to maximize the cosine similarity of the two 238

experts. We describe the result of the reordering 239

method below and leave the averaging details in 240

Append B. Additionally, the projection of neurons 241

in low-dimensional spaces using PCA can be found 242

in Append A.2. Due to the heavy computation, 243

we only pick several layers for reordering calcu- 244

lation. Note that the matrices are reordered sepa- 245

rately. As described in Tab. 2, the order of Mixtral 246

neurons hardly changes (large τ ) and hence almost 247

unchanged similarities. Despite the vast similarity 248

growth for DeepSeek and Grok, their overall values 249

are still about 1e-2. 250

Model Order of Growth τ

Mixtral 1e-3 0.75
DeepSeek 100 -0.0002
Grok 100 -0.0003

Table 2: Reordering results of expert neurons. τ denotes
the Kendall’s tau, whose value increases when two se-
quences exist strong agreement.

4.2 Gate Embedding 251

The gate in the chosen MoE models is implemented 252

as a linear layer with embedding size Rnexp×Rdhid , 253

where nexp represents the number of experts. The 254

gate is another main component of MoE besides 255

the experts, and thus, it is crucial to study its at- 256

tributes to better understand how MoE works. In 257

addition, since each row vector in its embedding 258

matrix determines the corresponding expert selec- 259

tion, some correspondence may exist between the 260
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Figure 1: Matrix-level similarity heat maps of expert weight matrices. Each layer contains three heat maps,
corresponding to Wup, Wgate, and Wdown, respectively. The tick numbers refer to expert indices.

embedding matrix and the expert weights.261

To investigate this, we measure the similarities262

between the gate embedding vectors. For computa-263

tion simplicity, we compare them with the averaged264

heat maps (instead of the reordering results) in Ap-265

pend B, and the qualitative analyses are detailed in266

Append C. Specifically, we found that, for all three267

MoE models, the patterns in the heat maps of gate268

vectors and expert neurons in Wgate are partially269

alike in some layers (i.e., the same coordinates in270

the two heat maps exhibit relatively higher/lower271

values simultaneously).272

Therefore, we further conduct a quantitative anal-273

ysis of their similarity values. In particular, we274

perform linear regression on the paired similarity275

dataset (X,Y ), where X and Y denote the simi-276

larities of the gate vectors and one of the weight277

matrices Wup, Wgate, Wdown, respectively. Tab 3278

describes the square of Pearson correlation coef-279

ficients averaged over all layers (R2
avg) and Tab 4280

in the appendix lists the Pearson correlation co-281

efficient (R) of every layer. As shown in Tab 3,282

the correlation between the similarities of the gate283

vectors and of Wgate is significantly stronger than284

Wup and Wdwon. For the (X,Ygate) pair, although285

Mixtral and DeepSeek have similar R2
avg, R2 of286

Mixtral fluctuates between 0.1 and 0.7 while R2287

of DeepSeek stays near to 0.4. Furthermore, we288

can see from Tab 4 that (X,Ygate) of both Mixtral289

and DeepSeek show positive correlations, whereas290

(X,Ygate) of Grok turn to negative correlations291

starting from intermediate (>25th) layers. We note292

that the function of the gate embedding and Wgate293

is alike: the former determines the expert selec-294

tion while the latter is responsible for choosing295

neurons to activate. Therefore, they may learn sim- 296

ilar knowledge to perform the choosing operation 297

reasonably, hence the observed correlation. 298

Model (X,Yup) (X,Ygate) (X,Ydown)

Mixtral 0.06 0.33 0.07
DeepSeek 0.00 0.40 0.00
Grok 0.04 0.15 0.04

Table 3: Square of Pearson correlation coefficients aver-
aged over all layers (R2

avg) for three paired dataset.

4.3 Summary 299

Here, we conclude the inspiring observations in the 300

analysis of static parameters: (1) Mixtral might con- 301

tain expert(s) with special attributes. Dark crosses 302

can be frequently found in Fig. 1. (2) The similari- 303

ties of DeepSeek and Grok expert weight matrices 304

are generally lower than those of Mixtral. As men- 305

tioned in Sec 4.1.1, the matrix-level similarities 306

of DeepSeek and Grok experts are usually zero, 307

whereas the Mixtral expert similarities reach about 308

0.3 on average. (3) Different experts’ weights are 309

less similar in deep layers. This can be observed 310

from the Mixtral heat maps in Fig. 1. (4) Wup, 311

Wdown, and Wgate, share similar patterns in their 312

similarity heat maps (Fig. 1). (5) The similarities 313

of the gate embeddings and of Wgate show either 314

positive or negative association. Tab 3 depicts the 315

R2
avg values, where the gate embeddings and Wgate 316

pair achieve the highest for all three models. 317

5 Analysis of Dynamic Behaviours 318

The previous experiments examine the MoE mod- 319

els via their parameters, which do not involve any 320

input. In this section, we feed text sequences into 321
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Figure 2: Similarity heat maps of expert output features using the short sequence. The top k experts for each token
are shown on top of each heat map. Each number refers to an expert index.
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Figure 3: Averaged similarity heat maps of expert output features using the long sequence, plotted along with the
matrix-level similarity heat maps. Each number refers to an expert index.

the MoE models to further study their actual be-322

haviours given various inputs. Specifically, we323

analyze the outputs of the experts and gates.324

To this end, two forward passes are needed. In325

the first pass, an input x is fed into the model for326

inference, and the output is stored for every layer.327

Then, the stored hidden state of the i-th layer is the328

input of the (i+ 1)-th layer in the second pass, ex-329

cept for the first layer, which still employs x as the330

input. During the second pass, we modify the gate331

to route the input to all experts (i.e., Topk=ALL)332

and record their outputs or intermediate states for333

analysis. Two different inputs are adopted, one con-334

tains 6 to 7 tokens3 while another contains 1100335

tokens (the number depends on the tokenizer).336

5.1 Outputs of Experts337

Since the experts, ideally, are learned to special-338

ize in different aspects, it is natural to question the339

3To be specific, the tokens are <s>, As, an, open, source,
alternative, to, where the start of the sentence symbol <s>
does not applicable for the Grok tokenizer.

similarities and differences between the outputs 340

of selected and non-selected experts. In this ex- 341

periment, we measure the correlation between the 342

output feature vectors of experts using both input 343

sequences. We plot the similarity heat maps for 344

three tokens in the short sequence (Fig. 2) and the 345

averaged heat map across all tokens in the long 346

sequence (Fig. 3). Since the similarities have to be 347

averaged for the long sequence, we employ angular 348

similarity instead of cosine similarity for measure- 349

ment so that the values range from 0 to 1: 350

angular_sim = 1− arccos (cosine_sim)

π
. (2) 351

For observation convenience, the averaged simi- 352

larity heat maps are plotted with the neuron-level 353

similarity graphs of the expert weight matrices. 354

Mixtral and Mistral. The graphs of the short se- 355

quence show that the outputs from chosen experts 356

tend to be more similar, which might be because 357

their norms are generally larger. We will further dis- 358

cuss this in Sec 5.2. The overall similarities are rel- 359
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atively low in the deep (22nd-27th) layers, whereas360

many values significantly grow to greater than 0.8361

in the last two layers. Furthermore, having multiple362

dark crosses in a figure is common, while the ex-363

perts corresponding to the dark crosses can be more364

similar to the Mistral FFN (i.e., bright color in the365

last row). For the long sequence, the averaged heat366

maps have patterns similar to those of the neuron-367

level similarity graphs, including the dark crosses.368

The similarities also get lower with layer depth369

increasing, excepting the last layer. In addition,370

we have See > Sef for both inputs. Most of the371

aforementioned observations are consistent with372

the previous analyses of static parameters (Sec 4.3),373

implying that measuring the similarity of weights,374

in some aspects, is equivalent to measuring the375

average similarity of outputs.376

DeepSeek. Given the short input, most similar-377

ities are around zero, while the values in the last378

layer are significantly larger. Again, the similari-379

ties between experts chosen by the gate are likely380

to be higher, yet the difference emerges much less381

frequently than Mixtral. The averaged similarities382

of the long sequence also approach zero. Moreover,383

the amount of “small rectangular” with relatively384

light color in the graphs decreases when the layer385

gets deeper (except for the last layer), meaning that386

the averaged similarities are gradually lower.387

Grok. Surprisingly, the similarities between the388

output features maintain a high level for all the389

tokens in the short sequence, indicating the ex-390

perts are similar to each other in terms of behaviors.391

However, the similarities of their weight matrices392

are mostly zeros (Sec 4.1.1). We speculate that393

this is because the size of each Grok expert is rela-394

tively large. Each of them can learn comprehensive395

knowledge and behave alike despite distinct param-396

eters. When averaging the similarities of the long397

input, some of the resulting averaged heat maps398

show similar patterns to the Wgate figures. This399

relationship aligns with Mixtral’s observation.400

5.2 Norms of Expert Outputs and Gate Scores401

In Sec 5.1, we find that the outputs from chosen ex-402

perts tend to be more alike. To investigate possible403

reasons for this observation, we study the relation-404

ship between the experts’ L2 norm and the gate405

decision in this experiment. We employ the short406

sequence to be the input, and the calculated norms,407

along with the gate scores, are plotted in Fig. 4.408

Mixtral. We found that the two experts chosen409

by the gate usually output feature vectors with the410

highest norms, which reveals that the norm might 411

be one of the key factors for gate decisions. This 412

finding agrees with the router’s design in Com- 413

peteSMoE (Pham et al., 2024), which selects ex- 414

perts based on their output norms. It can also be 415

regarded as an explanation for why the outputs 416

of the chosen Mixtral and DeepSeek experts tend 417

to be more alike (Sec 5.1). In Append D, we re- 418

peat this experiment using the long input, and the 419

statistical results further demonstrate the “higher 420

norm, higher score” observation. In Fig. 4, we can 421

also see that the gate scores assigned for the top-1 422

experts are usually much higher than the others, 423

including the second place. This demonstrates that 424

the gate is learned to strengthen the confidence of 425

decision during the training process. While the 426

chosen experts output larger norms, the gate scores 427

are not strictly proportional to the norms for the 428

remaining experts. For instance, the expert with the 429

lowest score might not output the smallest norm. 430

On the other hand, the deeper the layer, the larger 431

the norm, which is similar to the growth in standard 432

models (Shleifer et al., 2021). 433

DeepSeek. In contrast to the observation about 434

Mixtral experts, the gate decision seems to depend 435

less obviously on the output norms of DeepSeek 436

experts. However, the top 1 experts often score 437

much higher than the remaining candidates. The 438

magnitude of norms is proportional to the depth, 439

yet the increment is smaller than Mixtral. In the 440

last layer, the variance of norms becomes greater. 441

Grok. While the scores of the Top-1 experts are 442

higher than the others, no correspondence between 443

the norms and the gate scores is observed. One 444

of the possible reasons might be the relatively low 445

activation ratios of GeLU (see Sec 5.3) result in 446

weaker dependence on the norm for the gate deci- 447

sions. Besides, unlike Mixtral and DeepSeek, the 448

magnitude of the norms hardly changes across the 449

depth, and some of the norm values can be smaller 450

than 1, which is rare in the other two models. 451

5.3 Intermediate States of Experts 452

While Sec 5.1 has studied the final outputs of ex- 453

perts, we continue to analyze their intermediate 454

outputs here to examine the inner states of experts. 455

Given an input x, the intermediate state of an ex- 456

pert refers to the output of act(Wgatex), which is a 457

dhid dimensional vector. These intermediate vec- 458

tors control the activation of neurons so we simply 459

record them for analysis. The short sequence is 460

used as the input. Mixtral, Mistral, and DeepSeek 461
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Figure 4: The experts’ L2 norms and the gate scores of the short sequence. Each token’s top k experts are shown on
top of each heat map. Each number in the horizontal axis refers to an expert index.
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Figure 5: Intermediate state values of Mixtral experts.
The top k experts are shown on top of each heat map.
Each number in the vertical axis refers to an expert
index while the horizontal axis represents the number
of neurons.

utilize SiLU as the activation function while Grok462

adopts GeLU. Fig. 5 depicts the magnitude of the463

vectors. Due to the page limit, we only plot the464

results of Mixtral for three tokens.465

Common. There are some horizontal lines in466

each figure, which means there is an ‘out-liner’467

expert with the highest or lowest activation values.468

Nonetheless, there is no clear relation between such469

phenomena and gate decisions.470

Mixtral and Mistral. For a single token, we471

found that the absolute activation value of 99.6%472

elements in each expert are greater than 0.001 after473

SiLU activation function on average. Such large ra-474

tio indicates that the vast majority of neurons in an475

expert are activated. In Fig. 5, some vertical lines476

across all experts are commonly found, meaning477

that the Wgate matrices of different experts assign478

similar activation values to neurons with the same479

indices. In addition, the magnitude of the inter-480

mediate states grows along with the layer depth,481

similar to the observation in Sec 5.1.482

DeepSeek. On average, each expert’s absolute483

activation value of 99.7% neurons reaches beyond 484

0.001 after SiLU. Vertical lines rarely exist in the 485

DeepSeek model. Similarly, the elements in the 486

intermediate state vectors get larger as the layer 487

goes deeper. 488

Grok. Employing GeLU as the activation func- 489

tion, only 25.3% neurons per Grok expert attain an 490

absolute activation value greater than 0.001. The 491

activation values are generally smaller than Mixtral 492

and DeepSeek, Li et al. (2022); Song et al. (2024a) 493

suggest such difference largely comes from differ- 494

ent activation functions. Interestingly, Song et al. 495

(2024b) further utilize the sparsity in experts in 496

SMoE and achieve SOTA performance when acti- 497

vate the same number of parameters. 498

5.4 Summary 499

The observations are concluded below: (1) The out- 500

puts of Mixtral and DeepSeek experts in deep/last 501

layers are less/much alike. This can be observed 502

from the heat maps for both the short (Fig. 2) and 503

long (Fig. 3) inputs. (2) The averaged heat maps of 504

expert outputs have similar patterns to the neuron- 505

level similarity graphs (Fig. 3), implying that mea- 506

suring the similarity of weights, in some aspects, is 507

equivalent to measuring the average similarity of 508

outputs. (3) The outputs of Grok experts are highly 509

similar (Fig. 2), which may be due to their large 510

sizes. (4) For both Mixtral and DeepSeek, experts 511

that output feature vectors with larger norms are 512

likely to achieve higher gate scores, as shown in 513

Fig. 4. We further verified this observation in Fig. 4 514

in the appendix. (5) For Mixtral, neurons of dif- 515

ferent experts positioned at the same indices have 516

similar activation values. In Fig. 5, some vertical 517

lines can be found in the Mixtral heat maps. 518
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6 Discussion519

Based on our analyses, we provide some sugges-520

tions for MoE models in various aspects:521

• Neuron-level experts: Intuitively, the gate em-522

bedding determines the expert selection while523

Wgate is responsible for choosing neurons to524

activate. Meanwhile, we found that the simi-525

larities of the gate embedding and Wgate show526

association. This implies that the neurons might527

be some more fine-grained experts. Therefore,528

operations on experts, such as division, con-529

struction, and composition, should be further530

studied at the micro-level.531

• Model architecture: Since the similarities be-532

tween experts tend to be relatively low/high in533

deep/last layers, one can consider increasing the534

number of experts in deep layers while reducing535

it in the last layers. In addition, the gate is found536

to select experts with larger output norms fre-537

quently, so employing the norm as the routing538

mechanism is reasonable (Pham et al. (2024)539

have empirically proven the effectiveness).540

• Correlation measurement: When analyzing541

the correlation between experts, measuring the542

similarities between their weight matrices gives543

partly equivalent results to measuring the simi-544

larities of their output feature vectors over con-545

siderable tokens. Hence, measuring the weight546

matrices can obtain an overview while inspect-547

ing the outputs of various tokens individually,548

which benefits fine-grained investigation.549

• Training scheme: The Mixtral training method550

has not been publicly announced. However, we551

observed some attributes shared by Mixtral ex-552

perts (e.g., relatively high similarities of weight553

matrices), and certain relationship between ex-554

perts and the FFN of Mistral (e.g., similar inter-555

mediate states). Therefore, we conjecture that556

the Mixtral model is trained by some special557

initialization schemes other than from scratch,558

e.g., upcycling (Komatsuzaki et al., 2022) from559

Mistral, that is, copying all experts from the560

FFN. On the contrary, the experts of DeepSeek561

and Grok, who are known to be trained from562

scratch, show a weaker correlation than Mixtral563

experts in our experiments. Hence, we specu-564

late that compared with some initialization ap-565

proaches, training a MoE model from scratch566

shows stronger potential to facilitate the diversi-567

fication of experts.568

7 Related Work 569

Most existing works analyze MoE from the router’s 570

perspective by observing expert selections. Early 571

works have observed the unstable choices in the 572

router (Zuo et al., 2021; Chi et al., 2022; Dai 573

et al., 2022). Recent works find the standard router 574

doesn’t show clear specialization in the domain 575

level (Jiang et al., 2024; Dai et al., 2024) and mainly 576

routes based on token ID instead of high-level se- 577

mantics (Xue et al., 2024). Some works investigate 578

the expert’s similarity (Wu et al., 2022), discover- 579

ing and utilizing redundancies in experts for effi- 580

cient inference (Li et al., 2023; Lu et al., 2024). Liu 581

et al. (2023); Qiu et al. (2023) notice the connection 582

between routing connection and expert computa- 583

tion and utilize the average of the experts’ first 584

layer weights to guide routing. Pham et al. (2024) 585

proposes adding the expert’s output norm as a su- 586

pervision signal for routing training. These works 587

provide insights into MoE from one or two view- 588

points, while this work offers a systematic analysis 589

and comparison. 590

8 Conclusion 591

In this paper, we initially attempt to investigate the 592

inner working mechanisms of MoEs by studying 593

the parameters and outputs of three different MoE 594

models. We conclude the empirical observations 595

and propose some practical suggestions for vari- 596

ous aspects. It is still too early to answer whether 597

MoEs do learn heterogeneous experts. Yet some of 598

our experiments suggest that specific architecture 599

designs (e.g., the number of experts) and training 600

frameworks might be more beneficial to expert spe- 601

cialization. We hope this work can provide some in- 602

spiring insights and serve as a valuable foundation 603

for future research about MoE and other modular 604

architectures. 605

9 Limitations 606

Our analysis is mainly based on observation and 607

lacks intervention for further validation. 608

References 609

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, 610
Shuming Ma, Barun Patra, Saksham Singhal, Payal 611
Bajaj, Xia Song, Xian-Ling Mao, et al. 2022. On the 612
representation collapse of sparse mixture of experts. 613
Advances in Neural Information Processing Systems, 614
35:34600–34613. 615

8



Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,616
Huazuo Gao, Deli Chen, Jiashi Li, Wangding617
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-618
moe: Towards ultimate expert specialization in619
mixture-of-experts language models. arXiv preprint620
arXiv:2401.06066.621

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang622
Sui, Baobao Chang, and Furu Wei. 2022. Stablemoe:623
Stable routing strategy for mixture of experts. arXiv624
preprint arXiv:2204.08396.625

Mor Geva, Roei Schuster, Jonathan Berant, and Omer626
Levy. 2020. Transformer feed-forward layers are key-627
value memories. arXiv preprint arXiv:2012.14913.628

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-629
sch, Chris Bamford, Devendra Singh Chaplot, Diego630
de las Casas, Florian Bressand, Gianna Lengyel, Guil-631
laume Lample, Lucile Saulnier, et al. 2023. Mistral632
7b. arXiv preprint arXiv:2310.06825.633

Albert Q Jiang, Alexandre Sablayrolles, Antoine634
Roux, Arthur Mensch, Blanche Savary, Chris Bam-635
ford, Devendra Singh Chaplot, Diego de las Casas,636
Emma Bou Hanna, Florian Bressand, et al. 2024.637
Mixtral of experts. arXiv preprint arXiv:2401.04088.638

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,639
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,640
Yi Tay, Mostafa Dehghani, and Neil Houlsby.641
2022. Sparse upcycling: Training mixture-of-642
experts from dense checkpoints. arXiv preprint643
arXiv:2212.05055.644

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung,645
Yu Cheng, Mohit Bansal, and Tianlong Chen. 2023.646
Merge, then compress: Demystify efficient smoe647
with hints from its routing policy. arXiv preprint648
arXiv:2310.01334.649

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang650
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Fe-651
lix Chern, Felix Yu, Ruiqi Guo, et al. 2022. The652
lazy neuron phenomenon: On emergence of ac-653
tivation sparsity in transformers. arXiv preprint654
arXiv:2210.06313.655

Zeyu Leo Liu, Tim Dettmers, Xi Victoria Lin, Veselin656
Stoyanov, and Xian Li. 2023. Towards a unified view657
of sparse feed-forward network in pretraining large658
language model. arXiv preprint arXiv:2305.13999.659

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan660
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.661
2024. Not all experts are equal: Efficient expert662
pruning and skipping for mixture-of-experts large663
language models. arXiv preprint arXiv:2402.14800.664

Quang Pham, Giang Do, Huy Nguyen, TrungTin665
Nguyen, Chenghao Liu, Mina Sartipi, Binh T666
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi,667
et al. 2024. Competesmoe–effective training of668
sparse mixture of experts via competition. arXiv669
preprint arXiv:2402.02526.670

Zihan Qiu, Zeyu Huang, and Jie Fu. 2023. Emergent 671
mixture-of-experts: Can dense pre-trained transform- 672
ers benefit from emergent modular structures? arXiv 673
preprint arXiv:2310.10908. 674

Zihan Qiu, Zeyu Huang, Youcheng Huang, and Jie 675
Fu. 2024. Empirical study on updating key-value 676
memories in transformer feed-forward layers. arXiv 677
preprint arXiv:2402.12233. 678

Machel Reid, Nikolay Savinov, Denis Teplyashin, 679
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste 680
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi- 681
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un- 682
locking multimodal understanding across millions of 683
tokens of context. arXiv preprint arXiv:2403.05530. 684

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 685
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 686
Dean. 2017. Outrageously large neural networks: 687
The sparsely-gated mixture-of-experts layer. arXiv 688
preprint arXiv:1701.06538. 689

Sam Shleifer, Jason Weston, and Myle Ott. 2021. Norm- 690
former: Improved transformer pretraining with extra 691
normalization. arXiv preprint arXiv:2110.09456. 692

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding 693
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu, 694
Guangli Li, Tao Yang, et al. 2024a. Prosparse: In- 695
troducing and enhancing intrinsic activation spar- 696
sity within large language models. arXiv preprint 697
arXiv:2402.13516. 698

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, 699
Li Ma, Zeyu Mi, and Haibo Chen. 2024b. Turbo 700
sparse: Achieving llm sota performance with 701
minimal activated parameters. arXiv preprint 702
arXiv:2406.05955. 703

Qwen Team. 2024. Qwen1.5-moe: Matching 7b model 704
performance with 1/3 activated parameters". 705

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 706
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 707
Baptiste Rozière, Naman Goyal, Eric Hambro, 708
Faisal Azhar, et al. 2023. Llama: Open and effi- 709
cient foundation language models. arXiv preprint 710
arXiv:2302.13971. 711

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong 712
Chen, Xiyang Dai, and Lu Yuan. 2022. Residual 713
mixture of experts. arXiv preprint arXiv:2204.09636. 714

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang- 715
wei Zheng, Wangchunshu Zhou, and Yang You. 716
2024. Openmoe: An early effort on open 717
mixture-of-experts language models. arXiv preprint 718
arXiv:2402.01739. 719

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, 720
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jian- 721
feng Gao. 2021. Taming sparsely activated trans- 722
former with stochastic experts. arXiv preprint 723
arXiv:2110.04260. 724

9

https://qwenlm.github.io/blog/qwen-moe/
https://qwenlm.github.io/blog/qwen-moe/
https://qwenlm.github.io/blog/qwen-moe/


A Projection of Expert Matrices in725

Low-dimensional Space726

A.1 Matrix-level727

To better understand the expert relationship, we728

employ principal components analysis (PCA) to729

convert the flattened vectors of weight matrices730

to two-dimensional space. The vectors are stan-731

dardized before applying PCA. Fig. 6 depicts the732

projection in 2D plane.733

Mixtral and Mistral. Similar to the observation734

in Sec 4.1.1, the figures of the three matrices are735

alike. In general, about half of the Mixtral experts736

stay close to each other and to Mistral FFN, while737

the others locate much farther away. Moreover, the738

outliers correspond with the dark crosses.739

DeepSeek. Only routed experts are considered740

due to different hidden sizes. Since several out-741

liers exist and cause the remaining data points to be742

densely gathered, we remove them using the DB-743

SCAN algorithm with ϵ = 50 and plot the rest in744

Fig. 6. It can be observed that the experts distribute745

rather densely, especially for the up matrix. The746

distribution of experts varies for three matrices, but747

the figures of up- and down-matrices are more alike748

than those of the gate matrix.749

Grok. Typically, about half of the Grok experts750

densely gather for the up and down matrices. An-751

other half turns out to be outliers although no dark752

cross is observed before. Furthermore, the outliers753

of the three matrices are partly coincided.754

A.2 Neuron-level755

To project the neurons onto a 2D/3D space, each756

row vector of Wup and Wgate, or column vector757

of Wdown, is treated as a single data point. Stan-758

dardization is then applied, following by the PCA.759

Visualization of the principle components is illus-760

trated in Fig. 7. Different colors refer to neurons of761

different experts.762

Common. The vast majority of neurons gather763

in the low dimensional space. In some of the layers,764

the distribution of neurons forms a special shape,765

such as a cross or a thick line, which appears the766

most often for Wdown, followed by Wup and finally767

Wgate. Comparing with ellipse, these shapes indi-768

cate that the neurons are relatively more similar.769

Mixtral and Mistral. The neurons of Mistral770

FFN distribute more densely than those of Mixtral771

experts. Notably, the distribution shape of neurons772

in FFN and experts are usually alike, even for the773

outliers.774

DeepSeek and Grok. The number of outliers is 775

a bit greater than Mixtral. 776

B Averaging Expert Neurons 777

To investigate the expert correlation in neuron level, 778

the averaging approach simply averages the rows 779

(for Wup and Wgate) or the columns (for Wdown) of 780

the weight matrices and then calculates the similar- 781

ity of the resulting vectors across experts. Fig. 8 782

displays the graphs. 783

Common. The heat maps of Wup and Wdown 784

are almost the same as in Section 4.1.1. Yet the 785

similarities of Wgate significantly increase. 786

Mixtral and Mistral. The dark crosses some- 787

times disappear. In the figures of Wgate, the simi- 788

larities between the experts and the Mistral FFN 789

are often lower than the ones between the experts 790

(i.e., See > Sef ), which is contrary to the previous 791

observation. This can happen if the expert neu- 792

rons in different positions are alike. For instance, 793

given three vectors f = (0, 0), e1 = (1, 0), and 794

e2 = (0, 1), the vector similarity Se1e2 is lower 795

than Se1f and Se2f . If averaging the elements, we 796

have f̄ = (0), ē1 = (0.5), and ē2 = (0.5), then 797

Se1e2 becomes the highest. 798

DeepSeek. The growth of the Wgate similarity 799

values is directly proportional to the depth of layer. 800

Gork. In the heat map of Wgate, dark crosses are 801

frequently appear in various positions. 802

C Gate Embedding 803

Since the output of each neuron determines the 804

gate decision, there may exist some relationship be- 805

tween the embedding matrix of gate and of experts. 806

To investigate this, we measure the similarities be- 807

tween the gate embedding vectors and compare 808

with the averaged heat maps in Sec 4.1.2. The qual- 809

itative analyses for the combined graphs shown in 810

Fig. 8 are detailed in this section. The table con- 811

taining the R values of each layer (Tab 4) is also 812

appended at last. 813

Mixtral. Focusing on the heat maps of gate 814

embedding, the similarities typically range from 815

0.2 to 0.4, while the values in the last layer have a 816

rather obvious gain. Moreover, dark cross is rarely 817

found. Surprisingly, the patterns in the heat maps of 818

gate embeddings and of expert neurons in Wgate are 819

partially alike in some of the layers. This implies 820

that the way a gate selects experts might be slightly 821

relevant to the way an expert activates its neurons. 822
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Figure 6: Projection of expert matrices in 2D space. Each layer contains three graphs, corresponding to Wup, Wgate,
and Wdown, respectively. For DeepSeek, the indices of the removed outliers are listed on top of each graph.
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Figure 7: Projection of expert neurons in 2D/3D space. Each layer contains three graphs, corresponding to Wup,
Wgate, and Wdown, respectively.
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Figure 8: Similarity heat maps of gate embedding (leftmost graph of each layer) along with the neuron-level
similarity heat maps using averaging method.

DeepSeek. Unlike the almost all-zero heat maps823

of Wup and Wdown, the similarities of gate neurons824

sometimes get higher than 0.4. In addition, the825

heat maps of gate embeddings and of Wgate show826

similar patterns. However, the overall similarities827

of gate embeddings decrease with depth whereas828

the similarities of Wgate gradually grow. It means829

as layer goes deep, the gate “looks” at the input fea-830

ture in more different ways when assigning scores831

to different experts, and meanwhile, the neuron832

activation of experts gets more alike.833

Gork-1. Both dark and bright crosses commonly834

exist in the heat maps of gate embedding, whose835

patterns are similar to those of Wgate. Specially,836

their patterns show opposite color tendency (i.e.,837

the deep color positions in one heat map becomes838

light color in another) starting form the intermedi-839

ate layers. The similarities of gate embedding get840

lower when the layer goes deep, except for the last841

few layers.842

D Norms of Expert Outputs and Gate843

Scores844

In Sec 5.2, we notice that in some MoE models,845

the two experts chosen by the gate usually output846

feature vectors with the highest norms. Therefore,847

we repeat the experiment using the long input and848

the statistical results are shown in Fig. 9.849

Mixtral. It can be clearly observed that the ex-850

pert which outputs the largest norm is assigned the 851

highest score most often. Surprisingly, for every 852

i, the i-th highest score is the most likely decision 853

to be assigned to the expert with the i-th highest 854

output. 855

DeepSeek. For the experts that output the first 856

few largest norms (rank 60th to 64th), they are 857

most likely to be assigned the highest scores. But 858

we do not see similar relationship for the rest of 859

the experts. On the contrary, the gate assigns rela- 860

tively high scores more frequently than low scores 861

to the experts with the smallest norms. For the ex- 862

perts whose output norms rank 49th to 59th, they 863

are commonly assigned either low scores or high 864

scores. 865

Grok. In contrast to the previous models, the 866

output norms of the Grok experts tend to oppositely 867

relate to the scores. More generally, the experts 868

with the first few highest outputs are frequently as- 869

signed either low scores or high scores. One of the 870

possible reasons might be the relatively low activa- 871

tion ratios of GeLU (see Sec 5.3) result in weaker 872

dependence on the norm for the gate decisions. 873

E Chosen Experts 874

This experiment aims to examine the routing pat- 875

tern. We feed an input prompt with about 64 tokens 876

into the MoE models, and simply record the gate 877

scores (softmax applied) of selected experts for 878

12



Mixtral Grok

1 2 3 4 5 6 7 8
Expert output norm ranking

0

5000

10000

15000

20000

25000

Co
un

t o
f g

at
e 

sc
or

e 
ra

nk
in

g score rank 1
score rank 2
score rank 3
score rank 4
score rank 5
score rank 6
score rank 7
score rank 8

1 2 3 4 5 6 7 8
Expert output norm ranking

0

2000

4000

6000

8000

10000

12000

Co
un

t o
f g

at
e 

sc
or

e 
ra

nk
in

g

DeepSeek

1 2 3 4 5 6 7 80

5000

9 10 11 12 13 14 15 160

5000

Co
un

t o
f g

at
e 

sc
or

e 
ra

nk
in

g

17 18 19 20 21 22 23 240

5000

25 26 27 28 29 30 31 320

5000

33 34 35 36 37 38 39 400

5000

41 42 43 44 45 46 47 480

5000

Co
un

t o
f g

at
e 

sc
or

e 
ra

nk
in

g

49 50 51 52 53 54 55 560

5000

57 58 59 60 61 62 63 64
Expert output norm ranking

0

5000

Figure 9: Counts of the gate score ranking for each norm ranking. The larger the rank number, the larger the norm.

13



Mixtral-Base

<s
> As an

op
en

so
ur

ce
al

te
rn

at
iv

e to
Ch

at G PT
, I

do no
t

ha
ve

pe
rs

on
al

op
in

io
ns .

Ho
we

ve
r , I

ca
n

pr
ov

id
e

ob
je

ct
iv

e
in

fo
rm

at
io

n
ab

ou
t

Ch
at G PT

' s
ca

pa
bi

lit
ie

s
an

d
lim

ita
tio

ns
ba

se
d on its

ar
ch

ite
ct

ur
e

an
d

tra
in

in
g

da
ta .

Ch
at G PT is a

po
we

rfu
l

la
ng

ua
ge

m
od

el
ba

se
d on th
e G PT (

Ge
ne

r
at

iv
e

Pr
e -

tra
in

ed
Tr

an
s

fo
rm

er

0
1
2
3
4
5
6
7La

ye
r 1

5

Mixtral-Instruct
<s

> As an
op

en
so

ur
ce

al
te

rn
at

iv
e to

Ch
at G PT

, I
do no

t
ha

ve
pe

rs
on

al
op

in
io

ns .
Ho

we
ve

r , I
ca

n
pr

ov
id

e
ob

je
ct

iv
e

in
fo

rm
at

io
n

ab
ou

t
Ch

at G PT
' s

ca
pa

bi
lit

ie
s

an
d

lim
ita

tio
ns

ba
se

d on its
ar

ch
ite

ct
ur

e
an

d
tra

in
in

g
da

ta .
Ch

at G PT is a
po

we
rfu

l
la

ng
ua

ge
m

od
el

ba
se

d on th
e G PT (

Ge
ne

r
at

iv
e

Pr
e -

tra
in

ed
Tr

an
s

fo
rm

er

0
1
2
3
4
5
6
7La

ye
r 1

5

Grok

As an
op

en
so

ur
ce

al
te

rn
at

iv
e to

Ch
at

GP
T , I

do no
t

ha
ve

pe
rs

on
al

op
in

io
ns .

Ho
we

ve
r , I

ca
n

pr
ov

id
e

ob
je

ct
iv

e
in

fo
rm

at
io

n
ab

ou
t

Ch
at

GP
T ' s

ca
pa

bi
lit

ie
s

an
d

lim
ita

tio
ns

ba
se

d on its
ar

ch
ite

ct
ur

e
an

d
tra

in
in

g
da

ta .
Ch

at
GP

T is a
po

we
rfu

l
la

ng
ua

ge
m

od
el

ba
se

d on th
e

GP
T (

Ge
ne

r
at

iv
e

Pr
e -

tra
in

ed
Tr

an
sf

or
m

er

0
1
2
3
4
5
6
7La

ye
r 4

7

DeepSeek

<
be

gi
n

of
se

nt
en

ce
> As  a
n

 o
pe

n
 so

ur
ce

 a
lte

rn
at

iv
e  to

 C
ha

t
 G

PT
,  I

 d
o

 n
ot

 h
av

e
 p

er
so

na
l

 o
pi

ni
on

s .
 H

ow
ev

er ,  I
 c

an
 p

ro
vi

de
 o

bj
ec

tiv
e

 in
fo

rm
at

io
n

 a
bo

ut
 C

ha
t

 G
PT

' s
 c

ap
ab

ilit
ie

s
 a

nd
 li

m
ita

tio
ns

 b
as

ed  o
n

 it
s

 a
rc

hi
te

ct
ur

e
 a

nd
 tr

ai
ni

ng
 d

at
a .

 C
ha

t
 G

PT  is  a
 p

ow
er

fu
l

 la
ng

ua
ge

 m
od

el
 b

as
ed  o
n

 th
e

 G
PT  (

Ge
ne

r
at

iv
e

 P
re -

tra
in

ed
 Tr

an
sf

or
m

er

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

La
ye

r 1
0

Figure 10: Routing pattern of different models. Deeper colors mean higher gate scores assigned to the corresponding
experts. Only the scores of the top-k experts are illustrated.
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Layer Mixtral DeepSeek Grok

0 0.82 --- 0.89
1 -0.44 0.75 -0.10
2 0.26 0.78 -0.28
3 0.54 0.71 0.66
4 0.48 0.77 0.52
5 0.70 0.77 0.37
6 0.84 0.69 0.28
7 0.74 0.73 0.17
8 0.42 0.66 0.51
9 0.66 0.66 0.84
10 0.53 0.63 0.28
11 0.32 0.60 0.30
12 0.14 0.54 0.46
13 0.51 0.60 0.14
14 0.66 0.56 0.00
15 0.40 0.58 0.54
16 0.39 0.53 0.32
17 0.53 0.55 0.30
18 0.35 0.57 0.10
19 0.17 0.57 -0.17
20 0.51 0.58 0.24
21 0.63 0.62 0.58
22 0.36 0.62 0.46
23 0.51 0.62 0.14
24 0.48 0.68 0.10
25 0.66 0.62 0.00
26 0.81 0.58 -0.10
27 0.63 0.46 -0.26
28 0.73 --- -0.66
29 0.75 --- -0.41
30 0.84 --- -0.83
31 0.57 --- -0.76
32 --- --- -0.24
33 --- --- -0.53
34 --- --- -0.46
35 --- --- 0.14
36 --- --- 0.17
37 --- --- -0.46
38 --- --- -0.17
39 --- --- -0.26
40 --- --- -0.70
41 --- --- 0.17
42 --- --- 0.00
43 --- --- -0.17
44 --- --- -0.22
45 --- --- 0.14
46 --- --- -0.47
47 --- --- -0.44
48 --- --- -0.17
49 --- --- -0.14
50 --- --- 0.17
51 --- --- 0.22
52 --- --- 0.10
53 --- --- 0.33
54 --- --- -0.24
55 --- --- -0.57
56 --- --- -0.24
57 --- --- -0.37
58 --- --- 0.00
59 --- --- -0.69
60 --- --- -0.17
61 --- --- 0.35
62 --- --- 0.30
63 --- --- 0.10

Table 4: Pearson correlation coefficients (R) of the
paired dataset (X,Ygate).

each token. In addition to the base model of Mix- 879

tral (Mixtral-Base), we include its instruct version 880

(Mixtral-Instruct) in this experiment. The results 881

are depicted in Fig. 10. 882

Mixtral. The experts in Mixtral-Base are evenly 883

selected across tokens and it is quite common to see 884

a sequence with more than four tokens being routed 885

to a same expert. But the “special expert” with the 886

dark cross in previous similarity graphs turns out 887

to be an exception. These special experts are less 888

frequently chosen and are assigned relatively low 889

scores. The routing pattern of Mixtral-Instruct is 890

mostly identical to Mixtral-Base, which indicates 891

fine-tuning has little impact on gate decisions. 892

DeepSeek. Some of the layers exist an expert 893

that is selected by most of the tokens. However, no 894

distinction is observed for these experts in previous 895

similarity heat maps. Note that the gate scores of 896

DeepSeek are typically lower than the scores of 897

Mixtral because DeepSeek applies softmax before 898

the top-k operation while Mixtral adopts the reverse 899

way. 900

Grok. The expert selection is rather even and 901

some relatively high scores exist in the deep (>30th) 902

layers. Same as DeepSeek, the softmax is applied 903

before the top-k operation for Grok. 904
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