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Abstract

The present level of proliferation of fake, bi-001
ased, and propagandistic content online has002
made it impossible to fact-check every single003
suspicious claim or article, either manually or004
automatically. Thus, many researchers are shift-005
ing their attention to higher granularity, aiming006
to profile entire news outlets, which makes it007
possible to detect likely “fake news” the mo-008
ment it is published, by simply checking the009
reliability of its source. Source factuality is010
also an important element of systems for auto-011
matic fact-checking and “fake news” detection,012
as they need to assess the reliability of the evi-013
dence they retrieve online. Political bias detec-014
tion, which in the Western political landscape015
is about predicting left-center-right bias, is an016
equally important topic, which has experienced017
a similar shift towards profiling entire news018
outlets. Moreover, there is a clear connection019
between the two, as highly biased media are020
less likely to be factual; yet, the two problems021
have been addressed separately.022

In this survey, we review the state of the art023
on media profiling for factuality and bias, ar-024
guing for the need to model them jointly. We025
further discuss interesting recent advances in026
using different information sources and modali-027
ties, which go beyond the text of the articles the028
target news outlet has published. Finally, we029
discuss current challenges and outline future030
research directions.031

1 Introduction032

The rise of the Web has made it possible for any-033

body to create a website and to become a news034

medium. This was a hugely positive development035

as it elevated freedom of expression to a whole new036

level, allowing anybody to have their voice heard.037

With the subsequent rise of social media, anybody038

could potentially reach out to a vast audience, some-039

thing that until recently was only possible for major040

news outlets. One of the consequences was a trust041

crisis: with traditional news media stripped off042

their gate-keeping role, the society was left unpro- 043

tected against potential manipulation. 044

The issue became a general concern in 2016, 045

a year marked by micro-targeted online disinfor- 046

mation at an unprecedented scale in connection 047

to Brexit and the US Presidential election. These 048

developments gave rise to the term “fake news.” 049

In an attempt to solve the trust problem, several 050

initiatives, such as PolitiFact, Snopes, FactCheck, 051

and Full Fact, have been launched to fact-check 052

suspicious claims manually. However, given the 053

scale of the proliferation of false information on- 054

line, it was unfeasible to fact-check every single 055

suspicious claim, even when this was done automat- 056

ically, not only for computational reasons but also 057

due to timing. In order to fact-check a claim man- 058

ually or automatically, it is required to verify the 059

stance of mainstream media concerning that claim 060

and/or the reaction of users on social media. Accu- 061

mulating this evidence takes time, and delay means 062

more potential sharing of the malicious content. A 063

study has shown that, for some very viral claims, 064

more than 50% of the sharing happens within the 065

first ten minutes after posting the micro-post on 066

social media (Zaman et al., 2014), and thus timing 067

is of utmost importance. Moreover, an extensive 068

recent study has found that “fake news” spreads 069

six times faster and reaches much farther than real 070

news (Vosoughi et al., 2018). 071

A much more promising alternative is to profile 072

the medium that initially published the news article 073

with a suspicious claim. Since media that have pub- 074

lished fake or biased content in the past are more 075

likely to do so in the future, profiling media in ad- 076

vance makes it possible to detect likely “fake news” 077

the moment it is published by simply checking the 078

reliability of its source. 079

Estimating the reliability of a news source is 080

important for claim fact-checking (Nguyen et al., 081

2018), and it also gives an important prior when 082

solving article-level tasks such as “fake news” 083
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and click-bait detection (Hardalov et al., 2016;084

Karadzhov et al., 2017a; De Sarkar et al., 2018;085

Pérez-Rosas et al., 2018; Brill, 2001; Finberg et al.,086

2002; Pan et al., 2018; Nguyen et al., 2022).087

There have been several surveys on fake088

news (Shu et al., 2017; da Silva et al., 2019; Zhou089

and Zafarani, 2020), mis/dis-information (Islam090

et al., 2020; Alam et al., 2022; Hardalov et al.,091

2022a), fact-checking (Thorne and Vlachos, 2018a;092

Kotonya and Toni, 2020; Nakov et al., 2021; Guo093

et al., 2022a), truth discovery (Li et al., 2016), and094

propaganda detection (Martino et al., 2020). How-095

ever, they have focused on claims or articles, while096

here we survey research on profiling entire news097

outlets for factuality and bias.098

2 Factuality099

Veracity of information has been studied at dif-100

ferent levels: (i) claim-level (e.g., fact-checking),101

(ii) article-level (e.g., “fake news” detection),102

(iii) user-level (e.g., hunting for trolls), and103

(iv) medium-level (e.g., source reliability estima-104

tion). Our primary interest here is in the latter.105

At the claim-level, significant effort has been106

paid to fact-checking and rumor detection using107

information from social media, i.e., how users re-108

ply to the claim (Canini et al., 2011; Castillo et al.,109

2011; Ma et al., 2015, 2016; Zubiaga et al., 2016;110

Ma et al., 2017; Dungs et al., 2018; Kochkina et al.,111

2018; Hardalov et al., 2022b; Nguyen et al., 2022),112

but there is a need for more comprehensive ap-113

proaches (Thorne and Vlachos, 2018b; Guo et al.,114

2022b). A set of web pages and snippets from115

search engines have also been used as a source of116

information (Mukherjee and Weikum, 2015; Popat117

et al., 2016, 2017; Karadzhov et al., 2017b; Mi-118

haylova et al., 2018; Baly et al., 2018b). In either119

case, the most important information for the claim-120

level tasks are stance (does a tweet or a news article121

agree or disagree with the claim?) and source reli-122

ability (do we trust the user who posted the tweet123

or the medium that published the news article?).124

The problem of source reliability remains largely125

under-explored. In the case of social media and126

community fora, it concerns modeling the user,127

e.g., there has been research on finding opinion ma-128

nipulation trolls (Mihaylov and Nakov, 2016), sock-129

puppets (Maity et al., 2017), Internet water army130

(Chen et al., 2013), and seminar users (Darwish131

et al.). In the case of the Web, it is about source132

trustworthiness (the URL domain, the medium).133

In early work, the source reliability of news me- 134

dia has often been estimated automatically based 135

on the general stance of the target medium with 136

respect to known true/false claims, without access 137

to gold labels about the overall medium-level fac- 138

tuality of reporting (Dong et al., 2015; Mukherjee 139

and Weikum, 2015; Popat et al., 2016, 2017, 2018). 140

More recent work has addressed the task as one 141

on its own right. Baly et al. (2018a) used gold 142

labels from Media Bias/Fact Check, and rich infor- 143

mation sources: articles published by the medium, 144

what is said about it on Wikipedia, metadata from 145

its Twitter profile, URL structure, and traffic in- 146

formation. In follow-up work, Baly et al. (2019) 147

used the same representation to jointly predict me- 148

dia factuality and bias on an ordinal scale, using 149

a multi-task ordinal regression setup. Then, Baly 150

et al. (2020b) extended the information sources 151

to include Facebook followers and speech signals 152

from the news medium’s channel on YouTube (if 153

any). Hounsel et al. (2020) proposed to use domain, 154

certificate, and hosting information of the website 155

infrastructure. Finally, Panayotov et al. (2022) used 156

audience overlap and graph neural networks. 157

3 Bias 158

Compared to factuality, which can be objectively 159

determined by whether a piece of information is 160

true or not, media bias has more complex dimen- 161

sions. For the last few decades, many scholars have 162

conceptualized media bias in different ways. For 163

instance, a bias can be defined as “imbalance or 164

inequality of coverage rather than as a departure 165

from truth” (Stevenson et al., 1973). A departure 166

from truth, however, can be measured only when 167

the accurate record of the event is available (e.g., 168

trial transcript and reporting). 169

A different definition, namely “any systematic 170

slant favoring one candidate or ideology over an- 171

other” (Waldman and Devitt, 1998), is proposed 172

to capture various dimensions rather than coverage 173

imbalance, such as favorability conveyed in visual 174

representations (i.e., news photos). E.g., smiling, 175

speaking at the podium, cheering crowd, and eye- 176

level shots are preferred over frowning, sitting, be- 177

ing alone, and shots from above, respectively. 178

D’Alessio and Allen (2000) reviewed 59 studies 179

about partisan media bias in presidential elections. 180

They proposed to categorize media bias into the 181

following three types: (i) gatekeeping bias, where 182

editors and journalists ‘select’ the stories to report, 183
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(ii) coverage bias, where the amount of news cov-184

erage (e.g., the length of newspapers articles, or185

the time given on television) each party receives is186

systematically biased to one party at the expense187

of the other one, and (iii) statement bias, where188

news media interject their attitudes or opinions in189

the news reporting. Groeling (2013) proposed a190

more relaxed concept of media bias, which is “a191

portrayal of reality that is significantly and system-192

atically (not randomly) distorted,” to take a variety193

of media bias dimensions into account. In par-194

ticular, he focused on two main forms of media195

bias—selection bias (i.e., what to cover) and pre-196

sentation bias (i.e., how to cover it)—driven by the197

choices of newsmakers.198

Selection bias or gatekeeping bias has been stud-199

ied in various ways, including qualitative inter-200

views or surveys of journalists and editors about201

the decision-making process they use to select the202

stories in their newsroom (Tandoc Jr, 2014). Here,203

news selection is not necessarily confined to politi-204

cal context. News reporting about any news items205

can be considered as the unit of analysis.206

Data-driven research on selection bias com-207

monly follows three steps: (i) collect news articles208

(for newspapers or online news) or transcripts (for209

TV news) for a target period, (ii) conduct content210

analysis to find the news coverage of politicians,211

parties, or events. Optionally, study the tone of212

the news articles (e.g., negative news are more fre-213

quently reported) (Soroka, 2012), and (iii) identify214

systematic biases by comparing news coverage. An215

exhaustive database of news stories is thus essen-216

tial for selection bias research. While commercial217

databases, such as Lexis Nexis, have been widely218

used (Soroka, 2012; Padgett et al., 2019; Gilens and219

Hertzman, 2000; Boykoff and Boykoff, 2004), pub-220

licly available datasets, such as GDELT, start to get221

attention (Boudemagh and Moise, 2017; Kwak and222

An, 2014; Boudemagh and Moise, 2017) and are223

getting validated by comparing multiple sources224

(Kwak and An, 2016; Weaver and Bimber, 2008;225

Kwak and An, 2016).226

Presentation bias has been characterized from227

diverse perspectives, including framing (Entman,228

2007), visuals (Barrett and Barrington, 2005),229

sources (Baum and Groeling, 2008), tone (Soroka,230

2012), and more. Particularly, framing bias has231

been actively studied in many disciplines.232

Framing Bias refers to a bias that highlights a 233

certain aspect of an event or an issue more than the 234

others (Entman, 1993). Emphasizing a particular 235

aspect can deliver a distorted view toward the issue 236

even without the use of biased expressions. 237

Framing biases have been typically studied at 238

issue level (Kim and Johnson, 2022). Researchers 239

collect news articles about an issue or an event, con- 240

duct manual content analysis, and build a frame de- 241

tection model (Baumer et al., 2015). Open-source 242

tools to help the analysis have been proposed (Bha- 243

tia et al., 2021; Morstatter et al., 2018). While this 244

approach can characterizes diverse frames, it is not 245

trivial to compare framing across issues. 246

The Media Frames Corpus (MFC) was proposed 247

to address this limitation (Card et al., 2015). It 248

contains articles annotated with 15 generic frames 249

(including others) across three policy issues. Sev- 250

eral studies have demonstrated reasonable predic- 251

tion performance of the general media frames with 252

different datasets (Field et al., 2018; Kwak et al., 253

2020). These 15 general frames were also used for 254

analyzing political discourse on social media (John- 255

son et al., 2017). These frames are often cus- 256

tomized to a specific issue by adding issue-specific 257

frames (Liu et al., 2019), even though doing so 258

somewhat contradicts the original motivation of 259

general media frames, namely to be able to com- 260

pare frames across various issues. 261

News slant was proposed to characterize how 262

framing in news reports favors one side over the 263

other (Entman, 2007). The media-level slant thus 264

could differ across issues (Ganguly et al., 2020). 265

A variety of methods have been proposed to 266

quantify the extent of news slant in traditional news 267

media by (i) linking media outlets to politicians 268

with known political positions, (ii) directly analyz- 269

ing news content, and (iii) using shared audience 270

among media outlets. Groseclose and Milyo (2005) 271

assigned an ADA (Americans for Democratic Ac- 272

tion) score for each media outlet by investigating 273

co-citations of think-tanks by members of Congress 274

and media outlets. Gentzkow and Shapiro (2010) 275

proposed an ideological slant index of news media 276

in a seminal study. The news slant is measured 277

by the extent of phrases in news coverage that are 278

more frequently used by one political party (i.e., 279

Democratic or Republican) congress members than 280

by another one in the 2005 Congress Record. Their 281

frequency-based approach successfully finds politi- 282

cally charged phrases such as death tax or war on 283
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terror by Republicans and associated media and284

estate tax or war in Iraq by Democrats and associ-285

ated media, and they further computed media slant286

index for 433 newspapers. The choice of words287

by political party members and news media is con-288

sidered framing because they purposely highlight289

some aspect of the issue over other ones.290

An et al. (2012) proposed a method to compute291

media slant scores by measuring distances between292

media sources by their mutual followers on Twitter293

(An et al., 2011, 2012). Stefanov et al. (2020)294

identified the political leanings of media outlets and295

influential people on Twitter based on their stance296

on controversial topics. They built clusters of users297

around core vocal ones based on their behaviour298

on Twitter such as retweeting, using a procedure299

proposed in (Darwish et al., 2020).300

Left-center-right bias (or left-right bias) was301

studied based on media-level annotation from spe-302

cialized online platforms, such as News Guard,303

AllSides, and Media Bias/Fact Check, where jour-304

nalists use carefully designed guidelines to make305

the judgments. Researchers have then trained sys-306

tems to predict this bias using a variety of informa-307

tion sources such as analyzing the corresponding308

YouTube channels (Dinkov et al., 2019), and using309

information from the articles the target news outlet310

has published, what is there about them in social311

media and in Wikipedia (Baly et al., 2020b).312

There has also been work on predicting the left-313

center-right bias of articles, which is somewhat314

relevant here as it can be an element of media-level315

analysis. Such systems are typically trained us-316

ing distant supervision, projecting the label from a317

medium to each article from that medium, which is318

an easy way to obtain large datasets, needed to train319

contemporary deep learning models. For example,320

Kulkarni et al. (2018) used site-level annotations321

from the AllSides website for political bias detec-322

tion. The same approach was used to study hy-323

perpartisanship, i.e., extremely one-sided reporting324

(Potthast et al., 2018), as part SemEval-2019 task 4325

on Hyper-partisan News Detection (Kiesel et al.,326

2019). More recent work has demonstrated the327

dangers of distant supervision and has introduced a328

dataset for left-center-right bias with proper manual329

article-level annotations (Baly et al., 2020a).330

4 Joint Modeling331

There is a well-known connection between factual-332

ity and bias. For example, hyper-partisanship (high333

bias) is often linked to low trustworthiness (Pot- 334

thast et al., 2018), e.g., appealing to emotions rather 335

than sticking to the facts, while center media tend 336

to be generally more impartial and also more trust- 337

worthy. Moreover, some of the datasets used for 338

the two tasks have media-level annotations for both 339

factuality and bias. Thus, it makes sense to model 340

factuality and bias jointly. 341

Yet, joint modeling of the two tasks remains 342

severely underexplored. In fact, there has been 343

a single attempt at doing so to date: Baly et al. 344

(2019) proposed a multi-task learning formulation. 345

They further took into account the ordinal nature 346

of the labels for both tasks, noting that classifying 347

an extreme right medium as extreme-left is a huge 348

error, while classifying it as a center is a smaller 349

one, and predicting right is an even smaller error. 350

Similarly, predicting a high-factuality label for a 351

low-factuality medium is a bigger mistake than pre- 352

dicting mixed factuality. Thus, they proposed a 353

multi-task ordinal regression model, copula ordi- 354

nal regression (Walecki et al., 2016), which jointly 355

predicts factuality and bias on ordinal scales. They 356

further used several auxiliary tasks, modeling cen- 357

trality, hyper-partisanship, as well as left-vs.-right 358

bias on a coarse-grained scale. 359

This is challenging as it requires understanding 360

the interactions between the two dimensions. Al- 361

though the relationship between extreme bias and 362

low factuality follows intuition, uncovering the con- 363

nection between being factual but biased or non- 364

factual but unbiased requires more detailed insights. 365

For news media that exhibit a mixed behavior in 366

both aspects, this poses an even greater difficulty. 367

5 Basis of Prediction 368

5.1 Textual Content 369

5.1.1 Representation 370

The most natural representation for a source is as 371

a sample of articles it has published, which in turn 372

can be represented using linguistic features or as 373

continuous representations. 374

Linguistic Features focus on language use, and 375

they have been shown to be useful for detecting 376

fake articles, as well as for predicting the political 377

bias and the factuality of reporting of news media 378

(Horne et al., 2018; Baly et al., 2018a). For ex- 379

ample, Horne and Adali (2017) showed that “fake 380

news” pack a lot of information in the title (as many 381

people do not read beyond the title, e.g., in social 382

media), and use shorter, simpler, and repetitive con- 383
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tent in the body (as writing fake information takes a384

lot of effort). Such features can be calculated based385

on the Linguistic Inquiry and Word Count (LIWC)386

lexicon and used to distinguish articles from trusted387

sources vs. hoaxes vs. satire vs. propaganda388

(pen). They can be also modeled using linguistic389

markers (Mihaylova et al., 2018) such as factives390

from (Hooper, 1975), assertives from (Hooper,391

1975), implicatives from (Karttunen, 1971), hedges392

from (Hyland, 2005), Wiki-bias terms from (Re-393

casens et al., 2013), subjectivity cues from (Riloff394

and Wiebe, 2003), and sentiment cues from (Liu395

et al., 2005). There are 141 such features in the396

NELA toolkit (Horne et al., 2018):397

• Style: part-of-speech tags, use of specific398

words (function words, pronouns, etc.), and399

features for clickbait title classification;400

• Complexity: type-token ratio, readability,401

number of cognitive process words (identi-402

fying discrepancy, insight, certainty, etc.);403

• Bias: features modeling bias using lexi-404

cons (Recasens et al., 2013; Mukherjee and405

Weikum, 2015) and subjectivity, calculated by406

pre-trained classifiers (Horne et al., 2017);407

• Affect: sentiment scores from lexicons (Re-408

casens et al., 2013; Mitchell et al., 2013) and409

full systems (Hutto and Gilbert, 2014);410

• Morality: features based on the Moral Foun-411

dation Theory (Graham et al., 2009) and lexi-412

cons (Lin et al., 2018);413

• Event: features modeling time and location.414

Embedding representations: An alternative way to415

represent an article is to use embedding representa-416

tions, typically based on large pre-trained language417

models, such as BERT (Devlin et al., 2019). This418

can be done without fine-tuning, e.g., by encod-419

ing an article (possibly truncated, e.g., BERT can420

take up to 512 tokens as an input) and then av-421

eraging the word representations extracted from422

the second-to-last layer. Alternatively, one can423

use pre-trained sentence encoders such as Sentence424

BERT (Reimers and Gurevych, 2019). Finally, one425

can obtain representations that are relevant to the426

target task, e.g., by fine-tuning BERT to predict427

the label (bias or factuality) of the medium that an428

article comes from, in the form of distant supervi-429

sion (Baly et al., 2020b). One issue with distant430

supervision is that the model can end up learning431

to detect the source of the target news article in-432

stead of predicting its factuality and bias, which433

can be fixed using adversarial media adaptation and434

a specially adapted triplet loss (Baly et al., 2020a). 435

5.1.2 Aggregation 436

In order to obtain a representation/prediction for 437

an entire medium, there is a need to aggregate the 438

representations/predictions for its articles. 439

Averaging article-level representations: One 440

could average the representations for all articles 441

to obtain a representation for a medium, which can 442

then be used in a medium-level classifier. Using 443

arithmetic averaging is a good idea as it captures 444

the general trend of articles in a medium, while 445

limiting the impact of outliers. For instance, if a 446

medium is known to align with left-wing ideology, 447

this should not change if it published a few articles 448

that align with right-wing ideology. 449

Aggregating posterior probabilities: Alterna- 450

tively, each article can be represented by a C- 451

dimensional vector that corresponds to its poste- 452

rior probabilities of belonging to each class ci, 453

i ∈ {1, . . . , C} of the given task, whether it is 454

predicting the political bias or the factuality of the 455

target news medium. Finally, these article-level 456

posterior probabilities are averaged in order to ag- 457

gregate them at the medium level. 458

5.2 Multimedia Content 459

Nowadays, almost all news websites heavily rely 460

on multimedia content. This dependence, how- 461

ever, also makes multimedia a very effective means 462

for dispensing an intended, and even manipulated, 463

messages. The increasing availability of automated 464

and AI-powered multimedia editing and synthesis 465

tools, combined with massive computational power, 466

makes such capabilities accessible to everyone. 467

Given that the multimedia editors of a news site 468

typically follow a defined workflow when creat- 469

ing, acquiring, editing, and curating content for 470

their pages, this pattern adds a crucial dimension 471

to profiling the factuality and the bias of a news 472

source. In fact, questions around the origin and 473

the veracity of photographic images and videos 474

have long been the subject of multimedia foren- 475

sics research (Sencar and Memon, 2013; Sencar 476

et al., 2022). There has been research on veri- 477

fying metadata integrity (Yang et al., 2020; Kee 478

et al.; Iuliani et al., 2018; Yang et al., 2020), digital 479

integrity (Cozzolino and Verdoliva, 2018; Korus, 480

2017; Cozzolino and Verdoliva, 2018), physical 481

integrity (Matern et al., 2020; O’Brien et al., 2012; 482

Iuliani et al., 2017; Matern et al., 2020; Riess et al., 483

2017; Peng et al., 2017) identification of processing 484
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traces (Hadwiger et al., 2019), and discrimination485

of synthesized (i.e., GAN generated) media (Agar-486

wal et al., 2020; Li et al., 2018; Agarwal et al.,487

2020; Verdoliva, 2020). However, these capabili-488

ties have only been sparsely explored in the context489

of predicting factuality and bias.490

Existing work mainly considered characteristics491

of images appearing in trustworthy vs. unreliable492

sources. It was proposed to use visual characteris-493

tics (Jin et al., 2016), deep-learning representations494

(Qi et al., 2019; Khattar et al., 2019; Qi et al., 2019;495

Singhal et al., 2019), image provenance informa-496

tion from reverse image search (Zlatkova et al.,497

2019), and self-consistency with respect to meta-498

data (Huh et al., 2018). Overall, multimedia char-499

acteristics have a strong potential that is yet to be500

fully used for news media profiling.501

5.3 Audience Homophily502

The well-known homophily principle, “birds of a503

feather flock together,” crucially asserts that simi-504

lar individuals interact with each other at a higher505

rate. Therefore, audience representation could be506

another approach to describe a news media out-507

let whereby an overall, descriptive characteristic508

of followers of the outlet is obtained. Then, by509

evaluating the similarity of audience-centric repre-510

sentations with previously categorized news media,511

its factuality and bias can be inferred.512

Ribeiro et al. (2018) used Facebook’s targeted513

advertising tool to infer the ideological leaning of514

online media based on the political leaning of the515

users who interacted with these media. An et al.516

(2012) relied on follow relationships on Twitter to517

ascertain the ideological leaning of news media and518

users. Wong et al. (2013) studied retweet behavior519

to infer the ideological leanings of online media520

sources and of popular Twitter accounts. Barberá521

(2015) proposed a model based on the follower522

relationships to media sources and Twitter person-523

alities to estimate their ideological leaning.524

Stefanov et al. (2020) predicted the political lean-525

ing of media with respect to a topic by observing526

the users of which side of the debate on a polariz-527

ing topic were sharing content from which media528

in support of their position. They constructed a529

user-media graph and then used label propagation530

and graph neural networks to derive representations531

for media, which they used for classification. They532

further aggregated the leanings across several po-533

larizing topics to come up with a left-center-right534

polarization prediction. 535

Following a similar approach, (Baly et al., 536

2020b) considered three social media platforms 537

for audience characterization. On Twitter, they pro- 538

posed to use self-descriptions in publicly accessible 539

profiles of users following the account of a medium. 540

For each medium, a representation is obtained by 541

encoding the biographic descriptions of Twitter 542

followers and averaging the resulting textual rep- 543

resentations. The second characterization involves 544

how the audience of the medium’s YouTube chan- 545

nel responds to each video in terms of number of 546

comments, views, likes and dislikes. By averaging 547

these statistics over all videos, a medium-level rep- 548

resentation is obtained. The last audience represen- 549

tation is obtained using Facebook’s advertising plat- 550

form, which is used to obtain demographic infor- 551

mation for the audience interested in each medium. 552

This data is used to obtain the audience distribution 553

over the political spectrum. The distribution is then 554

divided into five categories to label each medium 555

accordingly: very conservative, conservative, mod- 556

erate, liberal, and very liberal. 557

5.4 Infrastructure Characteristics 558

Beyond textual, visual, and audience features, news 559

sites also exhibit distinct characteristics that relate 560

to the underlying infrastructure and technological 561

components deployed to serve their content online. 562

In this regard, the prediction problem is analogous 563

to a well-studied one in the cybersecurity domain 564

where the goal has been to identify infrastructure 565

characteristics of malicious domains (Anderson 566

et al., 2007; Invernizzi et al., 2014) that are used 567

for malware distribution (Wang et al., 2013; In- 568

vernizzi et al., 2014), phishing (Purwanto et al., 569

2020; James et al., 2013; Mohammad et al., 2012, 570

2014; Purwanto et al., 2020), online scams (Alr- 571

wais et al., 2017; Konte et al., 2009; Hao et al., 572

2016), and spamming (Anderson et al., 2007; Hao 573

et al., 2009). Since establishing the infrastructure 574

of a news medium involves several decisions with 575

respect to technological aspects, it is plausible to 576

expect that news media with varying IT practices 577

and different levels of access to IT resources will 578

differ in their characteristics. 579

There has been very little work on network, web 580

design, and data elements of a news website to char- 581

acterize new sites for factuality and bias. At the 582

network level, (Hounsel et al., 2020) aimed to dis- 583

tinguish disinformation websites vs. authentic web- 584
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sites vs. sites not related to news or politics, and585

found that features related to a website’s domain586

name, registration, and DNS configuration work587

best. Concerning the web design aspect, Castelo588

et al. (2019) introduced a web page classifier based589

on several features that govern the structure and the590

style of a page in addition to three categories of lin-591

guistic features. Their binary classification results592

(real vs. fake news) on several datasets showed that593

the web-markup features consistently perform well594

and are complementary to linguistic ones.595

Finally, at the data level Fairbanks et al. (2018)596

examined the source of web pages to identify597

shared data objects, such as mutually linked sites,598

scripts, and images, across web sites. This infor-599

mation is then used to create a shared data object600

graph. By comparing the content-level features to601

the structural properties of the graph, they found602

that the use of mutually shared objects yields better603

performance in predicting both factuality and bias604

for a site, especially for factuality. Overall, a major605

advantage of using infrastructure features is their606

content- and audience-agnostic nature. This allows607

making reliable predictions when only limited tex-608

tual and visual content is available and without an609

established audience interest in a news medium.610

6 Lessons Learned611

Factuality and bias have some commonalities as612

they exert negative influences on the public by de-613

livering information that is deviated from the truth.614

Not surprisingly, some news media purposedly615

take a biased position in the political landscape616

and appeal to partisan audiences. This trend be-617

comes apparent in recent years mainly because the618

news industry becomes more and more competi-619

tive. Many journalists and editors, however, have620

concerns about their biases in news selection and621

reporting and try to be neutral or at least report622

diverse perspectives of an issue.623

As the bias can be conveyed by different means624

—text, photos, and videos—, media bias can get625

subtle in many dimensions. Among them, ideologi-626

cal bias is an important conceptualization due to the627

importance of media bias in the political context.628

In the US context, the ideological bias could be629

broadly defined as conservative, center, and liberal.630

Then, the (ideological) bias prediction task is for-631

mulated as predicting whether a given news story,632

including both text and visual elements, favors one633

party over the other. Reported results so far show634

that accurate prediction of this ideological bias of 635

a news medium is a far more easier task than as- 636

sessing factuality. This is, in fact, not surprising as 637

evaluation of the factuality ultimately depends on 638

the authenticity and the objectivity of the particular 639

claims stated in a news story, essentially requiring 640

verification from other sources and observations. 641

Although more sophisticated analysis of the text 642

style and multimedia characteristics may be ex- 643

pected to improve the achievable accuracy, it is 644

evident that there is a big need to complement the 645

textual and visual elements of a news medium with 646

others. In this regard, recent studies have demon- 647

strated the potential of audience homophily and the 648

medium’s infrastructure characteristics in bridging 649

the existing performance gap. The content-agnostic 650

nature of these characteristics make them useful 651

in the early discovery and categorization of news 652

media even in the absence of sufficient content. 653

7 Major Challenges 654

Ordinal scales: While the ideological bias (news 655

slant) is typically modeled as left-center-right, there 656

exists a spectrum within each bias based on bias 657

intensity. A hyperpartisan bias prediction task has 658

been tested to differentiate far-right from right and 659

far-left from left, but it does not model the political 660

bias using an ordinal scale. Difficulties in label- 661

ing the bias (i.e., creating ground-truth datasets) 662

by experts or crowdsourcing is a major hurdle for 663

modeling ideological bias as an ordinal variable. 664

Multimodality: In news reporting, a photo typ- 665

ically gets high attention, and readers can some- 666

times understand a news storie from news photos 667

only, even without reading the text. Indeed, news 668

text and photos are strongly coupled together and 669

deliver relevant information about news stories to 670

readers. Thus, there should be a benefit from mod- 671

eling news text and photos together to understand 672

their bias and factuality (Alam et al., 2022), and 673

potential harmfulness (Sharma et al., 2022). 674

Evaluation granularity: The label of a news 675

medium is inferred from a sample of observations. 676

This can introduce a measurement bias when a 677

news medium does not exhibit the same reporting 678

behavior with all news items it publishes. This is 679

especially the case for media that have a particular 680

stance in only certain issues (Ganguly et al., 2020). 681

Thus, reliable estimation of factuality and bias la- 682

bels require analyzing a relatively large amount of 683
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content covering a range of issues.684

Variability in factuality & bias ratings: These685

ratings are inherently not static and may change686

over time when a news medium takes corrective ac-687

tion to address issues raised by fact-checkers. Thus,688

the ground truth needed for building a learning ap-689

proach varies, triggering the need for re-evaluating690

the performance of the proposed approaches. Thus,691

there is a need to take into account the sensitivity of692

a learning approach to such small but nevertheless693

inevitable variations.694

Dataset size: The datasets for media-level fac-695

tuality and bias are relatively small, typically of696

a few hundred examples.They are derived from697

sites, such as Media Bias/Fact Check and AllSides,698

where domain experts perform manual analysis.699

Annotation vs. modeling: One problem is that700

human annotators judge the factuality of reporting701

and the bias of media based on criteria that are702

not easy to automate or based on information that703

may not be accessible to automatic systems. For704

example, if a news outlet is judged to be of mixed705

factuality based on it having failed just 2-3 fact-706

checks, for an automatic system to arrive at the707

same conclusion using the same idea, it would have708

to select for analysis the exact same articles where709

the false claims were made.710

Data availability: Primarily due to copyright711

issues, there are only a few publicly available712

datasets of the full text of news for research pur-713

poses. Instead, indexed data (e.g., GDELT dataset1)714

by mentioned actors, events, locations, sources, or715

tones are available and have been analyzed in many716

studies. A set of news headlines collected from717

news websites or aggregated websites (e.g., All-718

Sides) are also shared more actively for research719

purposes. Considering the importance of social720

media channels in news dissemination, researchers721

collect and analyze social media posts of official722

accounts of news media. As social media posts are723

relatively more informal than news articles to fit724

for social media audience (Park et al., 2021), more725

studies are required for understanding their biases726

and factuality correctly.727

8 Future Forecasting728

Support for non-English corpora and different729

political systems: Most of the studies we review730

1https://www.gdeltproject.org/

are conducted for English. More research on bias 731

and factuality for other languages thus is expected. 732

Recently, various approaches are proposed to accel- 733

erate NLP research for resource-scarce languages, 734

such as multilingual word embeddings. We believe 735

that those efforts help conduct bias and factuality re- 736

search for non-English corpora. One non-technical 737

issue here is that not all the countries have US-like 738

left-center-right political biases. For example, there 739

might exist a multiparty system in some countries. 740

In that case, understanding relevant political biases 741

should be the first step in media bias research. 742

Incorporation of video content: TV news ac- 743

counts for significant portions of the news industry. 744

Also, the presence of news media becomes strong 745

in video-driven social media platforms over time. 746

To get high user engagements, news media outlets 747

upload short video clips curated for social media 748

use, particularly on existing social media. Most pre- 749

vious studies on bias in video news have analyzed 750

their transcripts instead of analyzing video directly. 751

Commercial databases, such as Lexis Nexis, or 752

open-source libraries to create subtitles are used 753

to analyze news transcripts. We expect that more 754

studies on analyzing video contents in an end-to- 755

end manner will be presented to fully understand 756

the bias and factuality of video news. 757

Bringing practical implications: Since the fac- 758

tuality and the bias of news media largely influence 759

the public, it is crucial to implement working sys- 760

tems, so that readers can benefit from a rich stream 761

of research. Several stand-alone websites, such 762

as Media Bias/Fact Check, AllSides, and Tanbih 763

(Zhang et al., 2019), aim to make media bias and 764

factuality transparent to end-users, thus promoting 765

media literacy. We expect new tools and services 766

to support more media and languages. 767

9 Conclusion 768

We reviewed the state of the art on media profil- 769

ing for factuality and bias, arguing for the need to 770

model them jointly. We further discussed interest- 771

ing recent advances in exploiting different infor- 772

mation sources and different modalities, which go 773

beyond the text of the articles the target news outlet 774

has published. Finally, we discussed current chal- 775

lenges and outlined promising research directions. 776
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