
On the importance of data collection for training
general goal-reaching policies

Alexis Jacq
Google DeepMind

Manu Orsini
Google DeepMind

Gabriel Dulca-Arnold
Google DeepMind

Olivier Pietquin
Google DeepMind

Matthieu Geist
Google DeepMind

Olivier Bachem
Google DeepMind

Abstract

Recent advances in ML suggest that the quantity of data available to a model is
one of the primary bottlenecks to high performance. Although for language-based
tasks there exist almost unlimited amounts of reasonably coherent data to train
from, this is generally not the case for Reinforcement Learning, especially when
dealing with a novel environment. In effect, even a relatively trivial continuous
environment has an almost limitless number of states, but simply sampling random
states and actions will likely not provide transitions that are interesting or useful
for any potential downstream task. How should one generate massive amounts of
useful data given only an MDP with no indication of downstream tasks? Are the
quantity and quality of data truly transformative to the performance of a general
controller? We propose to answer both of these questions. First, we introduce a
principled unsupervised exploration method, ChronoGEM, which aims to achieve
uniform coverage over the manifold of achievable states, which we believe is the
most reasonable goal given no prior task information. Secondly, we investigate
the effects of both data quantity and data quality on the training of a downstream
goal-achievement policy, and show that both large quantities and high-quality of
data are essential to train a general controller: a high-precision pose-achievement
policy capable of attaining a large number of poses over numerous continuous
control embodiments including humanoid.

1 Introduction

Recent work in large language models (Chowdhery et al., 2022), as well as general conclusions
such as though proposed by (Sutton, 2019) suggest that one of the main bottlenecks of current
machine-learning methods is access to large amounts of informative data. This is particularly true for
the domain of Reinforcement Learning (RL) (Sutton and Barto, 2018), where data acquisition can be
costly, and coherent datasets (Gulcehre et al., 2020; Fu et al., 2020) are less prominent and smaller
than text datasets pulled from the internet. This brings us to the following two core questions:
•How should one generate massive amounts of useful data given only an MDP with no indication of
downstream tasks?
•What are the effects of quantity and quality of data on the training of a general policy?

To answer the first question, we present Chronological Greedy Entropy Maximisation (ChronoGEM),
a principled, highly scalable exploration method whose goal is to achieve uniform coverage over the
manifold of achievable states. We demonstrate both theoretically that ChronoGEM approximates uni-
form sampling, and empirically that states achieved by ChronoGEM are diverse and well-distributed.

16th European Workshop on Reinforcement Learning (EWRL 2023).



Figure 1: Log-frequencies of the discretized states visitation when taking the last states from 4000
episodes, sampled according to (left to right) a random walk, SMM, RND and ChronoGEM, averaged
over 10 seeds. Only ChronoGEM managed to visit states in the top-left room.

Regarding the second question, we investigate the effects of data quality and quantity using Entropy-
Based Conditioned Continuous Control Policy Optimization (C3PO), a goal-conditioned policy
training pipeline that leverages pre-defined datasets of uniform goal states to learn a general pose-
attainment policy on various high-DoF control tasks. Data quality is analyzed by comparing perfor-
mance of our policy trained with goals sampled from ChronoGEM vs other contemporary unsuper-
vised exploration methods. The question of quantity is particularly interesting if we can analyze the
asymptotic effects of data, perhaps far beyond what is generally realized in RL training. The main
blocker to this type of experiment in the past has simply been the time such experiments would take
to run, but given observations that the long-tail of training can still provide significant performance
benefits (Silver et al., 2017), it is important to understand how much is being left off the table by not
pushing this limit. Recent advances in accelerator-specific parallelizable physics simulators such as
Brax (Freeman et al., 2021) can allow us to train our policies into the billions of steps in a matter of
hours, thus allowing us both to tune said approaches and observe their asymptotic behavior when
pushing training orders of magnitude beyond what is usually performed.

We structure our paper by first introducing our two methods in Section 2: We look at both the theo-
retical foundations of ChronoGEM, as well as its independent building blocks. We also introduce the
C3PO training setup, and discuss how it can be used to evaluate the effects of quantity and quality of
data for learning a generalist policy. In Section 3 we perform a series of experiments to attempt to an-
swer our core questions. We begin by comparing the performance of ChronoGEM relative to existing
unsupervised exploration methods such as RND Burda et al. (2018) and SMM (Lee et al., 2019) on
a series of environments, ranging from an illustrative 2-D maze task, to high-DoF continuous control
environments through various methods. We then investigate the effects of quantity and quality of data
on the training of a general controller policy. We do this by comparing goal achievement across our
different goal datasets, generated by either ChronoGEM, RND or SMM, and show that policies learnt
using ChronoGEM data can achieve a much more diverse set of goals than those learnt on other data
sources. Finally, we push the training regime to multiple billions of steps to examine the asymptotic
performance of our policy architecture, and achieve high-precision pose-attainment even on a complex
system such as Humanoid. Finally, we briefly demonstrate applicability of a general controller in
a zero-shot imitation task. Section 4 situates our proposed methods relative to current research.

2 Methods: ChronoGEM & C3PO

We introduce our two contributions: Chronological Greedy Entropy Maximisation (ChronoGEM)
& Entropy-Based Conditioned Continuous Control Policy Optimization (C3PO). ChronoGEM is
our proposed solution for principle scalable unsupervised exploration of high-DoF environments
which we use to investigate how to generate massive amounts of useful data for downstream RL
tasks. C3PO is our proposed pose-attainement policy training method to investigate the effects of
quantity and quality of data on the performance of a generalist policy. To clarify notations we will
quickly introduce the Markov Decision Process (MDP), which can be defined by a transition function
T which maps states s ∈ S and actions a ∈ A to a corresponding state st+1 = T (st, at), while
potentially providing a scalar reward r(st, at) ∈ R if there is an associated task.

2



2.1 Chronological Greedy Entropy Maximisation (ChronoGEM)

Given an arbitrary Markov Decision Process (MDP), and the goal of generating massive amounts
of useful data for arbitrary downstream tasks, and no prior to guide our exploration of the MDP, we
argue that the ideal set of explored states should be uniformly sampled from the manifold of reachable
states at a given horizon T . The shape of the manifold of reachable states is cannot be known a
priori, and may be arbitrarily complex, thus rendering any form of direct sampling impossible. Given
acces to the MDP, this sampling can however be approximated by an iterative algorithm.

Let us assume we have a sample of N states that are approximately uniform for a horizon of T − 1.
We can perform K uniform actions from each of these states, and result with NK states, whose
distribution will be biased by the MDPs natural dynamics instead of being uniform across state
values. Nevertheless, with a sufficiently large N there is likely some subset of these NK states which
would can be sampled to approximate a uniform distribution over states at horizon T . Let ρT be
the distribution induced by these NK next states, and let us assume we have a method to estimate
ρT . Since the set of achievable states in T steps is generally bounded, and given that we are able to
closely estimate ρT , we can sub-sample the NK states with probability 1

ρT
, which will approximate

uniform sampling according to the state statistics maintained in ρT . We prove in Appendix A that such
sub-sampling approximates uniform sampling when the number of sampled states is sufficiently large.

Given this recursive definition, we can begin with states sampled from the environment’s initial
starting-state distribution ρ0, perform K uniform actions and generate NK states. We can then
sub-sample the NK states back to N states that approximate the uniform distribution using inverse
probability weighting according to our density estimator ρ. By iterating this process T times, we can
obtain a set of N states that are uniform for a given horizon T . We call this process ChronoGEM (for
Chronological Greedy Entropy Maximization) since at a given step, it only focuses on maximizing the
entropy by directly approximating a uniform distribution over the next step, without further planning.
ChronoGEM is described more formally in Algorithm 1.

Algorithm 1 ChronoGEM
1: Sample N states S0 = {si0}Ni=1 ∼ ρ0.
2: for t = 1 to T do
3: Sample K uniform actions for each state of St−1.
4: Obtain KN next states.
5: Estimate ρt using a density model fitted on the distribution of these KN states.
6: Sample N states with p(s) ∝ 1

ρt(s)
to get St.

7: end for
8: Return ST .

ChronoGEM requires exactly KNT interactions with the environment, which makes it easily con-
trollable in term of sample complexity. Due to the N sampled states being independent, ChronoGEM
can be parallelized with N jobs consuming KT interactions each, significantly shortening the time
complexity. As implemented, ChronoGEM requires re-settable states, although this could potentially
be relaxed with a return-to-state policies similar to ‘First Return then Explore’ (Ecoffet et al., 2021),
refer to Appendix C.0.1 for more discussion.

Density estimation. As we saw above, ChronoGEM requires a density estimator at each iteration
to estimate ρt. Many choices of density estimation in high dimensional space exist, from simple
Gaussian estimators to neural network-based methods such as autoregressive models or normalizing
flows. The performance of these models may vary given the type of data: Some models are more
suited for images, while others are better for text or lower dimensions. We implemented 7 candidate
models, including Gaussian models (Multivariate, Mixture), autoregressive networks (RNade (Uria
et al., 2013), Made (Germain et al., 2015)), and normalizing flows (real-NVP (Dinh et al., 2016),
Maf (Papamakarios et al., 2017), NSF (Durkan et al., 2019)). After comparing performance of the
various models through a state modeling task decribed in Appendix B, we concluded that the NSF
variant of normalizing flows worked best for the state modeling task.

3



2.2 Entropy-Based Conditioned Continuous Control Policy Optimization (C3PO)

C3PO’s objective is to learn a generalist control policy that can attain any reachable state in a given
environment. Our intent is to investigate the effects of data quantity and quality on C3PO’s training
regime, and better understand the importance of both diverse data, and the asymptotic effects of
massive amounts of experience on policy quality.

C3PO is a training regime that wraps an arbitrary policy learning algorithm with a curriculum
and success threshold annealement. It requires a dataset of goal states sg ∈ G, as well as a goal-
achievement criteria S : (S,S,R)→ {0, 1}. The overall training regime is defined in Algorithm 2.
In practice this training loop is run in a highly-parallelized manner on a set of accelerators, allowing
for significantly longer episodes than is usually performed in RL experiments. The success criteria’s
threshold is initialized to a relatively tolerant value, and conditionally annealed every time the learnt
policy achieves 90% success rate according to the goal-achievement criteria.

As we will see in Section 3.3, by using various sources of goal states, such as ChronoGEM, RND,
SMM, and random walk for which we will have already compared the state space coverage and
relative entropy, we can understand the downstream effects of data quality on training a general policy.
With regards to data quantity, we will see in Section 3.3 that by pushing the number of training steps
into the billions, we can significantly improve goal achievement rates of the generalist policy.

Algorithm 2 C3PO
Require: Goals G, Achievement Criteria S, Threshold ε

1: success_rate = 0, D = ∅
2: while True do
3: Draw goal sg ∈ G
4: Rollout π(·, sg), until S(st, sg, ε) == 1 or t == T
5: Add rollout to D
6: Update success_rate average with S(st, sg, ε)
7: IF (success_rate > 0.9) : ε = 0.99× ε
8: Run policy training algorithm on D.
9: end while

10: return π

3 Experiments

We will now detail the experiments performed to investigate our two core questions. First we will look
at experiments on how one should generate massive amounts of useful data, by investigating the perfor-
mance of ChronoGEM relative to other unsupervised exploration algorithms. We will then look at the
effects of data quantity and quality by looking at C3PO performance as these two factors are varied.

3.1 Environments

2D Maze. As a tool scenario to test ChronoGEM, we implemented a two-dimensional continuous
maze in which actions are dx, dy steps bounded by the [−1, 1]2 square, and the whole state space is
bounded by the [−100, 100]2 square. This environment, illustrated in Fig? 1 is similar to the maze
used by Kamienny et al. (2021), except it adds a significant difficulty induced by the presence of two
narrow corridors that needs to be crossed in order to reach the top-left room.

Continuous control tasks. We use control tasks from Brax (Freeman et al., 2021) as high dimen-
sional environments. We chose four environments to cover varying complexities of task: Hopper,
Walker2d, Halfcheetah and Ant. Environment observations were modified to contain (x, y, z) posi-
tions of all body parts to be better aligned with pose-achievement goals. All measures (cross-entropy
in Section 3.2 and reaching distances in Section 3.3) are based on this observation space. To at-
tenuate energy accumulation corner cases in the simulator, we maintain the environments in a low
energy regime by reducing the action amplitude by a factor of 0.1 for Hopper and Walker, 0.01 for
HalfCheetah. Actions for Ant are unmodified. In the two following subsections, we considered
episodes of length T = 128. To compensate for varying control frequencies while keeping the same

4



Figure 2: Sky-view of the discretised spatial log-frequency covered by Ant with the different
exploration methods. SMM has the largest scope but contains empty zones even close to the origin.
Both RND and ChronoGEM share similar range covering all directions, and ChronoGEM is visibly
much more uniform, while other methods are concentrated on the origin. Note that this only represents
the spatial positions, while both poses and positions are being explored.

wall clock episode length, there is an action repeat of 6 for Hopper and Walker. All default episode
end conditions (primarily involving falling) have been removed.

3.2 Generating Useful Data With ChronoGEM

In our first set of experiments, we look at the performance of ChronoGEM relative to three other
unsupervised exploration algorithm: RND (Burda et al., 2018), SMM (Lee et al., 2019) and a random
walk policy. In Section 3.2 We will begin by looking at an easily interpretable environment, a 2D
maze. We will then look at more complex environments and quantify data coverage in Section 3.2.
ChronoGEM was run with N = 217 parallel environments and branching factor K = 4 in all
experiments, except for Humanoid where N = 215 and K = 64 (Humanoid required a larger
branching factor to avoid absorbing states). ChronoGEM-related hyperparameters are in Table 3
(Appx.).

Chronogem Visualization: 2D Maze. The main goal of this experiment is to verify that Chrono-
GEM manages to induce a uniform distribution over the whole state space of a simple yet challenging
toy environment. In order to emphasize the relative difficulty of the exploration of this maze, we also
run SMM, RND and a random walk to compare the resulting state coverage. In this setup, we know
that if T is large enough, all achievable states are just every point in the maze, so ChronoGEM should
be uniform on the maze given sufficient time (for instance, T = 1000). We can see the final state
distribution in Figure 1, and observe that while ChronoGEM achieves fairly uniform state coverage,
both RND and SMM fail at exploring beyond the first corridor, and a random walk did not even
explore the whole first room. This suggests that ChronoGEM is performing as expected, and that
RND and SMM struggle with bottleneck states, whereas random walk has trouble with diffusing far
from the starting state distribution.

State Coverage Quantification with Entropy. In this section we will look at a more quantified
method for evaluating state coverage of an exploration method using our learnt entropy estimator.
Given a set of points x1 . . . xN sampled from a distribution with an unknown density ρ, one can
estimate an upper-bound of the entropy of ρ given by the cross-entropy H(ρ, ρ̂) where ρ̂ is an
estimation of ρ: H(ρ, ρ̂) = −Ex∼ρ[log ρ̂(x)] = H(ρ) + KL(ρ||ρ̂) ≥ H(ρ). The estimate ρ̂ being
learned by maximum likelihood specifically on the set of points, it directly minimises the cross
entropy and closely approximates the true entropy. The KL term becomes negligible and only
depends on the accuracy of the trained model on the observed set of points, which supposedly does
not differ given the different exploration method that generated the points. Consequently, comparing
the cross-entropy is similar to comparing the entropy of the distribution induced by the exploration.
In this experiment, we used this upper-bound to study the efficiency of ChronoGEM compared to
RND, SMM and a random walks. Figure 3 displays box plots over 10 seeds of the resulting cross
entropy measured on the sets of states induced by different algorithms, on the 4 continuous control
tasks. As expected, the random walk has the lowest entropy, and SMM has a better entropy than
RND on Hopper and Walker2d (which makes sense since it is optimizing for the maximization of the
entropy). ChronoGEM has the highest entropy on all environments, especially on HalfCheetah, where
it was the only method to manage exploration while the actions were drastically reduced by the low
multiplier (see Section 3.1). In order to illustrate the fact that ChronoGEM induces a state distribution

5



ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

−40

−20

Cr
os

s e
nt

ro
py

Ant

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

−50

0
Halfcheetah

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

−20

−10
Hopper

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM

ran
do

m walk RND
SM

M

Chro
no

GEM
−40
−30
−20

Walker2D

Figure 3: Distribution over 10 seeds of the cross entropies of the state visitation induced by Chrono-
GEM, RND, SMM and a random walk, on different continuous control tasks.

that is close to uniform, we measure the spatial coverage based on a discrete grid of the x-y plan:
if the distribution is uniform over both the possible poses and positions, it should be in particular
uniform over the positions. Figure 2 shows the resulting log-frequency on the x-y grid visitations
and although ChronoGEM does not have the biggest exploration horizon, it nevertheless provides
the most uniform coverage. Grid visitation for Hopper, Walker2d and Halfcheetah are available in
Figure 8 in Appendix C. Given both the entropy coverage and the various qualitative visualizations,
we believe ChronoGEM provides consistently uniform and exhaustive coverage of the state space for
a given horizon T . Additionally, it is an efficient algorithm, which can quickly generate large amounts
of data. For these reasons we believe it is a good candidate for generating massive amounts of useful
data for downstream tasks. We will now look at this in practice by comparing its utility relative to
RND, SMM and randomw-walk datasets as goal states for training a general goal-achievement policy.

3.3 Effects of Data Quality and Quantity on General Policy Training with C3PO

In this section we investigate the effects of data quality and quantity on the training of a general policy
using C3PO. We start by looking at data quality, by evaluating C3PO policies trained on varied datasets
of goal states. We hope to better understand the importance of data coverage for the performance of
training a general goal-attainment policy. Indeed, the ideal goal distribution would be uniform across
all achievable states, so if the data was generated in a way that it best approximates this distribution,
we would hope this would significantly impact the quality of our trained policy. For each environment,
we run the four exploration methods (ChronoGEM, Random Walk, SMM and RND) with 3 seeds
each, which we split into training & evaluation goal sets. Training goal sets have 4096 goals and
evaluation goal sets have 128 goals. For the task of goal-achievement, we use the following reward:
r(st, g) = −‖st−g‖2∞ = −maxbi∈st ‖bi−gi‖2 , where bi is a set of coordinates corresponding to
a body component of the embodiment (leg, torso, foot). This reward effectively penalizes according
to the distance of the most distant body part relative to the desired goal pose. The success criteria
is S(st, g, ε) = |r(st, g)| < ε, thus effectively ending the episode once a certain value of reward
is attained. The underlying training algorithm used is SAC (Haarnoja et al., 2018) with the hypers
detailed in Table 4. Goal-states are simply appended to the observation vector of the policy network.

Effects of Data Quality. We evaluate policy performance with two quantitative and one qualitative
approach. We perform cross-validation across datasets, by evaluating each policy trained with one
dataset on evaluation goals from all other datasets. We observe that C3PO trained on ChronoGEM
data is the most robust across datasets and environments, matching or often beating policies evaluated
on their own datasets, especially for low tolerance values of ε. This can be explained by the fact
that C3PO learns to reach a high variety of poses, since being able to achieve poses with high fidelity
is what matters for low distance threshold regime. We believe that slightly lower performance on
some environment/dataset pairs can be explained by goals being generally closer to the origin with
ChronoGEM than SMM or RND (c.f. Figure 2). Full results of the cross-validation with regards
to varying ε are visualized in the Appendix, Figure 9.

We can better quantify the global results by collecting all the areas under the curve (AUC), and
weighting them proportionally to the exponential of the evaluation goals’ entropy. In effect, if a
goal-set is very diverse, goals therein are more diverse and therefore more interesting to achieve.
Conversely, if a goal-set has low entropy, it may simply contain the same couple of goals that are
hard to achieve, but have low value in terms of learning a generalist controller. The exponential of
the entropy quantifies the number of states in the distribution. We call this metric Entropy Weighted
Goal Achievement (EWGA):

∑
s∈eval sets

eentropy(s) ∗ AUC(method on s)/
∑

s∈eval sets
eentropy(s).

6



C3P
O + ra

nd
om

 walk

C3P
O + RND

C3P
O + SM

M

C3P
O + Chro

no
GEM

0.0

0.1

EW
GA

Ant

C3P
O + ra

nd
om

 walk

C3P
O + RND

C3P
O + SM

M

C3P
O + Chro

no
GEM

0.0

0.1

0.2
Halfcheetah

C3P
O + ra

nd
om

 walk

C3P
O + RND

C3P
O + SM

M

C3P
O + Chro

no
GEM

0.0

0.1

0.2
Hopper

C3P
O + ra

nd
om

 walk

C3P
O + RND

C3P
O + SM

M

C3P
O + Chro

no
GEM

0.0

0.1

0.2
Walker2D

Figure 4: Entropy Weighted Goal-Achievement (EWGA). This estimates the ability of a policy to
achieve goal sets that better covers the space (for example, a policy like C3PO that reaches a larger
variety of states has an higher EWGA than a policy like SAC trained on the Random Walk, that only
reaches states that are close to the origin).

The performance of each C3PO variant is detailed in Figure 4, where we can see that C3PO trained
on ChronoGEM data is significantly better across all four environments regarding entropy-weighted
AUC. To answer our original question on the importance of data quality, we can see that on datasets
with higher entropy as per Figure 3, downstream C3PO policy performance is higher both in cross-
validation (Figure 9) and in entropy-weighted AUC (Figure 4). In particular, ChronoGEM-trained
C3PO is generally the most robust on un-normalized cross-validaiton, and is significantly superior on
entropy-reweighted AUC.

107 108 109 1010

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Ant
Halfcheetah
Hopper
Walker2D

Figure 5: This plots illustrates C3PO-
ChronoGEM training curves for each of
the four environments used. We can ob-
serve that although training can converge
quickly on some environments, other re-
quire significant amounts of interaction.
Final convergence on Ant for example
takes upwards of 1010 steps.

Effects of Data Quantity. We now want to investigate
the importance of large amounts of experiential data
on the performance of a general goal-achievement pol-
icy. To do this, we will let C3PO train for many orders
of magnitude more than what is generally used during
continuous-control training regimes. For questions of
resource-efficiency, we restrict these experiments to the
ChronoGEM datasets, as they seem to perform best for
goal-achievement. For environments where we do not con-
verge to a good controller earlier, we let them run for up
to 30× 1012 steps. Thanks to Brax’s high parallelization
and efficient infrastructure, it is possible to run such an
experiment in a couple of days. Although we did not use
it in our earlier experiments for resource reasons, we also
add the much more difficult Humanoid task to our set en-
vironments for this analysis, with a couple modifications
described in Appendix E.1. In Figure XX we show the
performance of each policy for a fixed ε. We can see that
for certain environments such as Hopper and Walker2d
train in tens of millions of steps. One could be tempted
to conclude that halfcheetah and ant have also hit their
maximum performance at this stage. However, we show
that by continuing training for billions of steps, we can also achieve very good performance on these
environments. We illustrate some of the goal-achivement abilities of the policies able to achieve 90%
success at .25 tolerance are represented in Figure 6 and in supplementary material1. We believe this
shows that not only is data quality important, but also providing significant amounts of experience is
necessary for general goal-achievemnet policies to attain high levels of performance.

3.4 Zero-shot imitation

As an example task to illustrate the utility of a general goal-achievement policy we look at zero-shot
imitation. We can easily perform this by telling the C3PO policy to aim for successive target states
from a pre-generated expert policy trajectory.

we used a pre-trained C3PO policy to imitate an expert demonstration. Additional details on the
implementation are in Appendix E.2. We define two types of task, one where a policy is trained

1Please refer to https://sites.google.com/view/chronogemc3po/home

7

https://sites.google.com/view/chronogemc3po/home


Figure 6: For each environment, we drew 8 goals from the ChronoGEM distribution and ran the
policy trained on ChronoGEM goals. This figure represent the frame that is the closest from the goal
for each episode, overlayed with the goal in red.

from scratch on the base environment reward, which involves moving forward at a certain speed, and
another where we take trajectories induced by ChronoGEM exploration (ChronoGEM has the side
effect of generating original and energetic behaviours like cartwheels or backflips). For imitation of
the base environment reward policies, we can evaluate the effective reward of the imitation policy.
Results suggest that zero-shot imitation based on C3PO reaching demonstrator’s states can achieve
around 50% of the expert score. For Ant, Halfcheetah, Hopper and Walker2d, the imitating agent
successfully walked in the rewarding direction. Zero-shot imitation failed for humanoid, that could
only manage to maintain a standing position but did not walk in the right direction. Full results are
reported in in Table 1.

Imitation of ChronoGEM trajectories was easier in the sense that all the states where by construction
in-domain for the policy. Because it is difficult to quantitatively measure this performance in
an interpretable way, we joined the resulting videos (both demonstration and imitation) in the
supplementary material2. These videos show that Hopper and Walker almost perfectly imitate the
expert, while Ant and Halfcheetah only “approximate” the demonstration (eg, halfcheetah realizing
one front flip while the expert did two).

4 Related works
Environment Expert Zero-shot imitation

Ant 2281.45 1083.48 ± 317.42
HalfCheetah 1092.65 984.32 ± 112.49

Hopper 676.58 214.95 ± 138.88
Walker2d 965.53 562.26 ± 51.01
Humanoid 2670.59 588.93 ± 505.45

Table 1: Zero-shot imitation of downstream
tasks, based on a single expert demonstration
of length 300. Imitation results are averaged
over 9 different values (3 ChronoGEM seeds for
C3PO × 3 environment seeds).

This work is situated between various fields.
Although effectively a goal-conditioned policy
optimization algorithm, C3PO is enabled by the
ChronoGEM exploration algorithm. We will first
look at similar exploration methods and then
consider various goal-conditioned learning setups.

Bonus-based exploration. Although generally
not concerned with goal-conditioned RL, there is
a large family of exploration methods that are manifest as reward bonuses, with the intent of training a
policy faster, or to be more efficient. One family of approaches uses state-visitation counts that can be

2Please refer to https://sites.google.com/view/chronogemc3po/home

8

https://sites.google.com/view/chronogemc3po/home


approximate to create an associated bonus for rarely-visited states (Bellemare et al., 2016; Ostrovski
et al., 2017). Prediction-error bonuses use the residual error on predictions of future states as a reward
signal to approximate novel states, this includes methods such as RND (Burda et al., 2018) which
leverages the prediction error of random projections of future states, or SPR (Schwarzer et al., 2020)
and BYOL-Explore (Guo et al., 2022), which make use of the self-prediction error of the network
with a frozen version of itself. Model-based methods often optimise for next-state novelty, either by
looking at the KL divergence between sampled states and likely states, such as in VIME (Houthooft
et al., 2016) or by explicitly driving towards states with high model ensemble disagreement such as
in Plan2Explore (Sekar et al., 2020). RIDE (Raileanu and Rocktäschel, 2020) and NGU (Badia et al.,
2020) use episodic memory in which the bonus reflects the variety of different states covered in a
single trajectory.

Diffusion-based exploration ChronoGEM is based on a tree-structured diffusion, that makes a
selection of states, randomly explores from these states and then reselect states, and so on. Go-
Explore (Ecoffet et al., 2019) uses a similar approach, by running a random policy for some steps,
selecting a set of ‘interesting’ states, and then branching from these. ChronoGEM does not require
returning to said states, and only requires one step of random actions at each iteration. An idealized
ChronoGEM with perfect density estimation is additionally provably approximating a uniform
distribution over achievable goals as the number of sampled states is large enough, and it does not
require any additive prior regarding state importance. Another close work also using a diffusion
approach is UPSIDE (Kamienny et al., 2021). It finds a set of nodes along with a set of policies that
connect any node to the closest ones, looks for new nodes by random exploration from the existing
ones, and removes unnecessary nodes that are reached by the less discriminant policies. UPSIDE
converges to a network of nodes that efficiently covers the state space. However, by construction
UPSIDE does not produce uniform coverage, but a set of policies that reach different regions of the
space. Using UPSIDE to obtain a similar quantity of states uniformly distributed than in ChronoGEM,
we would have to train UPSIDE with 217 policies, which is not computationally feasible.

Entropy maximisation. Some exploration algorithms, such as ChronoGEM, are constructed in
order to maximize the entropy of the state visitation distribution. Most of them, however, focus on
the distribution induced by the whole history buffer (instead of the just T -th states of episodes in
ChronoGEM), generally based on the behavior of a trained policy. This is the case of MaxEnt (Hazan
et al., 2019), GEM (Guo et al., 2021), SMM (Lee et al., 2019) and CURL (Geist et al., 2021). In
APT (Liu and Abbeel, 2021b), instead of using a density model to estimate the entropy, they use a
non-parametric approach based on the distance with the K nearest neighbors in a latent representation
of the state space. APS (Liu and Abbeel, 2021a) combines APT’s entropy bonus with an estimation
of the cross-entropy based on successor features to maximize the mutual information I(w; s) between
a latent skill representations w and states.

Goal-Conditioned Reinforcement Learning. Goal-conditioned RL (Kaelbling, 1993; Schaul
et al., 2015) is the general setup of learning a goal-conditioned policy instead of a specialized
policy. We are particularly interested in goal-based setups where there is no a-priori reward function.
Although well known works such as HER (Andrychowicz et al., 2017) demonstrate methods for
learning goal-conditioned policies with minimal explicit exploration, more recent works (Pitis et al.,
2020; OpenAI et al., 2021; Mendonca et al., 2021) demonstrate the importance of having a good
curriculum of goals to train from. MEGA (Pitis et al., 2020) extends HER-style relabeling and
answers the exploration problem by iteratively sampling goals according to a learnt density model of
previous goals. ABC (OpenAI et al., 2021) demonstrates the importance of an adversarial curriculum
for learning more complex goal-conditioned tasks, but is concentrated on specific tasks instead of
arbitrary goal achievement. LEXA (Mendonca et al., 2021) builds on Plan2Explore (Sekar et al.,
2020), and demonstrates the importance both of a good exploration mechanism, as well as the use of
significant amounts of (imagined) data for learning an arbitrary goal-achievement policy. DIAYN (Ey-
senbach et al., 2018) uses a two-part mechanism that encourages the agent to explore novel areas for
a given latent goal, while at the same time learning a goal embeddings for different areas of the state
space. While some of the above methods consider notions of density for exploration (Eysenbach
et al., 2018), C3PO uses a more principled exploration mechanism, and is particularly interested in
collecting a large and uniformly distributed dataset of reachable states to train a goal-conditioned
policy.

9



5 Conclusion

In this paper we looked at generating massive amounts of data on MDPs with no prior task information,
as well as the effects of data quantity and quality on training a general policy. When compared
to similar methods, we show that our proposed exploration mechanism ChronoGEM is capable of
generating massive amounts of useful data. We also show that when training a downstream general
controller policy with C3PO, the quality of ChronoGEM data for goal states is superior to similar
methods, and that letting the policy consume massive amounts of experience data is fundamental to
achieving high-quality general controllers. We believe these insights suggest that general controllers
are achievable, but will require both performant exploration such as that generated by ChronoGEM
and potentially massive amounts of data to be able to achieve high performance.

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,

J., Pieter Abbeel, O., and Zaremba, W. (2017). Hindsight experience replay. Advances in neural
information processing systems, 30.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S., Tieleman, O.,
Arjovsky, M., Pritzel, A., Bolt, A., et al. (2020). Never give up: Learning directed exploration
strategies. arXiv preprint arXiv:2002.06038.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying
count-based exploration and intrinsic motivation. Advances in neural information processing
systems, 29.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q.,
Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680.

Böttinger, K., Godefroid, P., and Singh, R. (2018). Deep reinforcement fuzzing. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 116–122. IEEE.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random network
distillation. arXiv preprint arXiv:1810.12894.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W.,
Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes,
P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury,
J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D.,
Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M.,
Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z.,
Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. (2022). Palm: Scaling language modeling with pathways.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019). Neural spline flows. Advances in
neural information processing systems, 32.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2021). First return, then explore.
Nature, 590(7847):580–586.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem, O. (2021). Brax - a
differentiable physics engine for large scale rigid body simulation.

10



Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219.

Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos, R., and Pietquin, O.
(2021). Concave utility reinforcement learning: the mean-field game viewpoint. arXiv preprint
arXiv:2106.03787.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked autoencoder for
distribution estimation. In International conference on machine learning, pages 881–889. PMLR.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T., Gómez, S., Zolna, K., Agarwal, R., Merel, J. S.,
Mankowitz, D. J., Paduraru, C., et al. (2020). Rl unplugged: A suite of benchmarks for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:7248–7259.

Guo, Z. D., Azar, M. G., Saade, A., Thakoor, S., Piot, B., Pires, B. A., Valko, M., Mesnard, T., Latti-
more, T., and Munos, R. (2021). Geometric entropic exploration. arXiv preprint arXiv:2101.02055.

Guo, Z. D., Thakoor, S., Pîslar, M., Pires, B. A., Altché, F., Tallec, C., Saade, A., Calandriello, D.,
Grill, J.-B., Tang, Y., et al. (2022). Byol-explore: Exploration by bootstrapped prediction. arXiv
preprint arXiv:2206.08332.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on
machine learning, pages 1861–1870. PMLR.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. (2019). Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681–2691. PMLR.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016). Vime:
Variational information maximizing exploration. Advances in neural information processing
systems, 29.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589.

Kaelbling, L. P. (1993). Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer.

Kamienny, P.-A., Tarbouriech, J., Lazaric, A., and Denoyer, L. (2021). Direct then diffuse: In-
cremental unsupervised skill discovery for state covering and goal reaching. arXiv preprint
arXiv:2110.14457.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine, S., and Salakhutdinov, R. (2019). Efficient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274.

Liu, H. and Abbeel, P. (2021a). Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR.

Liu, H. and Abbeel, P. (2021b). Behavior from the void: Unsupervised active pre-training. Advances
in Neural Information Processing Systems, 34:18459–18473.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and Pathak, D. (2021). Discovering and
achieving goals via world models. Advances in Neural Information Processing Systems, 34:24379–
24391.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y.-J., Johnson, E.,
Pathak, O., Nazi, A., et al. (2021). A graph placement methodology for fast chip design. Nature,
594(7862):207–212.

OpenAI, O., Plappert, M., Sampedro, R., Xu, T., Akkaya, I., Kosaraju, V., Welinder, P., D’Sa, R.,
Petron, A., Pinto, H. P. d. O., et al. (2021). Asymmetric self-play for automatic goal discovery in
robotic manipulation. arXiv preprint arXiv:2101.04882.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R. (2017). Count-based exploration with
neural density models. In International conference on machine learning, pages 2721–2730. PMLR.

11



Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30.

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. (2020). Maximum entropy gain exploration for
long horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
pages 7750–7761. PMLR.

Raileanu, R. and Rocktäschel, T. (2020). Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292.

Roy, J., Girgis, R., Romoff, J., Bacon, P.-L., and Pal, C. J. (2022). Direct behavior specification via
constrained reinforcement learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu,
G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 18828–18843. PMLR.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International conference on machine learning, pages 1312–1320. PMLR.

Schmidt, J., Marques, M. R., Botti, S., and Marques, M. A. (2019). Recent advances and applications
of machine learning in solid-state materials science. npj Computational Materials, 5(1):1–36.

Schwartz, J. and Kurniawati, H. (2019). Autonomous penetration testing using reinforcement learning.
arXiv preprint arXiv:1905.05965.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A., and Bachman, P. (2020).
Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., and Pathak, D. (2020). Planning to
explore via self-supervised world models. In International Conference on Machine Learning,
pages 8583–8592. PMLR.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

Smith, L., Kew, J. C., Peng, X. B., Ha, S., Tan, J., and Levine, S. (2022). Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference on
Robotics and Automation (ICRA), pages 1593–1599. IEEE.

Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13:12.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., and Vanhoucke, V. (2018).
Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332.

Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural autoregressive
density-estimator. Advances in Neural Information Processing Systems, 26.

12



A Uniform sub-sampling

Let fX be the density of a distribution with domain S ⊂ Rd (x ∈ S ⇔ fX(x) > 0), and
X1 . . . Xn ∼ fX iid. We assume that S is bounded. We define the sub-sampling Yn such that
P (Yn = Xi|X1 . . . Xn) ∝ 1

fX(Xi)
, and Y ∼ US a random vector following the uniform distribution

over S.
Theorem 1. Yn conditioned to X1 . . . Xn ∼ fX iid converges in distribution to Y when n goes to
infinity.

Proof. let A be any subset of S, and µ(.) the Lebesgue measure over S. Given any sampling
X1 . . . Xn ∼ fX iid, we have:

P (Yn ∈ A|X1 . . . Xn) =

∑
Xi∈A

1
fX(Xi)∑n

j=1
1

fX(Xj)

=

1
n

∑
Xi∈A

1
fX(Xi)

1
n

∑n
j=1

1
fX(Xj)

→
EX [1X∈A 1

fX(X) ]

EX [ 1
fX(X) ]

=
µ(A)

µ(S)
.

B Density Estimator Model Selection

We implemented 7 candidate models, including Gaussian models (Multivariate, Mixture), autore-
gressive networks (RNade (Uria et al., 2013), Made (Germain et al., 2015)), and normalizing flows
(real-NVP (Dinh et al., 2016), Maf (Papamakarios et al., 2017), NSF (Durkan et al., 2019)). We
decided to compare them on two continuous control task from the Brax environments (Freeman et al.,
2021): Ant and HalfCheetah.

We proceeded in 5 steps.

B.1 Policy pre-training

We first pre-trained policies to solve all the different tasks, using 4 different RL algorithms: a uniform
random walk, PPO, SAC and Evolution Strategies.

B.2 Density model training

For each pre-trained policy, we trained each density model with various hyperparameters configu-
rations to maximize the log-density of the states visitation. Table 2 reports, for each model, all the
values we tried for each hyperparameter of the model, and the different configurations we used are
all combinations of these values. For each model, the training consisted in 100 epochs, each one
containing a training phase interacting with 128×1000 environment transitions and an evaluation
phase based on the log-likelihood score averaged over 128×1000 visited states. Every training was
run over 5 different seeds and resulting scores were averaged across these seeds.

B.3 Configuration selection

For each model, we selected the best configuration across all environments and all RL algorithm, based
on AUC. For each model, to compare the performance of configuration across various environment
and algorithm, we normalized the score w.r.t. the max and min performances for each environment
and RL algorithm couple. This procedure is described in Algo 3. Bold values in Table 2 represent the
hyper from the best configuration we found for each model.

B.4 Hyperparameters effects

We studied the effect of hyper parameters, based on two approaches. In the first one, given each value
of each single hyper we selected the best configuration for the rest of hyper parameters and looked at
the resulting score. In the second one, given a selected best configuration (from the step described
above in B.3) we replaced the value of one hyper by another one and looked how it deteriorated the
score. However, we found no surprising effect: globally, the larger the models, the higher the score.
Parameters that did not affect the size of the model (for ex the batch size) had no significant effect,
especially on normalizing flows.

13



Gaussian Made
Learning rate 5e-4, 1e-4, 1e-3 Learning rate 5e-4, 1e-4, 5e-4
Batch size 32, 64, 128 Batch size 32, 64, 128

Mixture of Gaussian Num. masks 1, 2, 4
Learning rate 5e-4, 1e-4, 1e-3 Num. Mixtures 1, 4, 8
Batch size 32, 64, 128 Num. hidden layers 2
Num. mixtures 10, 20, 30 Hidden layers dim. 5, 10, 50

RNade real-NVP, Maf, NSF
Learning rate 5e-4, 1e-4, 5e-4 Learning rate 5e-4, 1e-4, 5e-4
Batch size 32, 64, 128 Batch size 32, 64, 128 (Real-NVP: 64)
Num. mixtures 1, 10, 20, 30 Num. layers 4, 6, 8 (MAF: 6)
Hidden layer dim. 10, 20, 50 hidden layers per layers 500×500

Table 2: Explored hyperparameters. Bolded values are correspond to the best configuration for each
model, based on AUC criteria. For normalizing flows, we found the same best configurations, except
a batch size of 64 for Real-NVP (128 for MAF and NSF) and 6 layers for MAF (8 for Real-NVP and
NSF).

Algorithm 3 Hyper parameters selection for a given model.
Input: {rli} a set of RL algorithms, {envj} a set of environment and {confk} a set of hyperparams
configuration. Score function S(rli, envj , confk) ∈ R, for ex AUC.

Normalize configurations scores for each RL algorithm and environment:
For rli, envj ∈ {rli} × {envj}:

M(rli, envj) = maxk S(rli, envj , confk)
m(rli, envj) = mink S(rli, envj , confk)
For confk ∈ {confk}:

S̄(rli, envj , confk) =
S(rli,envj ,confk)−m

M−m

Sum normalized scores across different RL algorithms and environments:
For confk ∈ {confk}: F(confk) =

∑
i,j S̄rli, envj , confk)

Return best configuration according to sum of normalized scores:
Return: argmaxk F(confk)

B.5 Model comparison

Finally, we compared the different models together on the different environments and RL algorithms,
when run with the selected best configuration (from step B.3). Visually Gaussian and Mixture of
Gaussians are less efficient than autoregressive models, which are less efficient than normalizing
flows. Among normalizing flows, we found that NSF had the best average score across all RL
algorithm and environments, while being the less sensible to the variations of hyper parameters.
Figure 7 reports bar plots comparison of all model’s AUC scores given their best hyper configurations
on all the different RL algorithms and environments, averaged over 5 seeds.

C Space visitation of 2D environments

See Figure 8.

C.0.1 Resettable states assumption

Similarly to other diffusion-based algorithms (see related works ??), ChronoGEM needs to explore
many actions from a single given state. Although this is an unrealistic assumption for applications
involving real-world systems, we argue that there are multiple scenarios where this is an acceptable
assumption. To begin with, many tasks exist only as software: computer games (Berner et al.,
2019; Roy et al., 2022), physics simulations (Jumper et al., 2021; Schmidt et al., 2019), software-
aided design (Mirhoseini et al., 2021) or even arbitrary programs (Schwartz and Kurniawati, 2019;

14



0

500

1000

1500
sac-halfcheetah

−10000

−5000

0

es-halfcheetah

0

1000

2000

3000
ppo-halfcheetah

−500

0

500

1000

random-halfcheetah

ga
us
sia

n
gm

m
m
ad

e
rn
ad

e
ns
f

m
af

re
al
_n
vp

0

10000

20000

30000
sac-ant

ga
us
sia

n
gm

m
m
ad

e
rn
ad

e
ns
f

m
af

re
al
_n
vp

0

10000

20000

30000

es-ant

ga
us
sia

n
gm

m
m
ad

e
rn
ad

e
ns
f

m
af

re
al
_n
vp

0

10000

20000

30000

ppo-ant

ga
us
sia

n
gm

m
m
ad

e
rn
ad

e
ns
f

m
af

re
al
_n
vp

0

5000

10000

15000

20000

25000

random-ant

Figure 7: Model comparison based on AUC with selected best hyper configuration across all RL
algorithms and environments, averaged over 5 seeds.

25 0 25
7.5
5.0
2.5

Ha
lfc

he
et

ah

ChronoGEM

25 0 25

5

0
Random walk

25 0 25

5

0 SMM

25 0 25

5

0 RND

25 0 25
7.5
5.0
2.5

Ho
pp

er

ChronoGEM

25 0 25

5

0 Random walk

25 0 25
7.5

5.0

2.5 SMM

25 0 25
7.5
5.0
2.5

RND

25 0 25
7.5
5.0
2.5

W
al

ke
r2

d

ChronoGEM

25 0 25

5

0 Random walk

25 0 25
7.5

5.0

2.5 SMM

25 0 25
7.5
5.0
2.5

RND

Figure 8: Log-frequencies of discretised X-axis visitations in the 2-dimensional environments
(Hopper, Walker2d and Halfcheetah). In Hopper and Halfcheetah, SMM and RND visited a larger
scope of spatial positions, but actually neglected to explore the possible poses, while ChronoGEM had
a more uniform behaviour and well balanced both poses and positions exploration. In Halfcheetah,
only ChronoGEM was able to run a decent exploration under the action reduction with a low
multiplier.

Böttinger et al., 2018) are all important tasks that can be arbitrarily reset and parallelized. Secondly,
sim2real (Tan et al., 2018; Smith et al., 2022) approaches allow for a policy trained on simulation to
be transferred to real systems. In the case where a particular robot embodiment such as a quadruped
walker might be used for a large number of task, it would make sense to invest the time in establishing
a high-fidelity simulator and a sim2real pipeline to train generalist controllers such as those generated
by C3PO.

D Exploration methods to reaching states from other exploration methods

See Figure 9.

15



0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

Ha
lfc

he
et

ah

ChronoGEM goals

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0 Random Walk goals

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0 SMM goals

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0 RND goals

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

Ho
pp

er

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

W
al

ke
r2

d

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold

0.0

0.5

1.0

An
t

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold

0.0

0.5

1.0

Success rate when evaluated on

C3PO (ours) SAC+Random Walk SAC+SMM SAC+RND

Figure 9: For each environment (lines) and each set of evaluation goals (columns), success rates
as a function of distance thresholds obtained by SAC when trained on the different sets of training
goals (ChronoGEM, Random Walk, SMM, RND). Each exploration algorithm was run over 3 seeds
to collect evaluation and training goals, and each SAC training was also run over 3 seeds, so the
resulting curves are actually averaging 9 different values.

E Method Hyper-Parameters

See Table 3 and Table 4 for C3PO hypers.

E.1 Specifics of ChronoGEM for Humanoid

By default, ChronoGEM would mostly explore positions where the humanoid is on the floor. However,
it was simple to modulate the algorithm to only explore uniformly in the space of state where the
humanoid is standing. For example, on can associate zero weight to undesired states during the
re-sampling step. Thus, we avoid states in which the torso drops below an altitude of .8 (the default
failure condition). ChronoGEM is modified to not draw states where the humanoid is too low. The
goal-conditioned learner gets a high penalty for going too low as well. This demonstrates that when
in posession of a prior, we can leverage it to steer the exploration and policy learning.

E.2 Specifics for Zero-Shot Imitation

Since reaching a target state is never immediate and requires at least a few action steps, we sub-
sampled the expert trajectory to take one state every n states as a target for the imitating agent. Harder
tasks would require higher values of n, making the imitation task less strict.
Since the agent was trained on ChronoGEM targets that are reachable in 128 steps, we considered
relatively small episodes of 300 steps. Otherwise, as the imitator is moving slower than the expert, at
some point the distance between the imitator’s state and the target expert’s states goes out of C3PO’s
domain of knowledge. For downstream tasks, we could directly evaluate the quality of imitations by
looking at the environment’s returns. We used a single expert demonstration and averaged results
over 9 different values (3 ChronoGEM seeds for C3PO × 3 environment seeds). Full results of
policy-imitation are available in Table 1.

F Example States Generated by Each Method

16



ch
ro

no
ge

m
ra

nd
om

po
lic

y
sm

m
rn

d

Generated States for halfcheetah

ch
ro

no
ge

m
ra

nd
om

po
lic

y
sm

m
rn

d

Generated States for hopper

Figure 10: Random samples of generated states from the various exploration methods investigated for
the HalfCheetah and Hopper environments. We can observe reduced variability for randompolicy
states, as well as smm states in halfcheetah. These correspond to the reduces overall performance of
policies trained on these datasets for HalfCheetah and Ant. Each visualized state is sampled directly
from the dataset used for training goal-conditioned policies.

17



ch
ro

no
ge

m
ra

nd
om

po
lic

y
sm

m
rn

d

Generated States for walker2d

ch
ro

no
ge

m
ra

nd
om

po
lic

y
sm

m
rn

d

Generated States for ant

Figure 11: Random samples of generated states from the various exploration methods investigated
for the Walker2D and Ant environments. As in the previous figure we can observe reduced variability
for randompolicy states. Each visualized state is sampled directly from the dataset used for training
goal-conditioned policies.

18



ChronoGEM Hypers
buffer size 217

time horizon 128
branching factor 4
NSF batch size 211

NSF learning rate 3e-5
NSF hidden layers size [512, 512]
NSF number of hidden layers 8
NSF training epochs per step 1

Table 3: ChronoGEM Hyperparameters

SAC Hypers
normalize observations True
reward scaling 1.
number of actors 210

batch size 1024
discounting .98
learning rate 3e-5
min replay size 213

max replay size 220

epsilon update threshold .9
epsilon update multiplier .99
gradient updates per actor episode 32 * episode length
networks size (1024) * 4

Table 4: C3PO-SAC Hyperparameters

19


	Introduction
	Methods: ChronoGEM & C3PO
	Chronological Greedy Entropy Maximisation (ChronoGEM)
	Entropy-Based Conditioned Continuous Control Policy Optimization (C3PO)

	Experiments
	Environments
	Generating Useful Data With ChronoGEM
	Effects of Data Quality and Quantity on General Policy Training with C3PO
	Zero-shot imitation

	Related works
	Conclusion
	Uniform sub-sampling
	Density Estimator Model Selection
	Policy pre-training
	Density model training
	Configuration selection
	Hyperparameters effects
	Model comparison

	Space visitation of 2D environments
	Resettable states assumption

	Exploration methods to reaching states from other exploration methods
	Method Hyper-Parameters
	Specifics of ChronoGEM for Humanoid
	Specifics for Zero-Shot Imitation

	Example States Generated by Each Method

