
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

GENERATIVE PDE CONTROL

Long Wei1∗, Peiyan Hu2∗§, Ruiqi Feng1∗, Yixuan Du3§, Tao Zhang1, Rui Wang4§,
Yue Wang5, Zhi-Ming Ma2, Tailin Wu1†
1School of Engineering, Westlake University,
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
3Jilin University, 4Fudan University, 5Microsoft Research Asia
weilong@westlake.edu.cn, hupeiyan18@mails.ucas.ac.cn
fengruiqi@westlake.edu.cn, wutailin@westlake.edu.cn

ABSTRACT

Controlling PDE is a fundamental task across science and engineering. Classical
techniques for PDE control tend to be computationally demanding and recent deep
learning-based approaches often struggle to optimize long-term control sequences.
In this work, we introduce Diffusion generative PDE Control (DiffConPDE), a
new class of method to address the PDE control problem. DiffConPDE excels
by simultaneously minimizing both the learned generative energy function and
the predefined control objectives across the entire trajectory and control sequence.
Moreover, we enhance DiffConPDE with prior reweighting, enabling the discovery
of control sequences that significantly deviate from the training distribution. We
test our method in 2D jellyfish movement in a fluid environment and 1D Burg-
ers’ equation control. Our method consistently outperforms baselines. Notably,
DiffConPDE unveils an intriguing fast-close-slow-open pattern observed in the
jellyfish, aligning with established findings in the field of fluid dynamics.

1 INTRODUCTION

The PDE control problem injects time-variant signals to steer evolution and optimize specific ob-
jectives for a PDE. It is a fundamental task with applications, such as including controlled nuclear
fusion Degrave et al. (2022), fluid control Holl et al. (2020), and chemical engineering Christofides &
Chow (2002). Controlling high-dimensional, complex PDE systems in an efficient way presents three
significant challenges. (1) Simulation challenge. The physical system is typically high-dimensional
and highly nonlinear. (2) Optimization challenge. The PDE control task requires to optimize over a
highly non-convex, potentially high-dimensional control sequence on top of the physical simulation.
(3) Partial observation and control. In practical applications, our ability to observe or exert control
over the physical system is often constrained to a limited subset of its components.

To tackle PDE control problems, various techniques have been proposed. Classical methods typically
adopt numerical simulation, among which the adjoint method Lions (1971) is widely applied but
computationally expensive. Regarding traditional control methods, Model Predictive Control (MPC)
Schwenzer et al. (2021) is limited by high computational costs and challenges in optimizing for a
globally optimal solution. Recent advances in deep learning have impressive performance. But both
supervised learning (SL) Holl et al. (2020); Hwang et al. (2022) and reinforcement learning (RL)
Farahmand et al. (2017); Pan et al. (2018) may fall into adversarial modes Zhao et al. (2022b) and
struggle to optimize long-term control sequence. See Appendix A for more related work.

In this work, we introduce Diffusion generative PDE Control (DiffConPDE), a new class of method
to address the PDE control problem. We take an energy optimization perspective to implicitly
capture the constraints inherent in system dynamics through the diffusion model trained using system
trajectory data and control sequences. This prevents the generated system dynamics from falling out
of distribution, and offers an enhanced perspective of optimization overlong-term dynamics.

An essential aspect of PDE control lies in its capacity to generate near-optimal controls. We address
this challenge with the key insight that the learned generative energy landscape can be decomposed

∗Equal contribution. §Work done as an intern at Westlake University. †Corresponding author.

1



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

𝐮0,0 𝐮𝑡,0 𝐮𝑇,0

control sequence

𝐰 0,𝑇 ,𝑘

state trajectory

𝐮 0,𝑇 ,𝑘

𝐮0,𝐾 𝐮𝑡,𝐾 𝐮𝑇,𝐾

diffuse
...

Inference
...

Training

simulate

...

...

... ...

denoise

... ...
∇ log 𝑝𝜃 𝐮,𝐰

reweighting + 𝛾 − 1 ∇ log 𝑝𝜙 𝐰

guidance − 𝜆∇𝐽(𝐮,𝐰)

... ...

Evaluation

Figure 1: Overview of DiffConPDE. The figure depicts the training (top), inference (bottom left),
and evaluation (bottom right) of DiffConPDE. Orange and blue colors respectively represent models
learning the joint distribution pθ(u,w) and the prior distribution pϕ(w).

into two components: a prior distribution representing the control sequence and a conditional
distribution characterizing the system trajectories given the control sequence. We then introduce a
prior reweighting technique to DiffConPDE, which constitutes the our second key contribution.

We demonstrate the effectiveness of DiffConPDE via extensive experiments on 2D Jellyfish flapping
and 1D Burgers’ equation control problems. Our method consistently outperforms widely-applied
classical control methods and state-of-the-art deep learning-based methods.

2 METHOD

2.1 PROBLEM SETUP

We consider the following widely applicable PDE systems with external control signals:

∂u

∂t
+ F(u,∇u,∇2u,w) = 0 (1)

B(u,∇u)|x∈∂Ω = 0 (2)
u|t=0 = u0. (3)

Here, u(t,x) : [0, T ]× Ω 7→ Rdu is the trajectory of the system defined on time range [0, T ] ⊂ R
and spatial domain Ω ⊂ RD. Similarly, w(t,x) : [0, T ]×Ω 7→ Rdw is the external control signal. F
is an operator that characterizes the dynamics of the PDE system. Eq. (2) is the boundary condition
where B is a linear operator operating on the boundary ∂Ω. The initial condition is specified by
u0(x). The control objective is J (u,w), whose minimization defines the PDE control task as

w∗ = argmin
w

J (u,w) s.t. C(u,w) = 0, (4)

where C(u,w) = 0 includes the PDE dynamics Eq. (1), the boundary condition Eq. (2) and the initial
condition Eq. (3). It is crucial to emphasize that in numerous scenarios, explicit PDE expressions
are unattainable, and we can only have access to observed control sequences and trajectory data, by
which the PDE constraints C(u,w) are implicitly characterized.

2.2 GENERATIVE CONTROL BY DIFFUSION MODELS

We model the PDE constraints as a parameterized energy-based model (EBM) Eθ(u,w, c) which
characterizes the distribution p(u,w|c) conditioned on conditions c of the PDE by the correspondence
p(u,w|c) ∝ exp(−Eθ(u,w, c)). Then the problem Eq. (4) can be converted to:

u∗,w∗ = argmin
u,w

[Eθ(u,w, c) + λ · J (u,w)] , (5)

where λ is a hyperparameter. This formulation optimizes u and w of all time steps simultaneously.

Training. We train a diffusion model to estimate Eθ. The denoising network (Ho et al., 2020) in the
diffusion model is trained using L = Ek∼U(1,K),(z,c)∼p(z,c),ϵ∼N (0,I)[∥ϵ − ϵθ(z̃, c, k)∥22], where z

denotes the concatenation of u and w and z̃ :=
√
ᾱkz+

√
1− ᾱkϵ. The training dataset p(z, c) is

either simulated using a numerical solver or collected from observation date in realistic systems.

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Algorithm 1 Inference for DiffConPDE
1: Require Diffusion models ϵθ(zk, c, k) and ϵϕ(wk, c, k), control objective J (·), covariance matrix σ2

kI ,
control conditions c, schedule ᾱk, hyperparameters λ, γ,K

2: Initialize optimization variables zK ∼ N (0, I)
3: for k = K, . . . , 1 do
4: ξ1, ξ2 ∼ N

(
0, σ2

kI
)

5: ẑk = (zk −
√
1− ᾱkϵθ(zk, c, k))/

√
ᾱk

6: zk−1 = zk − η(ϵθ(zk, c, k) + λ∇zJ (ẑk)) + ξ1
7: wk−1 = wk−1 − η(γ − 1)ϵϕ(wk, c, k) + ξ2
8: end for
9: u∗,w∗ = z0

10: return u∗,w∗

Control optimization. After ϵθ is trained, Eq. (5)) can be optimized by the Langevin sampling
procedure as follows. We start from an initial sample zK ∼ N (0, I), and run the process zk−1 =
zk − η (∇z(Eθ(zk, c) + λJ (ẑk))+ ξ iteratively, where ξ ∼ N

(
0, σ2

kI
)
. Here ẑk is the approximate

noise-free z0 estimated from zk by ẑk = (zk −
√
1− ᾱkϵθ(zk, c, k))/

√
ᾱk, where ᾱk :=

∏k
i=1 αi.

The gradient of Eθ can then be replaced by our trained denoising network ϵθ as follows:
zk−1 = zk − η (ϵθ(zk, c, k) + λ∇zJ (ẑk)) + ξ, ξ ∼ N

(
0, σ2

kI
)

(6)

where σ2
k and η correspond to noise schedules and scaling factors used in the diffusion process,

respectively. Iteration of this denoising process for k = K,K − 1, ..., 1 yields a final solution
z0 = {u[1,T ],0,w[0,T−1],0} for the optimization problem Eq. (5).

2.3 PRIOR REWEIGHTING

In PDE control, a critical challenge lies in obtaining control sequences superior to those in training
datasets. To mitigate impact of the prior distribution, we propose a prior reweighting technique, which
introduces an adjustable hyperparameter γ > 0, allowing for tuning the influence of this prior distri-
bution. We denote the reweighted version of p(u,w|c) as pγ(u,w|c) := p(w|c)γp(u|w, c)/Z =
p(w|c)γ−1p(u,w|c)/Z , where Z is a normalization constant and 0 < γ < 1. Then the energy
model E(γ)(u,w, c) that learns − log (pγ(u,w|c)) can be decomposed as

E(γ)(u,w, c) = (γ − 1)Eϕ(w, c) + Eθ(u,w, c)− logZ, (7)
where Eθ(u,w, c) follows Eq. (5), and Eϕ(w, c) is another diffusion model that learns − log p(u | c)
which can be trained similarly to Eθ. Then the optimization problem Eq. (5) can be transformed into

u∗,w∗ = argmin
u,w

[
E(γ)(u,w, c) + λ · J (u,w)

]
. (8)

The optimization of the above problem leads to the following iteration in the diffusion model:
zk−1 = zk − η(ϵθ(zk, c, k) + λ∇zJ (ẑk)) + ξ1, (9)
wk−1 = wk−1 − η(γ − 1)ϵϕ(wk, c, k) + ξ2, (10)

where ξ1, ξ2 ∼ N
(
0, σ2

kI
)
, and zk = [uk,wk]. The overview of DiffConPDE is illustrated in Figure

1. When γ = 1, the model ϵϕ is not needed, and we denote this simplified version as DiffConPDE-lite.

3 EXPERIMENTS

We conduct experiments on the vital and challenging 1D Burger’s Equation control and 2D jellyfish
movement control problems. For 1D Burgers’ equation, we use baselines: (1) the adjoint method
Lions (1971) with 10 and 100 time steps; (2) PID Li et al. (2006) interacting with the ground-truth
solver and surrogate model; (3) an RL method named SAC Haarnoja et al. (2018) with online, offline
and pseudo-online versions; and (4) the Supervised Learning method (SL) Hwang et al. (2022).
Specifically, the online and pseudo-online version of SAC interacts with the solver and the surrogate
model of the solver respectively, while the offline version only uses given data. For 2D jellyfish
movement control, baselines include SAC (offline), SL, and MPC Schwenzer et al. (2021). The
adjoint method and PID are inapplicable to this data-driven task. Since interaction with the solver is
time-consuming, SAC (online) is not applied. Baselines are detailed in Appendix D and E.

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Best Jactual achieved in 1D Burgers’s equation control. Bold font denotes the best model,
and underline denotes the second best model. Baselines trained with the ground-truth solver are
segregated and placed at the top, as drawing a comparison with them would be inequitable.

PO-FC FO-PC PO-PC

PID (solver) - 0.02305 0.00090
SAC (online) 0.01567 0.04334 0.02768

Adjoint (10 steps) - 0.03251 -
Adjoint (100 steps) - 0.02944 -
PID (surrogate model) - 0.09115 0.09631
SAC (pseudo-online) 0.01577 0.03426 0.02149
SAC (offline) 0.03201 0.04333 0.03328
SL 0.09752 0.00078 0.02328

DiffConPDE-lite (ours) 0.01139 0.00037 0.00494
DiffConPDE (ours) 0.01103 0.00037 0.00494

10 2 10 1

actual
(a) Partial Observation, Full Control

100

101

102

103

104

En
er

gy

10 3 10 2 10 1

actual
(b) Full Observation, Partial Control

100

101

102

103

104
PID (solver)
PID (surrogate)
SAC (online)
SAC (pseudo-online)
SAC (offline)
SL
Adjoint (10 steps)
Adjoint (100 steps)
DiffConPDE-lite (ours)
DiffConPDE (ours)
Without control10 3 10 2 10 1

actual
(c) Partial Observation, Partial Control

100

101

102

103

104

Figure 2: Pareto frontier of energy vs. Jactual of different methods for 1D Burgers’ equation.

3.1 1D BURGERS’ EQUATION CONTROL

Experiment settings. The Burgers’ equation is a fundamental PDE and we consider 1D Burgers’
equation with the Dirichlet boundary condition and external force w(t, x) with the following form:

∂u
∂t = −u · ∂u

∂x + ν ∂2u
∂x2 + w(t, x) in Ω× [0, T ]

u(t, x) = 0 on ∂Ω× [0, T ]

u(0, x) = u0(x) in Ω× {t = 0}.
(11)

Here ν is viscosity, and u0(x) is the initial condition. The objective of control is to minimize

Jactual :=

∫
Ω

|u(T, x)− ud(x)|2dx (12)

while constraining the energy cost of the control sequence∫
[0,T ]×Ω

|w(t, x)|2dtdx (13)

subject to Eq. (11), where ud(x) is the given target state.

We select three experiment settings that correspond to different real-life scenarios: partial observation,
full control (PO-FC), full observation, partial control (FO-PC), and partial observation, partial control
(PO-PC), which are detailed in Appendix B.2. It should be noted that online methods (PID and online
SAC) have unfair advantages. Nevertheless, we included them here for the sake of clarity.

Results. In Table 1, we report results of the optimal control error Jactual of different methods. It can
be observed that our DiffConPDE delivers the best results when compared to all baselines except
in PO-PC where PID (solver) has an unfair edge. DiffConPDE and DiffConPDE-lite show little
performance gap since the prior distribution p(w|u0, uT ) is conditioned on both u0 and uT , which
fully determines the optimal w. Thus, p(w|u0, uT ) is intrinsically the optimal distribution and there
is no need to suppress it, allowing DiffConPDE-lite to deliver satisfactory results.

To compare the ability of different methods to optimize Jactual with constrained energy cost, we
compare the Pareto frontiers of different methods. As can be observed in Figure 2, the Pareto frontiers
of DiffConPDE is consistently among the best, achieving the lowest Jactual for most settings of the
energy budget. Interestingly, although PID (solver) has an unfair advantage due to its interaction with
the solver, it only slightly outperforms our method in the PO-PC setting (c), and requires orders of
magnitude larger energy to achieve a better Jactual. Although SL performs well in full observation
setting (b), it encounters difficulty in partial observation scenarios (a)(c). The results demonstrate
DiffConPDE’s advantage to generate near-optimal control sequences.

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 5 10 15 20
t

0

20

40

60

80

w

J: -22.31
J: -118.90

J: 115.00
J: 168.64

J: 158.90
J: 97.86

0 5 10 15 20
t

0

20

40

60

80

w

J: -49.37
J: -96.10

J: 157.86
J: 109.50

J: 67.34
J: 112.21

0 5 10 15 20
t

0

20

40

60

80

w

J: -105.87
J: -197.50

J: 351.28
J: 210.51

J: 74.02
J: 82.61

DiffConPDE-lite DiffConPDE SAC (pseudo-online) SAC (offline) SL MPC

Figure 3: Comparison of generated control curves of three test jellyfish. The resulting control
objective J for each curve is presented.

t = 0 t = 5 t = 10 t = 15 t = 20

Figure 4: Movement and fluid field visualization on the jellyfish controlled by DiffConPDE as in
the middle subfigure of Figure 3.
Table 2: Results of 2D jellyfish movement control experiments. Bold font denotes the best model.

Full observation Partial observation
v̄ ↑ R(w) ↓ J ↓ v̄ ↑ R(w) ↓ J ↓

MPC 25.72 0.0112 109.17 -150.51 0.1791 329.59
SAC (pseudo-online) -166.96 0.0069 18.14 -153.09 0.0057 158.82
SAC (offline) -158.66 0.0069 165.58 -206.21 0.0058 211.96
SL -76.94 0.1286 205.57 -102.98 0.1188 221.79

DiffConPDE (ours) 279.87 0.2058 -74.11 150.21 0.1269 -23.32

3.2 2D JELLYFISH MOVEMENT CONTROL.

Experiment settings. The task is to control the movement of a flapping jellyfish with two wings in a
2D fluid field. The dynamic of fluid follows the 2D incompressible Navier-Stokes Equation:

∂v
∂t + v · ∇v − ν∇2v +∇p = 0

∇ · v = 0

v(0,x) = v0(x),

(14)

where v is the fluid’s 2D velocity, and p is the pressure, constituting the PDE state u = (v, p). The
initial velocity condition is v0(x) and the kinematic viscosity is ν. The jellyfish’s boundary can be
parameterized by the opening angle wt of wings due to rigidity. Consequently, the control objective
is to maximize its average moving speed v̄, under the energy cost constraint R(w) and the periodic
constraint d(wT ,w0) of the movement:

J = −v̄ + ζ ·R(w) + d(wT ,w0), (15)

subject to Eq. (14) and the boundary condition that velocity vanishes near the boundary. The
hyperparameter ζ is set to be 1000. We evaluate in two settings: full observation, where the full state
u = (v, p) is observed; and partial observation, where only p is observed. Details are in Appendix C.

Results. Evaluation results are presented in Table 2. Our method outperforms the baselines by a large
margin in optimizing the control objective J . Configuration of the hyperparameter γ in DiffConPDE
and performance with respect to varying γ is presented in Appendix G. Even in the more challenging
partial observation setting, DiffConPDE still exhibits substantial advantages over existing methods.
This reflects our method has a strong capability to PDE control under inadequate information.

Figure 3 visualizes generated opening angle curves of different methods on three test jellyfish.
Opening angle curves of DiffConPDE show an obvious fast-close-slow-open shape, which is proven
to produce high speed in jellyfish movement Kang et al. (2023). While this mode of movement
appears rarely in the training dataset, DiffConPDE could generate such control sequences for most
test samples. This reflects that diffusion models under guidance and prior reweighting are effective in
optimizing the control objective. Conversely, opening angles obtained by baselines are inferior. The
movement and resulting fluid field of the jellyfish corresponding to the middle subfigure of Figure 3
controlled by DiffConPDE is illustrated in Figure 4.

5



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
guided SDE for inverse molecular design. In The Eleventh International Conference on Learning
Representations, 2023.

Gerben Beintema, Alessandro Corbetta, Luca Biferale, and Federico Toschi. Controlling rayleigh–
bénard convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for PDE modeling. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=okwxL_c4x84.

Salva Rühling Cachay, Bo Zhao, Hailey James, and Rose Yu. Dyffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. arXiv preprint arXiv:2306.01984, 2023.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. CoRR, abs/2105.09506, 2021.

Panagiotis D Christofides and J Chow. Nonlinear and robust control of pde systems: Methods and
applications to transport-reaction processes. Appl. Mech. Rev., 55(2):B29–B30, 2002.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jie Ding, Min Wu, and Min Xiao. Nonlinear decoupling control with pi λ d µ neural network for
mimo systems. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–8, 2022. doi:
10.1109/TNNLS.2022.3225636.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcmc. In International Conference on
Machine Learning, pp. 8489–8510. PMLR, 2023.

MA Elhawary. Deep reinforcement learning for active flow control around a circular cylinder using
unsteady-mode plasma actuators. arXiv preprint arXiv:2012.10165, 2020.

Amir-massoud Farahmand, Saleh Nabi, and Daniel N. Nikovski. Deep reinforcement learning for
partial differential equation control. In 2017 American Control Conference (ACC), pp. 3120–3127,
2017. doi: 10.23919/ACC.2017.7963427.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Elie Hachem, Hassan Ghraieb, Jonathan Viquerat, Aurélien Larcher, and P Meliga. Deep reinforce-
ment learning for the control of conjugate heat transfer. Journal of Computational Physics, 436:
110317, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

6

https://openreview.net/forum?id=okwxL_c4x84


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics.
In International Conference on Learning Representations, 2020.

Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with
score matching. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. Proceedings of Machine Learning Research, 162:9902–9915, 17–23
Jul 2022.

Linlin Kang, An-Kang Gao, Fei Han, Weicheng Cui, and Xi-Yun Lu. Propulsive performance and
vortex dynamics of jellyfish-like propulsion with burst-and-coast strategy. Physics of Fluids, 35(9),
2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.

Leon Lapidus and George F Pinder. Numerical solution of partial differential equations in science
and engineering. John Wiley & Sons, 1999.

A Larcher and E Hachem. A review on deep reinforcement learning for fluid mechanics: An update.
Physics of Fluids, 34(11), 2022.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
arXiv preprint arXiv:2306.00980, 2023.

Yun Li, Kiam Heong Ang, and G.C.Y. Chong. Pid control system analysis and design. IEEE Control
Systems Magazine, 26(1):32–41, 2006. doi: 10.1109/MCS.2006.1580152.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jacques Louis Lions. Optimal control of systems governed by partial differential equations, volume
170. Springer, 1971.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pp.
423–439. Springer, 2022.

7



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid control using the adjoint
method. ACM Transactions On Graphics (TOG), 23(3):449–456, 2004.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Keith W Morton and David Francis Mayers. Numerical solution of partial differential equations: an
introduction. Cambridge university press, 2005.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
editing with text-guided diffusion models. Proceedings of Machine Learning Research, 162:
16784–16804, 17–23 Jul 2022.

Guido Novati, Siddhartha Verma, Dmitry Alexeev, Diego Rossinelli, Wim M Van Rees, and Petros
Koumoutsakos. Synchronisation through learning for two self-propelled swimmers. Bioinspiration
& biomimetics, 12(3):036001, 2017.

Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, and Daniel
Nikovski. Reinforcement learning with function-valued action spaces for partial differential
equation control. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80, pp. 3986–3995. PMLR, 10–15 Jul 2018.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn Stott,
Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Gencast: Diffusion-based
ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796, 2023.

Bartosz Protas. Adjoint-based optimization of pde systems with alternative gradients. Journal of
Computational Physics, 227(13):6490–6510, 2008.

Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural
networks trained through deep reinforcement learning discover control strategies for active flow
control. Journal of fluid mechanics, 865:281–302, 2019.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys., 378:686–707, 2019. doi: 10.1016/J.JCP.2018.10.045.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2021.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model predictive control:
An engineering perspective. The International Journal of Advanced Manufacturing Technology,
117(5-6):1327–1349, 2021.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, 2023. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2023.111972.

8



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Sabrine Slama, Ayachi Errachdi, and Mohamed Benrejeb. Neural adaptive pid and neural indi-
rect adaptive control switch controller for nonlinear mimo systems. Mathematical Problems in
Engineering, 2019, 2019.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Siddhartha Verma, Guido Novati, and Petros Koumoutsakos. Efficient collective swimming by
harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of
Sciences, 115(23):5849–5854, 2018.

Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelligence,
4(4):359–366, 2022.

Marin Vlastelica, Tatiana Lopez-Guevara, Kelsey R Allen, Peter Battaglia, Arnaud Doucet, and Kim
Stachenfeld. Diffusion generative inverse design. 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.

Gabriel D Weymouth. Lily pad: Towards real-time interactive computational fluid dynamics. arXiv
preprint arXiv:1510.06886, 2015.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equations
via latent global evolution. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, LA, USA, November 28 - December 9, 2022, 2022.

Tailin Wu, Takashi Maruyama, Long Wei, Tao Zhang, Yilun Du, Gianluca Iaccarino, and Jure
Leskovec. Compositional generative inverse design. arXiv preprint arXiv:2401.13171, 2024.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation
via energy-guided stochastic differential equations. Advances in Neural Information Processing
Systems, 35:3609–3623, 2022a.

Qingqing Zhao, David B Lindell, and Gordon Wetzstein. Learning to solve PDE-constrained inverse
problems with graph networks. Proceedings of Machine Learning Research, 162:26895–26910,
17–23 Jul 2022b.

9



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A ADDITIONAL RELATED WORK

A.1 PDE SIMULATION

PDE simulation forms the foundation of PDE control. While classical numerical techniques for simu-
lating PDEs are renowned for their accuracy, they are often associated with significant computational
expenses Morton & Mayers (2005); Lapidus & Pinder (1999). Recently, neural network-based PDE
solvers show a significant advantage in accelerating PDE simulations. They could be roughly divided
into three primary classes: data-driven methods Li et al. (2021); Sanchez-Gonzalez et al. (2020);
Pfaff et al. (2020); Brandstetter et al. (2022); Wu et al. (2022); Brandstetter et al. (2023); Lam et al.
(2023), Physics-Informed Neural Networks (PINNs) Raissi et al. (2019); Cai et al. (2021); Wang et al.
(2021), and solver-in-the-loop methods Um et al. (2020); Vlachas et al. (2022). Most of them use an
iterative horizontal prediction framework. Instead, we treat PDE trajectory as a whole variable and
use diffusion models to learn an explicit PDE simulator conditioned on control sequences. A notable
work is by Cachay et al. (2023), which introduces diffusion model for temporal forecasting. While
both our work and Cachay et al. (2023)’s employ diffusion models, we tackle a different task of PDE
control. Furthermore, we incorporate the control objective into the inference, and introduce prior
reweighting to tune the influence of the prior.

A.2 PDE CONTROL

For decades, the adjoint method has been the most widely used approach for solving PDE control
problems Lions (1971); McNamara et al. (2004); Protas (2008). It is accurate but computationally
expensive. Deep learning-based methods have emerged as a powerful tool for modeling physical
systems’ dynamics. Holl et al. (2020) propose a hierarchical predictor-corrector scheme to control
complex nonlinear physical systems over long time frames. A more recent work proposed by Hwang
et al. (2022) designs two stages which respectively learn the solution operator and search for optimal
control. Different from these methods, we do not use the surrogate model, and learn both state
trajectories and control sequences in an integrated way. Reinforcement learning is also applied to
control PDEs Pan et al. (2018) or fluid systems Larcher & Hachem (2022). Particularly in the field of
fluid dynamics, reinforcement learning has been applied to a multitude of specific problems including
drag reduction Rabault et al. (2019); Elhawary (2020), conjugate heat transfer Beintema et al. (2020);
Hachem et al. (2021) and swimming Novati et al. (2017); Verma et al. (2018). But they implicitly
consider physics information and sequentially make decisions. In contrast, we generalize the entire
trajectories, which results in a global optimization with consideration of physical information learned
by models.

A.3 DIFFUSION MODELS

Diffusion models Ho et al. (2020) have significantly advanced in applications such as image and
text generation Dhariwal & Nichol (2021); Nichol et al. (2022), inverse design Wu et al. (2024);
Vlastelica et al. (2023), inverse problem Holzschuh et al. (2023), physical simulation Cachay et al.
(2023); Price et al. (2023), and decision-making Janner et al. (2022); Ajay et al. (2022). Generating
diverse yet consistent samples poses a challenge. For diversity, methods Liu et al. (2022); Bao et al.
(2023); Zhao et al. (2022a); Du et al. (2023) that integrate score estimates from various models have
been effective. For consistency, guidance diffusion techniques Dhariwal & Nichol (2021); Ho &
Salimans (2021) have been utilized to generate condition-specific samples. Our approach differs
by flattening the joint distribution to achieve better control by slightly expanding beyond the prior
distribution range.

B ADDITIONAL DETAILS FOR 1D BURGERS’ EQUATION CONTROL

B.1 DATA GENERATION

We use the finite difference method (called solver or ground-truth solver in the following) to generate
the training data for the 1D Burgers’ equation. Specifically, the initial value u0(x) and the control
sequence w(t, x) are both randomly generated, and then the states u(t, x) are numerically computed
using the solver.

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0
x

(a) Partial Observation, Full Control

1.00
0.75
0.50
0.25
0.00
0.25

u 1
0

0.0 0.2 0.4 0.6 0.8 1.0
x

(b) Full Observation, Partial Control

1.00
0.75
0.50
0.25
0.00
0.25 Uncontrolled region

Unobserved region
Target
DiffConPDE
SL
Adjoint (100 steps)
SAC (online)
PID (solver)

0.0 0.2 0.4 0.6 0.8 1.0
x

(c) Partial Observation, Partial Control

1.00

0.75

0.50

0.25

0.00

0.25

Figure 5: Visualization of different types of observation in 1D Burgers’ equation and perfor-
mance of different methods on a testing sample. In each of the three settings, u at the final time
step controlled by each method is shown for one sample in the testing set. Target denotes the control
target state ud.

In the numerical simulation (using the ground-truth solver), a domain of x = [0, 1], t = [0, 1]
is simulated. The space is discretized into 128 grids and time into 10000 steps. However, in the
dataset, only 10 time stamps are stored. For the control sequence w, its refreshing rate is 0.1−1, i.e.,
w(t, x), t ∈ [0.1k, 0.1(k + 1)], k ∈ {0, .., 9} does not change with t. Therefore, the data size of
each trajectory is [10, 128] for the state u and [11, 128] for the force f .

In all settings, the initial value u(0, x) is a superposition of two Gaussian functions u(0, x) =∑2
i=1 aie

− (x−bi)
2

2σ2
i , where ai, bi, σi are all randomly sampled from uniform distributions: a1 ∼

U(0, 2), a2 ∼ U(−2, 0), b1 ∼ (0.2, 0.4), b2 ∼ (0.6, 0.8), σ1 ∼ U(0.05, 0.15), σ2 ∼
U(0.05, 0.15). Similarly, the control sequence w(x, t) is also a superposition of 8 Gaussian functions

w(t, x) =

8∑
i=1

aie
−

(x−b1,i)
2

2σ2
1,i e

−
(t−b2,i)

2

2σ2
2,i , (16)

where each parameter is independently generated as follows: b1,i ∼ U(0, 1), b2,i ∼ U(0, 1), σ1,i ∼
U(0.05, 0.2), σ2,i ∼ U(0.05, 0.2), while a1 ∼ U(−1.5, 1.5) and for i ≥ 2, ai ∼ U(−1.5, 1.5) or
0 with equal probabilities. u(t, x), (t ̸= 0) is then numerically simulated (using the ground-truth
solver) given u(0, x) and w(t, x) based on Eq. (11). The setting of the dataset generation is based on
a previous work (Hwang et al., 2022).

We generated 90000 trajectories for the training set and 50 for the testing set. Each trajectory takes
up 32KB space and the size of the dataset sums up to 2GB.

B.2 EXPERIMENTAL SETTING

We select three different experiment settings that correspond to different real-life scenarios: partial
observation, full control (PO-FC), full observation, partial control (FO-PC), and partial observation,
partial control (PO-PC), which are illustrated in Figure 5. These settings are challenging for clas-
sical control methods such as PID since they require capturing the long-range dependencies in the
system dynamics. Note that the reported metrics J in different settings are not directly comparable.
Following are three different settings of our experiments.

B.2.1 PARTIAL OBSERVATION, FULL CONTROL

In realistic scenarios, the system is often unable to be observed completely. Generally speaking,
it is impractical to place sensors everywhere in a system, so the ability of the model to learn from
incomplete data is imperative. To evaluate this, we hide some parts of u in this setting and measure
the Jactual of model control.

Specifically, u(t, x), x ∈ [ 14 ,
3
4 ] is set to zero in the dataset during training and u0(x), x ∈ [ 14 ,

3
4 ]

is also set to zero during testing. In this partial observation setting Ω = [1, 1
4 ] ∪ [ 34 , 1]. Since no

information in the central 1
2 space is ever known, the model does not know what will influence

the control outcome of the unobserved states. Therefore, controlling the unobserved states is not a
reasonable task and they are excluded from the evaluation metric.

This setting is particularly challenging not only because of the uncertainty introduced by the unob-
served states but also the generation of the control in the central locations that implicitly affect the
controlled u at x ∈ Ω.

11



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

B.2.2 FULL OBSERVATION, PARTIAL CONTROL

This is another setting of practical relevance, where only a fraction of the system can be controlled.
The control sequence is enforced to be zero in the central locations of x ∈ [ 14 ,

3
4 ]. Ω is still [0, 1], and

J is evaluated on all of the observed states, though.

Some modifications to the dataset should be mentioned. The generation of the data involves first
generating w as before, followed by setting the central 1

2 of w to zero. To compensate for the
decreased control intensity so that the magnitude of u can be roughly comparable to the full control
setting, we double the magnitude of w. During the evaluation, the output control sequence is also
post-processed to be zero in x ∈ [ 14 ,

3
4 ].

It is worth noting that in this setting, even when the control energy is not limited at all, it is still
challenging to find a perfect control since the model has to learn how to indirectly impose control on
the central locations.

B.2.3 PARTIAL OBSERVATION, PARTIAL CONTROL

The final setting is the combination of the previous two settings. Only Ω = [0, 1
4 ]∪ [ 34 , 1] is observed,

controlled and evaluated.

It is worth noting that some models require accessing the current state to produce output. If the model
interacts with the ground truth solver instead of a surrogate model, then the result would be unfairly
good since the information of the unobserved states is leaked through the interaction.

B.3 GUIDANCE CONDITIONING.

In addition to the introduced explicit guidance in the main text, conditioning is also widely used
to guide sampling in diffusion models (Ho & Salimans, 2021; Shu et al., 2023). When the control
objective can be naturally expressed in a conditioning form, e.g., the generated trajectory u is required
to coincide with a desired target u∗, we can include u = u∗ as a condition in c such that the sampled
trajectory u from diffusion models automatically satisfying u = u∗. Overall, in our proposed
DiffConPDE framework, the control objective J can be optimized either using the explicit guidance
∇J or guidance conditioning depending on the specific control objectives.

B.4 MODEL

Since the training of models ϵϕ ≈ ∇w log p(w) and ϵθ ≈ ∇u,w log p(u,w) are essentially the same
and the latter model is exactly DiffConPDE-lite, we will introduce DiffConPDE-lite first.

B.4.1 DIFFCONPDE-LITE

In general, DiffConPDE-lite follows the formulation of (Ho et al., 2020) which is also described in
the main text. The data of u and w is fed in as images of size (Nt, Nx) where Nt is the number of
time steps (11 and 10 respectively) and Nx is the spatial grids (128). Since the two Nts for u and w
are inconsistent, we zero-pad them into the size of 16. Then, u and w are stacked as two channels
and fed into the 2D DDPM model.

A 2D UNet ϵθ is used to learn to predict ϵ. It is structured into three main components: the
downsampling encoder, the central module, and the upsampling decoder. The downsampling encoder
is made up of four layers, each layer consisting of two ResNet blocks, one linear Attention block,
and one downsampling convolution block. The central module also consists of two ResNet blocks
and one linear Attention block. Each upsampling layer is the same as the downsampling layer except
the downsampling block is replaced by the upsampling convolution block.

In our experiments, we found that the control result is best when learning the conditional probability
distribution of p(w[0,T−1],u[1,T−1] | u0,uT ) In summary, ϵθ takes in the current trajectory u,
control w, step k, u0 and uT as input, and predicts the noise of u and w. Note that it is not trained to
predict u0 and uT which are used as a condition, but there are still model outputs at the corresponding
locations for the data shape consistency across different design choices of DiffConPDE-lite.

12



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

B.4.2 DIFFCONPDE

In terms of implementation, DiffConPDE is simply adding ϵϕ(w) to ϵθ(u,w) during inference as
shown in Section 2.3, where ϵθ is the output of the denoising network in DiffConPDE-lite while ϵϕ
is a new denoising network that is trained to generate w following the dataset distribution. Therefore,
we only describe the model of ϵϕ here.

ϵϕ takes input of w, k as in the standard DDPM and u0,uT as guidance conditioning. The output
of ϵϕ(w) is of the same shape as w, so it can be treated as a network learning to sample from
p(w) :=

∫
p(u,w)du The output of ϵϕ(w) at the locations of u is thus filled with zeros.

B.5 TRAINING AND EVALUATION

Training During training, the u0 and ud without noise are fed into the model and the model outputs
at the corresponding locations are excluded from the loss. In the partial observation settings, the
unobserved data is invisible to the model during both training and testing as introduced in Appendix
B.2. We simply pad zero in the corresponding locations of the model input and also exclude these
locations in the training loss. Therefore, the model only learns the correlation between the observed
states and control sequences. In the partial control setting, we train our DiffConPDE on the dataset
with control being zero in x ∈ [ 14 ,

3
4 ]. In this way, the model naturally learns to output zero at the

“non-controllable” locations. We use the MSE loss to train the denoising UNets.

Inference During inference, u0 and uT are set to the target u0 and ud so that the DDPM generates
samples satisfying the PDE constraint that is also conditioned on the target (ud) or the constraint
(u0). In the partial observation setting, the u0 and uT drawn from the testing set are all filled zero at
the unobserved locations x ∈ [ 14 ,

3
4 ], which is the same as the data used to train the UNets. In the

partial control scenarios,

During inference, we replace the denoising network’s output ϵθ(u,w) with ϵθ(u,w)+(γ−1)ϵϕ(w).
It is worth noting that ϵθ(u,w) denoises u and w simultaneously while ϵϕ(w) only denoises w. In
our experiments, we found that adding a schedule to the output of the w network is beneficial. The
results in Table 1 are generated with a reverse Sigmoid schedule following

ϵk = ϵθ(uk,wk, k,u0,uT ) + (γ − 1)βK−kϵϕ(wk, k,u0,uT ), (17)

where β is defined as the noise schedule in (Ho et al., 2020). The inference of DiffConPDE-lite is
simply setting γ = 1, which neglects the effect of the model ϵϕ(w).

When trying to regulate the control energy, however, it is not as natural to learn a conditional
model. Therefore, we use the external guidance J =

∫
w(x, t)dxdt to produce cost-limited control

sequences that are shown in Figure 2. The gradient of the external guidance is computed and added
to ϵk in Eq. (17). Note that we use the predicted clean sample ŵk and ûk at the k-th step to
compute ∇J since they suffer less from being noisy and leading to deviated guidance. uk and wk

are computed following x0 ≈ x̂k = 1√
ᾱk

xk −
√
1−ᾱk√
ᾱk

ϵk where x represents u or w as in Ho et al.
(2020). In our experiments, we use a cosine scheduling of the external guidance, and thus the final
predicted noise would be ϵk + λαk∇J where βk is the noise schedule in Ho et al. (2020) with the
cosine schedule.

Evaluation After generating the trajectory u and control sequence w, we feed the control sequence
w into the ground-truth solver and simulate the final state u given the generated w and the initial
condition u0 directly drawn from the testing dataset. The solver is the same as the one used in data
generation in Appendix B.1. Finally, we compute Jactual following Eq. (12). In the partial observation
setting, the MSE is computed only on the observed region, and in the control setting, the generated
control will first be set to zero in the uncontrolled region before being fed into the solver.

13



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

C ADDITIONAL DETAILS FOR 2D JELLYFISH MOVEMENT CONTROL

C.1 DATA GENERATION

We use the Lily-Pad simulator Weymouth (2015) to generate the training and testing dataset. The
resolution of the 2D flow field is set to be 128 × 128. Actually, the flow field is assumed to be
boundless in Lily-Pad. The head of the jellyfish is fixed at (25.6, 64). Its two wings are represented
by two identical ellipses, where the ratio between the shorter axis and the longer axis is 0.15. At each
moment, the two wings are symmetric about the central horizontal line y = 64. For each wing, we
sample M = 20 points along the wing to represent the boundary of the wing. The opening angle of
the wings is defined as the angle between the longer axis of the upper wing and the horizontal line. It
acts as the control sequence w in a 2D jellyfish control experiment.

Each trajectory starts from the largest opening angle and follows a cosine curve periodically with
period T

′
= 200. Trajectories differ in initial angle, angle amplitude, and phase ratio τ (the ratio

between the closing duration and a whole pitching duration). For each trajectory, the initial angle
w0 is generated as follows: first, sample a random angle, called mean angle w(m) ∈ [20◦, 40◦], then
sample a random angle amplitude w(a) ∈ [10◦,min(w(m), 60◦ −w(m))]. The initial w0 is set as
w0 = w(m) +w(a). The phase ratio τ is randomly sampled from [0.2, 0.8]. The opening angle wt

of step t decreases from w(m) +w(a) to w(m) −w(a) as t grows from 0 to τT
′
; then wt increases

from w(m) −w(a) to w(m) +w(a) as t grows from τT
′

to T
′
. Afterwards, wt varies periodically

for t > T
′
. The range of wt is [w(m) −w(a),w(m) +w(a)] ⊂ [10◦, 60◦]. This setting is similar

to the study of the propulsive performance of jellyfish Kang et al. (2023). For each trajectory, we
simulate for 600 simulation steps, i.e., 3 periods. To save space, we only save the piece of trajectory
from T

′
= 200 to 3T

′
= 600 steps with step size 10 because the simulation from t = 0 to T

′
= 200

is for initialization of the flow field. Then each trajectory is saved as a T̃ = (600− 200)/10 = 40
steps long sequence. An example of the simulated fluid field and the corresponding curve of opening
angles are shown in Figure 6.

Besides the positions of the boundary points of wings and the opening angles w, we also use another
kind of image-like representation of the boundaries of wings as this representation contains spatial
information that can be more effectively learned along with PDE states (fluid field) by convolution
neural networks. For each trajectory, this image-like boundary representation is compatible with PDE
states in shape. At each time step, boundaries of two wings are merged and then represented as a
tensor of shape [3, 64, 64], where it has three features for each grid cell: a binary mask indicating
whether the cell is inside a boundary (denoted by 1) or in the fluid (denoted by 0), and a relative
position (∆x,∆y) between the cell center to the closest point on the boundary. For each trajectory,
we save PDE states, opening angles, boundary points, boundary masks and offsets, and force data.
They are specified as:

• PDE states u: shape [T̃ , 3, 64, 64]. For each step, we save the states of the fluid field
consisting of velocity in x and y directions and pressure. To save space, we downsample the
resolution from 128× 128 to 64× 64.

– velocity: [T̃ , 2, 64, 64].

– pressure: [T̃ , 1, 64, 64].

• opening angels w: shape [T̃ ]. For each step, we save the opening angle in radians.

• boundary points: shape [T̃ , 2,M, 2]. For each step, we save the boundary points on the
upper and lower wings. Each wing consists of M = 20 points and each point consists
of 2 coordinates. To make boundary points compatible with the downsampling of states,
coordinates of x and y directions are shrunk to half (64/128) of the original values.

• boundary mask and offsets b: [T̃ , 3, 64, 64]. For each step, we save the mask of merged
wings with half coordinates of boundary points and offsets in both x and y directions. The
resolution is 64× 64, compatible with that of the states.

– mask: [T̃ , 1, 64, 64].

– offsets: [T̃ , 2, 64, 64].

14



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

(a) (b)

Figure 6: Example of a flapping jellyfish in Lily-Pad simulator (a) and the corresponding curve
of opening angle (b).

• force: shape [T̃ , 2]. For each step, the simulator outputs the horizontal and vertical force
from the fluid to the jellyfish. The horizontal force is regarded as a thrust to jellyfish if
positive and a drag otherwise.

We generate n = 30, 000 training trajectories and n = 50 testing trajectories. Trajectories differ in
the above specified parameters w(a),w(m) and τ . Each trajectory occupies about 2MB of storage
and the total dataset costs about 100GB. To generate training samples, we use sliding time windows
that contain T = 20 successive time steps of states and boundaries as a sample, which corresponds to
T

′
= 200 original simulation steps and constitutes exactly a period of wing movement. In this way,

each trajectory can produce 20 samples. Therefore, we get 6 million training samples in total. In each
training sample, the initial and the final time steps share the same opening angle due to periodicity,
which serves as the conditions for control. For each test trajectory, we select the opening angle of the
jellyfish in the initial time and the initial states as the control condition for both the initial and final
time and state initial condition.

C.2 EXPERIMENTAL SETTING

C.2.1 FULL OBSERVATION

In this setting, we assume all the states of the fluid field are observable. That is, both the velocity of x
and y directions and pressure are available in all the time steps of the training dataset and the initial
time of the testing dataset.

C.2.2 PARTIAL OBSERVATION

In this setting, we assume only partial states are observed. A typical scenario in fluid simulation and
control is that we can only observe pressure data while the velocity data is not easy to access. That
is, only pressure is available in all the time steps of the training samples and the initial time of the
testing samples, hence the state tensor is of shape [T̃ , 1, 64, 64]. Notice that even if only pressure
is available, we can still compute the force of fluid on the jellyfish and consequently the control
objective because force is fully determined by the shape of the jellyfish and pressure. The challenge
of this partial observation setting is that the velocity variable v is missing in Eq. (14), which makes
the traditional numerical solver no longer applicable to solve this PDE control problem. However,
this challenge could be well addressed by our method since it could learn the relationship between
control and pressure despite missing of the velocity data, and use the accessible control objective as
guidance for flapping control.

C.3 MODEL

C.3.1 ARCHITECTURE

We use a 3D U-Net as the backbone of our diffusion model. In this paper, the architecture of the
3D U-net we employed is inspired by Ho et al. (2022). To better capture temporal conditional
dependencies, we modify the previous space-only 3D convolution into space-time 3D convolut

15



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ion. Notably, we did not perform any scaling on the temporal dimension during downsampling or
upsampling. Specifically, our U-net consists of three main modules: the downsampling encoder,
the middle module, and the upsampling decoder. The downsampling encoder is composed of three
layers, each incorporating two residual modules, one spatial attention module, one temporal attention
module, and one downsampling module. The middle module consists of two residual modules, one
spatial attention module, and one temporal attention module. Meanwhile, the upsampling decoder
consists of four layers, each containing two residual modules, one spatial attention module, one
temporal attention module, and one upsampling module. The input shape of our U-net is [batch size,
frames, channels, height, width]. During convolution, the operation is performed on the [frames,
height, width] dimensions. The output shape follows the same structure. Further details are provided
in Table 3.

Table 3: Hyperparameters of 3D-Unet architecture.

Hyperparameter name Value
Kernel size of conv3d (3, 3, 3)
Padding of conv3d (1,1,1)
Stride of conv3d (1,1,1)
Kernel size of downsampling (1, 4, 4)
Padding of downsampling (1, 2, 2)
Stride of downsampling (0, 1, 1)
Kernel size of upsampling (1, 4, 4)
Padding of upsampling (1, 2, 2)
Stride of upsampling (0, 1, 1)
attention heads 4

C.3.2 DIFFCONPDE-LITE

The DiffConPDE-lite method learns the denoising network of the joint distribution p(u,w|c) where
u is PDE states, w is the opening angle, and the conditions c consist of the initial angle w0, the
initial state u0 and the final angle wT = w0. We adopt the 3D U-Net as the backbone. To make
the opening angle (of shape [T ]), align with PDE states (of shape [T, 3, 64, 64] in full observation
setting and [T, 1, 64, 64] in partial observation setting) in shape, we expand the opening angle to
shape [T, 1, 64, 64] along spatial dimension by value copy. Besides, we also adopt the boundary
mask and offsets representation, whose shape is [T, 3, 64, 64], determined by the opening angles as
an auxiliary model input because they contain explicit spatial features, which makes model learning
more effective. Then states, boundary mask and offsets, and expanded opening angle are stacked
along the channel dimension and we get a tensor of shape [T, 7, 64, 64] in full observation setting or
[T, 5, 64, 64] in partial observation setting as the model input. The model output contains predicted
noise of states and open angles. Thus its shape is [T, 4, 64, 64] in the full observation setting or
[T, 2, 64, 64] in the partial observation setting, where the last channel corresponds to the predicted
noise of opening angles and other channels correspond to predicted noise of states.

Table 4: Hyperparameters of network architecture and training for the 2D experiment.

Hyperparameter name full observation partial observation
Batch size 16 16
Optimizer Adam Adam
Learning rate 0.0001 0.0001
Loss function MSE MSE

C.3.3 DIFFCONPDE

DiffConPDE learns the denoising network of the joint distribution p(u,w|c) and the marginal
distribution p(w|c). The denoising network of p(u,w|c) is exactly the same as the one introduced

16



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

From inference step 𝑘 to 𝑘 − 1

Denoise
under guidance

𝑤 0,𝑇 ,𝑘−1

Boundary
updater

𝑏 0,𝑇 ,𝑘−1𝑤0, 𝑏0

Denoise

Network 𝜖θ
(𝑢,𝑤)

𝑢[0,𝑇],𝑘

𝑏 0,𝑇 ,𝑘

𝑤 0,𝑇 ,𝑘

𝜖𝑘
(𝑢,𝑤)

𝑘

Denoise

Network 𝜖𝜙
(𝑤)

𝑢0 × 𝑇

𝑏 0,𝑇 ,𝑘

𝑤 0,𝑇 ,𝑘

𝜖𝑘
(𝑤)

Marginal distribution 𝑝(𝑤|𝑢0, 𝑤0)

Joint distribution 𝑝(𝑢, 𝑤|𝑢0, 𝑤0)
𝑢 0,𝑇 ,𝑘−1⨁

𝑘

Figure 7: Inference of our DiffConPDE in the 2D experiment.

in the DiffConPDE-lite method. The denoising network of p(w|c) also adopts the 3D U-Net
architecture. Its input size is the same as that of p(u,w|c) in both full and partial observation settings.
The difference is that the input states feature is replaced by the expansion of the initial state u0 along
the time dimension by value copy. The output is the predicted noise of opening angles, whose shape
is [T, 1, 64, 64], no matter the full observation setting or partial observation setting.

C.4 TRAINING, INFERENCE, AND EVALUATION

Training. We use the MSE (mean squared error) between model prediction and the Gaussian noise
as the loss function. The batch size is chosen as 16 and the training involves 200,000 iterations. The
learning rate starts from 1× 10−3 and multiplies a factor of at the 50000th and 150000th iterations.
Training details are provided in Table 4.

Inference. The pipeline of inference is shown in Figure 7. Both diffused variables u[0,T ] and w[0,T ]

are initialized from Gaussian prior and gradually denoised from denoising step k = 1000 to k = 0
based on denoising networks and guidance. Because we introduce the boundary mask and offsets
as auxiliary inputs, the model input and output are not consistent in shape. Thus we introduce a
surrogate model (shown as ”Boundary updater” block in Figure 7) to update boundary mask and
offsets b[0,T ],k for each denoising k. Specifically, at each time step t ∈ [0, T ], bt,k is estimated by
the initial boundary mask and offsets b0, and the difference of opening angle wt,k −w0 from time
step 0 to t, which is presented in the right part (after ”Denoise under guidance”) of Figure 7. Details
about this surrogate model are presented in F.3. Notice that although this surrogate model is trained
on noise-free data, we do not worry too much about its generalization to the noisy scalar wt,k in
inference because the estimated wt,k does not deviate from the normalized range of noisy free wt

too much.

Our method introduces two kinds of inference: DiffConPDE-lite and DiffConPDE. In DiffConPDE-
lite, we only use the denoising network of the joint distribution p(u,w|u0,w0) for inference, while
in DiffConPDE, we use the additional denoising network of the marginal distribution p(w|u0,w0)
together with that of the joint distribution for inference. These two branches are plotted in the left part
of Figure 7, where the notation [u0]× T means expand initial state u0 (of shape [3, 64, 64]) along
time dimension by value copy to form a tensor of shape [T, 3, 64, 64].

As for guidance, we use a surrogate force model to approximate the force of fluid on jellyfish. This
model is detailed in Subsection F.2. In denoising step k, its input consists of two parts: the first one is
the noise-free state û[0,T ] estimated from u[0,T ],k; the second one is the noise-free boundary mask
and offsets b̂[0,T ],k estimated from noise-free ŵ[0,T ] by the surrogate model to update boundaries,
where ŵ[0,T ] is also estimated from w[0,T ],k. The model output is force. Here we only use the

17



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

horizontal force. Notice that the force could be computed via the surrogate force model no matter
whether states are fully or partial observation in that force is irrelevant to the velocity of the fluid.
The control objective J in Eq. (15) is computed as a summation of force and R(ŵ[0,T ]). We fix
ζ = 1000 as a default setting in Eq. (15) because this value can achieve a balance between scales of
the average speed and the regularizer R(w). We also study the Pareto performance of varying ζ in
Table 2. Then the gradients of the objective J in terms of û[0,T ] and ŵ[0,T ] are computed and used in
guidance. For DiffConPDE-lite, these gradients are substracted from [u[0,T ],k,w[0,T ],k] to generate
[u[0,T ],k−1,w[0,T ],k−1]. For DiffConPDE, an additional term of noise (γ − 1)ϵϕ predicted from the
denoising network of the marginal distribution p(w|u0,w0) should also be subtracted, as shown in
the upper left part of Figure 7. The effect of this term is controlled by the scale of the hyperparameter
γ.

Evaluation. The inference outputs opening angles w[0,T ] of T = 20 steps for 50 testing samples. In
simulation, for each testing sample, the ground-truth first T = 20 steps of the opening angles (which
corresponds to 200 simulation steps) are directly input to the Lily-Pad simulator for the reason of
generating initial states u0 of fluid, which is followed by the predicted control sequences of opening
angles (interpolated to 200 steps of opening angles). The simulator outputs the horizontal force
of fluid on the jellyfish for each simulation step. Finally, average speed v̄, energy cost R(w), and
objective J are computed as metrics. The average speed v̄ = 1

T

∫ T

0
vtdt ≈ v0 +

1
T

∑T−1
t=1 (T − t)Ft

v̄, where v0 is the initial speed and Ft is the horizontal thrust from the fluid. The mass of the
jellyfish is assumed to be 1. The energy cost term R(w) =

∑T−1
t=1 (wt+1 − wt)

2, where the
control sequence w = (w1, · · · ,wT ) represents the predicted opening angles. The periodic term
d(w0,wT ) = max(|wT − w0| − ϵ, 0) is the constraint of periodic opening angles with a small
threshold ϵ = 0.01.

D 1D BASELINES

D.1 PID

NN PID 
controller

simulator
𝑈𝑑

𝑈𝑡

𝐸𝑟𝑟𝑡 [𝐾𝑝𝑡 , 𝐾𝑖𝑡, 𝐾𝑑𝑡] 𝑓𝑡

𝑈𝑡

𝑈𝑡+1

𝑈𝑑：target state

𝑈𝑡: 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐸𝑟𝑟𝑡: 𝑒𝑟𝑟𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

[𝐾𝑝𝑡 , 𝐾𝑖𝑡, 𝐾𝑑𝑡]: 𝑃𝐼𝐷 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑓𝑡 : 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Fig.X To use MIMO PID controller to control 𝑈𝑡 to 𝑈𝑑, we train a PID parameters neural network planner output MIMO PID parameters 

based on 𝐸𝑟𝑟𝑡 ,then use PID controller to output control signal 𝑓𝑡

Problem setting:

MIMO control

Challenge:

Traditional PID controllers are limited to SISO linear time-invariant system, to address 

these gaps we use an NN to automatically plan PID parameters based on current errors.

Figure 8: The architecture of ANN PID. To use MIMO PID controller to control Ut to Ud, we train
a neural-network-based PID parameter planner to output MIMO PID parameters based on Errt, then
use the PID controller to output the control sequence ft.

Proportional Integral Derivative (PID) Li et al. (2006) control is a versatile and effective control
method widely used in various real-world control scenarios. It operates by utilizing the difference
(error) between the desired target and the current state of a system. PID control is often considered
the go-to option for many control problems due to its simplicity and usefulness. However, despite
its popularity, PID control does encounter certain challenges, such as parameter adaptation and
limitations when applied to Single Input Single Output (SISO) systems. In our specific context, the
1D Burgers’ Equation Control problem presents a Multiple Input Multiple Output (MIMO) control
scenario, which makes it infeasible to directly employ PID control to regulate the Burgers’ equation.
Inspired by the early works Slama et al. (2019); Ding et al. (2022) using a neural network as a PID
parameter adapter, we have integrated deep learning with PID control to tackle the MIMO control
problem. As shown in Figure 8, ANN(artificial neural network) PID uses a neural network as a PID
parameter adapter to output multiple sets of PID parameters and do multiple sets of SISO PID control.

The neural network to output PID parameters comprises two 1D convolutional layers, 2 fully con-
nected layers, and 4 corresponding activation layers. We use the L1 loss of the current state and
target state as training loss and the Adam optimizer Kingma & Ba (2014) to train the model. Detailed
information can be found in Table 5.

18



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 5: Hyperparameters of network architecture and training for ANN PID.

Hyperparameter name Full observation Partial observation
Kernel size of conv1d 3 3
Padding of conv1d 1 1
Stride of conv1d 1 1
Activation function Softsign Softsign
Batch size 16 16
Optimizer Adam Adam
Learning rate 0.0001 0.0001
Loss function MAE MAE

As PID itself is a SISO control method, ANN PID uses a neural network to get multiple sets of PID
parameters to do multiple SISO PID controls for MIMO control in the Burgers’ equation. But here,
ANN PID requires the dimensions of inputs and outputs to be the same, so it can only cope with full
observation, full control control problems, and partial observation, partial control control problems.
Besides, the ANN PID controller has 2 training setups, including directly interacting with the solver
and interacting with the 1D surrogate model in Appendix F.

D.2 THE ADJOINT METHOD

The adjoint method Lions (1971); McNamara et al. (2004) is a mathematical technique used in the
control problems of PDEs. It is widely utilized in many fields such as computational fluid dynamics,
structural optimization, and machine learning.

The adjoint method first solves the forward problem, which is the original system of differential
equations, to obtain the system’s state as a function of the parameters. Then it constructs a Lagrangian
function that includes the objective function, the forward problem’s equations, and the associated
boundary or initial conditions, all coupled together using the adjoint variables. We can derive adjoint
equations by applying variational calculus, and solve the adjoint equations to get the adjoint variables.
Finally, the gradients of the objective function with respect to the parameters, which are used to update
the parameters, can be obtained by combining the solutions of the forward and adjoint problems
using the adjoint variables.

Our implementation follows the previous work Hwang et al. (2022). While the use of the adjoint
method requires the form of the equations, it can be only applied to the 1D Burgers’ equation
control. Also, it cannot handle cases where states of systems are partial observation. For the partial
control setting, we set the output control sequences of the adjoint method to zero where the control
is not allowed to be applied. We choose 10 and 100 numerical time steps for the adjoint method.
Accordingly, the discrete computation of energy takes dt = 0.1 and dt = 0.01.

D.3 SAC

The Soft Actor-Critic (SAC) algorithm Haarnoja et al. (2018) is a cutting-edge reinforcement learning
method. Conceptualized as an improvement over traditional Actor-Critic methods, SAC distinguishes
itself by introducing an entropy regularization term into the loss function, which encourages the
policy to explore more efficiently by maximizing both the expected cumulative reward and the entropy
of the policy itself.

Compared with Deep Deterministic Policy Gradient (DDPG) algorithm Lillicrap et al. (2015); Pan
et al. (2018), SAC’s entropy regularization encourages more effective exploration and prevents early
convergence to suboptimal policies, a limitation often seen with DDPG’s deterministic approach.
Additionally, SAC’s twin Q-networks mitigate the overestimation bias that can affect DDPG’s value
updates, leading to more stable learning. The automatic tuning of the temperature parameter in SAC
further simplifies the delicate balance between exploration and exploitation, reducing the need for
meticulous hyperparameter adjustments. Consequently, these features render SAC generally more
sample-efficient and robust, particularly in complex and continuous action spaces.

19



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 6: Hyperparameters of 1D SAC. The full observation partial control, partial observation full
control, and partial observation partial control settings share the same hyperparameters.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control:
Discount factor for reward 0.5
Target smoothing coefficient 0.05
Learning rate of critic loss 0.0003
Learning rate of entropy loss 0.003
Learning rate of policy loss 0.003
Training batch size 8192
Number of episodes 1500
Number of model updates per simulator step 50
Value target updates per step 15
Size of replay buffer 1000000
Number of trajectories interacted with the environment per step 1
Number of layers of critic networks 3
Number of hidden dimensions of critic networks 4096
Number of layers of the policy network 5
Number of hidden dimensions of the policy network 4096
Activation function ReLU
Clipping’s range of policy network’s standard deviation output

[
e−20, e2

]
During training, experience for training is stored in a replay buffer and sampled randomly to update
the networks. All data in the training set are in the replay buffer at the beginning. For offline SAC, the
replay buffer is unchanged, while online SAC alternates between collecting experience by interacting
with the environment and updating the networks with the replay buffer. And offline SAC only uses
the surrogate model trained with the training set instead of the real environment to collect experience.
The policy network is updated to maximize the expected return, considering both the Q-value and
the entropy term. The critic networks are updated to minimize the distance between their Q-value
predictions and the target Q-values. SAC also employs a target critic network for the critic networks,
which are slowly updated with the weights of the main critic network to stabilize training. For the
inference, SAC uses the policy network to determine the action by selecting the action with the
highest probability.

In practice, to help the system approximate the target state accurately and quickly, we need to include
the distance between the states of every time step and the target state in the reward. So the reward
function of time step t, state ut, target state uT and action wt here is defined as

r(t,ut, yT ,wt) = −
∫
Ω

|ut − ud|2dx− α

∫
Ω

|wt|2dx,

where Ω is the space domain and α is the weight of energy. We take the Adam optimizer Kingma
& Ba (2014) to train the networks and update the temperature parameter. The detailed values of
hyperparameters are provided in Table 6.

D.4 SUPERVISED LEARNING

The paper Hwang et al. (2022) proposes a supervised-learning-based control algorithm that takes
a neural operator as a surrogate model to solve control problems. It contains two stages. In the
first stage, we take a neural operator to learn the PDE constraint as Appendix F. The three CNNs
respectively reconstruct u, reconstruct w and learn the transition from ut to ut+1. More details are
in Appendix F. In the second stage, these three neural networks are used as surrogate models to
calculate the gradient of the objective function with respect to the control input. We consider the
control w as a learnable parameter and update it with the gradient.

To enhance the accuracy, we adopt the LBFGS optimizer Liu & Nocedal (1989), which is more
accurate while slower than the Adam optimizer. We record the hyperparameters of the second stage
in Table 7.

20



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 7: Hyperparameters of the second stage of the 1D supervised learning method.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control: (full observation partial control)
Learning rate of w updating 0.1
Number of epochs 300
Weight of objective function loss 500
Weight of reconstruction loss 0.03
Termination tolerance on first order optimality of LBFGS optimizer 4× 10−7

Termination tolerance on parameter changes LBFGS optimizer 4× 10−7

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control: (partial observation partial/full control)
Learning rate of w updating 0.1
Number of epochs 300
Weight of objective function loss 50000
Weight of reconstruction loss 3
Termination tolerance on first order optimality of LBFGS optimizer 4× 10−7

Termination tolerance on parameter changes LBFGS optimizer 4× 10−7

E 2D BASELINES

E.1 MPC AND SL

Model Predictive Control (MPC) Schwenzer et al. (2021) is a control strategy that solves an optimiza-
tion problem repeatedly to determine the optimal control inputs for a dynamic system. It operates
over a finite prediction horizon, optimizing a cost function and applying only the first control action.
In the 2D jellyfish movement control problem, MPC uses the control sequences w and the fluid
states as internal state variables. Without the need to train a control agent model, MPC relies on 2D
surrogate models mentioned in Appendix F to estimate future states based on the current state and
control. We use backpropagation to compute the gradient, update the control action sequences, and
optimize the control objective J in Eq. (15). For every time step, we get the optimized sequences
from this time step forward in this way, and only the first control sequence of the optimized control
sequences is applied. Compared with MPC, the Supervised learning (SL) method Hwang et al. (2022)
only optimizes the entire control sequences and employs the entire sequences.

MPC is an optimization technique that aims to optimize the control of complex dynamic systems
by considering future predictions. This approach can optimize performance measures over a future
time horizon, handle systems with multiple variables and constraints, adapt to changes in the system
behavior, and offer good performance even in the presence of nonlinearity. Nevertheless, using
MPC comes with a high cost, both in terms of computational resources and time. Additionally,
adapting the optimization hyperparameters for MPC can be a challenging task. In our experiment,
both MPC and SL face difficulties when trying to generate smooth opening angle control curves, even
when constraints R(ŵ) are included in the optimization objective J . In the case of multi-objective
optimization problems, it becomes even more challenging for them to simultaneously achieve both
the higher speed (bigger v̄) and the control curves smoothness (smaller R(ŵ)).

E.2 SAC

For the 2D case, the algorithm and basic architecture of SAC are the same as the 1D case in Appendix
D.3. When designing the reward function for the 2D jellyfish movement control, we find the periodic
condition of the opening angle curves is hard to constrain. So to satisfy the periodic condition
better, we include the distance between wt of every time step t and w0. Also, we both consider the
squared and absolute error of (wt − w0) since they respectively constrain the periodic condition
when (wt −w0) is large and small. As a result, the reward function of time step t, force Ft, opening
angle (wt−1,wt) and condition angle w0 is defined as

r(t,wt−1,wt,w0) = (T − t) ∗ Ft − λ1(wt −wt−1)
2 − λ2((wt −w0)

2 + |wt −w0|),

21



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

where λ1, λ2 are weights of different terms. We take the Adam optimizer Kingma & Ba (2014)
to update the weights of networks and the temperature parameter as in the 1D experiment. The
hyperparameters are reported in Table 8. In particular, we take the best checkpoint to evaluate the
final performance, thus the actual number of training episodes for each setting ranges from about 100
to about 300.

Table 8: Hyperparameters of 2D SAC. The full observation and partial observation settings share
the same hyperparameters.

Hyperparameter name Value
Hyperparameters for 2D Jellyfish movement control:
Weight of the constraint of periodic condition β 0.001
Discount factor for reward 0.5
Target smoothing coefficient 0.05
Learning rate of critic loss 0.0003
Learning rate of entropy loss 0.0003
Learning rate of policy loss 0.0003
Training batch size 2048
Number of episodes 350
Number of model updates per simulator step 20
Value target updates per step 15
Size of replay buffer 11400001
Number of trajectories interacted with the environment per step 5
Activation function ELU
Clipping’s range of policy network’s standard deviation output

[
e−5, e−2

]

F SURROGATE MODELS

F.1 1D SURROGATE MODEL

For the control problem of 1D Burgers’ equation, our 1D surrogate model is based on the previous
paper Hwang et al. (2022), which uses 2 autoencoders to model dynamics in the latent space. The
neural simulator architecture and training details are shown in Table 9.

Table 9: Hyperparameters of 1D surrogate model.

Hyperparameter name Full observation, Partial observation, Partial observation,
partial control full control partial control

Autoencoder of state
Convolution kernel size 5 5 5
Convolution padding 2 2 2
Activation function ELU ELU ELU
Latent vector size 256 128 128

Autoencoder of force
Convolution kernel size 5 5 5
Convolution padding 2 2 2
Activation function ELU ELU ELU
Latent vector size 256 256 256

Training
Training batch size 5100 5100 5100
Optimizer Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3
Training epochs 500 500 500
Learning rate scheduler cosine annealing cosine annealing cosine annealing

22



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

F.2 2D FORCE MODELS

Dataset. In 2D jellyfish movement control experiments, we train a force surrogate to approximate the
computation of the average speed of the jellyfish for the guidance of inference, which is implemented
by a neural network and is thus differentiable. The training data consists of pressure, boundary, and
force data in the training trajectories. Each training trajectory amounts to T̃ = 40 training samples.
Therefore, we have 1.2 million training samples and 4 thousand testing samples in total.

Model. The model’s input contains pressure, boundary mask, and offsets with shape 4× 64× 64
at a certain time step, and the output is the corresponding forces of x and y directions. The model
architecture is the down-sampling part of a U-Net Ronneberger et al. (2015) that embeds the input
features into a 512-dimensional hidden representation; then we use a linear function with output
dimension two to output forces.

Training. We use MSE (mean squared error) loss between the ground truth and predicted forces to
train the force surrogate model. The optimizer is Adam (Kingma & Ba, 2014). The batch size is 64.
The model is trained for 10 epochs. The learning rate starts from 1× 10−4 and multiplies a factor of
0.1 every three epochs. After training, the relative l2 test error is 0.4%.

F.3 2D BOUNDARY MASK AND OFFSETS UPDATER

Dataset. In 2D jellyfish movement control experiments, we train a boundary mask and offsets updater
surrogate to approximate the transition of boundary mask and offsets from time step 0 to t. Thus each
training trajectory amounts to T̃ − 1 = 39 training samples.

Model. The input is the boundary mask and offsets at time step 0 with shape 3× 64× 64, and the
difference of the opening angle from 0 to t. The output is the boundary mask and offsets at time
step t with shape 3× 64× 64. The model architecture is the U-Net Ronneberger et al. (2015) with
additional scalar input, similar to the denoising network in DDPM Ho et al. (2020), where the input
scalar diffusion step is replaced by the angle difference in our model.

Training. We use MSE (mean squared error) loss between the ground truth and predicted boundary
mask and offsets to train this surrogate model. Hyperparameters of training are the same as those of
the force surrogate model.

F.4 2D SIMULATOR

Dataset. In 2D jellyfish movement control experiments, we need to train a surrogate model as a solver
of the PDE for the baseline methods like SAC (online) and MPC, because of their iterative nature.
Conversely, our diffusion method does not need this surrogate model. This model approximates
the transition of states under the boundary condition from time step t to t+ 1. Thus each training
trajectory amounts to T̃ −1 = 39 training samples. We train two versions of this model for full/partial
observation settings.

Model. This surrogate model is also implemented by the U-Net Ronneberger et al. (2015). The
model input is the states, boundary mask, and offsets at time t with shape 6× 64× 64 for the full
observation setting and 4× 64× 64 for the partial observation setting. The output is the predicted
states at time step t+ 1, with shape 3× 64× 64 for the full observation setting and 1× 64× 64 for
the partial observation setting.

Training. We use MSE loss between the ground truth and predicted states to train this surrogate
model. Hyperparameters of training are the same as those of the force surrogate model.

G EFFECT OF HYPERPARAMETER

Performance of DiffConPDE is determined by the hyperparameter γ. Since diffusion models denoise
gradually, we use a varying sequence of γ = {γk}Kk=1 to substract prior in DiffConPDE. Specifically,
the schedule of γ is set as γk = 1− ξ · βK−k, k = 1, · · · ,K, where ξ is a fixed coefficient to control
the scale of γ and β = {βk}Kk=0 is the schedule of variances of noise in DDPM Ho et al. (2020).
In our implementation, we use the sigmoid schedule of β Jabri et al. (2022). The total number of

23



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 10: Results of different γ on 2D jellyfish movement control.

γ1 ξ Average speed (v̄) R(w) objective J
0.6 0.4 410.6 0.2581 -152.51
0.7 0.3 279.87 0.2058 -74.11
0.8 0.2 197.18 0.1312 -65.99
0.9 0.1 76.97 0.0741 -2.84
1.0 0 95.04 0.0746 -20.47
1.1 -0.1 81.41 0.0742 -7.21
1.2 -0.2 84.56 0.0736 -10.93
1.3 -0.3 65.12 0.0725 7.38
1.4 -0.4 65.02 0.0734 8.43
1.5 -0.5 64.07 0.0752 11.1

0.6 0.8 1.0 1.2 1.4 1.6

1

0

100

200

300

400

500

v,
 R

(w
)

v
1000 * R(w)

150

125

100

75

50

25

0

25

50

ob
j

obj

Figure 9: Results of different γ on 2D jellyfish movement control.

inference steps is K = 1000. Thus we only need to tune ξ to examine the effect of γ. When ξ < 0,
DiffConPDE is prone to restrict w within its prior distribution of training dataset in inference. When
ξ > 0, DiffConPDE is more likely to generate new kinds of w beyond training ones. When ξ = 0,
DiffConPDE degenerates to DiffConPDE-lite. In 2D experiments, We set default ξ = 0.3 and the
corresponding γ1 = 0.7 as we empirically find this value performs well and steadily. We present the
performance of DiffConPDE on the 2D jellyfish movement control task under different γ in Figure 9
and Table 10. We can observe that the performance increases along with decreasing of γ1. When
γ1 < 0.6, invalid generated control sequences emerge because the prior is largely overlooked. Thus
the valid interval for γ of prior reweighting on this task is [0.6, 1.0]. It is interesting to find that
when γ1 > 1, the performance decreases. This may be caused by the strict constraint of the prior
distribution of p(w, c), which results in generating control sequences similar to those from training
datasets and thus not good.

H LIMITATION AND FUTURE WORK

Although DiffConPDE solves the PDE control problems with outstanding performance, there are still
several limitations that provide exciting opportunity for future works. Firstly, the inference process
of the diffusion model, the foundational component of DiffConPDE, may benefit from enhanced
efficiency by using e.g. distillation Salimans & Ho (2022); Li et al. (2023). Secondly, the training
of DiffConPDE is currently conducted in an offline fashion, lacking interaction with a ground-truth
solver. Incorporating solvers into the training framework could facilitate real-time feedback, enabling
the model to adapt dynamically to the environment and discover novel strategies and solutions.
Furthermore, our proposed DiffConPDE presently operates in an open-loop manner, as it does not
consider real-time feedback from solvers. Integrating such feedback would empower the algorithm to
adjust its control decisions for the subsequent steps based on the evolving state of the environment.

Moving forward, we plan to expedite the inference process by drawing insights from relevant prior
works, such as Salimans & Ho (2021); Meng et al. (2023); Li et al. (2023). Additionally, we aim to

24



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

build upon our existing trajectory knowledge to generalize future trajectories. Furthermore, we intend
to incorporate solver interactions into our training methodology, enhancing the model’s adaptability
and effectiveness.

25


	Introduction
	Method
	Problem Setup
	Generative Control by Diffusion Models
	Prior Reweighting

	Experiments
	1D Burgers' Equation Control
	2D Jellyfish Movement Control.

	Additional Related Work
	PDE Simulation
	PDE Control
	Diffusion Models

	Additional Details for 1D Burgers' Equation Control
	Data Generation
	Experimental Setting
	Partial Observation, Full Control
	Full Observation, Partial Control
	Partial Observation, Partial Control

	Guidance conditioning.
	Model
	DiffConPDE-lite
	DiffConPDE

	Training and Evaluation

	Additional Details for 2D Jellyfish Movement Control
	Data Generation
	Experimental Setting
	Full Observation
	Partial Observation

	Model
	Architecture
	DiffConPDE-lite
	DiffConPDE

	Training, Inference, and Evaluation

	1D Baselines
	PID
	The Adjoint Method
	SAC
	Supervised Learning

	2D Baselines
	MPC and SL
	SAC

	Surrogate Models
	1D Surrogate Model
	2D Force Models
	2D Boundary Mask and Offsets Updater
	2D Simulator

	Effect of Hyperparameter 
	Limitation and Future Work

