
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A FAST KERNEL-BASED CONDITIONAL INDEPENDENCE
TEST WITH APPLICATION TO CAUSAL DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Kernel-based conditional independence (KCI) testing is a powerful nonparametric
method commonly employed in causal discovery tasks. Despite its flexibility and
statistical reliability, cubic computational complexity limits its application to large
datasets. To address this computational bottleneck, we propose FastKCI, a scal-
able and parallelizable kernel-based conditional independence test that utilizes a
mixture-of-experts approach inspired by embarrassingly parallel inference tech-
niques for Gaussian processes. By partitioning the dataset based on a Gaussian
mixture model over the conditioning variables, FastKCI conducts local KCI tests
in parallel, aggregating the results using an importance-weighted sampling scheme.
Experiments on synthetic datasets and benchmarks on real-world production data
validate that FastKCI maintains the statistical power of the original KCI test while
achieving substantial computational speedups. FastKCI thus represents a practical
and efficient solution for conditional independence testing in causal inference on
large-scale data.

1 INTRODUCTION

Conditional independence (CI) testing is a fundamental operation in causal discovery and structure
learning. Widely used algorithms such as the PC algorithm (Spirtes & Glymour, 1991) and Fast
Causal Inference (Spirtes, 2001) rely on CI tests to recover the causal skeleton of a graph from
observational data. The core statistical question is whether two variables X and Y are independent
given a conditioning set Z, that is, whether X ⊥⊥ Y | Z. Despite being frequently adapted to fields
like neuroscience (Smith et al., 2011), climate research (Ebert-Uphoff & Deng, 2012) or economics
(Awokuse & Bessler, 2003), CI testing remains the computational bottleneck in constraint-based
causal discovery, especially as sample size increases (Agarwal et al., 2023; Le et al., 2019; Shiragur
et al., 2024).

Standard CI tests suit different types of data and assumptions: Traditional tests like the Fisher-Z test
(Fisher, 1921) assume linear Gaussian data, while discrete tests such as χ2 require categorical vari-
ables. More recent approaches avoid strong distributional assumptions by leveraging nonparametric
techniques such as kernel methods. Among these, the Kernel-based Conditional Independence test
(KCI) (Zhang et al., 2012) has become a standard choice due to its flexibility and empirical power.
KCI is based on Hilbert space embeddings and computes dependence via kernel covariance operators,
making it applicable to arbitrary continuous distributions.

KCI requires operations on n× n Gram matrices and matrix inversions, resulting in O(n3) runtime
per test, which makes it infeasible for large-scale applications. Recent work has sought to mitigate
this cost via sample splitting (Pogodin et al., 2024), random Fourier features (Strobl et al., 2018),
neural network approximations (Doran et al., 2014), and randomization-based tests (Shah & Peters,
2020). However, these approximations can degrade statistical power and require additional tuning.

Our goal is to accelerate the KCI test without sacrificing its statistical rigor and nonparametric
flexibility. To this end, we propose FastKCI, a novel variant that leverages ideas from embarrassingly
parallel inference in Gaussian processes (Zhang & Williamson, 2020). FastKCI partitions data based
on a generative model in the conditioning set Z, performs KCI tests in parallel on each partition, and
aggregates the test statistics using an importance weighting scheme. This blockwise strategy enables
significant computational speedups, especially in multi-core or distributed environments.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Our contributions are therefore a scalable and parallelizable conditional independence test, FastKCI,
that significantly accelerates KCI by using a novel partition-based strategy combined with importance
weighting. We experimentally demonstrate that FastKCI retains the statistical performance of KCI
while achieving runtime improvements across synthetic and real-world datasets.

2 RELATED WORK

Due to the growing importance of causal inference, considerable research has been devoted to
discovering efficient methods to identify causal structures from observational data (Zanga et al.,
2022). Traditional causal discovery methods are often categorized as constraint-based or score-based.
Constraint-based methods, such as the PC algorithm (Spirtes & Glymour, 1991) or FCI (Spirtes et al.,
1995), rely on CI tests to identify the underlying causal structure. Score-based methods, such as
Greedy Equivalence Search (Chickering, 2002), evaluate causal structures based on scoring criteria.
Both approaches face computational challenges: constraint-based methods due to intensive CI testing,
and score-based methods due to an exponentially large search space.

Existing work has improved the efficiency of the PC algorithm by reducing unnecessary CI tests
(Steck & Tresp, 1999), optimizing the overall search procedure itself—through order-independent
execution (Colombo & Maathuis, 2014), skipping costly orientation steps (Colombo et al., 2012),
sparsity-aware pruning (Kalisch & Bühlmann, 2007), divide-and-conquer partitioning (Huang &
Zhou, 2022), and parallelism of the CI tests (Le et al., 2019; Zarebavani et al., 2020; Hagedorn et al.,
2022). These methods, however, do not address the cubic-time bottleneck of kernel-based CI tests.

Attempts in the literature to address this issue take several forms. The original KCI paper already
derived an analytic Γ-approximation of the null distribution and proposed simple median-heuristic
bandwidth choices to avoid costly resampling (Zhang et al., 2012). Strobl et al. (2018) accelerate
KCIT by replacing the full kernel matrices with an m-dimensional random Fourier-feature approx-
imation. Doran et al. (2014) re-express conditional independence as a single kernel two-sample
problem by restricting permutations of (X,Y ), thereby changing the test statistic while lowering
runtime. Zhang et al. (2022) eliminate kernel eigen-decompositions altogether by regressing X
and Y on Z and measuring residual similarity with a lightweight kernel. Additional ideas include
calibrating test statistics with locality-based permutations in the conditioning set (Kim et al., 2022),
evaluating analytic kernel embeddings at a finite set of landmark points (Scetbon et al., 2021), and
controlling small-sample bias via data splitting (Pogodin et al., 2024). However, these approaches
can compromise statistical power, particularly under complex nonlinear dependencies and in high-
dimensional conditioning sets. Concurrent with our work, Guan & Kuang (2025) proposed an
Ensemble Conditional Independence Test, which independently adopts a similar divide-and-aggregate
strategy by partitioning the data, applying a generic base conditional independence test to each subset,
and combining the resulting p-values via stable-distribution-based aggregation. While conceptually
related, their approach and ours differ substantially in both the sample partitioning scheme and the
aggregation mechanism.

Our method preserves the KCI statistic by evaluating it on Gaussian-mixture strata and aggregating
with importance weights. We therefore leverage techniques from Gaussian Process regression,
which often faces the identical problem of poor scalability due to cubic complexity1 (Zhang &
Williamson, 2020). A common solution is to assume the underlying distribution of the covariates
Z = {z1, . . . , zj} to be a mixture-of-experts (MoE) (Jordan & Jacobs, 1994). Local approaches, as
in Gramacy & Lee (2008), then aggregate over multiple partitions by MCMC. Zhang & Williamson
(2020) propose an importance sampling approach to MoE that efficiently aggregates over multiple
partitions. To the best of our knowledge, our approach – using importance-sampled partitions of the
data, performing parallel kernel tests, and aggregating via importance weighting – represents the first
attempt explicitly bridging embarrassingly parallel inference with scalable kernel-based CI testing.

3 BACKGROUND

The KCI builds on a notion of conditional independence introduced by Fukumizu et al. (2007). Let
(Ω,F ,P) be a probability space and X ∈ X , Y ∈ Y , Z ∈ Z random variables. For each domain we

1In fact, as KCI solves GP regression problems to find the RKHS bandwidth, it is a sub-problem of CI.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

fix a measurable, bounded and characteristic kernel, e.g. the Gaussian RBF, denoted kX , kY , kZ , with
corresponding reproducing-kernel Hilbert spaces (RKHS)HX ,HY ,HZ . Feature maps are denoted
φX(x) = kX(x, ·) etc. Expectations are shorthand E[·], tensor products ⊗, and centered features
φ̃X :=φX − µX where µX = E[φX(X)].

3.1 COVARIANCE AND CONDITIONAL COVARIANCE OPERATORS

The cross-covariance operator ΣXY : HX→HY is the bounded linear map satisfying

⟨g,ΣXY f⟩ = E
[
⟨φ̃X(X), f⟩X ⟨φ̃Y (Y ), g⟩Y

]
∀ f ∈HX , g∈HY .

An analogous definition yields ΣXZ , ΣZZ . Provided ΣZZ is injective2, conditional covariance is

ΣXY |Z := ΣXY − ΣXZ Σ−1
ZZΣZY .

Proposition 1 (Fukumizu et al., 2007). With characteristic kernels, X ⊥⊥ Y | Z ⇐⇒ ΣXY |Z = 0.

Hence testing conditional independence reduces to checking whether this operator is null.

3.2 FINITE-SAMPLE KCI STATISTIC

Given n observations {(xi, yi, zi)}ni=1, assemble Gram matrices KX ,KY ,KZ ∈ Rn×n with
(KX)ij = kX(xi, xj), KY ,KZ analogously. Let H := In − 1

n11
⊤ and define the projection

onto Z–residuals
RZ := In −KZ

(
KZ + λIn

)−1
, λ > 0. (1)

Intuitively, RZ acts like a residual operator that removes components explained by Z, Rzf is
approximately the part of f orthogonal to functions of Z. Residualized, centered kernels are
K̃X = RZHKXHRZ and K̃Y analogously.

The KCI test statistic of Zhang et al. (2012) is then given by the Hilbert–Schmidt norm of the
cross-covariance between residuals:

TKCI :=
1

n
Tr(K̃XK̃Y ). (2)

Zhang et al. (2012) show that under H0 this statistic converges in distribution to a weighted sum of
χ2 variables. In practice one uses a finite-sample null distribution to assess significance. We follow
Proposition 5 in Zhang et al. (2012), using a spectral approach to simulate the null: We compute the
eigenvalues λm of a normalized covariance operator associated with K̃X and K̃Y , then generate null
samples and set

T
(b)
null =

n∑
m=1

λm χ2
1,m,b, b = 1, . . . , B, (3)

with i.i.d. χ2
1 variates χ2

1,m,b. This approximate distribution of TKCI under H0 obtains a p-value. The
full KCI procedure is given in Algorithm 2.

3.3 COMPUTATIONAL COMPLEXITY OF THE KCI

A key drawback of KCI is its heavy computation for large n. Constructing and manipulating n× n
Gram matrices is O(n2) in memory. More critically, forming K̃X and K̃Y requires solving a linear
system or eigen-decomposition on KZ ∈ Rn×n. The inversion (KZ + εI)−1 costs O(n3) time in
general. Generating the null distribution via eigenvalues also incurs an O(n3) decomposition of the
n× n matrix U = (I −RZ)KX(I −RZ) and related matrices. Thus, the overall complexity of KCI
scales cubically in the sample size n. This cubic bottleneck severely limits the test’s applicability
to large datasets, particularly when it must be repeated many times as in constraint-based causal
discovery.

2With a characteristic kernel this holds on the closure of its range.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4 FASTKCI: A SCALABLE AND PARALLEL KERNEL-BASED CONDITIONAL
INDEPENDENCE TEST

To overcome theO(n3) bottleneck, we propose FastKCI, which leverages a mixture-of-experts model
and importance sampling. The core idea is to break the full kernel computation into V smaller
pieces (experts) corresponding to data partitions, compute local CI statistics on each piece, and then
recombine them to recover the global statistic. By doing so, FastKCI achieves significant speed-ups
– roughly on the order of 1/V 2 of the cost of KCI – while maintaining the test’s correctness under
mild assumptions.

We assume that the distribution of the conditioning variable Z can be approximated by a mixture of
V Gaussian components.
Assumption 1. Let U be a latent cluster assignment variable taking values in {1, . . . , V }. For each
i, we posit a model:

Ui ∼ Categorical(π1, . . . , πV ), π ∼ Dirichlet(α), (4)

zi | (Ui = v) ∼ N (µZ
v ,Σ

Z
v ), (µZ

v ,Σ
Z
v ) ∼ Normal-InvWishart(µ0, λ0,Ψ, ν). (5)

Thus, zi are i.i.d. draws from a V -component Gaussian mixture with unknown means µZ
v and

covariances ΣZ
v . We place a weak Normal-Inverse-Wishart prior on these parameters to allow

uncertainty. This mixture-of-experts prior on Z guides partitioning of the dataset. Intuitively, if
Z has a multimodal or complex distribution, this model lets us divide the data into V components
C1, . . . , CV (with Cv = {i | Ui = v}) such that within each Cv, Z is roughly Gaussian. We do not
assume anything restrictive about X and Y globally. By conditioning on Cv , the relationship between
X and Y can be analyzed locally. In particular, conditioned on a given partition U1:n = (U1, . . . , Un),
the kernel matrices KX ,KY ,KZ acquire an approximate block structure: after permuting indices
by cluster, each matrix breaks into V blocks (sub-matrices) corresponding to points in the same
cluster, with negligible entries for cross-cluster pairs, especially if clusters are well-separated in Z.
Each component v defines a local sub-problem of size nv = |Cv|, and within that component we can
perform a CI test on the restricted data {(xi, yi, zi) : i ∈ Cv}. This yields a local test statistic Tv

and local null distribution for component v. By appropriately combining these local results, we can
recover a valid global test statistic without ever computing the full n× n kernel on all data at once.

The choice of a Gaussian Mixture Model assumption is motivated by its power as a universal
approximator of densities, capable of modeling a wide variety of complex, multi-modal, and non-
Gaussian distributions with high fidelity (McLachlan & Peel, 2000). The goal of FastKCI is not to
assume the data is strictly Gaussian, but to leverage a flexible framework to create sensible, localized
partitions of the conditioning set. Importantly, our empirical results in Section 5 (and Appendix A.1)
demonstrate that FastKCI exhibits robust performance even when this assumption is misspecified or
the true underlying distribution is unknown.

In the next paragraphs, we explain the procedure in detail.

Figure 1: Motivation of the partitioning scheme in the data. The full covariance kernel estimation
(left) is inefficient, while partitioning the data into components a single time (middle) may neglect
some of the covariance structure. We propose to use multiple partitions J (right) in parallel. We
combine them using importance sampling. The figure is inspired by Zhang (2020).

Partition Sampling. As visible in Figure 1, for partition sampling rounds j = 1, . . . , J we
independently draw a cluster assignment U (j)

1:n = (U
(j)
1 , . . . , U

(j)
n ) according to the MoE model on Z.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

The mixture prior is fit to the empirical Z data. In practice, we use a lightweight empirical-Bayes
partitioning scheme (see Appendix B) that samples mixture components around the empirical mean
of Z instead of performing full EM or full posterior inference. For example, one partition sample j
samples mixture parameters (µZ

1 , . . . , µ
Z
V ,Σ

Z
1 , . . . ,Σ

Z
V ) ∼ P (µ,Σ) from the NIW prior and mixture

weights π, then assigns each point i to a component U (j)
i = v with probability

P
(
U

(j)
i = v | zi

)
∝ πvN

(
zi | µZ

v ,Σ
Z
v

)
.

Each such draw yields a partition {C(j)1 , . . . , C(j)V } of {1, . . . , n}.

Local RKHS Embedding, Test Statistic and Null Distribution. For each partition j and for each
cluster v ∈ {1, . . . , V }, let C(j)v = {i | U (j)

i = v} be indices in the cluster of size n
(j)
v = |C(j)v |.

We form n
(j)
v × n

(j)
v Gram matrices K

(j,v)
X , K(j,v)

Y , and K
(j,v)
Z . K̃

(j,v)
X and K̃

(j,v)
Y are calculated

analogously to Equation 1 with local regression operators. The local test statistic follows as

T (j)
v =

1

n
(j)
v

Tr
(
K̃

(j,v)
X K̃

(j,v)
Y

)
.

We generate a set of B null samples {T (j,b)
v,null} for each cluster by applying the spectral method in

Equation 3 block-wise. Finally, we record a log-likelihood score for each cluster: let L
(
X(j,v)

)
=

logP
(
X

(
C(j)v

)
| Z

(
C(j)v

))
and L

(
Y (j,v)

)
analogously be the log marginal likelihoods of the X

and Y data in cluster v given Z. We use this measure to calculate a likelihood ℓ(j,v) ∝ P (X(j), Y (j) |
U (j)).

Aggregation over V . We aggregate the partition-wide test statistic as the sum of the cluster
statistics.

T (j) =
∑
v

T (j)
v

This recovers the full trace of the product of block-wise diagonal K̃(j)
x K̃

(j)
y . Since under H0 the

cluster test statistics are approximately independent (different clusters involve disjoint data) and each
follows a weighted χ2 distribution, their sum T

(j,b)
null is a valid sample from the null distribution for

the whole partition j. Thus, we also aggregate each null sample into the sum.

T
(j,b)
null =

∑
v

T
(j,b)
v,null

Aggregation over J . We apply a softmax to the log-likelihoods to obtain per-partition importance
weights

wj =
exp

(∑
v ℓ

(j,v)
)∑

j exp
(∑

v ℓ
(j,v)

)
The final test statistic is a weighted average across all J partitions:

TFastKCI =

J∑
j=1

wjT
(j), where wj ∝ P (X(j), Y (j) | U (j))

and the combined null distribution is taken as the mixture of all partition null samples with the same
weights. In practice, we merge the J sets of null samples {T (j,b)

null } into one weighted empirical
distribution. Specifically, we compute the weighted empirical cumulative density FT,null(t) =∑J

j=1 wj

(
1
B

∑B
b=1 1{T

(j,b)
null ≤ t}

)
, which is a mixture of the J null distributions. See also Appendix

B for implementation details.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.1 THEORETICAL INSIGHT

Under the null hypothesis H0 : X ⊥⊥ Y | Z, each block statistic T
(j)
v is, by exactly the same

argument as in Zhang et al. (2012), asymptotically a weighted sum of independent χ2
1 variables,

T (j)
v

d−→
∑
m

λj,v,m χ2
1,(j,v,m),

with non-negative weights λj,v,m determined by the eigenvalues of the blockwise covariance opera-
tors.

Different clusters use disjoint subsets of the data, hence their statistics are (asymptotically) indepen-
dent; the sum T (j) =

∑
v T

(j)
v is therefore a new weighted χ2 mixture whose weights are a union of

λj,v,m. The convex combination of these weighted χ2 mixtures is itself a weighted χ2 mixture with
the same weights wj :

TFastKCI
d−→

J∑
j=1

V∑
v=1

∑
m

wj λj,v,m χ2
1,(j,v,m).

Hence, our method inherits exactly the same null-law template as classical KCI: a positive, finite
linear combination of χ2

1 variables.3 Consequently, under Assumption 1 and with J →∞, the test
exhibits the same appealing statistical properties as the conventional KCI.

4.2 COMPUTATIONAL COMPLEXITY

Assuming balanced partitions, each block contains roughly n/V samples. The complexity of KCI per
block is then O((n/V )3), and the total complexity becomes O(Jn3/V 2). Since the J partitions are
fully parallelizable, the wall-clock cost is significantly reduced compared to the original O(n3) cost.

While the formal complexity expression of FastKCI appears cubic in n, this perspective presumes
that V is a small, fixed constant. In practice, for the mixture model to effectively approximate the
underlying distribution of the conditioning set Z, the number of components V can increase with
the sample size. This scaling ensures that the number of samples within each cluster (n/V ) remains
manageable, preventing single partitions from becoming a computational bottleneck. If V is chosen
to scale with n, the effective computational complexity of FastKCI becomes nearly linear in n. We
support this by our experiments, where we show manageable computation times in large samples by
growing V .

The complete procedure is summarized in Algorithm 1.

Algorithm 1 FastKCI: Fast and Parallel Kernel-based CI Test

Require: Dataset {(xi, yi, zi)}ni=1, number of components V , number of partition sampling rounds
J .

1: for j = 1 to J in parallel do
2: Sample V -component partition U (j) from p(U | Z).
3: for each component v = 1 to V do
4: Compute residualized kernels K(v)

X|Z , K(v)
Y |Z .

5: Compute test statistic T
(j)
v = 1

nv
Tr(K

(v)
X|ZK

(v)
Y |Z).

6: end for
7: Aggregate: T (j) =

∑
v T

(j)
v .

8: Compute importance weight wj ∝ P (X(j), Y (j) | U (j)).
9: end for

10: Normalize weights: wj ← wj/
∑

j wj .
11: Compute final test statistic and null distribution by weighted averaging.
12: return p-value for H0 : X ⊥⊥ Y | Z.

3The formal requirements are the standard KCI assumptions (characteristic kernels, boundedness) plus every
cluster size |C(j)

v |→∞ as n → ∞.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.3 HYPERPARAMETER SELECTION

The practical application of FastKCI requires the specification of the hyperparameters J and V ,
for which we provide some guidance. The number of partitions J is primarily determined by the
available computational resources. Since FastKCI is parallelized across J partitions, each processed
independently, increasing J in line with the number of available CPU nodes does not substantially
increase runtime. Moreover, because the importance sampling procedure favors partitions that more
accurately model the data, a larger J generally yields improved results through additional sampling
rounds.

The selection of the number of clusters V is comparatively more challenging. When prior knowledge
exists regarding the number of Gaussian components underlying the data-generating process, such
information provides a natural choice for V . In the more typical scenario where the distribution of
the conditioning set Z is unknown, selecting V involves a trade-off between sample size and cluster
size. Increasing the number of clusters improves the approximation of the conditional distribution
of Z while simultaneously reducing the average cluster size (approximately n/V ). Smaller clusters
facilitate more efficient eigendecompositions, thereby enhancing scalability. However, excessively
small clusters can introduce instability. For an ablation study on V , see Appendix A.14

5 EXPERIMENTS

To empirically validate the main result in Algorithm 1, we extensively study the performance of
FastKCI and compare it to the KCI implementation provided in the causal-learn package (Zheng
et al., 2024). We consider different scenarios, focusing on coverage, power and causal discovery5.
Please find additional results concerning an ablation on V , and non-Gaussian conditioning sets in
Appendix A.1.

5.1 TYPE-I-ERROR COMPARISON

We generate n = 1200 samples of random variables X , Y and Z, with X and Y being drawn
independently conditioned on Z. In our scenario, we examine the type I error with growing con-
founding set size D = {1, . . . , 5}, with all variables effecting both X and Y (comparable to
“Case II” in Zhang et al. (2012)). For the Zi, we consider multiple ground-truth distributions, as
a mixture of Vtrue = {1, 3, 10} Gaussians. X and Y are generated as post-nonlinear causal model
g (

∑
i fi(Zi) + ε) where f and g are random mixtures of linear, cubic and tanh functions and ε is

independent across X and Y .

Figure 2: Simulated Type-I-Error (“Coverage”) of the FastKCI and the KCI at 1% and 5% levels.

5.2 POWER COMPARISON

We repeat the experiments from above, but make X and Y conditionally dependent by adding a small
identical noise component ν ∼ N (0, σ2

vio) to both random variables, in order to assess the type II

4More systematic strategies for selecting V have also been proposed. For example, Zhang & Williamson
(2020) recommend fitting a mixture model to the data and estimating V from the posterior distribution of
the mixture. Alternatively, Bayesian optimization may be employed to identify an optimal choice of V in a
data-driven manner.

5A high-level implementation will be provided within a well-known causal discovery package.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

error. We compare KCI and FastKCI in different configurations with a growing violation of H0 (i.e.,
σ2

vio is increasing). Figure 3 displays that both approaches have similar performance at a sample size
of n = 1200.

For additional comparison, we consider the setting from Section 5.1, but now X directly causes
Y . We calibrate the setting to a small violation (approximately 1/3 of the signal), under which we
observe a non-zero type II error. Table 1 shows the power under different numbers of Gaussians Vtrue
in the DGP.

5.3 CAUSAL DISCOVERY

We compare the performance of the PC algorithm using FastKCI with KCI in causal discovery tasks.
For this, we consider two different settings, setting A is derived from Zhang et al. (2012). We sample
6 random variables {X1, . . . , X6}. For j > i we sample edges with probability 0.3. Based on the
resulting DAG, we sample descendants from a Gaussian Process with mean function

∑
i∈Pa(Xj)

νi ·Xi

(with νi ∼ U [−2, 2]) and a covariance kernel consisting of a Gaussian kernel plus a noise kernel.
Setting B is derived from Liu et al. (2024) and similarly consists of 6 random variables. For j > i, we
sample edges with probability 0.5. The link function fi is randomly chosen between being linear and
non-linear. For linear components, the edge weights are drawn from U [−1.5,−0.5], [0.5, 1.5], while
non-linear components follow multiple functions (sin, cos, tanh, sigmoid,polynomial).
Added noise is simulated from N (0, σ2

i ) with σ ∈ {0.2, 0.5}. As shown in Figure 4, both methods
exhibit similar performance in precision, recall and F1 score between discovered edges and true
causal skeleton.

5.4 SCALABILITY

As Figure 5 highlights, FastKCI shows excellent scalability, particularly when allowing the number
of components V to grow with sample size, which is in accordance with our theoretical consideration.
To further investigate the scalability of FastKCI, we scale up the sample size in the experiments and
report precision, recall, F1 and computation time.6 The results in Table 2 show that we achieve good
results in feasible time even for sample sizes where the traditional KCI fails due to memory and CPU
constraints.

5.5 COMPARISON TO RANDOMIZED CONDITIONAL INDEPENDENCE TEST

Another recently proposed method for speeding up the KCI is the Randomized Conditional Indepen-
dence Test (RCIT) (Strobl et al., 2018). The authors show that their approximation of the KCI null by
random Fourier features is able to achieve significant speed-ups while being comparable to KCI in a

6To reduce complexity, in these experiments we approximate the kernel bandwidth instead of determinating
it exactly with GP. See Zhang et al. (2012) for detail.

DGP n Method Precision Recall F1 Time [s]

Gaussian Process 2000 KCI 0.9833 1.0000 0.9910 467.48
FastKCI(V=3) 0.9526 1.0000 0.9740 250.59
FastKCI(V=10) 0.8980 0.9500 0.9213 129.40

10000 KCI 0.9130 1.0000 0.9496 22240
FastKCI(V=3) 0.9130 1.0000 0.9496 9136.5
FastKCI(V=10) 0.9167 1.0000 0.9524 1505.2

Nonlinear Process 2000 KCI 0.9704 0.9299 0.9470 1098.9
FastKCI(V=3) 0.9783 0.9251 0.9484 587.72
FastKCI(V=10) 0.9641 0.8861 0.9196 219.73

10000 KCI 1.0000 1.0000 1.0000 99360
FastKCI(V=3) 1.0000 0.9711 0.9847 51709
FastKCI(V=10) 1.0000 0.9841 0.9916 12152

20000 FastKCI(V=10) 1.0000 1.0000 1.0000 68086
FastKCI(V=50) 0.9500 0.9722 0.9575 1909.7

50000 FastKCI(V=50) 0.9667 0.9818 0.9739 74095
FastKCI(V=100) 0.9818 0.9533 0.9664 7959.4

100000 FastKCI(V=100) 1.0000 1.0000 1.0000 86342
FastKCI(V=200) 0.8611 1.0000 0.9251 12253

Table 2: Precision, recall, F1 and computational time of the KCI and FastKCI on very large samples.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

wide range of DGPs. We demonstrate that our method that exactly replicates the KCI null law instead
of approximating it, has an advantage on both type-I and type-II error when it comes to a complex,
multi-modal DGP with V = 10 Gaussians in the ground-truth. See result for type-I-error in Table 3
and for type-II in Table 8 in Appendix A.2.

FastKCI (V = 10) KCI RCIT

|Z| Type-I
Error (α = 1%)

Type-I
Error (α = 5%)

CPU
time [s]

Type-I
Error (α = 1%)

Type-I
Error (α = 5%)

CPU
time [s]

Type-I
Error (α = 1%)

Type-I
Error (α = 5%)

CPU
time [s]

1 0.005 0.085 3.56 0.01 0.03 19.51 0.995 1 0.016
3 0.01 0.065 6.83 0.03 0.06 118.22 0.715 0.85 0.016
5 0.005 0.04 10.55 0.03 0.06 177.66 0.265 0.39 0.016
7 0.015 0.05 22.03 0.005 0.065 163.48 0.055 0.135 0.016
10 0.005 0.045 43.02 0.01 0.02 320.21 0.03 0.11 0.016
12 0.015 0.05 63.4 0.02 0.07 323.3 0.13 0.275 0.017
15 0.01 0.04 79.31 0 0.03 669.18 0.18 0.37 0.017
30 0.005 0.035 284.63 0.005 0.05 800.66 0.35 0.54 0.018

Table 3: Type-I Errors for FastKCI, KCI and RCIT in a process with 10 Gaussians in the ground-truth.

5.6 COMPUTATION TIME

We showcased the empirical performance of FastKCI for both pure CI tasks as well as causal
discovery with PC. To shed light on the computational speed-up, we report the computation time in
Figure 5, which – depending on the choice of the main tuning parameters V and J – is significantly
faster than for the KCI.

6 APPLICATION TO PRODUCTION DATA

We apply our proposed method to a semi-synthetic dataset for causal discovery, contained in
causal-assembly (Göbler et al., 2024). The ground-truth consists of 98 production stations,
each dedicated to specific automated manufacturing processes where individual components are
progressively assembled. The processes involved, such as press-in and staking, are mechanically
complex and non-linear. The resulting data provides a real-world example on which causal discovery
can enhance the understanding of causes for production results and yields a good benchmark for our
proposed methodology.

We compare KCI with the FastKCI variant, setting V = 10. Table 4 depicts the full assembly line
with 98 nodes, while Table 5 shows results only for one of the production stations with 16 nodes.
Please refer to Göbler et al. (2024) for an overview of results with alternative CD algorithms such as
PC with fisher-Z, lingam and others. In terms of precision and recall, KCI performs slightly better
than FastKCI, but both outperform all tested methods in the original benchmark paper. In terms of
computational speed, FastKCI, especially in the station setting with a smaller number of nodes, has a
significant edge over the standard method.

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

PC (FastKCI) 0.6263 0.0951 0.1651 21107
PC (KCI) 0.5894 0.1325 0.2163 24659

snr 0.3501 0.1311 0.0926
grandag 0.3193 0.0109 0.0045
lingam 0.3281 0.1092 0.0721

PC (Fisher-Z) 0.4121 0.1170 0.0968
notears 0.5209 0.0978 0.1019

das 0.2971 0.0784 0.0474

Table 4: Mean result of 10 repetitions on the Causal Assembly benchmark with n = 1000.

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

FastKCI (V=10) 0.7815 0.8167 0.7982 371.5
KCI 0.7751 0.8847 0.8249 1230.1

Table 5: Mean result of 100 repetitions on the Causal Assembly benchmark, Station 3, with n = 2000.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 CONCLUSION AND LIMITATIONS

Our paper introduced FastKCI, which turns the cubic-time KCI into a more scalable and embarrass-
ingly parallel procedure. The clustering approach in the conditioning set Z via a mixture of experts
remains statistically valid under mild conditions, while the per test cost falls roughly by a factor
1/V 2. Our experiments show that FastKCI preserves KCI’s Type-I and Type-II error across diverse
settings and cuts wall-clock time for both CI and causal discovery dramatically as sample size grows.
Particularly, we showed empirically how FastKCI can scale causal discovery by letting the number of
components V grow with sample size, even under violation of the MoE assumption. If V grows such
that average cluster size stays constant, FastKCI approaches linearity in n in computation time. Thus,
our method is a promising approach for scaling up CI testing.

The main limitation is reliance on the Gaussian-mixture assumption for partitioning, although it is a
common assumption for multimodal settings and we showed FastKCIs robustness under its violation,
misleading clusters can hurt power, particularly under small J . Further, our work does not address the
issue of large conditioning set sizes |Z|, but it would be worth investigating a possible combination
of our framwork with CI tests for large |Z| (e.g., Bellot & van der Schaar (2019)). Future work could
also include exploring alternative sample partitioning and importance weighting schemes in order to
further refine efficiency of FastKCI.

8 REPRODUCIBILITY STATEMENT

We provide full source code and instructions in the supplementary material to reproduce all experi-
ments, including simulations, and causalAssembly benchmarks. The data-generating processes for
synthetic experiments are fully specified, and the semi-synthetic benchmark dataset (causal-assembly)
is publicly available. Runtime environments, and computing resources are documented in Appendix
B. The hyperparameters used in the experiments are specified in the according sections. The imple-
mentation of FastKCI is included and will also be released as part of an open-source causal discovery
package to facilitate use by the community.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Mayank Agarwal, Abhay H Kashyap, G Shobha, Jyothi Shetty, and Roger Dev. Causal inference and
conditional independence testing with rcot. Journal of Advances in Information Technology, 14(3),
2023.

Titus O. Awokuse and David A. Bessler. Vector autoregressions, policy analysis, and directed acyclic
graphs: An application to the u.s. economy. Journal of Applied Economics, 6(1):1–24, 2003. doi:
10.1080/15140326.2003.12040583.

Alexis Bellot and Mihaela van der Schaar. Conditional independence testing using generative
adversarial networks, 2019. URL https://arxiv.org/abs/1907.04068.

David Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3:507–554, 01 2002.

Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research, 15(116):3921–3962, 2014. URL https:
//jmlr.org/papers/v15/colombo14a.html.

Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learning high-
dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics,
40(1):294–321, 2012. doi: 10.1214/11-AOS940.

Gary Doran, Krikamol Muandet, Kun Zhang, and Bernhard Schölkopf. A permutation-based kernel
conditional independence test. In Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, UAI’14, pp. 132–141, Arlington, Virginia, USA, 2014. AUAI Press. ISBN
9780974903910.

Imme Ebert-Uphoff and Yi Deng. Causal discovery for climate research using graphical models.
Journal of Climate, 25(17):5648–5665, 2012. doi: 10.1175/JCLI-D-11-00387.1.

Ronald Aylmer Fisher. On the "Probable Error" of a Coefficient of Correlation Deduced from a Small
Sample. Metron, 1:3–32, 1921.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of
conditional dependence. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural
Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

Robert B Gramacy and Herbert K H Lee. Bayesian treed gaussian process models with an application
to computer modeling. Journal of the American Statistical Association, 103(483):1119–1130,
2008.

Zhengkang Guan and Kun Kuang. Efficient ensemble conditional independence test framework for
causal discovery, 2025. URL https://arxiv.org/abs/2509.21021.

Konstantin Göbler, Tobias Windisch, Mathias Drton, Tim Pychynski, Steffen Sonntag, and Mar-
tin Roth. causalAssembly: Generating realistic production data for benchmarking causal
discovery, 2024. URL https://arxiv.org/abs/2306.10816.

Christopher Hagedorn, Constantin Lange, Johannes Huegle, and Rainer Schlosser. GPU acceleration
for information-theoretic constraint-based causal discovery. In Proceedings of the KDD’22
Workshop on Causal Discovery, volume 185 of Proceedings of Machine Learning Research, pp.
30–60, 2022. URL https://proceedings.mlr.press/v185/hagedorn22a.html.

Jireh Huang and Qing Zhou. Partitioned hybrid learning of bayesian network structures. Machine
Learning, 111(5):1695–1738, 2022. doi: 10.1007/s10994-022-06145-4.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed acyclic graphs with
the pc-algorithm. Journal of Machine Learning Research, 8:613–636, 2007. URL https:
//jmlr.org/papers/v8/kalisch07a.html.

11

https://arxiv.org/abs/1907.04068
https://jmlr.org/papers/v15/colombo14a.html
https://jmlr.org/papers/v15/colombo14a.html
https://arxiv.org/abs/2509.21021
https://arxiv.org/abs/2306.10816
https://proceedings.mlr.press/v185/hagedorn22a.html
https://jmlr.org/papers/v8/kalisch07a.html
https://jmlr.org/papers/v8/kalisch07a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. Local permutation tests
for conditional independence. Annals of Statistics, 2022.

Thuc Duy Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. A fast pc algorithm for high
dimensional causal discovery with multi-core pcs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(5):1483–1495, September 2019. ISSN 2374-0043. doi: 10.1109/
tcbb.2016.2591526. URL http://dx.doi.org/10.1109/TCBB.2016.2591526.

Wenqin Liu, Biwei Huang, Erdun Gao, Qiuhong Ke, Howard Bondell, and Mingming Gong. Causal
discovery with mixed linear and nonlinear additive noise models: A scalable approach. In Causal
Learning and Reasoning, pp. 1237–1263. PMLR, 2024.

Geoffrey McLachlan and David Peel. Finite Mixture Models. Wiley, September 2000. ISBN
9780471721185. doi: 10.1002/0471721182. URL http://dx.doi.org/10.1002/
0471721182.

Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, and Arthur Gretton. Practical kernel
tests of conditional independence, 2024. URL https://arxiv.org/abs/2402.13196.

Meyer Scetbon, Laurent Meunier, and Yaniv Romano. An asymptotic test for conditional indepen-
dence using analytic kernel embeddings. arXiv preprint arXiv:2110.14868, 2021.

Rajen D. Shah and Jonas Peters. The hardness of conditional independence testing and the generalised
covariance measure. The Annals of Statistics, 48(3), June 2020. ISSN 0090-5364. doi: 10.1214/
19-aos1857. URL http://dx.doi.org/10.1214/19-AOS1857.

Kirankumar Shiragur, Jiaqi Zhang, and Caroline Uhler. Causal discovery with fewer conditional
independence tests, 2024. URL https://arxiv.org/abs/2406.01823.

Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F
Beckmann, Thomas E Nichols, Joseph D Ramsey, and Mark W Woolrich. Network modelling
methods for FMRI. Neuroimage, 54(2):875–891, January 2011.

Peter Spirtes. An anytime algorithm for causal inference. In International Workshop on Artificial
Intelligence and Statistics, pp. 278–285. PMLR, 2001.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991. doi: 10.1177/089443939100900106. URL https:
//doi.org/10.1177/089443939100900106.

Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence of latent
variables and selection bias. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, UAI’95, pp. 499–506, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc. ISBN 1558603859.

Harald Steck and Volker Tresp. Bayesian belief networks for data mining. In Proceedings of the 2.
workshop on data mining und data warehousing Als Grundlage Moderner Entscheidungsunter-
stützender Systeme, pp. 145–154. Citeseer, 1999.

Eric V. Strobl, Kun Zhang, and Shyam Visweswaran. Approximate kernel-based conditional indepen-
dence tests for fast non-parametric causal discovery. Journal of Causal Inference, 7(1), December
2018. ISSN 2193-3677. doi: 10.1515/jci-2018-0017. URL http://dx.doi.org/10.1515/
jci-2018-0017.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: Theory and practice.
International Journal of Approximate Reasoning, 151:101–129, December 2022. ISSN 0888-
613X. doi: 10.1016/j.ijar.2022.09.004. URL http://dx.doi.org/10.1016/j.ijar.
2022.09.004.

Behrooz Zarebavani, Foad Jafarinejad, Matin Hashemi, and Saber Salehkaleybar. cuPC: Cuda-based
parallel PC algorithm for causal structure learning on GPU. IEEE Transactions on Parallel and
Distributed Systems, 31(3):530–542, 2020. doi: 10.1109/TPDS.2019.2939126.

12

http://dx.doi.org/10.1109/TCBB.2016.2591526
http://dx.doi.org/10.1002/0471721182
http://dx.doi.org/10.1002/0471721182
https://arxiv.org/abs/2402.13196
http://dx.doi.org/10.1214/19-AOS1857
https://arxiv.org/abs/2406.01823
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1177/089443939100900106
http://dx.doi.org/10.1515/jci-2018-0017
http://dx.doi.org/10.1515/jci-2018-0017
http://dx.doi.org/10.1016/j.ijar.2022.09.004
http://dx.doi.org/10.1016/j.ijar.2022.09.004


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Hao Zhang, Shuigeng Zhou, Kun Zhang, and Jihong Guan. Residual similarity based conditional
independence test and its application in causal discovery. In AAAI, 2022.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
independence test and application in causal discovery. CoRR, abs/1202.3775, 2012. URL http:
//arxiv.org/abs/1202.3775.

Michael Zhang. Embarrassingly parallel inference for gaussian processes. https://
michaelzhang01.github.io/files/bnp_gp_presentation.pdf, 2020. Presen-
tation.

Michael Minyi Zhang and Sinead A. Williamson. Embarrassingly parallel inference for gaussian
processes, 2020. URL https://arxiv.org/abs/1702.08420.

Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu,
Peter Spirtes, and Kun Zhang. Causal-learn: Causal discovery in python. Journal of Machine
Learning Research, 25(60):1–8, 2024.

A APPENDIX

13

http://arxiv.org/abs/1202.3775
http://arxiv.org/abs/1202.3775
https://michaelzhang01.github.io/files/bnp_gp_presentation.pdf
https://michaelzhang01.github.io/files/bnp_gp_presentation.pdf
https://arxiv.org/abs/1702.08420


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure 3: Power of FastKCI in different config-
urations compared to KCI. The violation of the
null-hypothesis is increasing on the x-axis.

Vtrue Algorithmn Power (α = 5%) Power (α = 1%)

1 FastKCI(V=10, J=128) 0.67 0.43
FastKCI(V=10, J=16) 0.665 0.405
FastKCI(V=3, J=128) 0.86 0.745
FastKCI(V=3, J=16) 0.87 0.665
KCI 0.91 0.77

3 FastKCI(V=10, J=128) 0.725 0.545
FastKCI(V=10, J=16) 0.79 0.62
FastKCI(V=3, J=128) 0.905 0.74
FastKCI(V=3, J=16) 0.89 0.735
KCI 0.86 0.72

10 FastKCI(V=10, J=128) 0.73 0.55
FastKCI(V=10, J=16) 0.755 0.54
FastKCI(V=3, J=128) 0.87 0.645
FastKCI(V=3, J=16) 0.82 0.665
KCI 0.855 0.605

Table 1: Power of KCI and FastKCI under viola-
tion of H0. X and Y are confounded by Z, but
there is also a direct edge between them.

(a) (b)

Figure 4: Precision, recall and F1-Score for KCI and FastKCI in causal discovery with growing
sample size in setting A (left) and setting B (right).

(a) (b)

Figure 5: Computation time with increasing sample size for (a) conditional independence testing and
(b) causal discovery with the PC algorithm.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.1 ABLATION ON HYPERPARAMETER V

We perform an ablation study on the hyperparameter V . For this, we use two DGPs, one that follows
Assumption 1, precisely the one from Section 5.1, with a mixture of V = 10 Gaussians, and one, that
violates it7.

We find that the results are relatively insensitive to the choice of V . Small ratios of V/n tend to have
high computational complexity. Very large ratios, e.g. the case V = 100 and n = 1200 appear to
not approximate the conditioning set well enough anymore and thus are not recommended. They
further can increase computation time again because of inbalanced component sizes and unstable
computations on small samples. Anything inbetween is recommendable.

n = 1200 n = 5000

V
Type-I

Error (α = 1%)
Type-I

Error (α = 5%)
CPU

time [s]
Type-I

Error (α = 1%)
Type-I

Error (α = 5%)
CPU

time [s]
3 0.005 0.050 48.73 0.005 0.025 1133.64

10 0.005 0.035 3.67 0.015 0.050 272.55
20 0.005 0.040 2.47 0.010 0.045 58.16
50 0.010 0.075 3.40 0.000 0.035 11.23
100 0.015 0.185 5.69 0.005 0.035 9.91

Table 6: Ablation on the choice of V in FastKCI on the tests performance in a DGP with a mixture of
10 Gaussians.

n = 1200 n = 5000

V
Type-I

Error (α = 1%)
Type-I

Error (α = 5%)
CPU

time [s]
Type-I

Error (α = 1%)
Type-I

Error (α = 5%)
CPU

time [s]
3 0.000 0.045 45.49 0.015 0.045 1140.41
10 0.010 0.075 3.43 0.020 0.080 276.25
20 0.000 0.040 2.22 0.015 0.085 58.89
50 0.010 0.095 3.04 0.035 0.090 10.85

100 0.020 0.155 5.01 0.025 0.100 9.55
KCI 0.010 0.040 32.84

Table 7: Ablation on the choice of V in FastKCI on the tests performance in a DGP with a conditioning
set consisting of a non-Gaussian distribution.

Particularly, these experiments also demonstrate how FastKCIs performance appears to be not heavily
reliant on Assumption 1. Both under misspecification of the number of mixture components V and
under a completely non-Gaussian conditioning set we observe that Type-I errors remain intact.

A.2 POWER COMPARED TO RCIT

We compare the power of FastKCI to KCI and RCIT in a study similar to section 5.2. We see, that
the type-II error of FastKCI is much more competitive to KCI than the one of RCIT. This further
underlines our argument that in certain processes approximating the null can be insufficient.

FastKCI KCI RCIT
Violation
strength

Type-II
Error (α = 5%)

Type-II
Error (α = 1%)

Type-II
Error (α = 5%)

Type-II
Error (α = 1%)

Type-II
Error (α = 5%)

Type-II
Error (α = 1%)

0.10 0.960 0.840 0.905 0.795 0.975 0.915
0.15 0.835 0.680 0.505 0.340 0.940 0.810
0.20 0.325 0.175 0.155 0.080 0.690 0.480
0.25 0.015 0.010 0.015 0.000 0.380 0.190

Table 8: Type-II error comparison of KCI, FastKCI and RCIT for a process with a mixture of 10
Gaussians. The violation strength refers to the signal of the violation relative to the signal of the
influence of Z on X and Y .

7We draw U ∼ Unif(−π, π) and set Z = sin(U) + 0.3 sin(3U) + 0.1U2. Given Z, we generate
X = fX(Z) + εX and Y = fY (Z) + εY , with independent noises εX , εY ∼ N (0, 0.5I), ensuring H0 to
hold while introducing post-link-noise. We use non-linear but distinct mappings (e.g., random linear projections
followed by tanh or cubic terms).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.3 ADDITIONAL RESULTS

Here we provide additional results for the other stations of the causal assembly benchmark.

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

FastKCI (V=10) 1.000 0.4314 0.5938 25.369
KCI 0.9891 0.6814 0.7994 235.12

Table 9: Mean result of 100 repetitions on the causal assembly benchmark, Station 1, with n = 2000.

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

FastKCI (V=10) 0.6239 0.3240 0.4262 4427.1
KCI 0.5963 0.3980 0.4772 25279

Table 10: Mean result of 100 repetitions on the causal assembly benchmark, Station 2, with n = 2000.

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

FastKCI (V=10) 0.5236 0.3499 0.4190 3282.8
KCI 0.5536 0.4665 0.5057 21755

Table 11: Mean result of 100 repetitions on the causal assembly benchmark, Station 4, with n = 2000.

A.4 KERNEL-BASED CONDITIONAL INDEPENDENCE TEST (KCI)

Here we provide a clearly structured algorithm box summarizing the original Kernel-based Condi-
tional Independence (KCI) test introduced by Zhang et al. (2012) for clarity and comparison with the
fast procedure.

B IMPLEMENTATION DETAILS

B.1 PARITIONING SCHEME

In our implementation, we do not run a full EM algorithm for the Gaussian mixture. Instead, for
each of the j ∈ J partitioning rounds we use a simple empirical-Bayes sampling scheme over Z
approximating the NIW prior: we draw V component means from a Normal centered at the empirical
mean of Z, use an identity covariance for all components, draw mixture weights from a symmetric
Dirichlet prior Dir(α), with α = 500 and then sample cluster assignments for each zi from the
resulting categorical distribution (proportional to πvN (zi | µv, I)). The goal of this step is to
generate reasonable local partitions of the conditioning set Z, the importance-weighted aggregation
then corrects for randomness across partitions. This lightweight scheme is sufficient in practice and
avoids the extra cost of running EM inside each repetition.

B.2 AGGREGATION SCHEME

To compute the weights ℓ(j,v), we place independent Gaussian process regression models on the
local relations X | Z and Y | Z within each cluster v. Concretely, for i ∈ C(j)v , we assume
Xi = fX,v(Zi) + εX,i and Yi = fY,v(Zi) + εY,i, with fX,v, fY,v ∼ GP(0, kθ) and Gaussian noise
ε·,i ∼ N (0, σ2

· ). Conditional on ZC(j)
v

and partition indicator U (j), the block of observations is
therefore jointly Gaussian, e.g.

P (XC(j)
v
| ZC(j)

v
, U (j)) = N (0,K

(j,v)
X + σ2

XI),

8For simplicity, we refer for details to Zhang et al. (2012). Sampling from the null distribution involves
multiple eigenvalue and vector computations.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Type Mean Precision Mean Recall Mean F1 Mean Computation Time [s]

FastKCI (V=10) 0.4619 0.5350 0.4953 543.38
KCI 0.4822 0.6130 0.5390 2550.6

Table 12: Mean result of 100 repetitions on the causal assembly benchmark, Station 5, with n = 2000.

Algorithm 2 Kernel-based Conditional Independence Test (KCI) by Zhang et al. (2012)

Require: Datasets {xi, yi, zi}ni=1 where xi ∈ Rdx , yi ∈ Rdy , zi ∈ Rdz ; kernel functions kx, ky , and kz for
X , Y , and Z respectively; regularization parameter λ.

Ensure: Test decision for H0 : X ⊥ Y | Z
1: Aggregate Ẍ = (X,Z). Compute the kernel matrices KẌ , KY , and KZ for the datasets using the

respective kernel functions:

(KẌ)ij = kx(ẍi, ẍj), (KY )ij = ky(yi, yj), (KZ)ij = kz(zi, zj)

2: Center the kernel matrices KẌ , KY and KZ :

K̃Ẍ = HKẌH, K̃Y = HKY H K̃Z = HKZH

where H = I − 1
n
11T and 1 is a column vector of ones.

3: Calculate the projection matrix from a kernel ridge regression on Z:

RZ = I − K̃Z(K̃Z + λI)−1 = λ(K̃Z + λI)−1

4: Compute the residual kernels of Ẍ and Y after conditioning on Z:

K̃Ẍ|Z = RZK̃XRZ , K̃Y |Z = RZK̃Y RZ

5: Compute the test statistic:

TCI ≜
1

n
Tr

(
K̃Ẍ|ZK̃Y |Z

)
6: Bootstrap samples from the asymptotic distribution of the test statistic ťCI

8

7: Compute the p-value:

p =
1

B

B∑
b=1

I(ťbCI ≥ TCI)

8: return p-value for H0

and analogously for Y .

In the implementation, ℓ(j,v) is computed exactly as the sum of the log-marginal likelihoods for
X | Z and Y | Z on each block, and the weights wj are obtained via a softmax over the resulting
partition log-likelihoods.

C COMPUTING RESOURCES.

The experiments in Sections 5 and 6 were performed on a high-performance computing cluster. Each
node has two Intel Xeon E5-2630v3 with 8 cores and a 2, 4GHz frequency as well as 64GB RAM.
For the results with a higher number of J , multiple nodes where used. While the runtime of single
repetitions of CI or PC can be derived from Section 5.6 or respective columns in the result tables
(e.g., column “Time” in Table 2), the full runtime of reproducing all experiments can be estimated
around two to four weeks on a single node.

D STATEMENT ON AI USAGE

For this research paper, large language models were used solely to assist with literature search,
writing, and coding. All conceptualization, ideation, and theoretical contributions were carried out
without AI support. The paper and code were authored entirely by the researchers, with AI serving
only as a support and feedback tool.

17


	Introduction
	Related Work
	Background
	Covariance and conditional covariance operators
	Finite-sample KCI statistic
	Computational Complexity of the KCI

	FastKCI: A Scalable and Parallel Kernel-based Conditional Independence Test
	Theoretical Insight
	Computational Complexity
	Hyperparameter Selection

	Experiments
	Type-I-Error Comparison
	Power Comparison
	Causal Discovery
	Scalability
	Comparison to Randomized Conditional Independence Test
	Computation Time

	Application to Production Data
	Conclusion and Limitations
	Reproducibility Statement
	Appendix
	Ablation on hyperparameter V
	Power compared to RCIT
	Additional Results
	Kernel-based Conditional Independence Test (KCI)

	Implementation Details
	Paritioning Scheme
	Aggregation Scheme

	Computing Resources.
	Statement on AI Usage

