
A FAST KERNEL-BASED CONDITIONAL INDEPENDENCE TEST WITH APPLICATION TO CAUSAL DISCOVERY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Kernel-based conditional independence (KCI) testing is a powerful nonparametric
012 method commonly employed in causal discovery tasks. Despite its flexibility and
013 statistical reliability, cubic computational complexity limits its application to large
014 datasets. To address this computational bottleneck, we propose *FastKCI*, a scal-
015 able and parallelizable kernel-based conditional independence test that utilizes a
016 mixture-of-experts approach inspired by embarrassingly parallel inference tech-
017 niques for Gaussian processes. By partitioning the dataset based on a Gaussian
018 mixture model over the conditioning variables, FastKCI conducts local KCI tests
019 in parallel, aggregating the results using an importance-weighted sampling scheme.
020 Experiments on synthetic datasets and benchmarks on real-world production data
021 validate that FastKCI maintains the statistical power of the original KCI test while
022 achieving substantial computational speedups. FastKCI thus represents a practical
023 and efficient solution for conditional independence testing in causal inference on
024 large-scale data.

1 INTRODUCTION

028 Conditional independence (CI) testing is a fundamental operation in causal discovery and structure
029 learning. Widely used algorithms such as the PC algorithm (Spirtes & Glymour, 1991) and Fast
030 Causal Inference (Spirtes, 2001) rely on CI tests to recover the causal skeleton of a graph from
031 observational data. The core statistical question is whether two variables X and Y are independent
032 given a conditioning set Z , that is, whether $X \perp\!\!\!\perp Y | Z$. Despite being frequently adapted to fields
033 like neuroscience (Smith et al., 2011), climate research (Ebert-Uphoff & Deng, 2012) or economics
034 (Awokuse & Bessler, 2003), CI testing remains the computational bottleneck in constraint-based
035 causal discovery, especially as sample size increases (Agarwal et al., 2023; Le et al., 2019; Shiragur
036 et al., 2024).

037 Standard CI tests suit different types of data and assumptions: Traditional tests like the Fisher-Z test
038 (Fisher, 1921) assume linear Gaussian data, while discrete tests such as χ^2 require categorical vari-
039 ables. More recent approaches avoid strong distributional assumptions by leveraging nonparametric
040 techniques such as kernel methods. Among these, the Kernel-based Conditional Independence test
041 (KCI) (Zhang et al., 2012) has become a standard choice due to its flexibility and empirical power.
042 KCI is based on Hilbert space embeddings and computes dependence via kernel covariance operators,
043 making it applicable to arbitrary continuous distributions.

044 KCI requires operations on $n \times n$ Gram matrices and matrix inversions, resulting in $\mathcal{O}(n^3)$ runtime
045 per test, which makes it infeasible for large-scale applications. Recent work has sought to mitigate
046 this cost via sample splitting (Pogodin et al., 2024), random Fourier features (Strobl et al., 2018),
047 neural network approximations (Doran et al., 2014), and randomization-based tests (Shah & Peters,
048 2020). However, these approximations can degrade statistical power and require additional tuning.

049 Our goal is to accelerate the KCI test without sacrificing its statistical rigor and nonparametric
050 flexibility. To this end, we propose *FastKCI*, a novel variant that leverages ideas from embarras-
051 singly parallel inference in Gaussian processes (Zhang & Williamson, 2020). FastKCI partitions data based
052 on a generative model in the conditioning set Z , performs KCI tests in parallel on each partition, and
053 aggregates the test statistics using an importance weighting scheme. This blockwise strategy enables
significant computational speedups, especially in multi-core or distributed environments.

054 Our contributions are therefore a scalable and parallelizable conditional independence test, FastKCI,
055 that significantly accelerates KCI by using a novel partition-based strategy combined with importance
056 weighting. We experimentally demonstrate that FastKCI retains the statistical performance of KCI
057 while achieving runtime improvements across synthetic and real-world datasets.
058

059 **2 RELATED WORK**
060

061 Due to the growing importance of causal inference, considerable research has been devoted to
062 discovering efficient methods to identify causal structures from observational data (Zanga et al.,
063 2022). Traditional causal discovery methods are often categorized as constraint-based or score-based.
064 Constraint-based methods, such as the PC algorithm (Spirtes & Glymour, 1991) or FCI (Spirtes et al.,
065 1995), rely on CI tests to identify the underlying causal structure. Score-based methods, such as
066 Greedy Equivalence Search (Chickering, 2002), evaluate causal structures based on scoring criteria.
067 Both approaches face computational challenges: constraint-based methods due to intensive CI testing,
068 and score-based methods due to an exponentially large search space.
069

070 Existing work has improved the efficiency of the PC algorithm by reducing unnecessary CI tests
071 (Steck & Tresp, 1999), optimizing the overall search procedure itself—through order-independent
072 execution (Colombo & Maathuis, 2014), skipping costly orientation steps (Colombo et al., 2012),
073 sparsity-aware pruning (Kalisch & Bühlmann, 2007), divide-and-conquer partitioning (Huang &
074 Zhou, 2022), and parallelism of the CI tests (Le et al., 2019; Zarebavani et al., 2020; Hagedorn et al.,
075 2022). These methods, however, do not address the cubic-time bottleneck of kernel-based CI tests.
076

077 Attempts in the literature to address this issue take several forms. The original KCI paper already
078 derived an analytic Γ -approximation of the null distribution and proposed simple median-heuristic
079 bandwidth choices to avoid costly resampling (Zhang et al., 2012). Strobl et al. (2018) accelerate
080 KCIT by replacing the full kernel matrices with an m -dimensional random Fourier-feature approxi-
081 mation. Doran et al. (2014) re-express conditional independence as a single kernel two-sample
082 problem by restricting permutations of (X, Y) , thereby changing the test statistic while lowering
083 runtime. Zhang et al. (2022) eliminate kernel eigen-decompositions altogether by regressing X
084 and Y on Z and measuring residual similarity with a lightweight kernel. Additional ideas include
085 calibrating test statistics with locality-based permutations in the conditioning set (Kim et al., 2022),
086 evaluating analytic kernel embeddings at a finite set of landmark points (Scetbon et al., 2021), and
087 controlling small-sample bias via data splitting (Pogodin et al., 2024). However, these approaches
088 can compromise statistical power, particularly under complex nonlinear dependencies and in high-
089 dimensional conditioning sets. Concurrent with our work, Guan & Kuang (2025) proposed an
090 Ensemble Conditional Independence Test, which independently adopts a similar divide-and-aggregate
091 strategy by partitioning the data, applying a generic base conditional independence test to each subset,
092 and combining the resulting p-values via stable-distribution-based aggregation. While conceptually
093 related, their approach and ours differ substantially in both the sample partitioning scheme and the
094 aggregation mechanism.
095

096 Our method preserves the KCI statistic by evaluating it on Gaussian-mixture strata and aggregating
097 with importance weights. We therefore leverage techniques from Gaussian Process regression,
098 which often faces the identical problem of poor scalability due to cubic complexity¹ (Zhang &
099 Williamson, 2020). A common solution is to assume the underlying distribution of the covariates
100 $Z = \{z_1, \dots, z_j\}$ to be a mixture-of-experts (MoE) (Jordan & Jacobs, 1994). Local approaches, as
101 in Gramacy & Lee (2008), then aggregate over multiple partitions by MCMC. Zhang & Williamson
102 (2020) propose an importance sampling approach to MoE that efficiently aggregates over multiple
103 partitions. To the best of our knowledge, our approach – using importance-sampled partitions of the
104 data, performing parallel kernel tests, and aggregating via importance weighting – represents the first
105 attempt explicitly bridging embarrassingly parallel inference with scalable kernel-based CI testing.
106

107 **3 BACKGROUND**

108 The KCI builds on a notion of conditional independence introduced by Fukumizu et al. (2007). Let
109 $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X \in \mathcal{X}, Y \in \mathcal{Y}, Z \in \mathcal{Z}$ random variables. For each domain we
110

¹In fact, as KCI solves GP regression problems to find the RKHS bandwidth, it is a sub-problem of CI.

fix a measurable, bounded and characteristic kernel, e.g. the Gaussian RBF, denoted k_X, k_Y, k_Z , with corresponding reproducing-kernel Hilbert spaces (RKHS) $\mathcal{H}_X, \mathcal{H}_Y, \mathcal{H}_Z$. Feature maps are denoted $\varphi_X(x) = k_X(x, \cdot)$ etc. Expectations are shorthand $\mathbb{E}[\cdot]$, tensor products \otimes , and centered features $\tilde{\varphi}_X := \varphi_X - \mu_X$ where $\mu_X = \mathbb{E}[\varphi_X(X)]$.

3.1 COVARIANCE AND CONDITIONAL COVARIANCE OPERATORS

The *cross-covariance operator* $\Sigma_{XY} : \mathcal{H}_X \rightarrow \mathcal{H}_Y$ is the bounded linear map satisfying

$$\langle g, \Sigma_{XY} f \rangle = \mathbb{E}[\langle \tilde{\varphi}_X(X), f \rangle_X \langle \tilde{\varphi}_Y(Y), g \rangle_Y] \quad \forall f \in \mathcal{H}_X, g \in \mathcal{H}_Y.$$

An analogous definition yields Σ_{XZ}, Σ_{ZZ} . Provided Σ_{ZZ} is injective², conditional covariance is

$$\Sigma_{XY|Z} := \Sigma_{XY} - \Sigma_{XZ} \Sigma_{ZZ}^{-1} \Sigma_{ZY}.$$

Proposition 1 (Fukumizu et al., 2007). *With characteristic kernels, $X \perp\!\!\!\perp Y | Z \iff \Sigma_{XY|Z} = 0$.*

Hence testing conditional independence reduces to checking whether this operator is null.

3.2 FINITE-SAMPLE KCI STATISTIC

Given n observations $\{(x_i, y_i, z_i)\}_{i=1}^n$, assemble Gram matrices $K_X, K_Y, K_Z \in \mathbb{R}^{n \times n}$ with $(K_X)_{ij} = k_X(x_i, x_j)$, K_Y, K_Z analogously. Let $H := I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top$ and define the projection onto Z -residuals

$$R_Z := I_n - K_Z (K_Z + \lambda I_n)^{-1}, \quad \lambda > 0. \quad (1)$$

Intuitively, R_Z acts like a residual operator that removes components explained by Z , $R_Z f$ is approximately the part of f orthogonal to functions of Z . Residualized, centered kernels are $\tilde{K}_X = R_Z H K_X H R_Z$ and \tilde{K}_Y analogously.

The KCI test statistic of Zhang et al. (2012) is then given by the Hilbert–Schmidt norm of the cross-covariance between residuals:

$$T_{\text{KCI}} := \frac{1}{n} \text{Tr}(\tilde{K}_X \tilde{K}_Y). \quad (2)$$

Zhang et al. (2012) show that under H_0 this statistic converges in distribution to a weighted sum of χ^2 variables. In practice one uses a finite-sample null distribution to assess significance. We follow Proposition 5 in Zhang et al. (2012), using a spectral approach to simulate the null: We compute the eigenvalues λ_m of a normalized covariance operator associated with \tilde{K}_X and \tilde{K}_Y , then generate null samples and set

$$T_{\text{null}}^{(b)} = \sum_{m=1}^n \lambda_m \chi_{1,m,b}^2, \quad b = 1, \dots, B, \quad (3)$$

with i.i.d. χ^2 variates $\chi_{1,m,b}^2$. This approximate distribution of T_{KCI} under H_0 obtains a p -value. The full KCI procedure is given in Algorithm 2.

3.3 COMPUTATIONAL COMPLEXITY OF THE KCI

A key drawback of KCI is its heavy computation for large n . Constructing and manipulating $n \times n$ Gram matrices is $\mathcal{O}(n^2)$ in memory. More critically, forming \tilde{K}_X and \tilde{K}_Y requires solving a linear system or eigen-decomposition on $K_Z \in \mathbb{R}^{n \times n}$. The inversion $(K_Z + \varepsilon I)^{-1}$ costs $\mathcal{O}(n^3)$ time in general. Generating the null distribution via eigenvalues also incurs an $\mathcal{O}(n^3)$ decomposition of the $n \times n$ matrix $U = (I - R_Z) K_X (I - R_Z)$ and related matrices. Thus, the overall complexity of KCI scales cubically in the sample size n . This cubic bottleneck severely limits the test’s applicability to large datasets, particularly when it must be repeated many times as in constraint-based causal discovery.

²With a characteristic kernel this holds on the closure of its range.

162 **4 FASTKCI: A SCALABLE AND PARALLEL KERNEL-BASED CONDITIONAL
163 INDEPENDENCE TEST**
164

165 To overcome the $\mathcal{O}(n^3)$ bottleneck, we propose *FastKCI*, which leverages a mixture-of-experts model
166 and importance sampling. The core idea is to break the full kernel computation into V smaller
167 pieces (*experts*) corresponding to data partitions, compute local CI statistics on each piece, and then
168 recombine them to recover the global statistic. By doing so, FastKCI achieves significant speed-ups
169 – roughly on the order of $1/V^2$ of the cost of KCI – while maintaining the test’s correctness under
170 mild assumptions.

171 We assume that the distribution of the conditioning variable Z can be approximated by a mixture of
172 V Gaussian components.
173

174 **Assumption 1.** *Let U be a latent cluster assignment variable taking values in $\{1, \dots, V\}$. For each
175 i , we posit a model:*

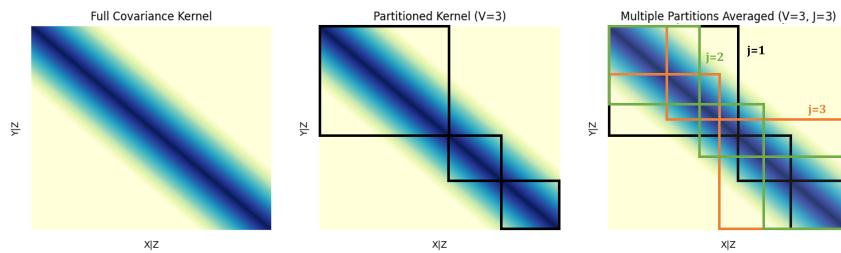
$$176 \quad U_i \sim \text{Categorical}(\pi_1, \dots, \pi_V), \quad \pi \sim \text{Dirichlet}(\alpha), \quad (4)$$

$$177 \quad z_i | (U_i = v) \sim \mathcal{N}(\mu_v^Z, \Sigma_v^Z), \quad (\mu_v^Z, \Sigma_v^Z) \sim \text{Normal-InvWishart}(\mu_0, \lambda_0, \Psi, \nu). \quad (5)$$

178 Thus, z_i are i.i.d. draws from a V -component Gaussian mixture with unknown means μ_v^Z and
179 covariances Σ_v^Z . We place a weak Normal-Inverse-Wishart prior on these parameters to allow
180 uncertainty. This mixture-of-experts prior on Z guides partitioning of the dataset. Intuitively, if
181 Z has a multimodal or complex distribution, this model lets us divide the data into V components
182 $\mathcal{C}_1, \dots, \mathcal{C}_V$ (with $\mathcal{C}_v = \{i \mid U_i = v\}$) such that within each \mathcal{C}_v , Z is roughly Gaussian. We do not
183 assume anything restrictive about X and Y globally. By conditioning on \mathcal{C}_v , the relationship between
184 X and Y can be analyzed locally. In particular, conditioned on a given partition $U_{1:n} = (U_1, \dots, U_n)$,
185 the kernel matrices K_X, K_Y, K_Z acquire an approximate block structure: after permuting indices
186 by cluster, each matrix breaks into V blocks (sub-matrices) corresponding to points in the same
187 cluster, with negligible entries for cross-cluster pairs, especially if clusters are well-separated in Z .
188 Each component v defines a local sub-problem of size $n_v = |\mathcal{C}_v|$, and within that component we can
189 perform a CI test on the restricted data $\{(x_i, y_i, z_i) : i \in \mathcal{C}_v\}$. This yields a local test statistic T_v
190 and local null distribution for component v . By appropriately combining these local results, we can
191 recover a valid global test statistic without ever computing the full $n \times n$ kernel on all data at once.
192

193 The choice of a Gaussian Mixture Model assumption is motivated by its power as a universal
194 approximator of densities, capable of modeling a wide variety of complex, multi-modal, and non-
195 Gaussian distributions with high fidelity (McLachlan & Peel, 2000). The goal of FastKCI is not to
196 assume the data is strictly Gaussian, but to leverage a flexible framework to create sensible, localized
197 partitions of the conditioning set. Importantly, our empirical results in Section 5 (and Appendix A.1)
198 demonstrate that FastKCI exhibits robust performance even when this assumption is misspecified or
199 the true underlying distribution is unknown.

200 In the next paragraphs, we explain the procedure in detail.
201



202 **Figure 1:** Motivation of the partitioning scheme in the data. The full covariance kernel estimation
203 (left) is inefficient, while partitioning the data into components a single time (middle) may neglect
204 some of the covariance structure. We propose to use multiple partitions J (right) in parallel.
205 We combine them using importance sampling. The figure is inspired by Zhang (2020).
206

207 **Partition Sampling.** As visible in Figure 1, for partition sampling rounds $j = 1, \dots, J$ we
208 independently draw a cluster assignment $U_{1:n}^{(j)} = (U_1^{(j)}, \dots, U_n^{(j)})$ according to the MoE model on Z .
209

216 The mixture prior is fit to the empirical Z data. In practice, we use a lightweight empirical-Bayes
 217 partitioning scheme (see Appendix B) that samples mixture components around the empirical mean
 218 of Z instead of performing full EM or full posterior inference. For example, one partition sample j
 219 samples mixture parameters $(\mu_1^Z, \dots, \mu_V^Z, \Sigma_1^Z, \dots, \Sigma_V^Z) \sim P(\mu, \Sigma)$ from the NIW prior and mixture
 220 weights π , then assigns each point i to a component $U_i^{(j)} = v$ with probability
 221

$$P\left(U_i^{(j)} = v \mid z_i\right) \propto \pi_v \mathcal{N}(z_i \mid \mu_v^Z, \Sigma_v^Z).$$

224 Each such draw yields a partition $\{\mathcal{C}_1^{(j)}, \dots, \mathcal{C}_V^{(j)}\}$ of $\{1, \dots, n\}$.
 225

227 **Local RKHS Embedding, Test Statistic and Null Distribution.** For each partition j and for each
 228 cluster $v \in \{1, \dots, V\}$, let $\mathcal{C}_v^{(j)} = \{i \mid U_i^{(j)} = v\}$ be indices in the cluster of size $n_v^{(j)} = |\mathcal{C}_v^{(j)}|$.
 229 We form $n_v^{(j)} \times n_v^{(j)}$ Gram matrices $K_X^{(j,v)}$, $K_Y^{(j,v)}$, and $K_Z^{(j,v)}$. $\tilde{K}_X^{(j,v)}$ and $\tilde{K}_Y^{(j,v)}$ are calculated
 230 analogously to Equation 1 with local regression operators. The local test statistic follows as
 231

$$T_v^{(j)} = \frac{1}{n_v^{(j)}} \text{Tr} \left(\tilde{K}_X^{(j,v)} \tilde{K}_Y^{(j,v)} \right).$$

235 We generate a set of B null samples $\{T_{v,\text{null}}^{(j,b)}\}$ for each cluster by applying the spectral method in
 236 Equation 3 block-wise. Finally, we record a log-likelihood score for each cluster: let $\mathcal{L}(X^{(j,v)}) =$
 237 $\log P(X(\mathcal{C}_v^{(j)}) \mid Z(\mathcal{C}_v^{(j)}))$ and $\mathcal{L}(Y^{(j,v)})$ analogously be the log marginal likelihoods of the X
 238 and Y data in cluster v given Z . We use this measure to calculate a likelihood $\ell^{(j,v)} \propto P(X^{(j)}, Y^{(j)} \mid$
 239 $U^{(j)})$.
 240

242 **Aggregation over V .** We aggregate the partition-wide test statistic as the sum of the cluster
 243 statistics.

$$T^{(j)} = \sum_v T_v^{(j)}$$

247 This recovers the full trace of the product of block-wise diagonal $\tilde{K}_X^{(j)} \tilde{K}_Y^{(j)}$. Since under H_0 the
 248 cluster test statistics are approximately independent (different clusters involve disjoint data) and each
 249 follows a weighted χ^2 distribution, their sum $T_{\text{null}}^{(j,b)}$ is a valid sample from the null distribution for
 250 the whole partition j . Thus, we also aggregate each null sample into the sum.

$$T_{\text{null}}^{(j,b)} = \sum_v T_{v,\text{null}}^{(j,b)}$$

254 **Aggregation over J .** We apply a softmax to the log-likelihoods to obtain per-partition importance
 255 weights

$$w_j = \frac{\exp\left(\sum_v \ell^{(j,v)}\right)}{\sum_j \exp\left(\sum_v \ell^{(j,v)}\right)}$$

260 The final test statistic is a weighted average across all J partitions:

$$T_{\text{FastKCI}} = \sum_{j=1}^J w_j T^{(j)}, \quad \text{where } w_j \propto P(X^{(j)}, Y^{(j)} \mid U^{(j)})$$

265 and the combined null distribution is taken as the mixture of all partition null samples with the same
 266 weights. In practice, we merge the J sets of null samples $\{T_{\text{null}}^{(j,b)}\}$ into one weighted empirical
 267 distribution. Specifically, we compute the weighted empirical cumulative density $F_{T,\text{null}}(t) =$
 268 $\sum_{j=1}^J w_j \left(\frac{1}{B} \sum_{b=1}^B \mathbf{1}\{T_{\text{null}}^{(j,b)} \leq t\} \right)$, which is a mixture of the J null distributions. See also Appendix
 269 B for implementation details.

270 4.1 THEORETICAL INSIGHT
 271
 272 Under the null hypothesis $H_0 : X \perp\!\!\!\perp Y \mid Z$, each block statistic $T_v^{(j)}$ is, by exactly the same
 273 argument as in Zhang et al. (2012), asymptotically a weighted sum of independent χ_1^2 variables,

274
 275
$$T_v^{(j)} \xrightarrow{d} \sum_m \lambda_{j,v,m} \chi_{1,(j,v,m)}^2,$$

 276

277 with non-negative weights $\lambda_{j,v,m}$ determined by the eigenvalues of the blockwise covariance operators.

278
 279 Different clusters use disjoint subsets of the data, hence their statistics are (asymptotically) independent;
 280 the sum $T^{(j)} = \sum_v T_v^{(j)}$ is therefore a new weighted χ^2 mixture whose weights are a union of
 281 $\lambda_{j,v,m}$. The convex combination of these weighted χ^2 mixtures is itself a weighted χ^2 mixture with
 282 the same weights w_j :

283
 284
$$T_{\text{FastKCI}} \xrightarrow{d} \sum_{j=1}^J \sum_{v=1}^V w_j \lambda_{j,v,m} \chi_{1,(j,v,m)}^2.$$

 285
 286

287 Hence, our method inherits exactly the same null-law template as classical KCI: a positive, finite
 288 linear combination of χ_1^2 variables.³ Consequently, under Assumption 1 and with $J \rightarrow \infty$, the test
 289 exhibits the same appealing statistical properties as the conventional KCI.

290
 291 4.2 COMPUTATIONAL COMPLEXITY
 292

293 Assuming balanced partitions, each block contains roughly n/V samples. The complexity of KCI per
 294 block is then $\mathcal{O}((n/V)^3)$, and the total complexity becomes $\mathcal{O}(Jn^3/V^2)$. Since the J partitions are
 295 fully parallelizable, the wall-clock cost is significantly reduced compared to the original $\mathcal{O}(n^3)$ cost.

296 While the formal complexity expression of FastKCI appears cubic in n , this perspective presumes
 297 that V is a small, fixed constant. In practice, for the mixture model to effectively approximate the
 298 underlying distribution of the conditioning set Z , the number of components V can increase with
 299 the sample size. This scaling ensures that the number of samples within each cluster (n/V) remains
 300 manageable, preventing single partitions from becoming a computational bottleneck. If V is chosen
 301 to scale with n , the effective computational complexity of FastKCI becomes nearly linear in n . We
 302 support this by our experiments, where we show manageable computation times in large samples by
 303 growing V .

304 The complete procedure is summarized in Algorithm 1.

305
 306 **Algorithm 1** FastKCI: Fast and Parallel Kernel-based CI Test
 307
 308 **Require:** Dataset $\{(x_i, y_i, z_i)\}_{i=1}^n$, number of components V , number of partition sampling rounds
 309 J .
 310 1: **for** $j = 1$ to J **in parallel do**
 311 2: Sample V -component partition $U^{(j)}$ from $p(U \mid Z)$.
 312 3: **for** each component $v = 1$ to V **do**
 313 4: Compute residualized kernels $K_{X|Z}^{(v)}, K_{Y|Z}^{(v)}$.
 314 5: Compute test statistic $T_v^{(j)} = \frac{1}{n_v} \text{Tr}(K_{X|Z}^{(v)} K_{Y|Z}^{(v)})$.
 315 6: **end for**
 316 7: Aggregate: $T^{(j)} = \sum_v T_v^{(j)}$.
 317 8: Compute importance weight $w_j \propto P(X^{(j)}, Y^{(j)} \mid U^{(j)})$.
 318 9: **end for**
 319 10: Normalize weights: $w_j \leftarrow w_j / \sum_j w_j$.
 320 11: Compute final test statistic and null distribution by weighted averaging.
 321 12: **return** p -value for $H_0 : X \perp\!\!\!\perp Y \mid Z$.

322
 323 ³The formal requirements are the standard KCI assumptions (characteristic kernels, boundedness) plus every
 324 cluster size $|\mathcal{C}_v^{(j)}| \rightarrow \infty$ as $n \rightarrow \infty$.

324 4.3 HYPERPARAMETER SELECTION
325

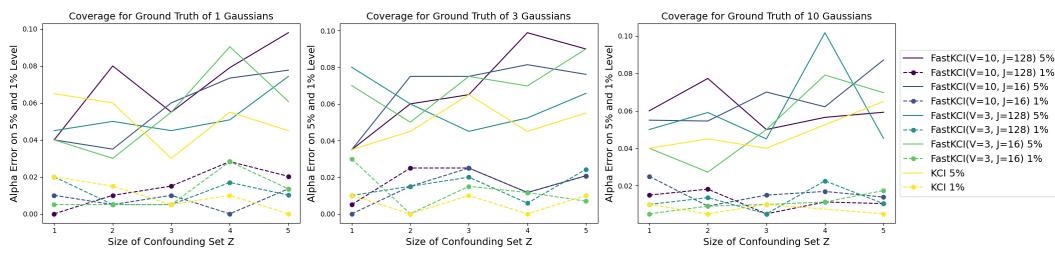
326 The practical application of FastKCI requires the specification of the hyperparameters J and V ,
327 for which we provide some guidance. The number of partitions J is primarily determined by the
328 available computational resources. Since FastKCI is parallelized across J partitions, each processed
329 independently, increasing J in line with the number of available CPU nodes does not substantially
330 increase runtime. Moreover, because the importance sampling procedure favors partitions that more
331 accurately model the data, a larger J generally yields improved results through additional sampling
332 rounds.

333 The selection of the number of clusters V is comparatively more challenging. When prior knowledge
334 exists regarding the number of Gaussian components underlying the data-generating process, such
335 information provides a natural choice for V . In the more typical scenario where the distribution of
336 the conditioning set Z is unknown, selecting V involves a trade-off between sample size and cluster
337 size. Increasing the number of clusters improves the approximation of the conditional distribution
338 of Z while simultaneously reducing the average cluster size (approximately n/V). Smaller clusters
339 facilitate more efficient eigendecompositions, thereby enhancing scalability. However, excessively
340 small clusters can introduce instability. For an ablation study on V , see Appendix A.1⁴

341 5 EXPERIMENTS
342

343 To empirically validate the main result in Algorithm 1, we extensively study the performance of
344 *FastKCI* and compare it to the KCI implementation provided in the `causal-learn` package (Zheng
345 et al., 2024). We consider different scenarios, focusing on coverage, power and causal discovery⁵.
346 Please find additional results concerning an ablation on V , and non-Gaussian conditioning sets in
347 Appendix A.1.

349 5.1 TYPE-I-ERROR COMPARISON
350

351 We generate $n = 1200$ samples of random variables X , Y and Z , with X and Y being drawn
352 independently conditioned on Z . In our scenario, we examine the type I error with growing con-
353 founding set size $D = \{1, \dots, 5\}$, with all variables effecting both X and Y (comparable to
354 “Case II” in Zhang et al. (2012)). For the Z_i , we consider multiple ground-truth distributions, as
355 a mixture of $V_{\text{true}} = \{1, 3, 10\}$ Gaussians. X and Y are generated as post-nonlinear causal model
356 $g(\sum_i f_i(Z_i) + \varepsilon)$ where f and g are random mixtures of linear, cubic and \tanh functions and ε is
357 independent across X and Y .

374 Figure 2: Simulated Type-I-Error (“Coverage”) of the *FastKCI* and the KCI at 1% and 5% levels.

375 5.2 POWER COMPARISON
376

377 We repeat the experiments from above, but make X and Y conditionally dependent by adding a small
378 identical noise component $\nu \sim \mathcal{N}(0, \sigma_{\text{vio}}^2)$ to both random variables, in order to assess the type II

379 ⁴More systematic strategies for selecting V have also been proposed. For example, Zhang & Williamson
380 (2020) recommend fitting a mixture model to the data and estimating V from the posterior distribution of
381 the mixture. Alternatively, Bayesian optimization may be employed to identify an optimal choice of V in a
382 data-driven manner.

383 ⁵A high-level implementation will be provided within a well-known causal discovery package.

378 error. We compare KCI and *FastKCI* in different configurations with a growing violation of H_0 (i.e.,
379 σ_{vio}^2 is increasing). Figure 3 displays that both approaches have similar performance at a sample size
380 of $n = 1200$.

381 For additional comparison, we consider the setting from Section 5.1, but now X directly causes
382 Y . We calibrate the setting to a small violation (approximately 1/3 of the signal), under which we
383 observe a non-zero type II error. Table 1 shows the power under different numbers of Gaussians V_{true}
384 in the DGP.

386 5.3 CAUSAL DISCOVERY

388 We compare the performance of the PC algorithm using *FastKCI* with KCI in causal discovery tasks.
389 For this, we consider two different settings, setting A is derived from Zhang et al. (2012). We sample
390 6 random variables $\{X_1, \dots, X_6\}$. For $j > i$ we sample edges with probability 0.3. Based on the
391 resulting DAG, we sample descendants from a Gaussian Process with mean function $\sum_{i \in \text{Pa}(X_j)} \nu_i \cdot X_i$
392 (with $\nu_i \sim \mathcal{U}[-2, 2]$) and a covariance kernel consisting of a Gaussian kernel plus a noise kernel.
393 Setting B is derived from Liu et al. (2024) and similarly consists of 6 random variables. For $j > i$, we
394 sample edges with probability 0.5. The link function f_i is randomly chosen between being linear and
395 non-linear. For linear components, the edge weights are drawn from $\mathcal{U}[-1.5, -0.5], [0.5, 1.5]$, while
396 non-linear components follow multiple functions (sin, cos, tanh, sigmoid, polynomial).
397 Added noise is simulated from $\mathcal{N}(0, \sigma_i^2)$ with $\sigma \in \{0.2, 0.5\}$. As shown in Figure 4, both methods
398 exhibit similar performance in precision, recall and F1 score between discovered edges and true
399 causal skeleton.

400 5.4 SCALABILITY

402 As Figure 5 highlights, *FastKCI* shows excellent scalability, particularly when allowing the number
403 of components V to grow with sample size, which is in accordance with our theoretical consideration.
404 To further investigate the scalability of *FastKCI*, we scale up the sample size in the experiments and
405 report precision, recall, F1 and computation time.⁶ The results in Table 2 show that we achieve good
406 results in feasible time even for sample sizes where the traditional KCI fails due to memory and CPU
407 constraints.

409 5.5 COMPARISON TO RANDOMIZED CONDITIONAL INDEPENDENCE TEST

410 Another recently proposed method for speeding up the KCI is the Randomized Conditional Independence
411 Test (RCIT) (Strobl et al., 2018). The authors show that their approximation of the KCI null by
412 random Fourier features is able to achieve significant speed-ups while being comparable to KCI in a

414 ⁶To reduce complexity, in these experiments we approximate the kernel bandwidth instead of determining
415 it exactly with GP. See Zhang et al. (2012) for detail.

DGP	n	Method	Precision	Recall	F1	Time [s]
Gaussian Process	2000	KCI	0.9833	1.0000	0.9910	467.48
		FastKCI($V=3$)	0.9526	1.0000	0.9740	250.59
		FastKCI($V=10$)	0.8980	0.9500	0.9213	129.40
	10000	KCI	0.9130	1.0000	0.9496	22240
		FastKCI($V=3$)	0.9130	1.0000	0.9496	9136.5
		FastKCI($V=10$)	0.9167	1.0000	0.9524	1505.2
Nonlinear Process	2000	KCI	0.9704	0.9299	0.9470	1098.9
		FastKCI($V=3$)	0.9783	0.9251	0.9484	587.72
		FastKCI($V=10$)	0.9641	0.8861	0.9196	219.73
	10000	KCI	1.0000	1.0000	1.0000	99360
		FastKCI($V=3$)	1.0000	0.9711	0.9847	51709
		FastKCI($V=10$)	1.0000	0.9841	0.9916	12152
	20000	FastKCI($V=10$)	1.0000	1.0000	1.0000	68086
		FastKCI($V=50$)	0.9500	0.9722	0.9575	1909.7
		FastKCI($V=50$)	0.9667	0.9818	0.9739	74095
	50000	FastKCI($V=100$)	0.9818	0.9533	0.9664	7959.4
		FastKCI($V=100$)	1.0000	1.0000	1.0000	86342
	100000	FastKCI($V=200$)	0.8611	1.0000	0.9251	12253

431 Table 2: Precision, recall, F1 and computational time of the KCI and *FastKCI* on very large samples.

wide range of DGPs. We demonstrate that our method that *exactly* replicates the KCI null law instead of approximating it, has an advantage on both type-I and type-II error when it comes to a complex, multi-modal DGP with $V = 10$ Gaussians in the ground-truth. See result for type-I-error in Table 3 and for type-II in Table 8 in Appendix A.2.

$ Z $	FastKCI ($V = 10$)			KCI			RCIT		
	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]
1	0.005	0.085	3.56	0.01	0.03	19.51	0.995	1	0.016
3	0.01	0.065	6.83	0.03	0.06	118.22	0.715	0.85	0.016
5	0.005	0.04	10.55	0.03	0.06	177.66	0.265	0.39	0.016
7	0.015	0.05	22.03	0.005	0.065	163.48	0.055	0.135	0.016
10	0.005	0.045	43.02	0.01	0.02	320.21	0.03	0.11	0.016
12	0.015	0.05	63.4	0.02	0.07	323.3	0.13	0.275	0.017
15	0.01	0.04	79.31	0	0.03	669.18	0.18	0.37	0.017
30	0.005	0.035	284.63	0.005	0.05	800.66	0.35	0.54	0.018

Table 3: Type-I Errors for FastKCI, KCI and RCIT in a process with 10 Gaussians in the ground-truth.

5.6 COMPUTATION TIME

We showcased the empirical performance of *FastKCI* for both pure CI tasks as well as causal discovery with PC. To shed light on the computational speed-up, we report the computation time in Figure 5, which – depending on the choice of the main tuning parameters V and J – is significantly faster than for the KCI.

6 APPLICATION TO PRODUCTION DATA

We apply our proposed method to a semi-synthetic dataset for causal discovery, contained in `causal-assembly` (Göbler et al., 2024). The ground-truth consists of 98 production stations, each dedicated to specific automated manufacturing processes where individual components are progressively assembled. The processes involved, such as press-in and staking, are mechanically complex and non-linear. The resulting data provides a real-world example on which causal discovery can enhance the understanding of causes for production results and yields a good benchmark for our proposed methodology.

We compare KCI with the *FastKCI* variant, setting $V = 10$. Table 4 depicts the full assembly line with 98 nodes, while Table 5 shows results only for one of the production stations with 16 nodes. Please refer to Göbler et al. (2024) for an overview of results with alternative CD algorithms such as PC with fisher-Z, lingam and others. In terms of precision and recall, KCI performs slightly better than *FastKCI*, but both outperform all tested methods in the original benchmark paper. In terms of computational speed, *FastKCI*, especially in the station setting with a smaller number of nodes, has a significant edge over the standard method.

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
PC (FastKCI)	0.6263	0.0951	0.1651	21107
PC (KCI)	0.5894	0.1325	0.2163	24659
snr	0.3501	0.1311	0.0926	
grandag	0.3193	0.0109	0.0045	
lingam	0.3281	0.1092	0.0721	
PC (Fisher-Z)	0.4121	0.1170	0.0968	
notears	0.5209	0.0978	0.1019	
das	0.2971	0.0784	0.0474	

Table 4: Mean result of 10 repetitions on the Causal Assembly benchmark with $n = 1000$.

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
FastKCI ($V=10$)	0.7815	0.8167	0.7982	371.5
KCI	0.7751	0.8847	0.8249	1230.1

Table 5: Mean result of 100 repetitions on the Causal Assembly benchmark, Station 3, with $n = 2000$.

486
487

7 CONCLUSION AND LIMITATIONS

488
489
490
491
492
493
494
495
496

Our paper introduced *FastKCI*, which turns the cubic-time KCI into a more scalable and embarrassingly parallel procedure. The clustering approach in the conditioning set Z via a mixture of experts remains statistically valid under mild conditions, while the per test cost falls roughly by a factor $1/V^2$. Our experiments show that *FastKCI* preserves KCI's Type-I and Type-II error across diverse settings and cuts wall-clock time for both CI and causal discovery dramatically as sample size grows. Particularly, we showed empirically how *FastKCI* can scale causal discovery by letting the number of components V grow with sample size, even under violation of the MoE assumption. If V grows such that average cluster size stays constant, *FastKCI* approaches linearity in n in computation time. Thus, our method is a promising approach for scaling up CI testing.

497
498
499
500
501
502
503

The main limitation is reliance on the Gaussian-mixture assumption for partitioning, although it is a common assumption for multimodal settings and we showed *FastKCI*'s robustness under its violation, misleading clusters can hurt power, particularly under small J . Further, our work does not address the issue of large conditioning set sizes $|Z|$, but it would be worth investigating a possible combination of our framework with CI tests for large $|Z|$ (e.g., Bellot & van der Schaar (2019)). Future work could also include exploring alternative sample partitioning and importance weighting schemes in order to further refine efficiency of *FastKCI*.

504
505
506
507
508
509
510
511
512
513

8 REPRODUCIBILITY STATEMENT

We provide full source code and instructions in the supplementary material to reproduce all experiments, including simulations, and causalAssembly benchmarks. The data-generating processes for synthetic experiments are fully specified, and the semi-synthetic benchmark dataset (causal-assembly) is publicly available. Runtime environments, and computing resources are documented in Appendix B. The hyperparameters used in the experiments are specified in the according sections. The implementation of *FastKCI* is included and will also be released as part of an open-source causal discovery package to facilitate use by the community.

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541

542 Mayank Agarwal, Abhay H Kashyap, G Shobha, Jyothi Shetty, and Roger Dev. Causal inference and
543 conditional independence testing with rcot. *Journal of Advances in Information Technology*, 14(3),
544 2023.

545 Titus O. Awokuse and David A. Bessler. Vector autoregressions, policy analysis, and directed acyclic
546 graphs: An application to the u.s. economy. *Journal of Applied Economics*, 6(1):1–24, 2003. doi:
547 10.1080/15140326.2003.12040583.

548 Alexis Bellot and Mihaela van der Schaar. Conditional independence testing using generative
549 adversarial networks, 2019. URL <https://arxiv.org/abs/1907.04068>.

550

551 David Chickering. Optimal structure identification with greedy search. *Journal of Machine Learning
552 Research*, 3:507–554, 01 2002.

553

554 Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based causal structure
555 learning. *Journal of Machine Learning Research*, 15(116):3921–3962, 2014. URL <https://jmlr.org/papers/v15/colombo14a.html>.

556

557 Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learning high-
558 dimensional directed acyclic graphs with latent and selection variables. *The Annals of Statistics*,
559 40(1):294–321, 2012. doi: 10.1214/11-AOS940.

560

561 Gary Doran, Krikamol Muandet, Kun Zhang, and Bernhard Schölkopf. A permutation-based kernel
562 conditional independence test. In *Proceedings of the Thirtieth Conference on Uncertainty in
563 Artificial Intelligence*, UAI’14, pp. 132–141, Arlington, Virginia, USA, 2014. AUAI Press. ISBN
564 9780974903910.

565

566 Imme Ebert-Uphoff and Yi Deng. Causal discovery for climate research using graphical models.
567 *Journal of Climate*, 25(17):5648–5665, 2012. doi: 10.1175/JCLI-D-11-00387.1.

568

569 Ronald Aylmer Fisher. On the "Probable Error" of a Coefficient of Correlation Deduced from a Small
570 Sample. *Metron*, 1:3–32, 1921.

571

572 Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of
573 conditional dependence. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), *Advances in Neural
574 Information Processing Systems*, volume 20. Curran Associates, Inc., 2007.

575

576 Robert B Gramacy and Herbert K H Lee. Bayesian treed gaussian process models with an application
577 to computer modeling. *Journal of the American Statistical Association*, 103(483):1119–1130,
578 2008.

579

580 Zhengkang Guan and Kun Kuang. Efficient ensemble conditional independence test framework for
581 causal discovery, 2025. URL <https://arxiv.org/abs/2509.21021>.

582

583 Konstantin Göbler, Tobias Windisch, Mathias Drton, Tim Pychynski, Steffen Sonntag, and Martin
584 Roth. causalAssembly: Generating realistic production data for benchmarking causal
585 discovery, 2024. URL <https://arxiv.org/abs/2306.10816>.

586

587 Christopher Hagedorn, Constantin Lange, Johannes Huegle, and Rainer Schlosser. GPU acceleration
588 for information-theoretic constraint-based causal discovery. In *Proceedings of the KDD’22
589 Workshop on Causal Discovery*, volume 185 of *Proceedings of Machine Learning Research*, pp.
590 30–60, 2022. URL <https://proceedings.mlr.press/v185/hagedorn22a.html>.

591

592 Jireh Huang and Qing Zhou. Partitioned hybrid learning of bayesian network structures. *Machine
593 Learning*, 111(5):1695–1738, 2022. doi: 10.1007/s10994-022-06145-4.

594

595 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. *Neural
596 computation*, 6(2):181–214, 1994.

597

598 Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed acyclic graphs with
599 the pc-algorithm. *Journal of Machine Learning Research*, 8:613–636, 2007. URL <https://jmlr.org/papers/v8/kalisch07a.html>.

594 Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. Local permutation tests
595 for conditional independence. *Annals of Statistics*, 2022.
596

597 Thuc Duy Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. A fast pc algorithm for high
598 dimensional causal discovery with multi-core pcs. *IEEE/ACM Transactions on Computational
599 Biology and Bioinformatics*, 16(5):1483–1495, September 2019. ISSN 2374-0043. doi: 10.1109/
600 tcbb.2016.2591526. URL <http://dx.doi.org/10.1109/TCBB.2016.2591526>.

601 Wenqin Liu, Biwei Huang, Erdun Gao, QiuHong Ke, Howard Bondell, and Mingming Gong. Causal
602 discovery with mixed linear and nonlinear additive noise models: A scalable approach. In *Causal
603 Learning and Reasoning*, pp. 1237–1263. PMLR, 2024.

604

605 Geoffrey McLachlan and David Peel. *Finite Mixture Models*. Wiley, September 2000. ISBN
606 9780471721185. doi: 10.1002/0471721182. URL <http://dx.doi.org/10.1002/0471721182>.

608 Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, and Arthur Gretton. Practical kernel
609 tests of conditional independence, 2024. URL <https://arxiv.org/abs/2402.13196>.

610

611 Meyer Scetbon, Laurent Meunier, and Yaniv Romano. An asymptotic test for conditional indepen-
612 dence using analytic kernel embeddings. *arXiv preprint arXiv:2110.14868*, 2021.

613

614 Rajen D. Shah and Jonas Peters. The hardness of conditional independence testing and the generalised
615 covariance measure. *The Annals of Statistics*, 48(3), June 2020. ISSN 0090-5364. doi: 10.1214/
616 19-aos1857. URL <http://dx.doi.org/10.1214/19-AOS1857>.

617 Kirankumar Shiragur, Jiaqi Zhang, and Caroline Uhler. Causal discovery with fewer conditional
618 independence tests, 2024. URL <https://arxiv.org/abs/2406.01823>.

619

620 Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F
621 Beckmann, Thomas E Nichols, Joseph D Ramsey, and Mark W Woolrich. Network modelling
622 methods for FMRI. *Neuroimage*, 54(2):875–891, January 2011.

623

624 Peter Spirtes. An anytime algorithm for causal inference. In *International Workshop on Artificial
625 Intelligence and Statistics*, pp. 278–285. PMLR, 2001.

626

627 Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. *Social
628 Science Computer Review*, 9(1):62–72, 1991. doi: 10.1177/089443939100900106. URL <https://doi.org/10.1177/089443939100900106>.

629

630 Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence of latent
631 variables and selection bias. In *Proceedings of the Eleventh Conference on Uncertainty in Artificial
632 Intelligence*, UAI’95, pp. 499–506, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
633 Inc. ISBN 1558603859.

634

635 Harald Steck and Volker Tresp. Bayesian belief networks for data mining. In *Proceedings of the 2.
636 workshop on data mining und data warehousing Als Grundlage Moderner Entscheidungsunter-
637 stützender Systeme*, pp. 145–154. Citeseer, 1999.

638

639 Eric V. Strobl, Kun Zhang, and Shyam Visweswaran. Approximate kernel-based conditional indepen-
640 dence tests for fast non-parametric causal discovery. *Journal of Causal Inference*, 7(1), December
641 2018. ISSN 2193-3677. doi: 10.1515/jci-2018-0017. URL <http://dx.doi.org/10.1515/jci-2018-0017>.

642

643 Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: Theory and practice.
644 *International Journal of Approximate Reasoning*, 151:101–129, December 2022. ISSN 0888-
645 613X. doi: 10.1016/j.ijar.2022.09.004. URL <http://dx.doi.org/10.1016/j.ijar.2022.09.004>.

646

647 Behrooz Zarebavani, Foad Jafarinejad, Matin Hashemi, and Saber Salehkaleybar. cuPC: Cuda-based
648 parallel PC algorithm for causal structure learning on GPU. *IEEE Transactions on Parallel and
649 Distributed Systems*, 31(3):530–542, 2020. doi: 10.1109/TPDS.2019.2939126.

648 Hao Zhang, Shuigeng Zhou, Kun Zhang, and Jihong Guan. Residual similarity based conditional
649 independence test and its application in causal discovery. In *AAAI*, 2022.
650

651 Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
652 independence test and application in causal discovery. *CoRR*, abs/1202.3775, 2012. URL <http://arxiv.org/abs/1202.3775>.
653

654 Michael Zhang. Embarrassingly parallel inference for gaussian processes. https://michaelzhang01.github.io/files/bnp_gp_presentation.pdf, 2020. Presen-
655 tation.
656

657 Michael Minyi Zhang and Sinead A. Williamson. Embarrassingly parallel inference for gaussian
658 processes, 2020. URL <https://arxiv.org/abs/1702.08420>.
659

660 Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu,
661 Peter Spirtes, and Kun Zhang. Causal-learn: Causal discovery in python. *Journal of Machine
662 Learning Research*, 25(60):1–8, 2024.
663

664 **A APPENDIX**
665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

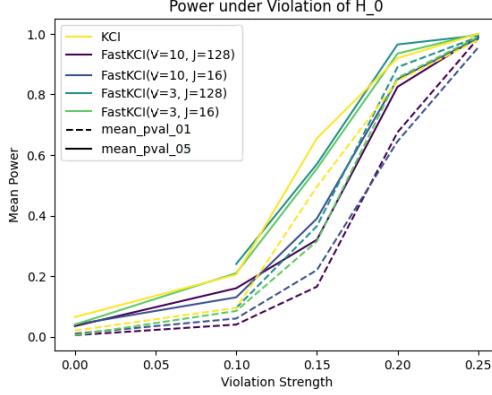
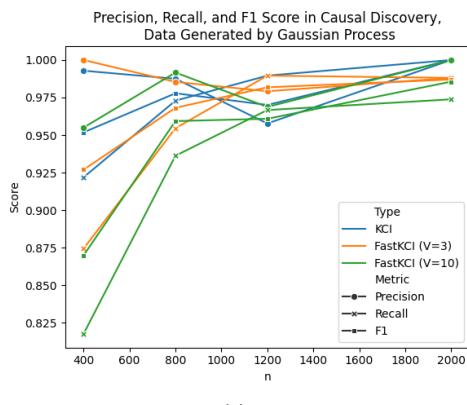


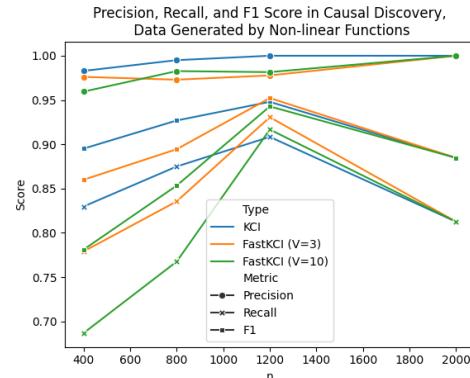
Figure 3: Power of *FastKCI* in different configurations compared to KCI. The violation of the null-hypothesis is increasing on the x-axis.

V_{true}	Algorithm	Power ($\alpha = 5\%$)	Power ($\alpha = 1\%$)
1	FastKCI($V=10, J=128$)	0.67	0.43
	FastKCI($V=10, J=16$)	0.665	0.405
	FastKCI($V=3, J=128$)	0.86	0.745
	FastKCI($V=3, J=16$)	0.87	0.665
	KCI	0.91	0.77
3	FastKCI($V=10, J=128$)	0.725	0.545
	FastKCI($V=10, J=16$)	0.79	0.62
	FastKCI($V=3, J=128$)	0.905	0.74
	FastKCI($V=3, J=16$)	0.89	0.735
	KCI	0.86	0.72
10	FastKCI($V=10, J=128$)	0.73	0.55
	FastKCI($V=10, J=16$)	0.755	0.54
	FastKCI($V=3, J=128$)	0.87	0.645
	FastKCI($V=3, J=16$)	0.82	0.665
	KCI	0.855	0.605

Table 1: Power of KCI and *FastKCI* under violation of H_0 . X and Y are confounded by Z , but there is also a direct edge between them.

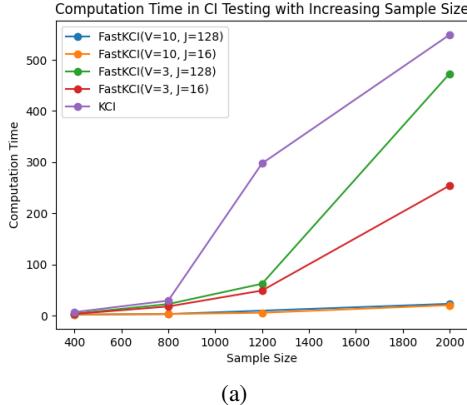


(a)

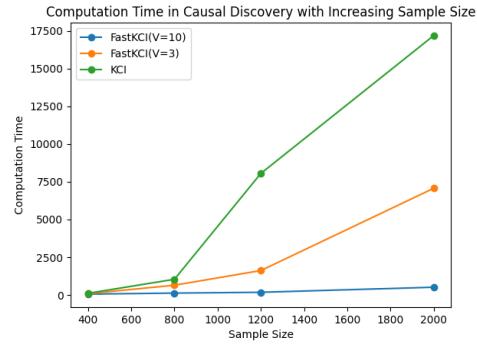


(b)

Figure 4: Precision, recall and F1-Score for KCI and *FastKCI* in causal discovery with growing sample size in setting A (left) and setting B (right).



(a)



(b)

Figure 5: Computation time with increasing sample size for (a) conditional independence testing and (b) causal discovery with the PC algorithm.

756 A.1 ABLATION ON HYPERPARAMETER V
757

758 We perform an ablation study on the hyperparameter V . For this, we use two DGPs, one that follows
759 Assumption 1, precisely the one from Section 5.1, with a mixture of $V = 10$ Gaussians, and one, that
760 violates it⁷.

761 We find that the results are relatively insensitive to the choice of V . Small ratios of V/n tend to have
762 high computational complexity. Very large ratios, e.g. the case $V = 100$ and $n = 1200$ appear to
763 not approximate the conditioning set well enough anymore and thus are not recommended. They
764 further can increase computation time again because of inbalanced component sizes and unstable
765 computations on small samples. Anything inbetween is recommendable.
766

767

V	$n = 1200$			$n = 5000$		
	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]
3	0.005	0.050	48.73	0.005	0.025	1133.64
10	0.005	0.035	3.67	0.015	0.050	272.55
20	0.005	0.040	2.47	0.010	0.045	58.16
50	0.010	0.075	3.40	0.000	0.035	11.23
100	0.015	0.185	5.69	0.005	0.035	9.91

773 Table 6: Ablation on the choice of V in FastKCI on the tests performance in a DGP with a mixture of
774 10 Gaussians.
775

776

V	$n = 1200$			$n = 5000$		
	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]	Type-I Error ($\alpha = 1\%$)	Type-I Error ($\alpha = 5\%$)	CPU time [s]
3	0.000	0.045	45.49	0.015	0.045	1140.41
10	0.010	0.075	3.43	0.020	0.080	276.25
20	0.000	0.040	2.22	0.015	0.085	58.89
50	0.010	0.095	3.04	0.035	0.090	10.85
100	0.020	0.155	5.01	0.025	0.100	9.55
KCI	0.010	0.040	32.84			

784 Table 7: Ablation on the choice of V in FastKCI on the tests performance in a DGP with a conditioning
785 set consisting of a non-Gaussian distribution.
786

787 Particularly, these experiments also demonstrate how FastKCIs performance appears to be not heavily
788 reliant on Assumption 1. Both under misspecification of the number of mixture components V and
789 under a completely non-Gaussian conditioning set we observe that Type-I errors remain intact.
790

791 A.2 POWER COMPARED TO RCIT
792

793 We compare the power of FastKCI to KCI and RCIT in a study similar to section 5.2. We see, that
794 the type-II error of FastKCI is much more competitive to KCI than the one of RCIT. This further
795 underlines our argument that in certain processes approximating the null can be insufficient.
796

797

Violation strength	FastKCI		KCI		RCIT	
	Type-II Error ($\alpha = 5\%$)	Type-II Error ($\alpha = 1\%$)	Type-II Error ($\alpha = 5\%$)	Type-II Error ($\alpha = 1\%$)	Type-II Error ($\alpha = 5\%$)	Type-II Error ($\alpha = 1\%$)
0.10	0.960	0.840	0.905	0.795	0.975	0.915
0.15	0.835	0.680	0.505	0.340	0.940	0.810
0.20	0.325	0.175	0.155	0.080	0.690	0.480
0.25	0.015	0.010	0.015	0.000	0.380	0.190

802 Table 8: Type-II error comparison of KCI, FastKCI and RCIT for a process with a mixture of 10
803 Gaussians. The violation strength refers to the signal of the violation relative to the signal of the
804 influence of Z on X and Y .
805

806

807 ⁷We draw $U \sim \text{Unif}(-\pi, \pi)$ and set $Z = \sin(U) + 0.3 \sin(3U) + 0.1U^2$. Given Z , we generate
808 $X = f_X(Z) + \varepsilon_X$ and $Y = f_Y(Z) + \varepsilon_Y$, with independent noises $\varepsilon_X, \varepsilon_Y \sim \mathcal{N}(0, 0.5I)$, ensuring H_0 to
809 hold while introducing post-link-noise. We use non-linear but distinct mappings (e.g., random linear projections
followed by \tanh or cubic terms).

810 **A.3 ADDITIONAL RESULTS**
 811

812 Here we provide additional results for the other stations of the causal assembly benchmark.
 813

814

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
FastKCI (V=10)	1.000	0.4314	0.5938	25.369
KCI	0.9891	0.6814	0.7994	235.12

815 Table 9: Mean result of 100 repetitions on the causal assembly benchmark, Station 1, with $n = 2000$.
 816

817

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
FastKCI (V=10)	0.6239	0.3240	0.4262	4427.1
KCI	0.5963	0.3980	0.4772	25279

818 Table 10: Mean result of 100 repetitions on the causal assembly benchmark, Station 2, with $n = 2000$.
 819

820

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
FastKCI (V=10)	0.5236	0.3499	0.4190	3282.8
KCI	0.5536	0.4665	0.5057	21755

821 Table 11: Mean result of 100 repetitions on the causal assembly benchmark, Station 4, with $n = 2000$.
 822

823 **A.4 KERNEL-BASED CONDITIONAL INDEPENDENCE TEST (KCI)**

824 Here we provide a clearly structured algorithm box summarizing the original Kernel-based Condi-
 825 tional Independence (KCI) test introduced by Zhang et al. (2012) for clarity and comparison with the
 826 fast procedure.

827 **B IMPLEMENTATION DETAILS**

828 **B.1 PARITIONING SCHEME**

829 In our implementation, we do not run a full EM algorithm for the Gaussian mixture. Instead, for
 830 each of the $j \in J$ partitioning rounds we use a simple empirical-Bayes sampling scheme over Z
 831 approximating the NIW prior: we draw V component means from a Normal centered at the empirical
 832 mean of Z , use an identity covariance for all components, draw mixture weights from a symmetric
 833 Dirichlet prior $\text{Dir}(\alpha)$, with $\alpha = 500$ and then sample cluster assignments for each z_i from the
 834 resulting categorical distribution (proportional to $\pi_v \mathcal{N}(z_i \mid \mu_v, I)$). The goal of this step is to
 835 generate reasonable local partitions of the conditioning set Z , the importance-weighted aggregation
 836 then corrects for randomness across partitions. This lightweight scheme is sufficient in practice and
 837 avoids the extra cost of running EM inside each repetition.

838 **B.2 AGGREGATION SCHEME**

839 To compute the weights $\ell^{(j,v)}$, we place independent Gaussian process regression models on the
 840 local relations $X \mid Z$ and $Y \mid Z$ within each cluster v . Concretely, for $i \in \mathcal{C}_v^{(j)}$, we assume
 841 $X_i = f_{X,v}(Z_i) + \varepsilon_{X,i}$ and $Y_i = f_{Y,v}(Z_i) + \varepsilon_{Y,i}$, with $f_{X,v}, f_{Y,v} \sim \text{GP}(0, k_\theta)$ and Gaussian noise
 842 $\varepsilon_{\cdot,i} \sim \mathcal{N}(0, \sigma^2)$. Conditional on $Z_{\mathcal{C}_v^{(j)}}$ and partition indicator $U^{(j)}$, the block of observations is
 843 therefore jointly Gaussian, e.g.

844

$$P(X_{\mathcal{C}_v^{(j)}} \mid Z_{\mathcal{C}_v^{(j)}}, U^{(j)}) = \mathcal{N}(0, K_X^{(j,v)} + \sigma_X^2 I),$$

845 ⁸For simplicity, we refer for details to Zhang et al. (2012). Sampling from the null distribution involves
 846 multiple eigenvalue and vector computations.

864
865
866

Type	Mean Precision	Mean Recall	Mean F1	Mean Computation Time [s]
FastKCI (V=10)	0.4619	0.5350	0.4953	543.38
KCI	0.4822	0.6130	0.5390	2550.6

867
868

Table 12: Mean result of 100 repetitions on the causal assembly benchmark, Station 5, with $n = 2000$.

869
870

Algorithm 2 Kernel-based Conditional Independence Test (KCI) by Zhang et al. (2012)

871
872

Require: Datasets $\{x_i, y_i, z_i\}_{i=1}^n$ where $x_i \in \mathbb{R}^{d_x}$, $y_i \in \mathbb{R}^{d_y}$, $z_i \in \mathbb{R}^{d_z}$; kernel functions k_x , k_y , and k_z for X , Y , and Z respectively; regularization parameter λ .

873
874
875

Ensure: Test decision for $H_0 : X \perp Y \mid Z$

1: Aggregate $\ddot{X} = (X, Z)$. Compute the kernel matrices $K_{\ddot{X}}$, K_Y , and K_Z for the datasets using the respective kernel functions:

876
877
878

$$(K_{\ddot{X}})_{ij} = k_x(\ddot{x}_i, \ddot{x}_j), \quad (K_Y)_{ij} = k_y(y_i, y_j), \quad (K_Z)_{ij} = k_z(z_i, z_j)$$

2: Center the kernel matrices $K_{\ddot{X}}$, K_Y and K_Z :

879
880
881

$$\tilde{K}_{\ddot{X}} = HK_{\ddot{X}}H, \quad \tilde{K}_Y = HK_YH, \quad \tilde{K}_Z = HK_ZH$$

where $H = I - \frac{1}{n}\mathbf{1}\mathbf{1}^T$ and $\mathbf{1}$ is a column vector of ones.

882
883
884

3: Calculate the projection matrix from a kernel ridge regression on Z :

$$R_Z = I - \tilde{K}_Z(\tilde{K}_Z + \lambda I)^{-1} = \lambda(\tilde{K}_Z + \lambda I)^{-1}$$

885
886
887

4: Compute the residual kernels of \ddot{X} and Y after conditioning on Z :

$$\tilde{K}_{\ddot{X}|Z} = R_Z \tilde{K}_{\ddot{X}} R_Z, \quad \tilde{K}_{Y|Z} = R_Z \tilde{K}_Y R_Z$$

888
889
890

5: Compute the test statistic:

$$T_{CI} \triangleq \frac{1}{n} \text{Tr} \left(\tilde{K}_{\ddot{X}|Z} \tilde{K}_{Y|Z} \right)$$

891
892
893
894

6: Bootstrap samples from the asymptotic distribution of the test statistic \tilde{t}_{CI} ⁸

7: Compute the p-value:

$$p = \frac{1}{B} \sum_{b=1}^B \mathbb{I}(\tilde{t}_{CI}^b \geq T_{CI})$$

8: **return** p-value for H_0

895
896
897
898

and analogously for Y .

899
900
901

In the implementation, $\ell^{(j,v)}$ is computed exactly as the sum of the log-marginal likelihoods for $X \mid Z$ and $Y \mid Z$ on each block, and the weights w_j are obtained via a softmax over the resulting partition log-likelihoods.

902
903
904

C COMPUTING RESOURCES.

905
906
907

The experiments in Sections 5 and 6 were performed on a high-performance computing cluster. Each node has two Intel Xeon E5-2630v3 with 8 cores and a 2,4GHz frequency as well as 64GB RAM. For the results with a higher number of J , multiple nodes were used. While the runtime of single repetitions of CI or PC can be derived from Section 5.6 or respective columns in the result tables (e.g., column “Time” in Table 2), the full runtime of reproducing all experiments can be estimated around two to four weeks on a single node.

911
912
913

D STATEMENT ON AI USAGE

914
915
916
917

For this research paper, large language models were used solely to assist with literature search, writing, and coding. All conceptualization, ideation, and theoretical contributions were carried out without AI support. The paper and code were authored entirely by the researchers, with AI serving only as a support and feedback tool.