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Abstract

Transformers have profoundly influenced AI re-
search, but explaining their decisions remains chal-
lenging – even for relatively simpler tasks such
as classification – which hinders trust and safe
deployment in real-world applications. Although
activation-based attribution methods effectively ex-
plain transformer-based text classification models,
our findings reveal that these methods can be un-
dermined by class-irrelevant features within ac-
tivations, leading to less reliable interpretations.
To address this limitation, we propose Contrast-
CAT, a novel activation contrast-based attribution
method that refines token-level attributions by fil-
tering out class-irrelevant features. By contrasting
the activations of an input sequence with reference
activations, Contrast-CAT generates clearer and
more faithful attribution maps. Experimental re-
sults across various datasets and models confirm
that Contrast-CAT consistently outperforms state-
of-the-art methods. Notably, under the MoRF set-
ting, it achieves average improvements of ×1.30
in AOPC and ×2.25 in LOdds over the most com-
peting methods, demonstrating its effectiveness in
enhancing interpretability for transformer-based
text classification.

1 INTRODUCTION

Transformers [Vaswani et al., 2017] have achieved remark-
able success in recent years, transcending both academic
and industrial boundaries and becoming increasingly inte-
grated into daily life. However, this widespread integration
also heightens the risk of direct exposure to AI errors, under-
scoring the need to ensure the safety, security, and trustwor-
thiness of AI systems through increased transparency [The
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White House, 2023, Dunietz et al., 2024, European Com-
mission, 2024]. Consequently, developing methods for inter-
preting the decision-making processes of transformer-based
models has become essential.

To address this need, numerous methods have been pro-
posed for interpreting transformer-based models, particu-
larly in text classification tasks where they have shown re-
markable performance. These methods generate attribution
maps that indicate the relative contributions of input tokens
to a model’s decisions. In Section 2, we categorize them
into attention-based, LRP-based, and activation-based ap-
proaches. This work focuses on activation-based attribution,
which leverages a model’s activation information to pro-
duce attribution maps and has demonstrated state-of-the-art
performance in attribution quality.

Activation-based attribution maps are typically derived by
extracting activations from one or more layers of a neural
network for a given input sequence. Then, the output gra-
dient of the target class, with respect to these activations,
is applied to isolate class-relevant features [Selvaraju et al.,
2017]. However, we find that this procedure can still be
influenced by class-irrelevant signals within the activations,
thus limiting its ability to produce accurate, class-specific in-
terpretations. For example, in Figure 1, panel (A) illustrates
attribution maps generated by AttCAT [Qiang et al., 2022],
one of the leading activation-based attribution methods, for
the movie review ‘It is very slow.’, which is classified as
negative. Ideally, the word ‘slow’ should register as highly
relevant, with a positive attribution value in relation to the
negative sentiment. However, AttCAT fails to detect this
importance, whereas our proposed method, Contrast-CAT,
correctly assigns the highest attribution to ‘slow.’

In this paper, we introduce Contrast-CAT, a novel activation-
based attribution method for transformer-based text classi-
fication. We find that existing methods often incorporate
class-irrelevant signals, compromising attribution accuracy.
By contrasting target activations with multiple reference ac-
tivations, Contrast-CAT filters out these irrelevant features
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Figure 1: Heatmaps displaying attribution values from differ-
ent encoder layers of the BERTbase model for a negative re-
view prediction. Panel A shows maps generated by AttCAT,
which applies gradients directly to activations, while Panel
B shows maps from Contrast-CAT, which applies gradients
to activation contrast information. Values closer to 1 (red)
indicate stronger contributions to the negative prediction.

and produces high-quality token-level attribution maps. Ex-
tensive experiments show that Contrast-CAT consistently
outperforms state-of-the-art approaches, achieving average
improvements of ×1.30 and ×2.25 in AOPC and LOdds
under the MoRF setting, and ×1.34 and ×1.03 under the
LeRF setting, compared to the best competitors.

2 RELATED WORK

We describe attribution methods for interpreting transformer-
based text classification models, categorizing them into
attention-, LRP-, and activation-based approaches.

Attention-based Attribution Attention-based attribution
methods rely on attention scores, a key component of trans-
formers. Under the assumption that input tokens with high
attention scores significantly influence model outputs, nu-
merous studies [Martins and Astudillo, 2016, Clark et al.,
2019, Abnar and Zuidema, 2020, Modarressi et al., 2022,
Mohebbi et al., 2023] have employed attention scores for
interpretative purposes of a model. Specifically, Abnar and
Zuidema [2020] proposed Rollout, which integrates atten-
tion scores across multiple layers while accounting for

skip connections in transformer architectures to capture
information flow. Additionally, there have been many pa-
pers [Chrysostomou and Aletras, 2021, Barkan et al., 2021]
that introduce the gradient of attention weight for interpreta-
tion. Despite advances in attention-based methods, signif-
icant debate remains about whether attention scores truly
reflect the relevance of model predictions, as highlighted
in [Jain and Wallace, 2019, Wiegreffe and Pinter, 2019].

LRP-based Attribution Layer-wise relevance propaga-
tion (LRP) [Bach et al., 2015] is a technique for backpropa-
gating relevance scores through a neural network, with the
scores reflecting our specific interest in the model’s predic-
tion. Building on LRP, several studies have derived explana-
tions for model behavior [Gu et al., 2018, Voita et al., 2019,
Chefer et al., 2021]. In [Voita et al., 2019], LRP was partially
used to determine the most important attention heads within
a specific transformer’s encoder layer, utilizing relevance
scores for the attention weights. Chefer et al. [2021] intro-
duces TransAtt, which propagates relevance scores through
all layers of a transformer, combining these scores with
gradients of the attention weights and utilizing the Rollout
technique for multi-layer integration. However, LRP-based
methods are limited by certain assumptions, known as the
LRP rules, designed to uphold the principle of relevance
conservation [Montavon et al., 2019].

Activation-based Attribution In contrast to the meth-
ods discussed above, activation-based attribution primarily
relies on activation information from each layer of a trans-
former model. These methods are based on core ideas origi-
nally developed for convolutional neural networks (CNNs),
which have been shown to be effective for generating high-
quality interpretations with simple implementations and
broad versatility [Selvaraju et al., 2017, Wang et al., 2020,
Han et al., 2022, Lee and Han, 2022]. In [Qiang et al.,
2022], the authors introduced AttCAT as the first adapta-
tion of Grad-CAM [Selvaraju et al., 2017], one of the most
popular activation-based methods for CNNs, to interpret the
decisions of transformer-based text classification models.
AttCAT generates token-level attribution maps by merging
activations and their gradients in relation to the model’s pre-
dictions, following Grad-CAM’s essential approach, which
uses gradients to reflect class-relevant information. Simi-
larly, Englebert et al. [2023] introduced TIS adapting Score-
CAM [Wang et al., 2020]: TIS uses the centroids of activa-
tion clusters identified from the activation from all layers to
compute relevance scores in a manner akin to Score-CAM.

Although there are attribution methods for transformer-
based text classification models that use gradients to extract
class-relevant features from activations, no approach has yet
focused on filtering out class-irrelevant features through acti-
vation contrasting to improve token-level attribution quality.



3 PRELIMINARY

Problem Statement Consider a pre-trained transformer-
based model as a function f processing input tokens x :=
{xi}Ti=1, where T is the length of the input sequence, and
each token is denoted as xi ∈ Rn. Our objective is to gen-
erate a token-level attribution map I(x) := {I(x)i}Ti=1,
where I(x)i represents the relevance score of each input
token xi regarding the output f(x).

Transformers Let us consider a transformer-based model
which is composed of L stacked layers of identical structure.
We denote that the ℓ-th layer outputs an activation sequence
Aℓ := {Aℓ

i}Ti=1 that corresponds to input tokens, where
Aℓ

i ∈ Rn. Each layer computes its output by combining
the output from the attention layer with the previous layer’s
activation, where the attention layer calculates the attention
scores:

αℓ,h := softmax
(
Qℓ,h(Aℓ−1) ·Kℓ,h(Aℓ−1)T /

√
d
)
. (1)

Here, Qℓ,h(·), Kℓ,h(·), and V ℓ,h(·) are the transformations
for computing the query, key, and value of the ℓ-th layer’s h-
th head, respectively, and d is a scaling factor. αℓ,h ∈ RT×T

refers to the attention map of the h-th head, which contains
attention scores, where h = 1 . . . H . We denote by Ãℓ,h the
output of the h-th attention head in the ℓ-th layer:

Ãℓ,h := αℓ,h · V ℓ,h(Aℓ−1).

The outputs from multiple attention heads are concate-
nated and then combined using a fully connected layer with
the skip connection: Âℓ := Concat(Ãℓ,1, Ãℓ,2, . . . , Ãℓ,H) ·
W̃ ℓ +Aℓ−1, where W̃ ℓ is the weight of the fully connected
layer. Finally, the ℓ-th layer’s output Aℓ ∈ RT×n is com-
puted using a feed-forward layer and skip connection:

Aℓ = Âℓ ·W ℓ + Âℓ, (2)

where W ℓ ∈ Rn×n is the weight for the feed-forward layer.
We have omitted bias parameters and layer normalization in
the above expressions for simplicity.

4 METHODOLOGY

We introduce Contrast-CAT, a token-level, activation-based
attribution framework tailored to transformer models.

4.1 ATTRIBUTION MAP

Let x := {xi}Ti=1 be a sequence of T tokens, and let fc(x)
denote the model’s score for the target class c. For each to-
ken xi (i = 1, . . . , T ), Contrast-CAT defines its attribution
with respect to a contrastive reference R as:

IR(x)i :=

L∑
ℓ=1

α̂ℓ
i

n∑
j=1

(
∂fc(x)

∂Aℓ
i

⊙
(
Aℓ

i −Rℓ
i

))
j
. (3)

Here,

• Aℓ
i ∈ Rn is the activation for token xi at layer ℓ,

• ∂fc(x)

∂Aℓ
i

∈ Rn is the gradient of fc(x) w.r.t. Aℓ
i ,

• Rℓ
i is a reference activation for token i chosen from a

reference token sequence r such that fc(r) < γ,

• ⊙ denotes element-wise multiplication,

• α̂ℓ
i is the averaged attention of token i at layer ℓ.

In essence,
(
Aℓ

i −Rℓ
i

)
contrasts the target activation against

one that does not strongly activate class c, thereby remov-
ing non-target signals (class-irrelevant features). The factor
∂fc(x)

∂Aℓ
i

highlights the parts of the activation that actually

affect the model’s output, while α̂ℓ
i weights these elements

by how much the transformer attends to token i.

Figure 2 provides a simplified illustration of the attribution
map construction process for Contrast-CAT.

4.2 COMPONENT DETAILS AND MOTIVATION

Token-Level Activations Aℓ
i . Transformers represent

each token xi as a vector in each layer ℓ. By working at
the token level, Contrast-CAT directly captures the discrete,
context-dependent nature of language—differentiating it
from CNN-based attribution methods initially designed for
spatial feature maps.

Gradients ∂fc(x)

∂Aℓ
i

. Inspired by gradient-based interpreta-

tions, we leverage the partial derivative of fc(x) w.r.t. Aℓ
i .

This follows general insights from activation-based methods,
(e.g., [Selvaraju et al., 2017]), ensuring that only compo-
nents of Aℓ

i that genuinely influence fc(x) are emphasized.

Activation Contrasting Aℓ
i − Rℓ

i . A key novelty of
Contrast-CAT is its contrast operation, which computes
the difference between a target activation Aℓ

i and a low-
activation reference Rℓ

i . The reference Rℓ
i is chosen from

a sequence r such that fc(r) < γ, where γ is a pre-defined
small positive number (γ > 0). This choice ensures that the
reference activation has a minimal response to the target
class c (we set γ = 10−3 in our experiments). While the use
of reference or baseline activations is broadly motivated by
prior works (e.g., [Lee and Han, 2022]), Contrast-CAT is
the first to extend this idea to transformer-based text classi-
fication networks, applying it across multiple transformer
layers, at the token level, explicitly targeting textual data.
This operation highlights class-specific features that distin-
guish x from a weakly activating example.

Attention Weights α̂ℓ
i . Transformers distribute relevance

across tokens via multi-head attention. We aggregate these
attention scores into α̂ℓ

i , giving higher importance to to-
kens that the model itself regards as salient. Unlike purely
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[SEP]
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Figure 2: Construction of Contrast-CAT’s attribution map. For an input token sequence x, Contrast-CAT computes an
attribution map IR(x) by contrasting the target activation A (black) with a reference activation R (blue), then weighting by
gradients (red) and attention (yellow).

attention-based methods (e.g., [Abnar and Zuidema, 2020]),
Contrast-CAT integrates attention and gradient-based cues,
offering a more robust attribution signal.

Multi-Layer Attribution Building on prior findings that
transformers encode varying levels of semantic informa-
tion across their layers—ranging from phrase-level details
to deeper semantic features [Jawahar et al., 2019, Turton
et al., 2021, Pascual et al., 2021]—we diverge from tradi-
tional activation-based attribution methods which typically
rely on a single layer (e.g., [Barkan et al., 2021]). Instead,
we incorporate multi-layer activations Aℓ from all layers
ℓ = 1, . . . , L in Eq. (2), together with their layer-wise at-
tention scores αℓ,h in Eq. (1). This design captures layer-
specific token semantics, and by weighting them with α̂ℓ

i ,
it effectively highlights the tokens most influential to the
model’s output across all layers.

4.3 ATTRIBUTION WITH MULTIPLE CONTRAST

Relying on a single reference from one class can be in-
sufficient if the target activations Aℓ := {Aℓ

i}Ti=1 encode
features shared across multiple non-target classes. Moreover,
any features that consistently remain after contrasting Aℓ

with several reference activations are more likely to repre-
sent class-specific properties. To address this, we generate a
collection of attribution maps

D :=
{
IR(r)(x)

∣∣ r ∈ training set, fc(r) < γ
}
,

by repeating the procedure in Section 4.1 with multiple refer-
ence sequences. We cache these reference activations—one
might call it a reference library—for use during inference. In
practice, we employ 30 pre-computed references per class.

Refinement via Deletion Test Although this multi-
reference approach reduces the risk of overlooking crucial
class-relevant features, not all resulting maps IR(r)(x) are
guaranteed to be reliable. We therefore refine Contrast-CAT
by examining each map’s attribution quality using a token-
wise deletion test (e.g., [Petsiuk, 2018, Wang et al., 2020]).
Specifically, we remove the top-attributed tokens one by
one and record how much the model’s predictive probability
for class c decreases. The average probability drop score
captures, on a token-by-token basis, how effectively a map
localizes truly important tokens.

Any map with a drop score below a specified threshold ρ (set
in our experiments to the mean plus one standard deviation
of all drop scores) is discarded. Finally, we generate the
Contrast-CAT attribution by averaging all remaining high-
quality maps:

I(x) :=
1

|M |
∑

IR(x)∈M

IR(x),

where M :=
{
IR(x) ∈ D : S

(
IR(x)

)
≥ ρ

}
.

This final aggregation fuses the most credible contrastive
perspectives into a single, robust token-level attribution.

5 EXPERIMENTS

Experiment Settings We implemented our method,
Contrast-CAT, using PyTorch (the code is available at
https://github.com/ku-air/Contrast-CAT).
We used the BERTbase model [Devlin et al., 2019],
consisting of 12 encoder layers with 12 attention heads,
as the transformer-based model for our experiments
(see the supplementary material for results using other

https://github.com/ku-air/Contrast-CAT


transformer-based models). We evaluated our method on
four popular datasets for text classification tasks: Amazon
Polarity [Zhang et al., 2015], Yelp Polarity [Zhang et al.,
2015], SST2 [Socher et al., 2013], and IMDB [Maas et al.,
2011]. We reported our results using 2000 random samples
from the test sets of each dataset, except for SST2, for
which the entire set was used since the entire dataset had
fewer than 2000 samples.

We compared our method to various attribution methods,
categorized by attention-based: RawAtt, Rollout [Abnar
and Zuidema, 2020], Att-grads, Att×Att-grads, and Grad-
SAM [Barkan et al., 2021]; LRP-based: Full LRP [Ding
et al., 2017], Partial LRP [Voita et al., 2019], and
TransAtt [Chefer et al., 2021]; and activation-based meth-
ods: CAT, AttCAT [Qiang et al., 2022], and TIS [Englebert
et al., 2023].

Evaluation Metrics We used the area over the perturba-
tion curve (denoted by AOPC) [Nguyen, 2018, Chen et al.,
2020] and the log-odds (LOdds) [Shrikumar et al., 2017,
Chen et al., 2020] metrics for assessing the faithfulness of at-
tribution following the previous research [Qiang et al., 2022].
Faithfulness refers to the accuracy with which an attribution
map’s scores reflect the actual influence of each input token
on the model’s prediction. The AOPC and LOdds metrics
are defined as follows: (1) AOPC(k) := 1

N

∑N
i=1(y

c
i − ỹci ),

and (2) LOdds(k) := 1
N

∑N
i=1 log

(
ỹc
i

yc
i

)
. Here, N is the total

number of data points used for evaluation, and yci denotes
the model’s prediction probability for the class c of a given
input token sequence x, while ỹci indicates the probability af-
ter removing the top-k% of input tokens based on relevance
scores from an attribution map.

To evaluate attribution quality more precisely using the
AOPC and LOdds metrics while addressing inconsistencies
from token removal order (i.e., removing the most relevant
tokens first versus the least relevant tokens first) [Rong et al.,
2022], we conducted experiments under two settings: one
where tokens were removed in descending order of rele-
vance scores (MoRF: Most Relevant First), and another in
ascending order (LeRF: Least Relevant First). Consistently
achieving high-quality attribution under both conditions in-
dicates superior attribution quality. Specifically, under the
MoRF setting, higher AOPC and lower LOdds indicate bet-
ter attribution, while under the LeRF setting, lower AOPC
and higher LOdds suggest better performance.

5.1 FAITHFULNESS OF ATTRIBUTION

Figure 3 illustrates the AOPC and LOdds values for attribu-
tion maps generated by each competing method, evaluated
at various top-k% thresholds where k is increased by 10
within the range of [10, 90]. Table 1 provides the corre-
sponding AUC values. Note that Figure 3 presents results

for the MoRF setting only, while Table 1 includes results for
both MoRF and LeRF settings. Through this evaluation, we
can analyze the overall characteristics of an attribution map
in terms of relevance scores of different threshold levels.

The trends in Figure 3 reveal that our method, Contrast-CAT,
consistently maintains faithful attribution quality across
all threshold levels and datasets compared to other meth-
ods. Table 1 further supports this, showing that Contrast-
CAT achieves top-1 attribution quality under both MoRF
and LeRF settings. Specifically, compared to the second-
best cases, Contrast-CAT shows average improvements in
AUC values of AOPC and LOdds under the MoRF setting
by ×1.30 and ×2.25, respectively. For the LeRF setting,
Contrast-CAT shows average improvements in AUC values
of AOPC and LOdds by ×1.34 and ×1.03, respectively.

5.2 QUALITATIVE EVALUATION

Figure 4 illustrates the attribution maps generated by
Contrast-CAT, TIS, and AttCAT, the top-3 ranked methods
in our faithfulness evaluation, conducted under the MoRF
setting (Table 1, (A) MoRF). The examples provided are
from the SST2 dataset. For ease of interpretation, only to-
kens with relevance scores exceeding 0.5 are highlighted. As
shown in the left side of Figure 4, Contrast-CAT identifies
relevant tokens related to the predicted class, such as ‘fails’
or ‘disappointment’ for the negative prediction cases. For a
positive prediction, in the input phrase ‘rare birds have more
than enough charm to make it memorable.’, Contrast-CAT
highlights ‘enough’ and ‘charm’ as the most relevant tokens,
with ‘than’, ‘make’, ‘more’, and ‘memorable’ following in
relevance. In contrast, AttCAT focuses only on ‘enough’
and ‘memorable’, missing ‘charm’ and ‘more’, while TIS
identifies ‘to’ as the most relevant token.

5.3 THE EFFECT OF ACTIVATION CONTRAST

To evaluate the effect of our Contrast-CAT’s activation con-
trasting, we compared the attribution quality of different
versions of Contrast-CAT: the ‘Random’ version uses ran-
domly selected references from individual training datasets
instead of what had been outlined in Section 4.3, and the
‘Same’ version uses references of the same class as the target
instead of different classes. The ‘Same’ version contrasts
with our method, which leverages activations from different
classes as contrastive references.

Table 2 presents AUC values of each version of Contrast-
CAT, where the suggested Contrast-CAT is denoted by ‘Con-
trasting’. The attribution quality is the worst with ‘Same’
and the best with ‘Contrasting’, which indicates that the pro-
posed activation contrasting effectively reduces non-target
signals in the activations, thereby helping to generate high-
quality attribution maps.



Yelp SST2 IMDBAmazon

A
O

PC
 ↑

LO
dd

s ↓
M
oR
F

Figure 3: Quantitative comparison of the faithfulness evaluation of Contrast-CAT and other attribution methods, measured
under the MoRF (Most Relevant First) setting. The arrows mean that ↑: higher is better, and ↓: lower is better.
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Figure 4: Qualitative comparison of attribution quality. Relevance scores are shown with color shades: red for the highest
importance, followed by orange.

5.4 CONFIDENCE OF ATTRIBUTION

If an attribution method consistently generates similar attri-
bution maps regardless of the model’s prediction, its confi-
dence is questionable. Therefore, we conducted the confi-
dence evaluation of the attribution methods employing the
Kendall-τ rank correlation [Kendall, 1955], which is a statis-
tical measure used to assess the similarity between two data
by comparing the ranking order of their respective values.
We compute an averaged rank correlation:

1

N

N∑
i=1

Kendall-τ(P c
i , P

ĉ
i ),

where P c
i is an array of token indices in descending order

of relevance scores for class c in an attribution map, P ĉ
i is

a similar array but for the class ĉ ̸= c, and N is the total
number of data points used for testing. For the choice of
ĉ, we followed the settings of AttCAT as detailed in their
open-source implementation, where the class immediately
following the class c was chosen.

If an attribution method assigns relevance scores to tokens
in distinct orders for different class predictions of the in-
spected model, the rank correlation is expected to be low.
Table 3 presents the average rank correlation for various at-
tribution methods tested across datasets. Cases with average
rank correlation values under 0.05 are marked as ‘< 0.05’
and highlighted: these are the cases where the attribution
methods seem to work soundly – our Contrast-CAT seems
to pass the test, along with Att-grads, Att×Att-grads, CAT,
AttCAT and TIS. In contrast, methods such as RawAtt, Roll-
out, and Partial LRP showed values near 1.0 consistently
over the datasets, suggesting that these methods have issues
generating distinct attribution over different class outcomes.

5.5 THE EFFECT OF USING MULTIPLE LAYERS

Panel (A) of Figure 5 demonstrates the effect of using multi-
ple layers to improve the attribution quality of Contrast-CAT.
The figure shows the average AUC values of AOPC and
LOdds across datasets, measured under the MoRF setting.



Table 1: AUC values from the faithfulness evaluation, with (A) showing results under the MoRF (Most Relevant First) setting
and (B) showing results under the LeRF (Least Relevant First) setting. The best and second-best results are highlighted in
bold and underlined, respectively. The arrows mean that ↑: higher is better, and ↓: lower is better.

(A) MoRF (Most Relevant First)

Dataset Amazon Yelp SST2 IMDB

Method AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.424 0.405 0.412 0.462 0.386 0.471 0.335 0.564
Rollout 0.327 0.516 0.282 0.601 0.329 0.558 0.339 0.566

Att-grads 0.061 0.749 0.059 0.754 0.132 0.691 0.061 0.759
Att×Att-grads 0.054 0.756 0.045 0.763 0.109 0.711 0.075 0.746

Grad-SAM 0.312 0.526 0.235 0.633 0.356 0.518 0.266 0.623
Full LRP 0.242 0.592 0.190 0.652 0.310 0.538 0.233 0.631

Partial LRP 0.463 0.356 0.447 0.422 0.400 0.461 0.364 0.538
TransAtt 0.461 0.366 0.473 0.404 0.432 0.428 0.458 0.455

CAT 0.482 0.341 0.440 0.383 0.452 0.382 0.632 0.215
AttCAT 0.527 0.292 0.470 0.346 0.461 0.372 0.644 0.198

TIS 0.560 0.241 0.494 0.349 0.463 0.367 0.618 0.277
Contrast-CAT 0.703 0.117 0.687 0.131 0.654 0.157 0.738 0.101

(B) LeRF (Least Relevant First)

Dataset Amazon Yelp SST2 IMDB

Method AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.133 0.694 0.093 0.723 0.249 0.577 0.158 0.688
Rollout 0.166 0.670 0.130 0.687 0.373 0.448 0.126 0.711

Att-grads 0.636 0.186 0.560 0.252 0.601 0.223 0.588 0.271
Att×Att-grads 0.707 0.111 0.660 0.145 0.681 0.126 0.709 0.127

Grad-SAM 0.139 0.677 0.107 0.713 0.285 0.547 0.118 0.715
Full LRP 0.254 0.588 0.187 0.649 0.377 0.454 0.199 0.656

Partial LRP 0.122 0.700 0.088 0.725 0.237 0.585 0.134 0.701
TransAtt 0.089 0.731 0.063 0.751 0.215 0.605 0.061 0.761

CAT 0.108 0.712 0.087 0.727 0.213 0.611 0.128 0.697
AttCAT 0.078 0.740 0.063 0.747 0.205 0.623 0.119 0.703

TIS 0.104 0.719 0.082 0.737 0.252 0.562 0.135 0.691
Contrast-CAT 0.058 0.757 0.048 0.759 0.147 0.669 0.047 0.775

The results in panel (A) of Figure 5 indicate that the attri-
bution quality improves as the number of layers increases,
with the best performance achieved when all layers are used.
Specifically, there is a ×1.52 improvement in AOPC and
×3.05 improvement in LOdds when using all layers com-
pared to using only the penultimate layer. The AOPC and
LOdds values tend to saturate when we use three or more
layers but continue to increase as the number increases.

5.6 THE EFFECT OF MULTIPLE CONTRASTS

Panel (B) of Figure 5 illustrates the impact of increasing the
number of references for multiple contrasts in Contrast-CAT
on attribution quality, measured by average AUC for AOPC
and LOdds across datasets under the MoRF setting.

The AOPC metric shows a sharp improvement as the num-

ber of references increases from 0 to 5. After 5 references,
the AUC continues to increase, stabilizing between 25 and
30 references. In contrast, the LOdds metric exhibits a sharp
decline as the number of references increases, starting at ap-
proximately 0.30 and dropping steadily, stabilizing around
0.10 after 10 references and reaching its minimum at 30 ref-
erences. These results indicate that more references improve
attribution quality, with the best performance at 30, which
we use in our experiments.

5.7 THE EFFECT OF CONTRASTING
REFERENCES

Table 4 presents the impact of the parameter γ in the con-
dition for selecting contrastive references, fc(r) < γ, on
Contrast-CAT’s attribution quality. This condition ensures



Table 2: The effect of our activation contrasting approach, measured under the MoRF (Most Relevant First) setting. ‘Random’
uses randomly selected references (the mean values over 30 repetitions are reported), ‘Same’ uses references from the same
class as the target, and ‘Contrasting’ refers to the suggested Contrast-CAT. The best results are in boldface.

Dataset Amazon Yelp SST2 IMDB

Reference AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
Random 0.513 0.306 0.496 0.323 0.433 0.398 0.634 0.213

Same 0.144 0.667 0.159 0.650 0.089 0.728 0.124 0.614
Contrasting 0.703 0.117 0.687 0.131 0.654 0.157 0.738 0.101

(A) The effect of using multiple layers

The number of references The number of references

AOPC ↑ LOdds ↓
(B) The effect of using multiple references

(Penultimate) (All) (Penultimate) (All)
Layer Layer

AOPC ↑ LOdds ↓

Figure 5: Comparison of Contrast-CAT’s attribution quality measured under the MoRF (Most Relevant First) setting: (A)
varying the number of layers from penultimate to all, and (B) varying the number of reference samples from 0 to 30.

Table 3: The results of the confidence evaluation, showing
averaged rank correlation values. The values below 0.05
(marked in gray) indicate that attributions tend to be class-
distinct, as desired.

Method Dataset
Amazon Yelp SST2 IMDB

RawAtt 1.00 1.00 1.00 1.00
Rollout 1.00 1.00 1.00 1.00

Att-grads < 0.05 < 0.05 < 0.05 < 0.05
Att×Att-grads < 0.05 < 0.05 < 0.05 < 0.05

Grad-SAM 0.158 0.138 0.282 0.084
Full LRP 0.732 0.629 0.712 0.533

Partial LRP 0.952 0.924 0.957 0.859
TransAtt 0.153 0.135 0.342 0.061

CAT < 0.05 < 0.05 < 0.05 < 0.05
AttCAT < 0.05 < 0.05 < 0.05 < 0.05

TIS < 0.05 < 0.05 < 0.05 < 0.05
Contrast-CAT < 0.05 < 0.05 < 0.05 < 0.05

that selected reference activations do not strongly respond
to the target class c, thereby helping to reduce non-target
signals within the target activation by contrasting it with the
selected reference activations.

We evaluated Contrast-CAT’s faithfulness by varying γ from
0.1 to 0.001, and reported average AUC values for AOPC
and LOdds across datasets under the MoRF setting. The

Table 4: Impact of the parameter γ in the condition fc(r) <
γ on the attribution quality of Contrast-CAT.

γ 0.1 0.01 0.001

AOPC↑ 0.627 0.651 0.696
LOdds↓ 0.450 0.448 0.127

results in Table 4 indicate that a smaller γ improves Contrast-
CAT’s attribution quality, highlighting the benefits of low-
activation references for activation contrasting, as described
in Section 4.2.

6 CONCLUSION

In this work, we introduced Contrast-CAT, a novel
activation-based attribution method that leverages activa-
tion contrasting to generate high-quality token-level at-
tribution map. Our extensive experiments demonstrated
that Contrast-CAT significantly outperforms state-of-the-
art methods across various datasets and models.

Despite its effectiveness, Contrast-CAT requires reference
points whose activations will be available during the creation
of attribution maps. While we minimized overhead with a
pre-built reference library, its storage requirements grow
with the number of classes and activation size. Future work
will explore lower-cost alternative tensors.



As the demand for interpretable AI grows to support safety,
security, and trustworthiness, we believe Contrast-CAT rep-
resents a meaningful step toward improving the transparency
of transformer-based models.
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