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Abstract

Natural Language Inference (NLI) has gained001
significant attention recently due to its impor-002
tance in understanding how machines compre-003
hend and reason about language. While En-004
glish has received tremendous interest, Mor-005
phologically Rich Languages (MRLs) like He-006
brew, require more research. In this paper, we007
address the evaluation of Hebrew NLI mod-008
els by introducing LCHAIM, a dataset de-009
signed to evaluate these models on tasks in-010
volving long premises and complex reasoning.011
The dataset, created by translating and vali-012
dating the English ConTRoL dataset, consists013
of 8,325 context-hypothesis pairs that require014
coreferential, temporal, logical and analytical015
reasoning. Our experiments show the diffi-016
culty of contextual reasoning in Hebrew, as evi-017
denced by the performance of different models.018
Fine-tuning the LongHero model on both the019
shorter premise Hebrew NLI and the LCHAIM020
datasets yielded a mean accuracy of 52%, that021
is 35% less than human performance. Similarly,022
Large language Models (LLMs) like Gemma-023
9B, Dicta-LM-2.0-7B, and GPT-4o achieved024
a top mean accuracy of 60.12% in few-shot025
setting.026

1 Introduction027

NLI, also called Textual Entailment (TE) is a key028

task in natural language processing (Dagan et al.,029

2013; Bowman et al., 2015). It involves determin-030

ing whether a given hypothesis can be logically031

inferred from a premise. This task has shown to032

be very helpful in various applications, including033

text classification, event extraction, and summa-034

rization evaluation, (Yin et al., 2019; Sainz et al.,035

2022; Scirè et al., 2024). NLI has gained significant036

attention recently due to its importance in under-037

standing how machines comprehend and reason038

about language. This is largely because almost any039

task can be generalized to determining entailment040

or contradiction in context between texts (Liu et al.,041

P: עשרים וארבעה מיליארד שקלים מושקעים באגרות חוב ובעשור האחרון
מספר אגרות החוב בהגרלה גדל פי שבעה. סיכויי הזכייה השתנו לאחרונה

מ-27,500 לאחד ל-24,000 לאחד. מכירות שיא הביאו לכך שנדרש מכשיר
חדש לבחירת מספרים באופן אקראי. קודמו לקח חמש וחצי שעות להשלים
את ההגרלה, בעוד שהחדש יכול להשלים את המשימה בחצי מהזמן. בכל

חודש יש מיליון זוכים.

P: Twenty-four billion is invested in premium bonds and in the
past 10 years the number of bonds in the draw has increased
sevenfold. The chances of winning have recently changed from
27,500 to one to 24,000 to one. Record sales have meant that a
new machine to select winning numbers randomly was
required. The predecessor took five and a half hours to
complete the draw, while the new machine can complete the
task in half that time. Each month there are 1 million winners. 

   Entailment                Contradiction                 Neutral 

H1: The chances of winning a prize have increased and
there are now more winners numbers.

H1: סיכויי הזכיה בפרס עלו וכעת יש יותר מספרי זוכים.

   Entailment                Contradiction                 Neutral 

H2: The new machine is a computer.

H2: המכונה החדשה היא מחשב.

   Entailment                Contradiction                 Neutral 

H3: The new machine takes 150 minutes to draw the 1
million winning numbers.

H3: המכונה החדשה נדרשת ל-150 דקות כדי לייצר את 1 מיליון
המספרים הזוכים.

Figure 1: A sample of NLI task from the proposed
LCHAIM dataset and ConTRoL dataset.

2021a). 042

Although many datasets have been developed to 043

train and evaluate NLI models (Dagan et al., 2005; 044

Giampiccolo et al., 2007; Bowman et al., 2015; 045

Williams et al., 2018; Welleck et al., 2019), these 046

datasets primarily focus on sentence-level exam- 047

ples, which do not fully capture the complexity of 048

real-world language understanding. 049

To address this issue, Liu et al. (2021a) proposed 050

ConTRoL, a long context NLI dataset that enabled 051

investigating contextual reasoning for NLI 1. The 052

1Other English datasets with long context NLI include (Yin
et al., 2021; Koreeda and Manning, 2021; Shaham et al., 2022),
but these do not specifically include complex reasoning.
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example in Figure 1 demonstrates Mathematical053

reasoning, which requires an understanding of cal-054

culus to solve it.055

However, despite large advances in NLP, re-056

search and datasets predominantly focus on En-057

glish, leaving rich morphological languages like058

Hebrew underrepresented. On the other hand, the059

rich morphological structure of Hebrew presents060

significant challenges for Natural Language Un-061

derstanding (NLU) tasks, leading for example to062

inconsistencies and errors in evaluation metrics063

(Cohen et al., 2023).064

Recent studies have increased interest in He-065

brew (Seker et al., 2022; Gueta et al., 2022), but066

the emphasis remains largely on morpho-syntactic067

tasks. Despite the existence of a few NLI datasets068

for MRLs (Klemen et al., 2024; Halat and At-069

lamaz, 2024; Jallad and Ghneim, 2022), to the070

best of our knowledge, no existing dataset specifi-071

cally addresses the challenges associated with long072

premises that require complex reasoning. Further-073

more, none of the aforementioned datasets is in074

Hebrew.075

To address these gaps, we present in this paper076

a first investigation of long context reasoning in077

Hebrew. As part of this investigation, we compile078

LCHAIM - Long Context Hebrew with Advanced079

reasoning Inference Model Benchmark - a Hebrew080

version of ConTRoL (Liu et al., 2021a). LCHAIM081

contains 8,325 premise-hypothesis pairs in Hebrew,082

labeled for contradiction, entailment, or neutral083

relationship between premise p and hypothesis h,084

and is obtained from the ConTRoL dataset via auto-085

matic translation and human validation. Then, we086

provide an evaluation of Hebrew Language Models087

for the task of NLI, using the resulting dataset. We088

show that the task of NLI with contextual reason-089

ing is challenging even for larger language models,090

which shows the need for the construction of com-091

plex NLU benchmarks in Hebrew.092

The research contribution is three-fold:093

1. We present LCHAIM, a dataset for training,094

and validating models on complex reasoning095

in Hebrew.096

2. We adapt, validate and document a translation097

methodology for translating datasets from En-098

glish to Hebrew.099

3. We perform detailed experiments to evaluate100

Hebrew models on the task of long-premise101

NLI with complex reasoning.102

2 LCHAIM Dataset 103

The LCHAIM dataset is a translated version of 104

ConTRoL (Liu et al., 2021a). It is compiled from 105

publicly available online verbal reasoning tests, in- 106

cluding those used in police initial recruitment ex- 107

ams, medical college admissions, and university 108

clinical aptitude tests, as well as corporate verbal 109

aptitude assessments. These tests are structurally 110

similar to NLI tasks, presenting a premise and a 111

hypothesis with three answer choices: true, false, 112

or cannot say. These choices correspond to the NLI 113

labels ENTAILMENT, CONTRADICTION, and 114

NEUTRAL. 115

The data format of LCHAIM aligns with existing 116

NLI benchmarks (Bowman et al., 2015; Williams 117

et al., 2018). A notable difference from existing 118

datasets is that LCHAIM features longer premises, 119

often spanning one or more passages. Additionally, 120

each premise is paired with three or more hypothe- 121

ses. 122

The verbal reasoning tests require candidates 123

to comprehend meaning, evaluate logical strength, 124

make valid inferences, and identify appropriate con- 125

clusions. The passages cover various topics, in- 126

cluding current affairs, business, science, the envi- 127

ronment, economics, history, meteorology, health, 128

and education. These questions are of high qual- 129

ity and are used in rigorous assessments, reflect- 130

ing a high level of difficulty. After removing du- 131

plicates, the LCHAIM dataset consists of 8,325 132

context-hypothesis pairs. Lexical overlap analy- 133

sis, calculated using Jaccard Similarity between 134

premises and hypotheses in each class, shows only 135

4.87% overlap for ENTAILMENT pairs and 5.49% 136

for CONTRADICTION pairs, indicating that the 137

dataset presents significant challenges for simple 138

lexical matching techniques (Liu et al., 2021a). 139

Inferring from the original ConTRoL dataset, 140

and with the hypothesis that translation does not 141

affect the reasoning types present in the dataset at 142

large. LCHAIM contains various reasoning tasks 143

such as Coreferential Reasoning (Ye et al., 2020), 144

Verbal Logical Reasoning (Liu et al., 2021b), Tem- 145

poral and Mathematical Reasoning (Nakhimovsky, 146

1987), Information Integration over Paragraphs 147

(Welbl et al., 2018), and Analytical Reasoning 148

(Williams et al., 2019). 149

2.1 Translation 150

The LCHAIM dataset was created via translation of 151

the previously mentioned ConTRoL dataset, a large 152
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NLI dataset with especially long premises that aims153

to address contextual reasoning. To ensure opti-154

mal translation we employ two translation models,155

Amazon Translate2, a neural network-based ma-156

chine translation service, and DictaLM Translation,157

a Hebrew-LLM-based translation service (Shmid-158

man et al., 2024). We translate the entire ConTRoL159

dataset using both translation models using the API160

of both services.161

2.2 Validation162

To determine which translation is superior for this163

task, we perform a manual evaluation of the trans-164

lation.165

We employed a stratified random sampling ap-166

proach. From our dataset of 8,325 samples, we167

randomly selected 200 samples, maintaining the168

proportional representation of the original train,169

test, and development splits.170

Two out of four human annotators (two authors171

of the paper) independently reviewed and ranked172

each translated sample based on three ordinal scale173

parameters and one binary parameter:174

1. Translation Accuracy: The degree of preci-175

sion in translating from English to Hebrew176

(Popović et al., 2006).177

2. Fluency: The naturalness and coherence of the178

translated premise and hypothesis (Graham179

et al., 2013).180

3. Cultural Fit: The extent to which the trans-181

lation preserves the cultural nuances and ap-182

propriateness of the original English text in183

Hebrew (Nida, 1964).184

4. Label Validity: Binary, whether the label is185

still valid after the translation of the premise186

and hypothesis.187

Each ordinal parameter was scored on a scale188

of 1 to 5, with 5 representing the highest quality189

and 1 the lowest. Additionally, the annotators as-190

sessed whether the original label remained valid191

after translation, ensuring the logical relationship192

between the premise and hypothesis is reserved in193

the target language.194

Following this validation process, we calculated195

the average annotators’ score for each of the three196

parameters (Translation Accuracy, Fluency, and197

Cultural Fit). We also computed the percentage of198

2https://aws.amazon.com/translate/

cases where the original label was maintained after 199

translation. These results are presented in Table 1. 200

Amazon Translate was selected as the better 201

translation in the context of this dataset, with a 202

mean accuracy, fluency, and cultural fit of 85.57%, 203

82.53% ,74.49% respectively. The percentage of 204

samples with original labels remaining valid af- 205

ter translation was 97.8% for Amazon Translate 206

and 94% for DictaLM Translation. This evaluation 207

methodology allowed us to comprehensively assess 208

the quality and reliability of both automatic transla- 209

tion models in the context of our specific task, with 210

quantitative measures to support our choice. 211

Additionally, we conduct an automatic val- 212

idation of the translation quality using back- 213

translation. Specifically, we re-translate both 214

premises and hypotheses back to English using 215

the same translation service and compute sentence 216

similarity between the original English text and 217

its back-translation. For this evaluation, we used 218

MiniLM3, which yielded an average sentence simi- 219

larity of 0.9537±0.0479 for premises, with only 22 220

out of unique 1928 unique instances scoring below 221

0.75, following (Lin et al., 2021). For hypotheses, 222

the average sentence similarity is 0.9331± 0.0886, 223

with 103 out of unique 1928 instances scoring be- 224

low the 0.75 threshold. Based on these results, we 225

remove samples with a sentence similarity < 0.75 226

from the dataset to ensure dataset quality. 227

To further verify that the back-translated dataset 228

preserves semantics, we extract embeddings from 229

both the original dataset (ConTRoL) and its back- 230

translated version using a Longformer (Beltagy 231

et al., 2020) model. We then train a Multi-Layer 232

Perceptron (MLP) classifier solely on the ConTRoL 233

train set embeddings and use it to make predictions 234

on both the original and LCHAIM-back-translated 235

test sets. When comparing test results, we find that 236

the classifier assigns the same label (entailment, 237

contradiction, or neutral) to 92.11% of the test sam- 238

ples in both datasets. This high agreement indicates 239

that the translation process largely preserves the es- 240

sential meaning of the dataset. 241

3 Experiments 242

3.1 Hebrew Pre-trained Language Models 243

We implement and evaluate SOTA pre-trained lan- 244

guage models in Hebrew to demonstrate their 245

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Model Accuracy Fluency Cult. Fit Label Validity

Amazon Translate 4.279 ± 0.075 4.127 ± 0.0495 3.775 ± 0.09 4.890 ± 0.01
DICTA-LM-2.0 4.057 ± 0.057 4.096 ± 0.031 3.927 ± 0.148 4.700 ± 0.190

Table 1: Translation evaluation metrics for Amazon Translate and DICTA-LM-2.0. Scores range from 1 to 5 (best).
95% confidence interval for the mean absolute error for inter-rater agreement in manual validation is also reported.
Bold indicates the best rated translation.

NLU capabilities, proxied by their performance246

on LCHAIM.247

AlephBERT AlephBERT (Seker et al., 2022) is a248

Hebrew version of the classic BERT (Devlin et al.,249

2019) pre-trained language model with a large vo-250

cabulary. It was trained on three datasets: the He-251

brew portion of the OSCAR corpus-cleaned Twitter252

texts (Ortiz Su’arez et al., 2020), and the entire He-253

brew Wikipedia. Both variants utilize wordpieces254

with a vocabulary size of 52,000. AlephBERT was255

trained only using the masked token prediction ob-256

jective, excluding next-sentence prediction.257

LongHero LongHero (Shalumov and Haskey,258

2023) is a variant of the HeRo model (Shalumov259

and Haskey, 2023) which is a Hebrew language260

model based on the RoBERTa architecture (Liu261

et al., 2019). It is designed to handle long se-262

quences more effectively and uses a BPE tokenizer263

with a vocabulary size of 50,265 tokens, trained on264

the HeDC4 dataset (Shalumov and Haskey, 2023).265

We implement this experiment following the266

original ConTRoL paper implementation. Given a267

premise p and a hypothesis h, we concatenate them268

into a new sequence: [CLS]+p+[SEP]+h+[SEP],269

where [CLS] is the classification token and [SEP] is270

the separator token. We encode the sequence with271

the pre-trained model, and feed the hidden repre-272

sentation of the [CLS] token from the final layer to273

the Multi-Layer Perceptron (MLP) with a softmax274

layer for classification. The MLP has three hidden275

layers followed by an output layer. The first per-276

forms a linear transformation from the input size277

to 300 units, followed by ReLU activation, layer278

normalization, and dropout with a rate of 0.3. The279

second layer transforms to 100 units, and the third280

to 50 units. The final output layer maps the 50281

units to 3 output classes for classification. Each282

hidden layer includes ReLU activation and layer283

normalization.284

For AlephBERT, we use the proposed method-285

ology by Devlin et al. (2019). We adhere to the286

original implementation details, using the same 287

dataset split into training, development, and test 288

sets with an 8:1:1 ratio (6,692:837:836 samples for 289

training, validation and test respectively) and train- 290

ing all models for 10 epochs (see Appendix A for 291

hyperparameter optimization details). The maxi- 292

mum sequence length is set to 512 tokens for Ale- 293

phBERT and 4,096 for LongHero. 294

To further investigate the performance of these 295

models in different settings, we employ fine-tuning 296

in 3 ways. Firstly, we fine-tune both AlephBERT 297

and LongHero using the HebNLI (HebArabNlp- 298

Project, 2024) dataset, a translated version of the 299

original SNLI dataset (Bowman et al., 2015). This 300

is done to investigate the effect of fine-tuning using 301

a short-premise NLI dataset for the task of long- 302

premise NLI in LCHAIM. Second, we perform 303

further fine-tuning of the same models using the 304

train set (80% of samples) of the LCHAIM dataset. 305

We report Accuracy over the test set as the main 306

metric, and precision (P), recall (R), and F1-Score 307

(F1) for each class. 308

3.2 In-Context Learning with LLMs 309

We further evaluate three SOTA Hebrew and multi- 310

lingual LLMs for the LCHAIM NLI task: (1) Dicta- 311

LM-2.0-7B (Shmidman et al., 2024), (2) Gemma- 312

9B (Team et al., 2024), and (3) GPT-4o (Hurst 313

et al., 2024) For models description, see Appendix 314

B. Inference with LLMs was performed using the 315

Huggingface Transformers ecosystem (Wolf, 2019) 316

and Azure’s OpenAI Service (Microsoft, 2024), by 317

parsing the LLM’s response. Each model returned 318

a single-letter label: ’e’ for entailment, ’c’ for con- 319

tradiction, and ’n’ for neutral. We ensured that 320

every response adhered to this format, validating 321

the outputs accordingly. results are reported over 322

the test set only. During the prompt engineering 323

process, several methodologies were investigated 324

to enhance the model’s performance. Initially, we 325

employed a zero-shot approach, wherein only free- 326

text instructions were provided to the model to 327

guide the task. However, this method proved insuf- 328
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ficient, as it was overly simplistic for the models to329

accurately predict the specific labels, resulting in330

incorrect outputs.331

We then implemented a prompt with detailed332

instructions regarding the structure of the desired333

output (see Appendix C). This adjustment led to334

an improvement in the model’s performance. To335

further refine the approach, we iteratively modi-336

fied the prompt in the zero-shot setting, randomly337

sampling and evaluating 30 instances after each338

iteration. If performance improved, we retained339

the new prompt; otherwise, we reverted to the340

previous version. This process was repeated over341

seven iterations. Finally, we introduced examples,342

known as the “few-shot” (Brown, 2020) approach343

or in-context learning, which involved providing344

the model with several instances of NLI tasks along345

with the correct labels.346

Additional Experiments To obtain a human per-347

formance baseline, we perform a manual evalua-348

tion, where 4 of the authors, Hebrew native speak-349

ers, assessed 200 random samples from the test set350

of the LCHAIM dataset.351

To further investigate the complexity of the var-352

ious types of reasoning, and the increased con-353

text length available in LCHAIM, we test Ale-354

phBERT, LongHero, and Gemma-9B using the355

shorter-premise HebNLI dataset, a translated ver-356

sion of the original Stanford NLI (SNLI, Bowman357

et al., 2015), for comparison. We initially ran mod-358

els without fine-tuning, to highlight the impact of359

fine-tuning and compare baseline performance be-360

tween models.361

4 Results362

Table 2 presents the results for the models tested.363

AlephBERT, achieved an overall mean accuracy364

of 39.5%, with an F1-Score of 36. However, the365

model showed relatively uneven calibration, con-366

sistently predicting the entailment class in the test367

set, after accounting for overfitting through class368

balance, vanishing gradient, and varying model369

complexity, we assume this behavior indicates the370

difficulty of the task at hand. Fine-tuning Aleph-371

BERT using the HebNLI dataset achieved 37.5%372

mean accuracy and 35.42 F1 Score resulting in373

a -2%, and -1.5 absolute difference respectively,374

compared to the non fine-tuned model.375

Fine-tuning only using LCHAIM, without the376

HebNLI step resulted in a mean accuracy of 38.4%377

and an F1 Score of 32.4, which indicates an abso-378

lute difference of -1%, and -3 respectively. Con- 379

tinuous fine-tuning on both HebNLI and LCHAIM 380

resulted in a mean accuracy of 42.6% and an F1 381

Score of 41.3 or an overall 3%, and 5 absolute in- 382

crease respectively. This means for AlephBERT the 383

best setting is fine-tuning on both the short premise 384

HebNLI and the long premise LCHAIM dataset, 385

these settings also showed better calibration than 386

the original pre-trained version, with relatively bal- 387

anced class prediction. 388

LongHero, which has a long enough context to 389

be able to accommodate the long premises, was 390

able to achieve a mean accuracy and an F1-Score 391

of 34.5%, and 33.7 respectively without fine-tuning. 392

The model displayed some imbalance towards the 393

entailment class. Fine-tuning LongHero using the 394

shorter premise HebNLI resulted in an accuracy of 395

32% and an F1 Score of 25, or an absolute differ- 396

ence of -2% and -8 compared to the non-fine-tuned 397

version. Fine-tuning only using the LCHAIM train- 398

ing set resulted in an accuracy of 41% and an F1 399

Score of 34 or an absolute difference of 7% and 1 400

respectively. Furthermore, fine-tuning LongHero 401

on both HebNLI, and then on LCHAIM, resulted 402

in the best overall performance of 52% mean accu- 403

racy and F1 Score, an absolute performance differ- 404

ence of 18% and 19 respectively. This can also be 405

viewed as a relative increase of an impressive 35% 406

increase in mean accuracy and F1 Score, which in- 407

dicates a significant increase in performance. This 408

model also showed the overall best calibration be- 409

tween the 3 predicted classes. The best model for 410

the task was a fine-tuned LongHero using both 411

HebNLI and LCHAIM. 412

For the LCHAIM test set, Gemma-9B achieved 413

56.15% accuracy in zero-shot, and 50.93%, 414

49.94%, and 48.45% for 1, 2, and 3-shot prompting 415

from the HebNLI dataset. With random sampling 416

from the LCHAIM dataset, it achieved 56.15%, 417

55.65%, 49.57%, and 49.32% for zero, 1, 2, and 3- 418

shot, respectively. Dicta-LM-2.0-7B scored 39% in 419

zero-shot, with a small 1.5% increase in accuracy 420

for few-shot (40.45%, 40.99%, and 40.62% for 1, 421

2, and 3-shot). For shots sampled from LCHAIM, 422

it achieved 42.36%, 40%, and 41.37% for 1, 2, and 423

3-shot. GPT-4o performed the best with 57.68%, 424

58.37%, 60.12%, and 57.21% for zero, 1, 2, and 425

3-shot, respectively. Results are shown in Table 3. 426

For the manual evaluation, human performance 427

is displayed in Table 2. The testers were able to 428

achieve a mean accuracy of 84.97% and an F1 429

Score of 84.26, a significant difference of 33 abso- 430
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Model Acc. F1 Entailment Contradiction Neutral

P R F1 P R F1 P R F1

Human (English) 87.06 93.15 94.83 95.65 95.24 93.33 91.21 92.26 93.02 91.91 92.95
Human (Hebrew) 84.97 84.26 77.05 87.04 81.74 91.23 78.79 84.55 85.33 87.67 86.49

AlephBERT 39.50 35.94 42.47 68.19 52.34 31.38 24.38 27.44 39.13 15.25 21.95
AlephBERT-HebNLI 37.51 35.42 42.43 56.57 48.49 28.92 14.46 19.28 33.06 34.74 33.88
AlephBERT-LCHAIM 38.38 32.39 42.61 60.85 50.12 32.82 44.21 37.67 25.00 0.01 0.02
AlephBERT-ALL 42.60 41.32 46.26 56.88 51.02 36.45 43.38 39.62 45.21 22.03 29.63

LongHero 34.53 33.74 39.42 46.17 42.53 28.7 33.47 30.91 32.85 19.49 24.46
LongHero-HebNLI 31.55 24.92 50.77 10.09 16.84 34.48 12.40 18.24 29.25 80.93 42.97
LongHero-LCHAIM 41.49 34.68 41.94 81.96 55.49 44.12 12.40 19.35 36.73 15.25 21.56
LongHero-ALL 52.17 52.20 59.74 57.19 58.44 47.56 44.22 45.82 47.19 53.39 50.10

Table 2: Performance results for different models over the LCHAIM test set. Metrics include overall accuracy, F1
score, precision (P), recall (R), and F1 scores for each class: Entailment, Contradiction, and Neutral. -HebNLI
indicates fine-tuning using HebNLI, -LCHAIM indicates fine-tuning using LCHAIM, and -ALL indicates sequential
fine-tuning on HebNLI and then LCHAIM. Human (English) and Human (Hebrew) indicate performance of four
educated testees of 300, and 200 samples from ConTRoL and LCHAIM respectively. Bold indicates the best
performing model.

Model Shots’ Dataset 0-shot 1-shot 2-shot 3-shot

Gemma-9B
HebNLI

56.15%
50.93% 49.94% 48.45%

LCHAIM 55.65% 49.57% 49.32%

Dicta-LM-2.0-7B
HebNLI

39.38 %
40.45% 40.99% 40.62%

LCHAIM 42.36% 40.00% 41.37%

GPT-4o HebNLI 57.68 %
54.13% 52.57% 54.41%

LCHAIM 58.37% 60.12% 57.21%

Table 3: Mean accuracy of LLMs Gemma-9B and Dicta-LM-2.0-7B over the LCHAIM test set, under 0-shot, 1-shot,
2-shot, and 3-shot settings. The ’Shots’ Dataset column indicates the dataset from which few-shot examples were
sampled. Note that for the zero-shot setting, only a single accuracy score is reported, as no examples are provided
for in-context learning. Best performance model and setting in bold. GPT-4o scored the best result, 60.12% for the
2-shot setting.

lute accuracy and F1 Score compared to the best431

LongHero model. Human performance also show432

a 27.29% higher mean accuracy compared to the433

best LLM, GPT-4o.434

Result for the shorter HebNLI are presented in435

Table 4. The base AlephBERT model achieved436

a mean accuracy and F1 Score of 53.50% and437

53.42% respectively without fine-tuning. While438

the LongHero base model achieved a 47.17% and439

46.74% mean accuracy and F1 Score respectively.440

Fine-tuning using the HebNLI datasets resulted441

in a 15% and 27% absolute increase in accuracy442

for AlephBERT and LongHero respectively. How-443

ever, fine-tuning using the LCHAIM dataset, re-444

sulted in a 17% and 10% absolute decrease for both445

models respectively, showing that fine-tuning us-446

ing LCHAIM hinders performance for the HebNLI447

task.448

Fine-tuning using first the LCHAIM and then 449

HebNLI dataset resulted in a mean accuracy and F1 450

Score of of 78.28% and 78.24% for AlephBERT, 451

offering similar results to fine-tuning only with 452

HebNLI . The same approach resulted in a mean ac- 453

curacy and F1 Score of 83.93% and 83.78% respec- 454

tively for the LongHero model, a 5.5% increase 455

in performance compared to fine-tuning only with 456

HebNLI. 457

The best model for the HebNLI test set 458

(LongHero-ALL), achieved a 31.76% absolute 459

higher mean accuracy compared to the best model 460

for the LCHAIM test set (also LongHero). Both 461

models showed good calibration over both test sets. 462

For comparison, SOTA performance for HebNLI 463

is reported in the Hebrew LLM leaderboard, with a 464

mean accuracy of 95.48% for Qwen2.5-72B.4 465

4https://huggingface.co/spaces/
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Model Acc. F1 Entailment Contradiction Neutral

P R F1 P R F1 P R F1

AlephBERT 53.50 53.42 56.14 55.22 55.31 56.11 59.38 57.84 46.23 45.57 45.40
AlephBERT-HebNLI 78.73 78.68 78.21 83.88 80.95 80.81 78.17 79.47 77.01 73.62 75.28
AlephBERT-LCHAIM 36.42 31.02 36.68 61.18 45.86 36.08 41.36 38.54 36.00 0.03 0.06
AlephBERT-ALL 78.28 78.24 77.71 82.56 80.01 80.39 78.82 79.60 76.54 72.89 74.67

LongHero 47.17 46.74 48.22 58.22 52.75 50.51 47.55 49.99 41.22 34.43 37.52
LongHero-HebNLI 74.52 73.86 76.68 81.13 81.30 72.36 74.46 76.97 72.80 62.57 67.25
LongHero-LCHAIM 37.30 31.46 37.22 79.80 51.12 38.77 14.10 21.66 32.06 15.04 21.60
LongHero-ALL 83.93 83.78 87.41 86.84 87.13 84.19 85.01 84.60 79.78 79.48 79.63

Table 4: Performance results for different models using the shorter-premise HebNLI test set. Metrics include overall
accuracy, F1 score, precision (P), recall (R), and F1 scores for each class: Entailment, Contradiction, and Neutral.
-HebNLI indicates fine-tuning using HebNLI, -LCHAIM indicates fine-tuning using LCHAIM, and -ALL indicates
sequential fine-tuning with LCHAIM and then HebNLI. Numbers in bold indicate the best performing model setting.

5 Error Analysis466

5.1 Morphological Richness and Errors467

To explore the relationship between morphological468

richness and model performance, we compute the469

Type-to-Token Ratio (TTR) of the test set samples.470

TTR is calculated as the average between two ra-471

tios. The (1) ratio of distinct parts-of-speech (POS)472

types to the total number of POS in the text, and (2)473

the ratio of distinct lemmas to the total number of474

lemmas in the text. TTR is used to measure lexical475

diversity, here we follow (Kettunen, 2014) to mea-476

sure morphological diversity. We hypothesize that477

morphological complexity in Hebrew may affect478

model accuracy due to challenges in tokenization,479

syntactic parsing, and semantic disambiguation.480

We calculated TTR values for both the premise481

and hypothesis combined in each dataset sam-482

ple and correlated them with the model’s accu-483

racy. This analysis focuses on the best-performing484

models, LongHero-ALL, and GPT-4o results are485

shown in Figure 2. Our results show that higher486

TTR values, indicating greater morphological di-487

versity, are associated with more prediction errors,488

supporting our hypothesis.489

These findings might indicate the need to ac-490

count for morphological complexity when design-491

ing models for languages like Hebrew.492

5.2 Reasoning Types and Errors493

We hypothesise LCHAIM is a difficult NLI task494

due to the complex and various reasoning types it495

contains, unlike other Hebrew NLI datasets. To496

investigate the relationship between model perfor-497

mance and reasoning, we report the average model498

hebrew-llm-leaderboard/leaderboard
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Figure 2: Mean accuracy for the best performing, fine-
tuned, LongHero-ALL model, across different TTR
bins, over the LCHAIM test set.

accuracy for each of four main reasoning types: 499

(1) Temporal, (2) Corereferential, (3) Logical , and 500

(4) Analytical. We rely on previous work (Liu 501

et al., 2021a) to determine the types of reasoning. 502

Our analysis shows a mean accuracy of 49.16%, 503

64.00%, 52.27%, and 53.74% for Temporal, Coref- 504

erential, Logical, and Analytical categories, respec- 505

tively. This analysis also pertains to the best per- 506

forming LongHero-ALL model, where each sam- 507

ple can contain one or more types of reasoning. 508

6 Discussion 509

The results of our evaluation of the LCHAIM 510

dataset shed light on the challenges and perfor- 511

mance of models dealing with long-premise NLI 512

tasks in Hebrew. To the best of our knowledge, 513

LCHAIM is the first long premise, complex reason- 514

ing, NLI dataset available in Hebrew. 515
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Model Performance The AlephBERT model516

struggled with long-premise NLI tasks. It achieved517

a mean accuracy of 39.50% and an F1-Score of518

35.94, and tends to over-predict entailment. Fine-519

tuning AlephBERT on the HebNLI dataset, and520

on the LCHAIM train set did not improve it’s521

performance over the test set. However, further522

fine-tuning the model with LCHAIM after the523

initial HebNLI fine-tuning showed improvements.524

This resulted in a mean accuracy and F1-Score525

of 42.60% and 41.32 respectively. This suggests526

the shorter, more simple task of HebNLI does527

not contribute towards the harder, longer-premise528

LCHAIM test set performance on its own, but529

can provide a foundation for further fine-tuning.530

Therefore, including the long-premise data from531

LCHAIM is essential for better performance in the532

longer premise tasks. With that said, performance533

was still considerably lower then the 84.97% mean534

accuracy human performance.535

LongHero, which is designed to handle longer536

contexts, achieved a mean accuracy and F1-Score537

of 34.53% and 33.74 respectively. This model538

had also calibration issues similar to AlephBERT.539

It is worth noting the English equivalent models540

(BERT-base, and Longformer) did not experience541

these calibration issues when considering the En-542

glish version of this dataset (Liu et al., 2021a).543

The best results were seen with the fine-tuned544

LongHero using both HebNLI and then LCHAIM,545

with a mean accuracy and F1 Score of 52.17% and546

52.20 respectively. For comparison, performance547

over the shorter HebNLI dataset were significantly548

higher than the performance over the LCHAIM549

test set considering the sequentially fine-tuned Ale-550

phBERT and LongHero. These models showed a551

25-30% higher mean accuracy and F1 Score con-552

sidering the HebNLI test set. With caution, we553

hypothesise this is an indicator of the complexity554

of the reasoning in the LCHAIM dataset.555

GPT-4o performed the best with a mean accu-556

racy of 60.12% in 2-shot learning, but still did557

not significantly surpassed the smaller Gemma-9B.558

Both Gemma-9B and Dicta-LM-2.0-7B showed no559

improvement with few-shot learning compared to560

zero-shot learning.561

Complex Reasoning and Morphological Rich-562

ness We hypothesize that the LCHAIM dataset563

is a long reach to Hebrew models because, unlike564

previous NLI benchmarks, it contains tasks that565

require complex reasoning (for example temporal566

reasoning shown in Figure 3). Furthermore, we 567

show that morphological richness of samples in the 568

test set is inversely correlated with performance. 569

This finding aligns with our hypothesis, and previ- 570

ous research claiming MRLs like Hebrew, are more 571

difficult for language models than non MRLs like 572

English. 573

P: ההיסטוריונים של ימינו שואפים לבנות תיעוד של פעילויות אנושיות
ולהשתמש בתיעוד זה כדי להשיג הבנה עמוקה יותר של האנושות.

תפיסה זו של משימתם היא עדכנית למדי, המתוארכת להתפתחות מהמאה ה
-18 ותחילת המאה ה -19 של ההיסטוריה המדעית, וטופחה במידה רבה על

ידי היסטוריונים מקצועיים שאימצו את ההנחה כי חקר הפעילות האנושית
הטבעית והבלתי נמנעת. לפני סוף המאה ה -18, ההיסטוריה לא נלמדה

כמעט בשום בתי ספר, והיא לא ניסתה לספק פרשנות לחיי האדם בכללותם.
זה מתאים יותר לתפקידה של הדת, של הפילוסופיה, או אולי אפילו של השירה.

P: Today's historians aim to build a record of human activities
and use this documentation to gain a deeper understanding of
humanity. This conception of their mission is fairly recent,
dating back to the 18th and early 19th century development of
scientific history, and has been largely fostered by professional
historians who have adopted the assumption that the study of
natural and inevitable human activity. Before the end of the
18th century, history was not taught in almost any schools, and
it did not attempt to provide an interpretation of human life as
a whole. This is more suited to the role of religion, of
philosophy, or perhaps even of poetry.

   Entailment                Contradiction                 Neutral 

H1: In the 17th century history would not have been
considered as a way of understanding humanity.

H1: במאה ה -17 ההיסטוריה לא הייתה נחשבת כדרך להבנת
האנושות

Figure 3: Sample from the LCHAIM dataset which
requires temporal reasoning to solve.

Like ConTRoL, Hebrew models struggle to 574

achieve human performance with LCHAIM. Un- 575

like ConTRoL, Hebrew models show bad calibra- 576

tion, which could indicate specific complexities in 577

Hebrew. 578

7 Conclusion 579

This study introduced the LCHAIM dataset, a 580

benchmark for long-premise NLI task in Hebrew, 581

that focuses on complex reasoning types like coref- 582

erential, temporal, and analytical reasoning. Our 583

experiments show that current state-of-the-art mod- 584

els perform far below human levels. The LCHAIM 585

dataset provides a tough challenge for future re- 586

search, underscoring the need for better models 587

and methods. By making LCHAIM and our code 588

available, we hope to encourage further exploration 589

and advancements in Hebrew NLU research. 590
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Limitations591

While this study advances one’s knowledge about592

Hebrew NLI, several limitations should be ac-593

knowledged. A more granular evaluation could594

offer deeper insights into how models handle spe-595

cific reasoning and morphological challenges in596

Hebrew NLI tasks. Another limitation is the fact597

the dataset was only evaluated manually by ran-598

domly sampling from it. Future work should dive599

deeper into challenges posed by advanced reason-600

ing and morphological richness in other ways.601
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A Hyperparameters Optimization Details824

Hyperparameters were optimized through an exten-825

sive grid search across a variety of configurations to826

achieve optimal model performance. Batch sizes of827

8, 16, and 32 were tested, while learning rates rang-828

ing from 1e−5 to 5e−5 (specifically 1e−5, 2e−5,829

3e−5, 4e−5, 5e−5) were explored to determine the830

optimal convergence rate. Gradient accumulation831

steps of 1, 2, and 4 were also evaluated. These832

combinations enabled us to systematically test dif-833

ferent hyperparameter settings and identify the best834

configuration for each model.835

B Large Language Models (LLMs)836

Details837

Dicta-LM-2.0-7B Dicta LM 2.0 (Shmidman838

et al., 2024) is a Hebrew LLM with a custom tok-839

enizer, continuously pre-trained from Mistral-7B-840

v0.1 (Jiang et al., 2023) and later fine-tuned. The841

pertaining is done using a Hebrew corpus, and fur-842

ther supervised fine tuning is performed using cus-843

tom Hebrew datasets.844

Gemma-9B The Gemma-9B model (Team et al.,845

2024) is a multilingual transformer decoder trained846

on an 8192-token context. It employs Multi-Query847

Attention (Shazeer, 2019) for efficiency, Rotary848

Positional Embeddings (RoPE) (Su et al., 2024)849

for compact representation, and GeGLU (Shazeer,850

2020) with RMSNorm (Zhang and Sennrich, 2019)851

for stable training.852

GPT-4o GPT-4o is a state-of-the-art multimodal853

LLM developed by OpenAI (Hurst et al., 2024).854

This model is closed-source, and benefits from ex-855

tensive pre-training.856

C Prompt Structure and Classification857

Guidelines858

We provide the models with a Hebrew prompt for859

classifying the relationship between a premise and860

a hypothesis (Figure 4). The English translation861

mirrors the Hebrew prompt.862

The are prompted to classify the premise-863

hypothesis relationship in a single letter as c (Con-864

tradiction): Hypothesis contradicts the premise. e865

(Entailment): Hypothesis follows from the premise.866

n (Neutral): Hypothesis neither contradicts nor fol-867

lows.868

אני אתן לך פסקה ומשפט ואתה
תצטרך לסווג האם המשפט סותר

את הנאמר הפסקה (ס) , נגזר
מהנאמר מהפסקה (מ) או לא
סותר את הנאמר בפסקה ולא

נגזר מהנאמר בפסקה (נ) עליך
לענות באמצעות אחת האותיות

המייצגות את הקשר של המשפט
לטקסט בלבד

דוגמאות לתשובות:
        תשובה:

        מ
        תשובה:

        ס
        תשובה:

        נ
ענה על הפסקה והמשפט הבאים

        פסקה:
{p}        

        משפט:
{h}        

        תשובה:

I will provide a premise
and an hypothesis, classify
whether the hypothesis
contradicts the premise (c),
entails the premise (e) or is
neutral towards it (n). You
must answer with the one
letter representing the
relation between the
premise and hypothesis
only.
  Examples of a response:
    Answer: e
    Answer: c
    Answer: n
Classify for the
following premise and
hypothesis.
    Premise:
    {p}
    Hypothesis:
    {h}
    Answer:

English version Hebrew version

Figure 4: Prompt used for the NLI task. Left side shows
the English translation, right side shows the original
Hebrew. The prompt instructs the model to classify the
relationship between a given premise and hypothesis as
either contradiction (c), entailment (e), or neutral (n),
using a single letter for the response.
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